

Private Information Retrieval

Yuval Ishai

Technion

The Problem

[Chor-Goldreich-Kushilevitz-Sudan95]

1-bit records

vs.

b-bit records

Trivial solution:

Download x

Main question:

minimize communication
($\log N$ vs. N)

building block for
sublinear MPC

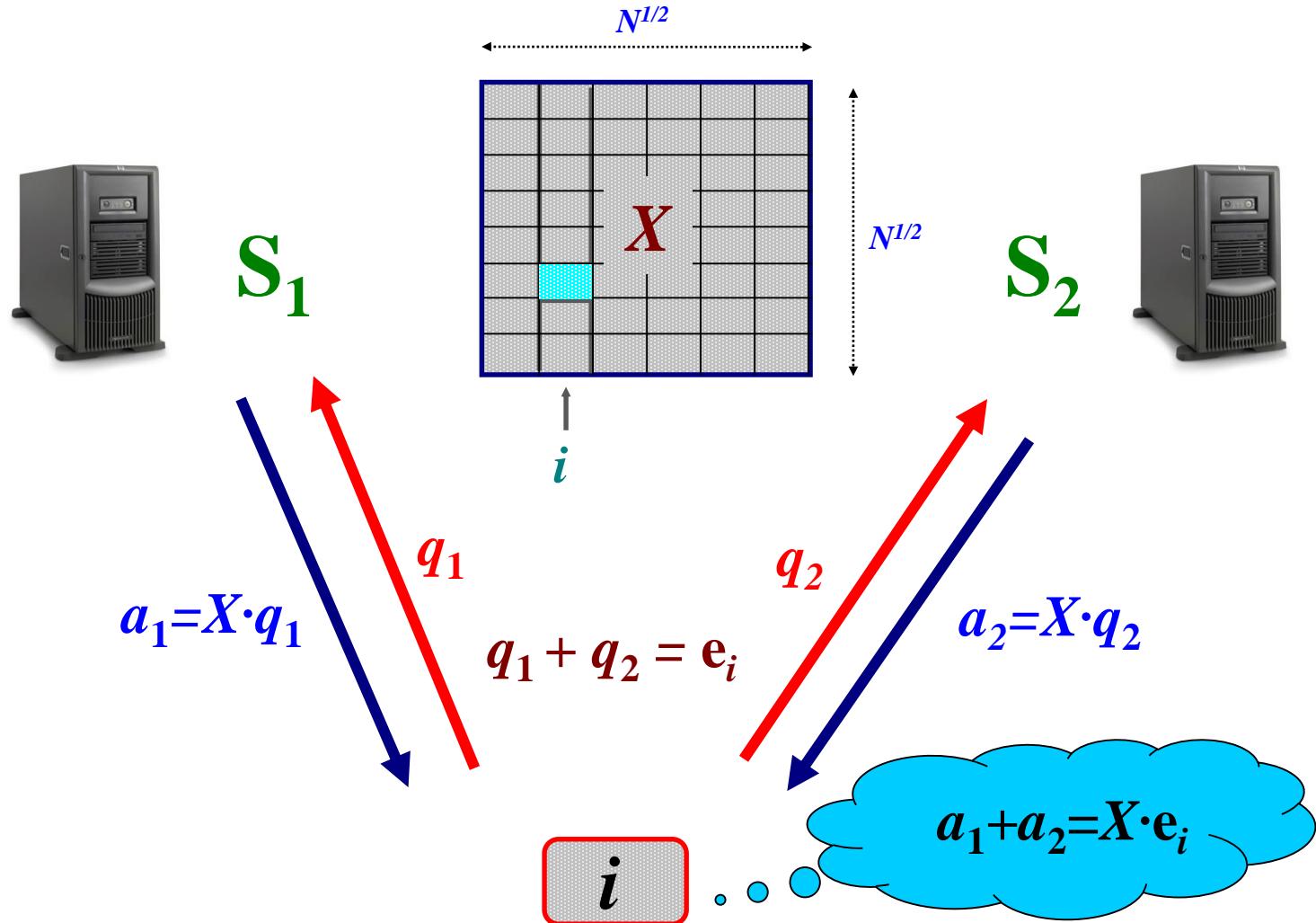
N -bit database x

1-private
vs.
 t -private

"Information-Theoretic"
vs.
Computational

More interaction:
typically not helpful

2-Server IT PIR example

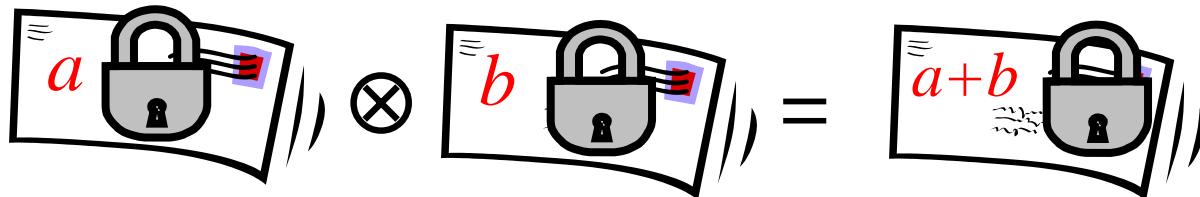


→ 2-server PIR with $O(N^{1/2})$ communication

1-Server CPIR example

[Kushilevitz-Ostrovsky97]

Tool: additively homomorphic encryption



Protocol:

- Client sends $\mathbf{E}(\mathbf{e}_i)$
 $E(0) E(0) E(1) E(0) (=c_1 c_2 c_3 c_4)$

$$X = \begin{bmatrix} 0 & 1 & \mathbf{1} & 0 \\ 1 & 1 & \mathbf{1} & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} N^{1/2}$$

\uparrow
 i

- Server replies with $\mathbf{E}(X \cdot \mathbf{e}_i)$

$$\begin{aligned} & c_2 \otimes c_3 \\ & c_1 \otimes c_2 \otimes c_3 \\ & c_1 \otimes c_2 \\ & c_4 \end{aligned}$$

- Client recovers i th column of X

→ 1-server CPIR with $\sim O(N^{1/2})$ communication

Why *Information-Theoretic* PIR?

Cons:

- Requires multiple servers
- Privacy against limited collusions
- Worse asymptotic complexity (with constant # servers k):
 $2^{(\log N)^\epsilon n}$ vs. $\text{polylog}(N)$

Pros:

- Challenging theoretical question
- Unconditional security
- Good **concrete efficiency**
- Allows for very short (logarithmic) queries or very short (constant-size) answers → applications!
- Closely related to **locally decodable codes**

3 Regimes

- Short answers ($O(1)$ bit from each server)
 - Application: PIR for long records
- Balanced communication
 - Typically reduces number of servers by factor of ~ 2
- Short queries ($O(\log N)$ bits to each server)
 - Application: PIR with preprocessing

Brief history

- For concreteness:
 - 3-server protocols
 - Answer length $O(1)$
- Lower bounds
 - [Mann98, ..., Woodruff07]: $c \cdot \log N$ for $c > 1$
- Upper bounds
 - [CGKS95] $O(N^{1/2})$
 - [Yekhanin07] $N^{O(1/\log \log N)}$
 - [Efremenko09] $N^{O(\sqrt{\log \log N}/\sqrt{\log N})}$

Assuming infinitely
many Mersenne primes

Hidden constant > 100

Brief history

- For concreteness:
 - 3-server protocols
 - Answer length $O(1)$
- Lower bounds
 - [Mann98, ..., Woodruff07]: $c \cdot \log N$ for $c > 1$
- Upper bounds
 - [CGKS95] $O(N^{1/2})$
 - [Yekhanin07] $N^{O(1/\log \log N)}$
 - [Efremenko09] $N^{O(\sqrt{\log \log N}/\sqrt{\log N})}$

[Beimel-I-Kushilevitz-Orlov12]:
Hidden constant ≈ 6

Brief history

- For concreteness:
 - 3-server protocols
 - Answer length $O(1)$
- Lower bounds
 - [Mann98, ..., Woodruff07]: $c \cdot \log N$ for $c > 1$
- Upper bounds
 - [CGKS95] $O(N^{1/2})$
 - [Yekhanin07] $N^{O(1/\log \log N)}$
 - [Efremenko09] $N^{O(\sqrt{\log \log N}/\sqrt{\log N})}$

[Dvir-Gopi15]:
2 servers, balanced

A longer version

Complexity theory

[BF90, BFKR90]

Instance hiding,
locally random reductions

[Yek07]

Breakthrough

[Efr09]

Best short answers

[DG15]

Best balanced

Crypto

[CGKS95]

PIR

[CG97]

2-server CPIR

[KO97]

1-server CPIR

[BIKR02]

$N^{o(1/k)}$

[IK04,BIKK14]

=> MPC

[LVW17,LV18,...]

=> secret sharing

1st Gen

[KT00]
LDC vs. PIR

2nd Gen

3rd Gen

Rest of Talk

- The bigger picture
- 1st (+ 2nd) generation PIR
- PIR via **homomorphic secret sharing**
 - General blueprint for 3rd generation PIR
- Open problems

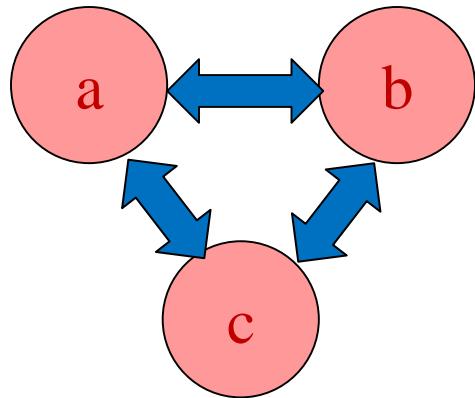
Communication Complexity of Cryptography

Fully Homomorphic Encryption

Gentry '09

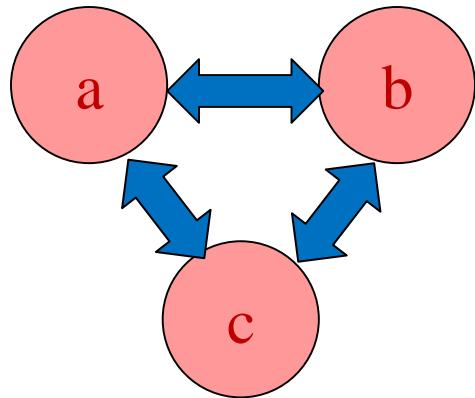
- Essentially settles communication complexity questions in complexity-based cryptography
- Main open questions
 - Further improve assumptions (eliminate “circular security”)
 - Improve concrete computational overhead
 - FHE >> PKE >> SKE >> one-time pad

Information-Theoretic MPC



	Communication Complexity	Secure Multiparty Computation (MPC)
Goal	Each party learns $f(a,b,c)$	Each party learns only $f(a,b,c)$

Information-Theoretic MPC



	Communication Complexity	Secure Multiparty Computation (MPC)
Goal	Each party learns $f(a,b,c)$	Each party learns only $f(a,b,c)$
Upper bound	$O(n)$ (n = input length)	$O(\text{size}(f))$ [BGW88,CCD88]

Information-Theoretic MPC

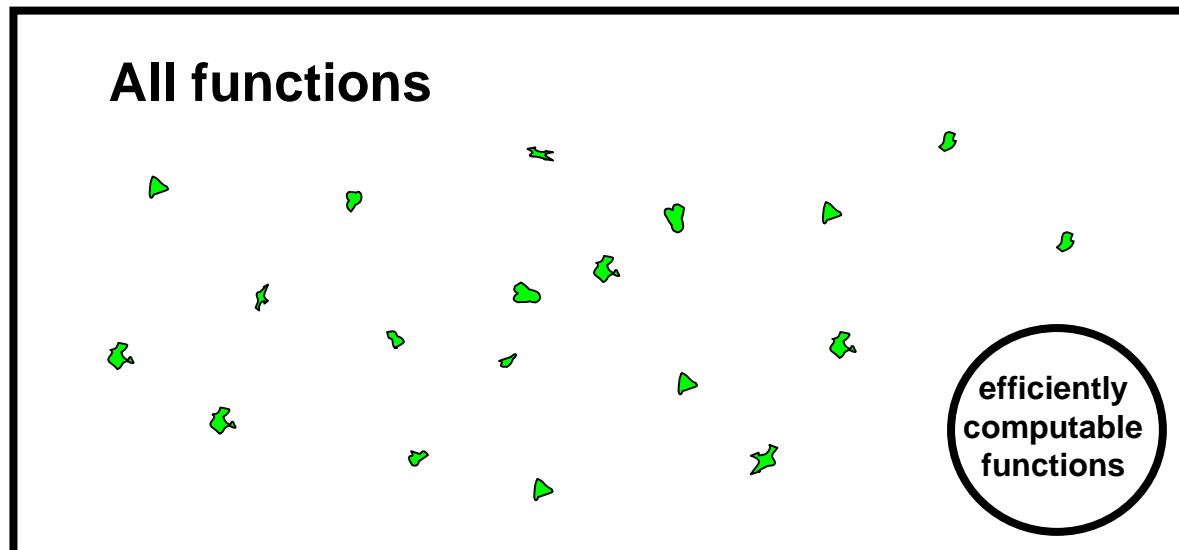
Big open question:
 $\text{poly}(n)$ communication for all f ?

*“fully homomorphic encryption of
information-theoretic
cryptography”*

	Information Complexity	Secure Multiparty Computation (MPC)
Goal	Each party learns $f(a,b,c)$	Each party learns only $f(a,b,c)$
Upper bound	$O(n)$ (n = input length)	$O(\text{size}(f))$ [BGW88,CCD88]
Lower bound	$\Omega(n)$ (for most f)	$\Omega(n)$ (for most f)

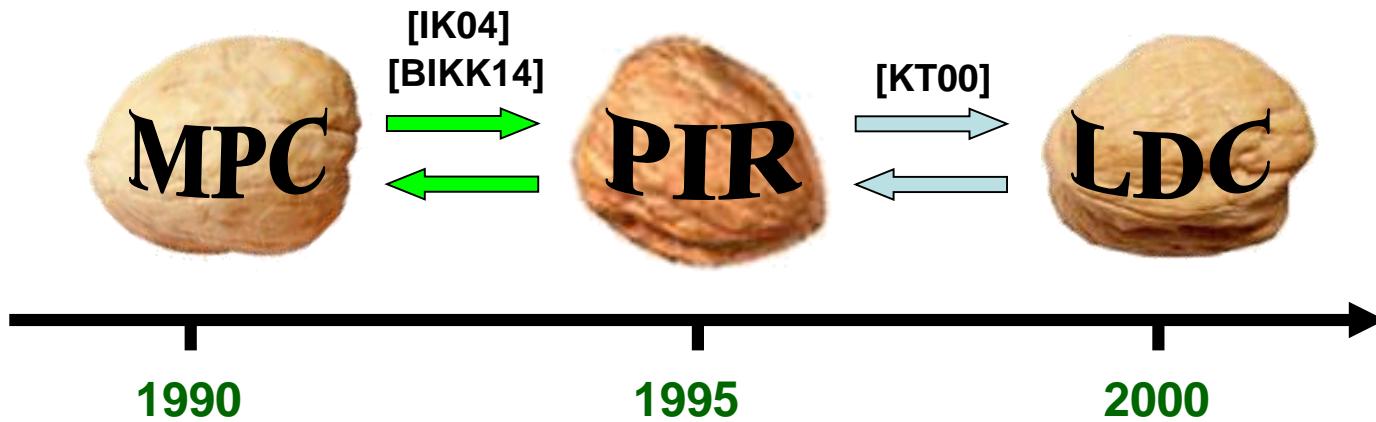
Question Reformulated

Is the **communication** complexity of MPC **strongly correlated** with the **computational** complexity of the function being computed?



= communication-efficient MPC

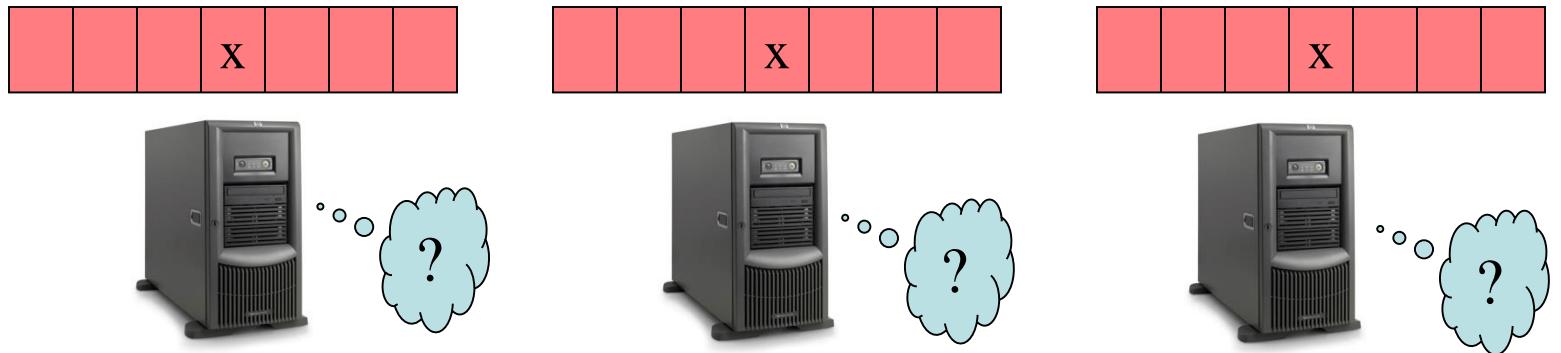
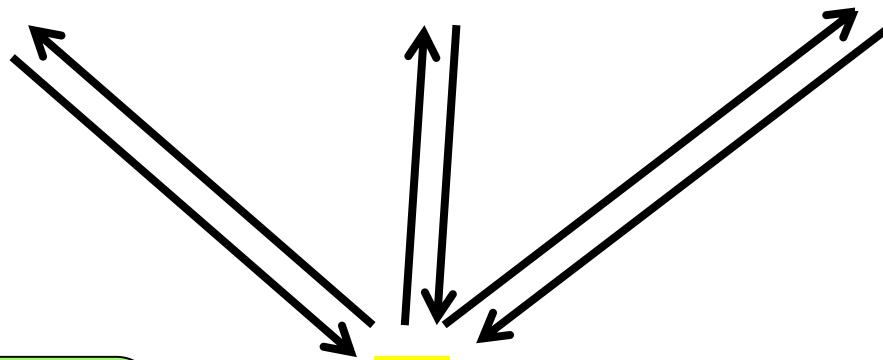
= no communication-efficient MPC



- The three problems are closely related

Back to 1st Generation...

Information-Theoretic PIR

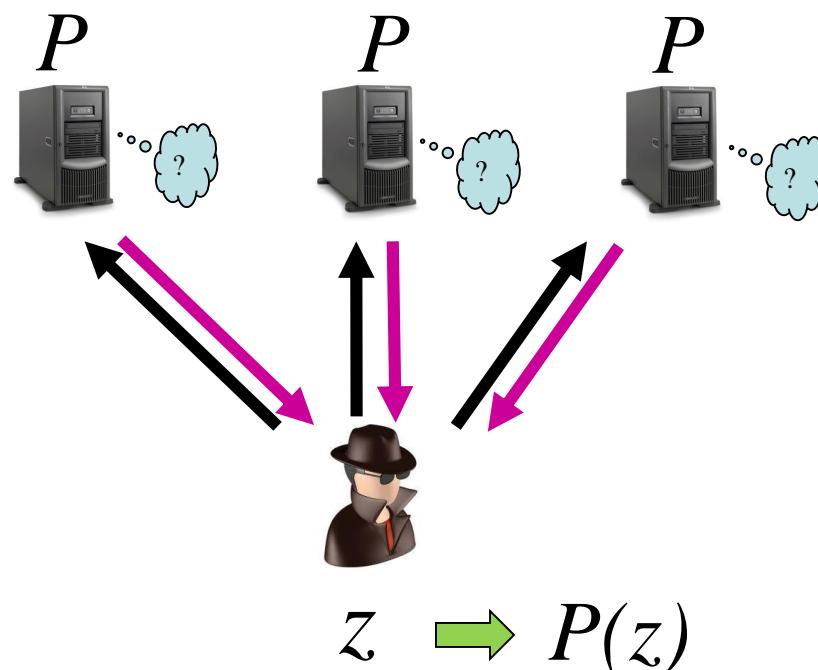


Main question:
minimize communication

Arithmetization

$$\begin{array}{lcl} \mathbf{x} & \Rightarrow & P_{\mathbf{x}} \in F[Z_1, \dots, Z_m] \\ i & \Rightarrow & z_i \in F^m \end{array}$$

$$\forall i \in [N], \quad P_{\mathbf{x}}(z_i) = \mathbf{x}_i$$



Parameters

Field $F = \text{GF}(2)$

Degree $d = \text{const.}$

#vars m s.t. $\binom{m}{d} \geq N \Rightarrow m = O(N^{1/d})$ suffices

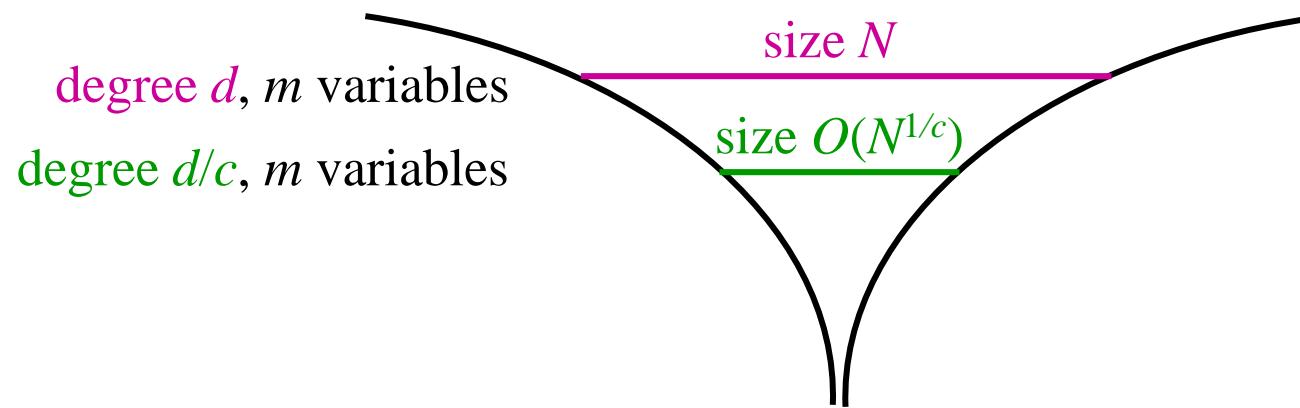
Ex. $d=3, m=8, N=\binom{8}{3}$

$\mathbf{z}_1=11100000 \quad \mathbf{z}_2=11010000 \quad \dots \quad \mathbf{z}_N=00000111$

$M_1=Z_1Z_2Z_3 \quad M_2=Z_1Z_2Z_4 \quad \dots \quad M_N=Z_6Z_7Z_8$

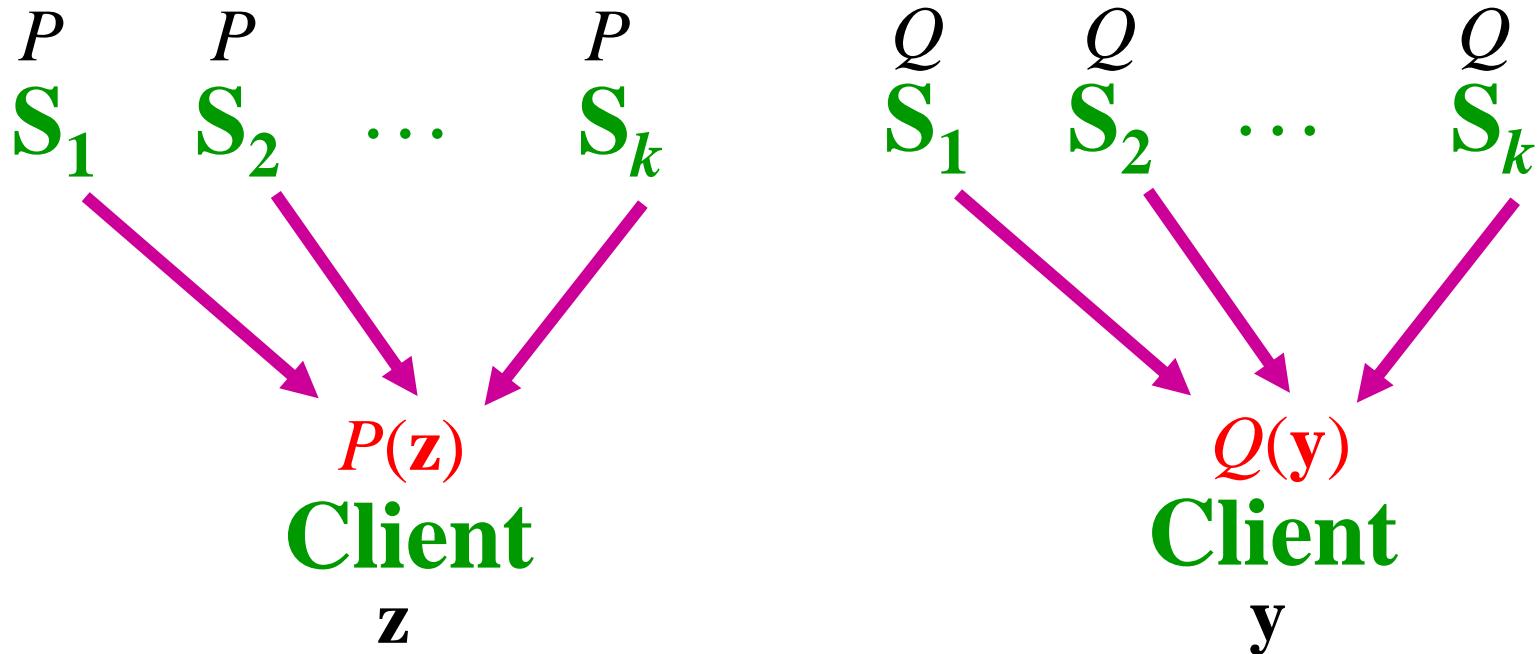
$$P_{\mathbf{x}} = \sum_{i=1}^N x_i M_i$$

Key Idea: Degree Reduction



Degree Reduction Using Partial Information

[BabaiKimmelLokam95,Beimel-I01]



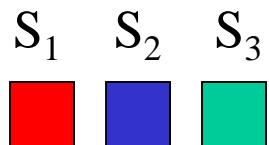
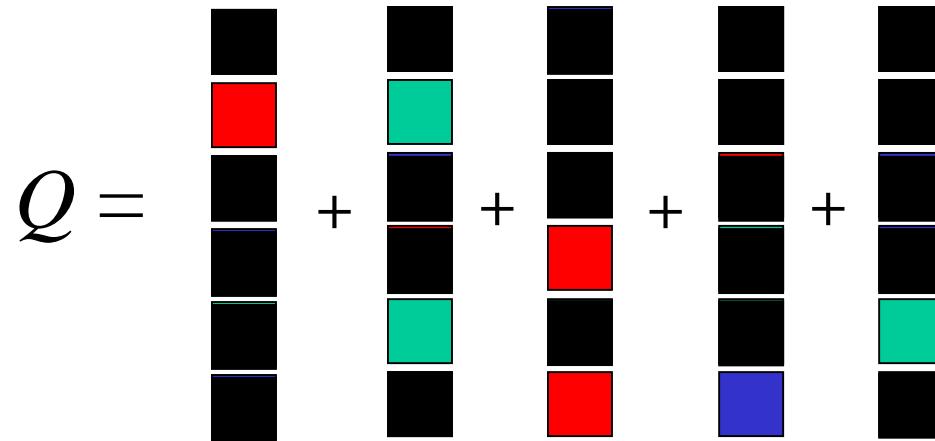
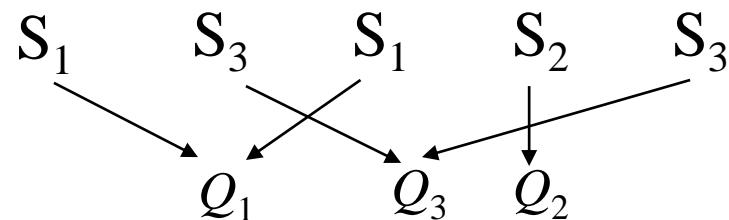
z is hidden from servers

Each entry of y is known to
all but one server

CNF (aka replicated)
secret sharing

$k=3, d=6$

$S_1 \quad S_2 \quad S_3$



$$Q(\mathbf{y}) = Q_1(\mathbf{y}) + Q_2(\mathbf{y}) + Q_3(\mathbf{y})$$
$$\deg Q_j \leq d/k = 2$$

→ $Q(\mathbf{y})$ communicated with $O(N^{1/3})$ bits

Privately Evaluating $P(z)$

$$O(m) = \left\{ \begin{array}{l} \bullet \text{ Client picks random } \mathbf{y}_1, \dots, \mathbf{y}_k \text{ s.t. } \mathbf{y}_1 + \dots + \mathbf{y}_k = \mathbf{z}, \\ \bullet \text{ and sends to } S_j \text{ all } \mathbf{y}'s \text{ except } \mathbf{y}_j. \end{array} \right.$$
$$O(N^{1/d}) \left\{ \begin{array}{l} \bullet \text{ Servers define an } mk\text{-variate degree-}d \text{ polynomial } Q(\mathbf{Y}_1, \dots, \mathbf{Y}_k) = P(\mathbf{Y}_1 + \dots + \mathbf{Y}_k). \\ \bullet \text{ Each } S_j \text{ computes degree-} (d/k) \text{ poly. } Q_j, \\ \text{ such that } Q(\mathbf{y}) = Q_1(\mathbf{y}) + \dots + Q_k(\mathbf{y}). \end{array} \right.$$
$$O(N^{1/k}) \left\{ \begin{array}{l} \bullet S_j \text{ sends a description of } Q_j \text{ to Client.} \\ \bullet \text{ Client computes } \sum Q_j(\mathbf{y}) = x_i. \end{array} \right.$$

A Closer Look

- $\forall M \ \exists S_j$ missing at most $\lfloor d/k \rfloor$ variables.
 $\Rightarrow \deg Q_j \leq \lfloor d/k \rfloor$

Useful parameters:

Best 1 st Gen <i>binary</i> PIR	$\left\{ \begin{array}{l} \bullet \ d=k-1 \Rightarrow \text{query length } O(N^{1/(k-1)}) \\ \lfloor d/k \rfloor = 0 \Rightarrow \text{answer length 1} \end{array} \right.$
Best 1 st Gen <i>balanced</i> PIR	$\left\{ \begin{array}{l} \bullet \ d=2k-1 \Rightarrow \text{query length } O(N^{1/(2k-1)}) \\ \lfloor d/k \rfloor = 1 \Rightarrow \text{answer length } O(N^{1/(2k-1)}) \end{array} \right.$

A Closer Look

- $\forall M \exists S_j \text{ missing}$
 $\Rightarrow \deg Q_j \leq \lfloor d/k \rfloor$

Woodruff-Yekhanin05:
Better $O_k(\cdot)$ dependence
via Shamir + partial derivatives

Useful parameters:

Best
1st Gen
binary
PIR

• $d=k-1 \Rightarrow$ query length $O(N^{1/(k-1)})$
 $\lfloor d/k \rfloor = 0 \Rightarrow$ answer length 1

Best
1st Gen
balanced
PIR

• $d=2k-1 \Rightarrow$ query length $O(N^{1/(2k-1)})$
 $\lfloor d/k \rfloor = 1 \Rightarrow$ answer length $O(N^{1/(2k-1)})$

Best
current
short-query
PIR

• $d=O(\log N) \Rightarrow$ query length $O(\log N)$
 $\lfloor d/k \rfloor \cong d/k \Rightarrow$ answer length $O(N^{1/k+\epsilon})$

2nd Gen: Breaking the $O(n^{1/(2k-1)})$ Barrier

[Beimel-I-Kushilevitz-Raymond02]

- Rough idea: apply multiple “partial” degree reduction steps to boost the integer truncation affect.
- Generalized degree reduction:

Assign each monomial to the k' components which initially miss ± 1

- Implementation: complicated and messy
- Essentially subsumed by 3rd Gen PIR

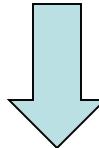
$$k=3, d=6, \kappa=2$$
$$S_1 \quad S_2 \quad S_3$$
$$Q = \begin{matrix} \text{[Red, Blue, Green]} \\ \text{[Red, Blue, Black]} \\ \text{[Blue, Black, Black]} \end{matrix} + \begin{matrix} \text{[Red, Black, Green]} \\ \text{[Blue, Black, Black]} \\ \text{[Blue, Black, Black]} \end{matrix} + \begin{matrix} \text{[Red, Black, Blue]} \\ \text{[Black, Black, Red]} \\ \text{[Blue, Black, Black]} \end{matrix} + \begin{matrix} \text{[Red, Black, Black]} \\ \text{[Black, Black, Black]} \\ \text{[Red, Black, Black]} \end{matrix} + \begin{matrix} \text{[Red, Black, Black]} \\ \text{[Black, Black, Black]} \\ \text{[Black, Green, Black]} \end{matrix}$$
$$Q(\mathbf{y}) = \sum_{|V|=k'} Q_V(\mathbf{y})$$
$$S_1 S_2 \quad S_2 S_3 \quad S_1 S_2 \quad S_1 S_2 \quad S_1 S_3$$

Information-Theoretic PIR: A Homomorphic Secret Sharing View

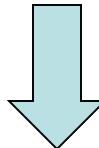
Coding view + missing details:
Klim's talks

Blueprint for 3rd Gen PIR

Share Conversion



Homomorphic Secret Sharing
for powerful circuit classes

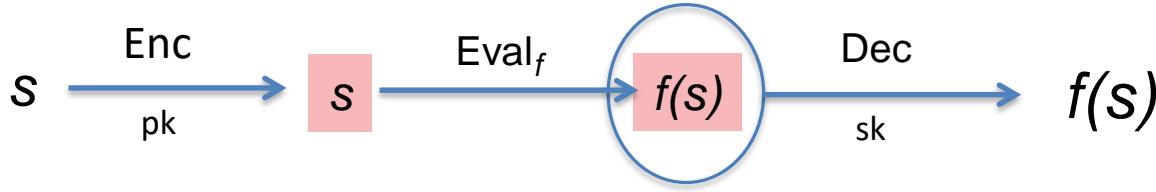


PIR

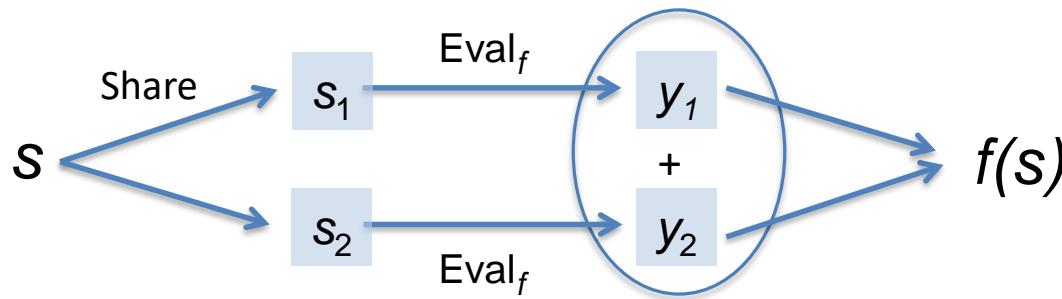
Homomorphic Secret Sharing

Relaxing FHE?

FHE



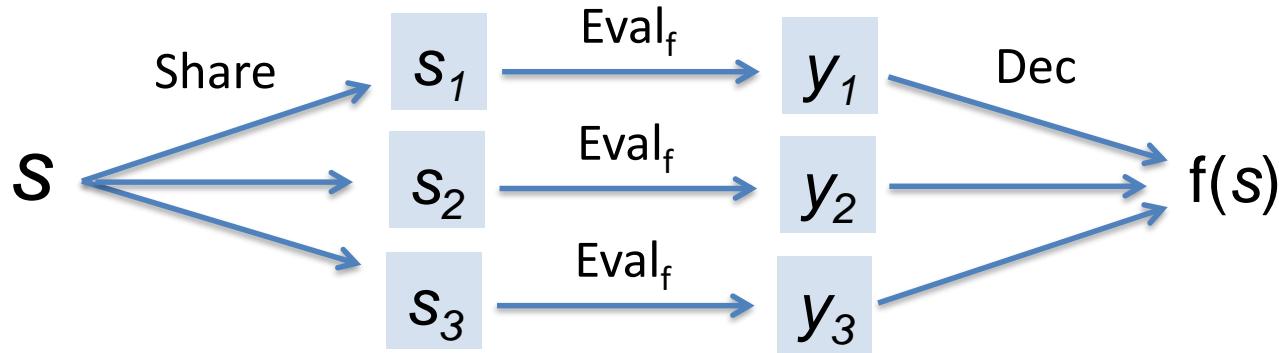
HSS



- Assuming 2+ non-colluding parties (sometimes not an issue!)
- No need for keys
- IT security or broader computational assumptions
- Additive decoding, better efficiency

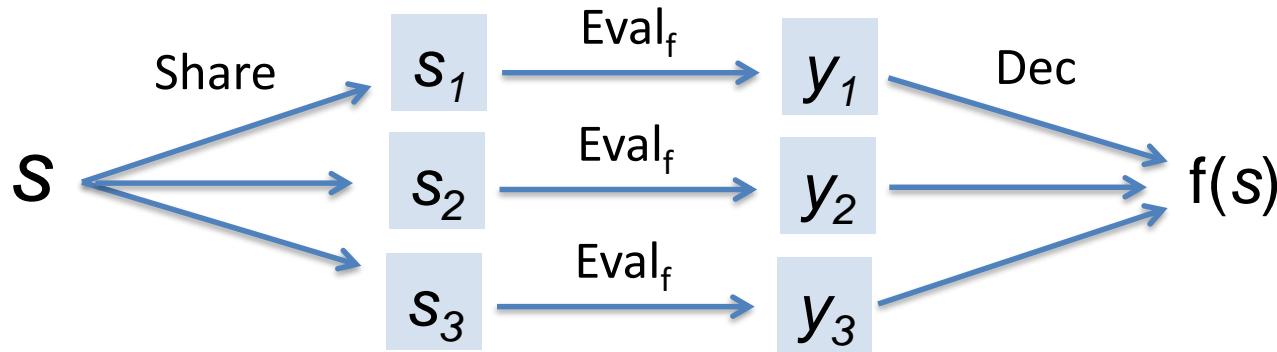
Many useful HSS flavors...

[Benaloh86, Boyle-Gilboa-I16, BGI-Lin-Tessaro18]



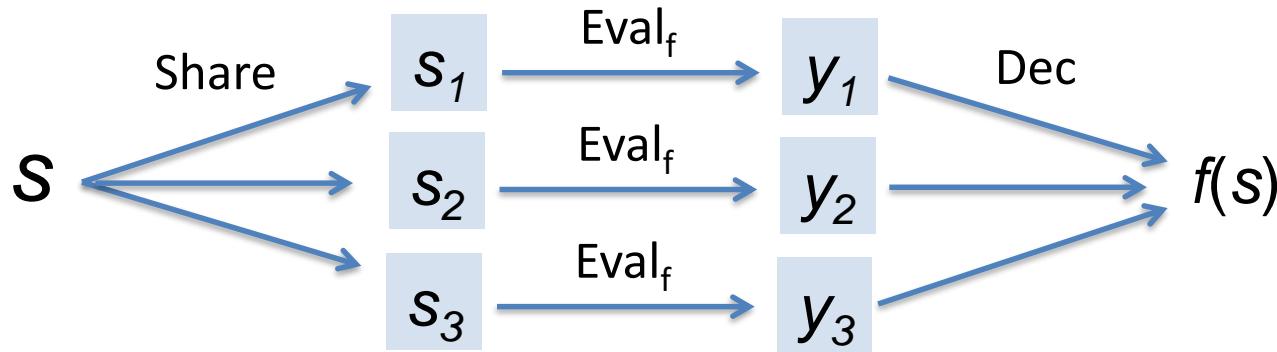
- **(k,t)-HSS:** k shares, each t keep s secret
- **Secrecy:** perfect vs. computational
- **Decoding:** additive vs. general
- **Single input vs. multi-input**

This Talk



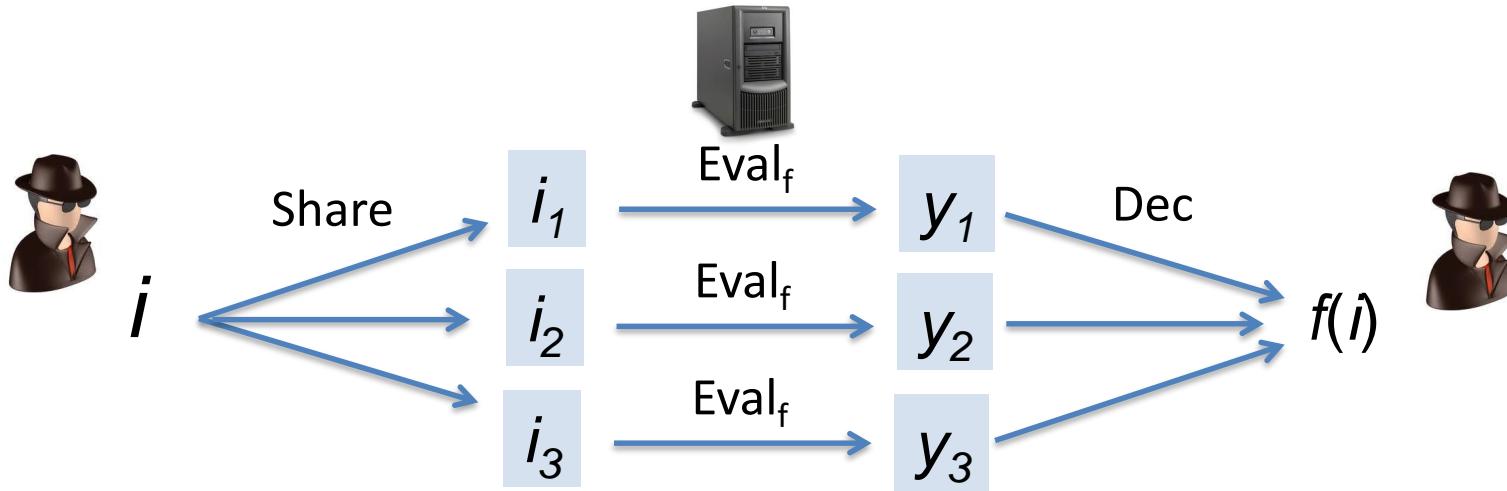
- **(k,1)-HSS**
- **Secrecy**: perfect
- **Decoding**: additive or general
- **Single input**

HSS Parameters



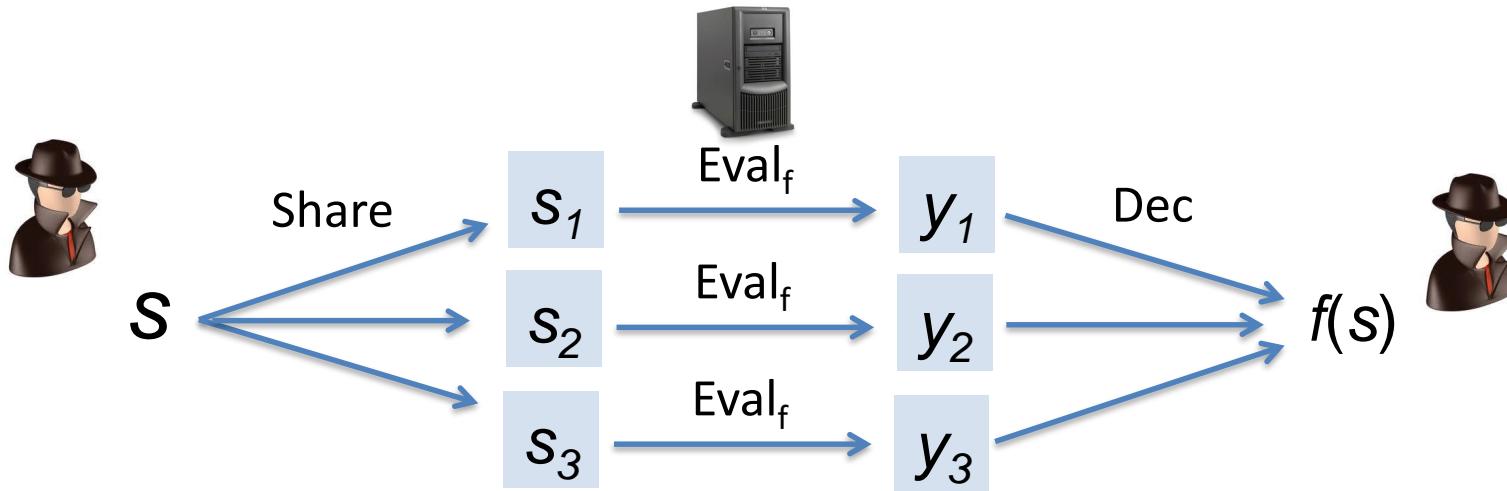
- **Function class F**
- **Input share size**
- **Output share size**

PIR as instance of HSS



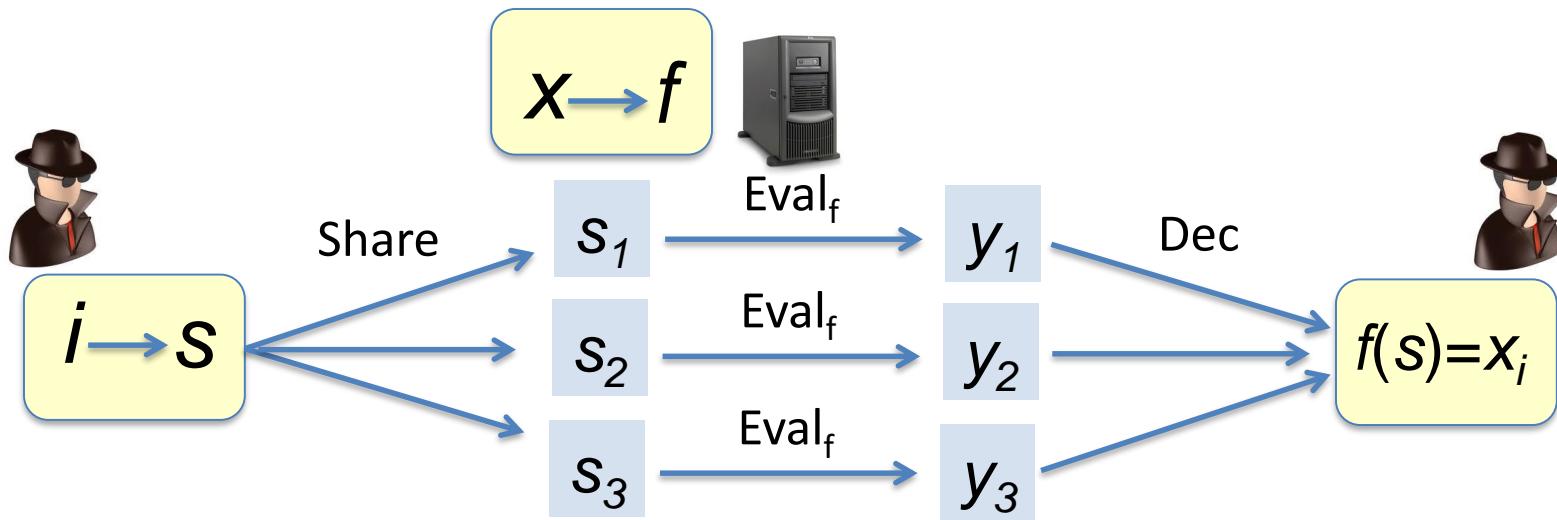
- **Function class F: all** $f: \{0,1\}^n \rightarrow \{0,1\}$ for $n = \log N$
 - For database x , $f(i) = x_i$
- **Input share size:** as small as we can...
- **Output share size:** $O(1)$ (short answer regime)

PIR from arbitrary HSS?



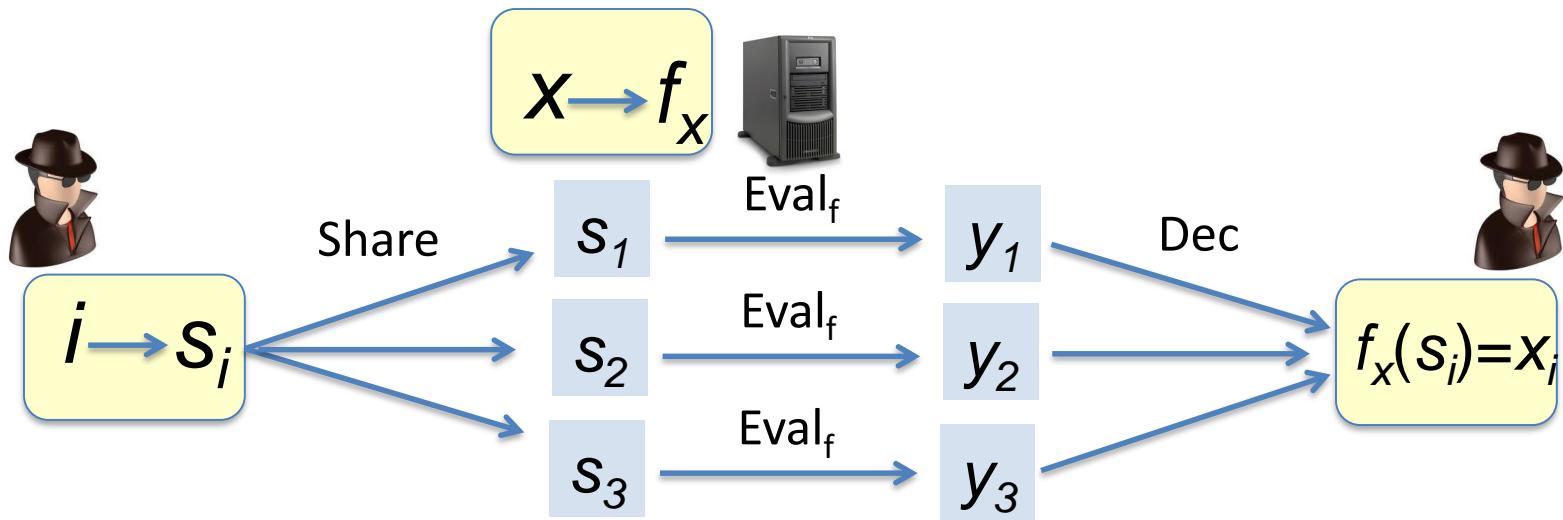
- **Function class F:** any set of $f: \{0,1\}^m \rightarrow \{0,1\}$
- **Input share size:** $\alpha(m)$ ($O(m)$ by default)
- **Output share size:** $\beta(m)$ ($O(1)$ by default)

PIR from arbitrary HSS?



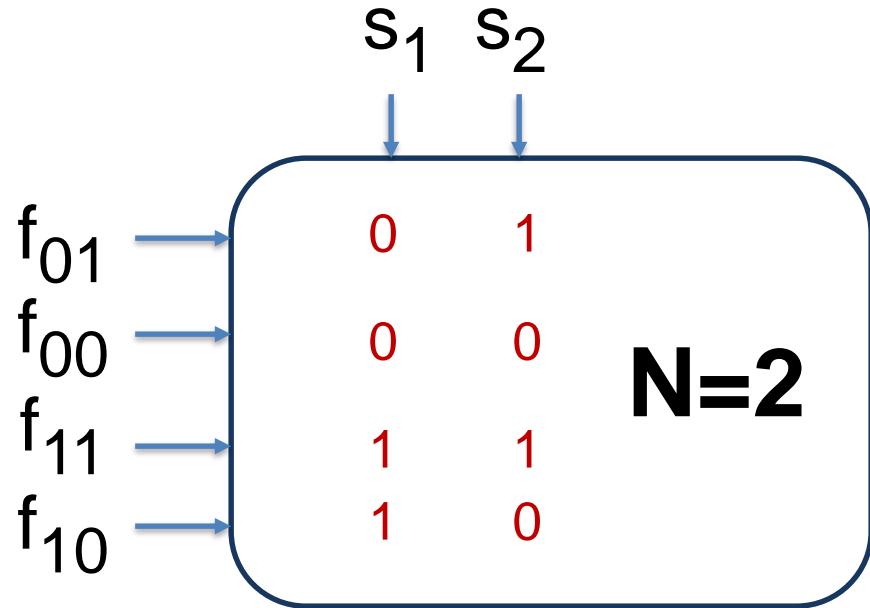
- **Function class F:** any set of $f: \{0,1\}^m \rightarrow \{0,1\}$
- **Input share size:** $\alpha(m)$ ($O(m)$ by default)
- **Output share size:** $\beta(m)$ ($O(1)$ by default)

What should F satisfy?



VC-dimension(F) $\geq N$

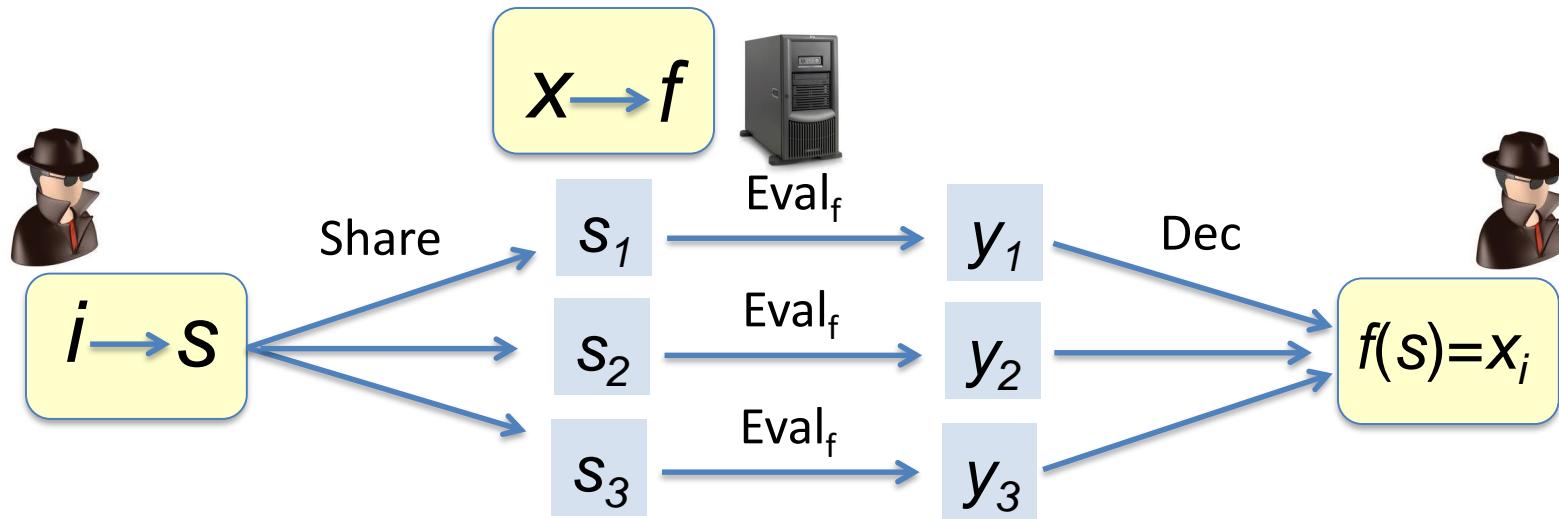
\exists “shattered” input set $S = \{s_1, \dots, s_N\}$
such that every $x: S \rightarrow \{0, 1\}$ is a
restriction of some $f_x \in F$ to S .



VC-dimension(F) $\geq N$

\exists “shattered” input set $S=\{s_1, \dots, s_N\}$
 such that every $x:S \rightarrow \{0,1\}$ is a
 restriction of some $f_x \in F$ to S .

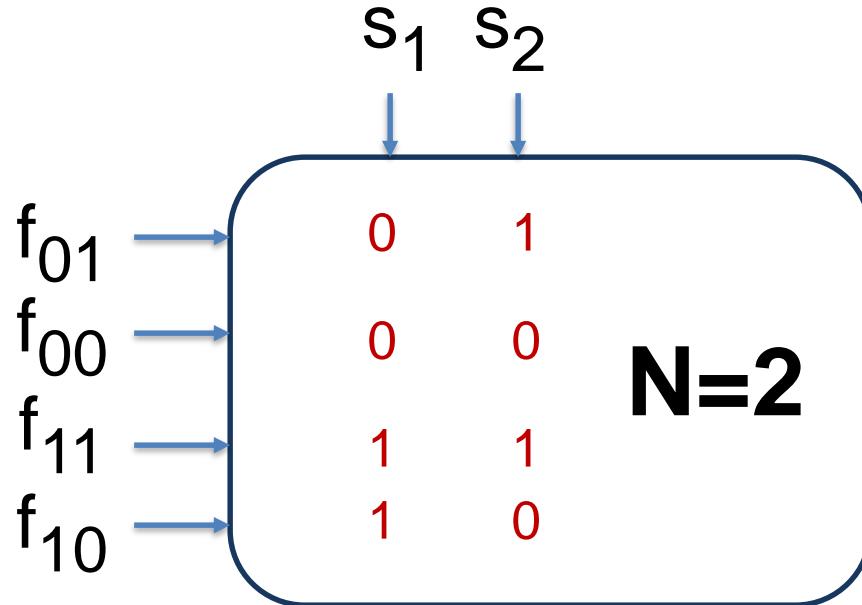
PIR from arbitrary HSS?



- **Function class F:** any set of $f: \{0,1\}^m \rightarrow \{0,1\}$
- **Input share size:** α ($O(m)$ by default)
- **Output share size:** β ($O(1)$ by default)

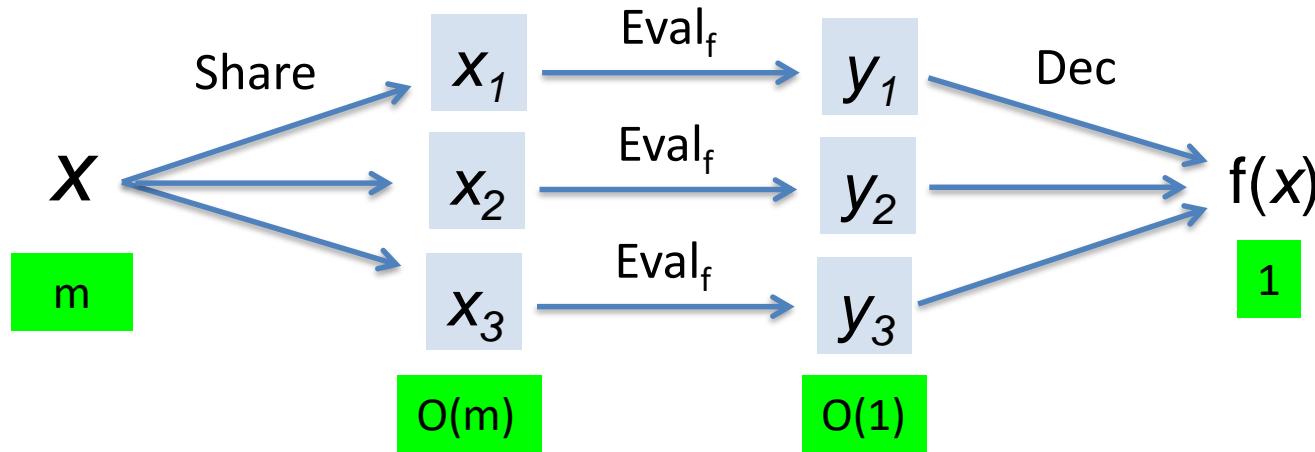
→ PIR with $N = \text{VC-dim}(F)$, α -bit queries, β -bit answers

Properties of VC dimension



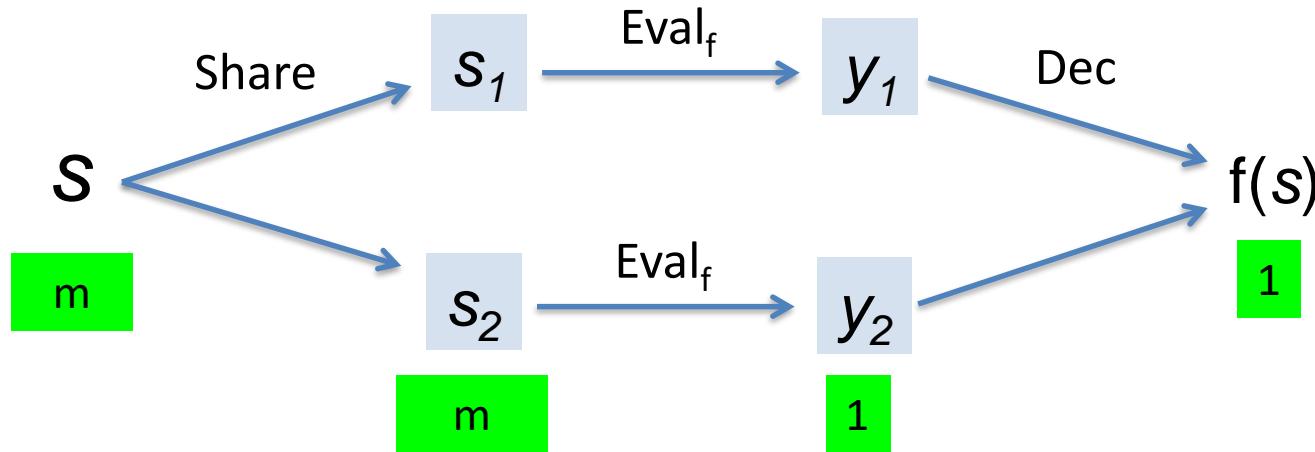
- If F is a **linear** space, $\text{VC-dim}(F) = \dim(F)$
 - $F = \text{deg-}d \text{ polynomials over } \text{GF}(2) \Rightarrow \dim(F) = O(m^d)$
 - HSS for deg- d polynomials \Rightarrow PIR with $N = O(m^d)$
- Sauer lemma: For $|F| \gg 2^m$, $\text{VC-dim}(F) = \Omega(\log |F|)$
 - HSS for really big $F \rightarrow$ really good PIR!

The big question



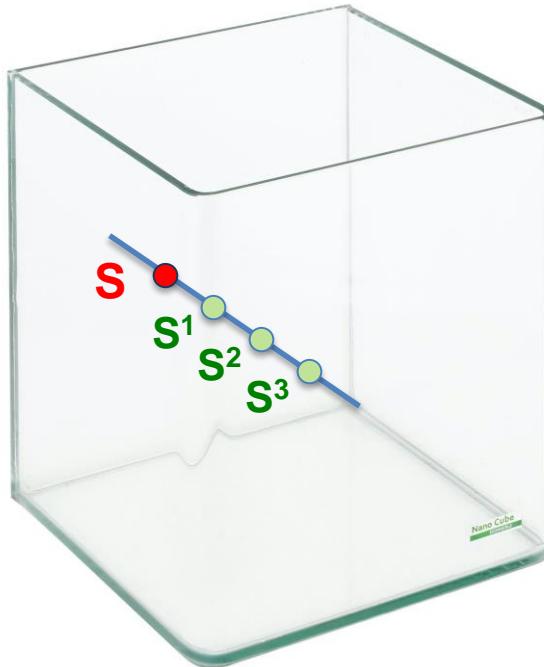
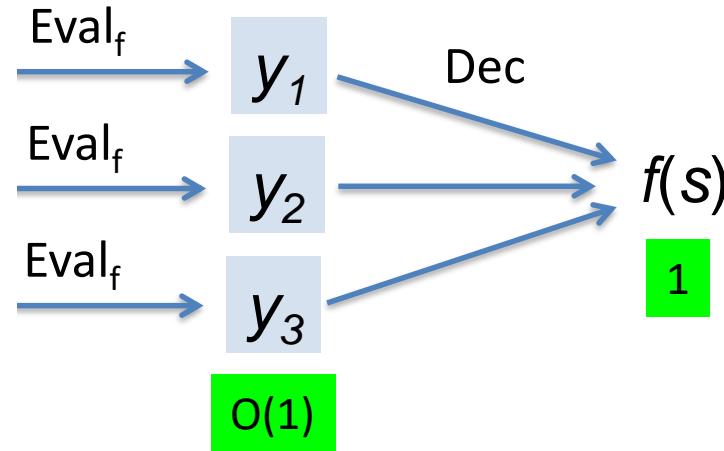
- Given k , which F can be supported?

$k=2$



- $F = \text{linear functions } L: \mathbb{F}^m \rightarrow \mathbb{F}$
 - **Share**: additive secret sharing $s_1 + s_2 = s$
 - $\text{Eval}_L(s_i) = L(s_i)$
 - $\text{Recon}(y_1, y_2) = y_1 + y_2$
- $\text{VC-dim}(F) = m$
 - 2-server PIR with $\alpha = N$, $\beta = 1$
 - Essentially best possible with $\beta = 1$ [CGKS95, KT00, GKST02, BFG06]

$k=3$



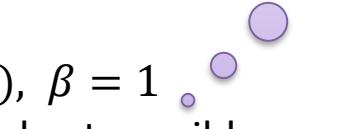
- F = degree-2 polynomials $p: \mathbb{F}^m \rightarrow \mathbb{F}$

- Share: points on a random line passing through s
- $\text{Eval}_p(s_i) = p(s_i)$
- $\text{Recon}(y_1, y_2, y_3) = P(0)$ for $P \in F$

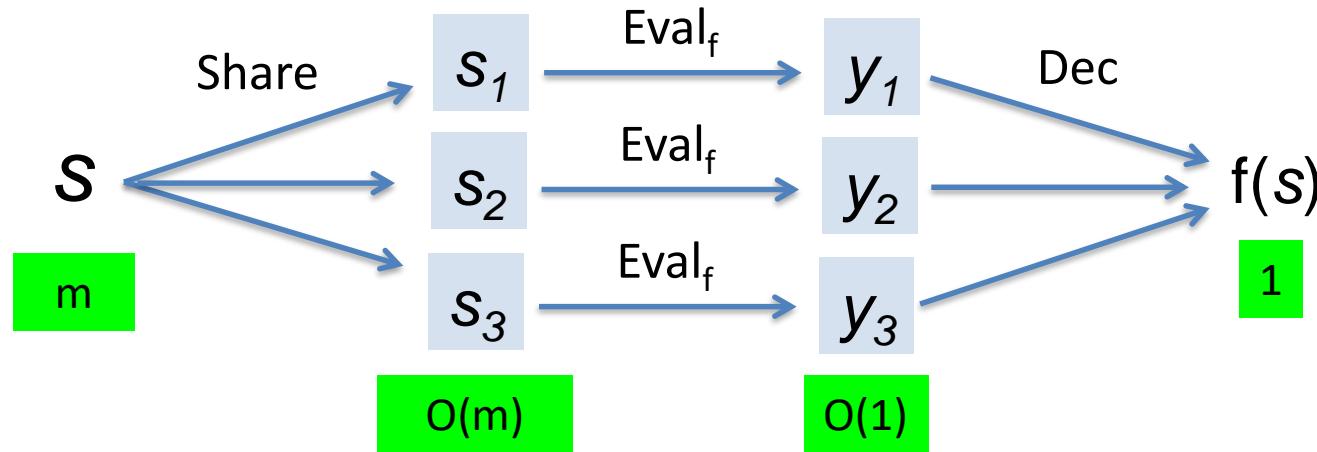
What else can we do?

- $\text{VC-dim}(F) = O(m^2)$

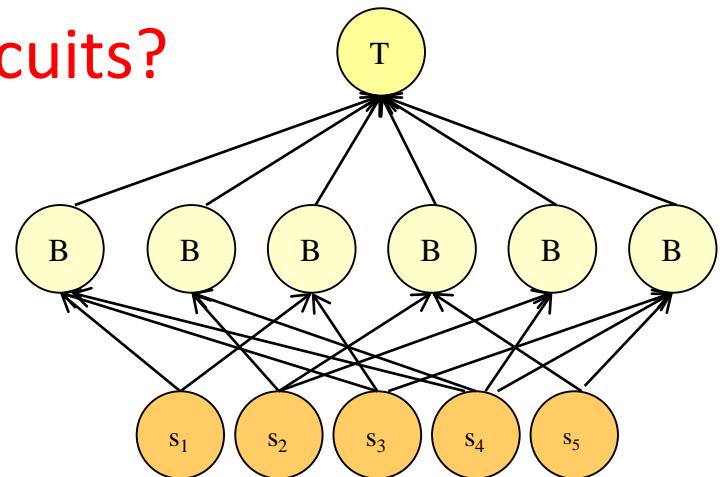
- 3-server PIR with $\alpha = O(\sqrt{N})$, $\beta = 1$
- Until 2007, conjectured to be best possible



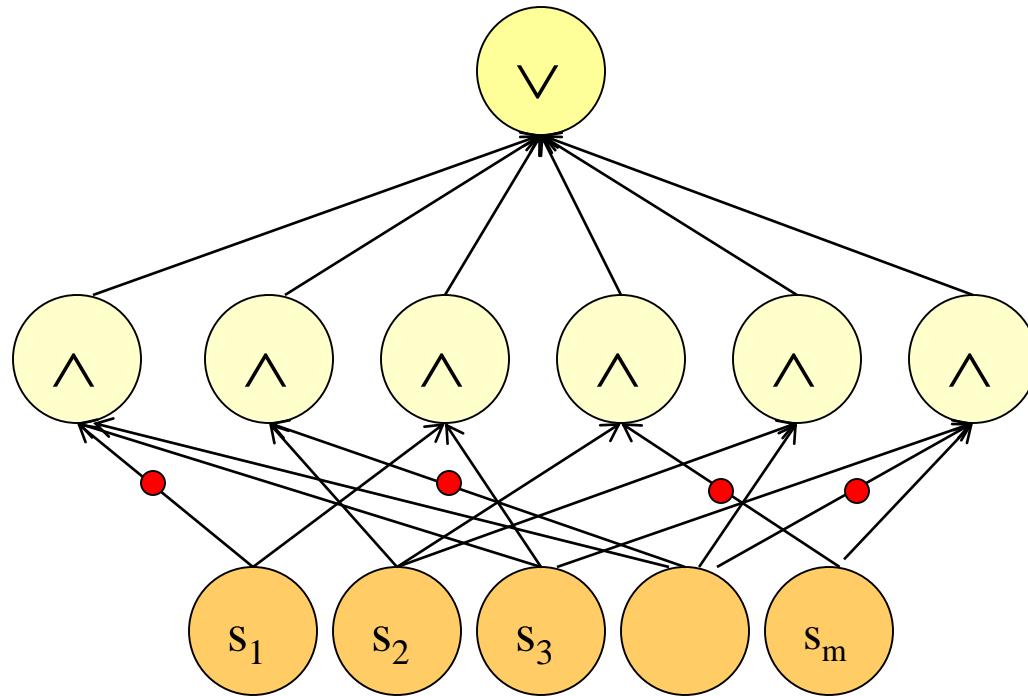
$k=3$



- $F = \text{exotic class of depth-2 circuits?}$
 - $B, T = \text{symmetric gates}$

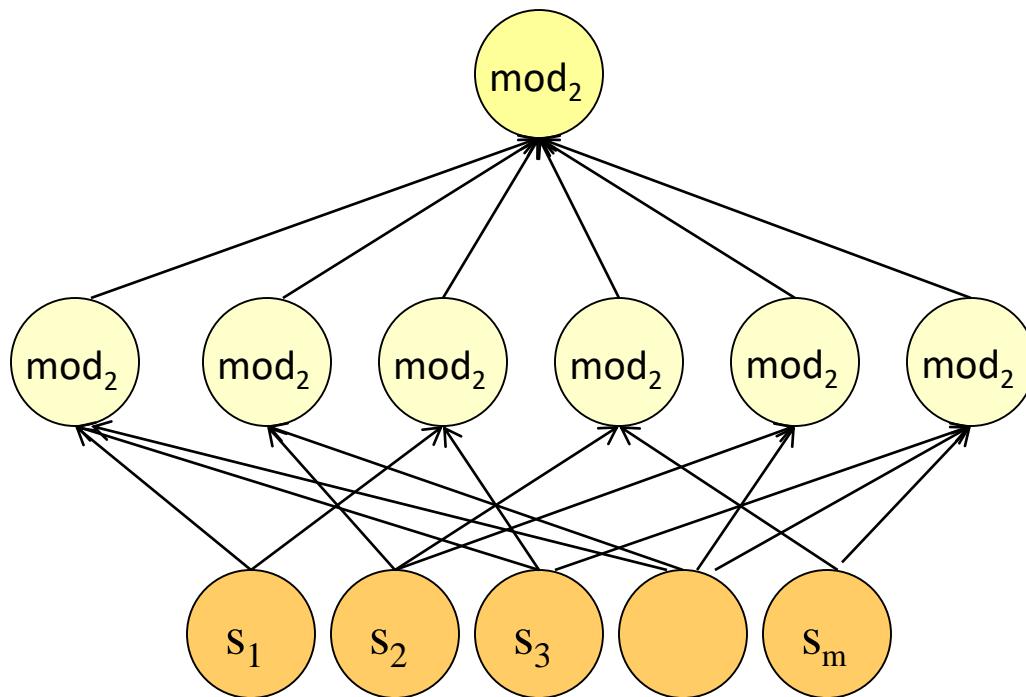


Power of Depth-2 Circuits



All 2^{2^m} functions

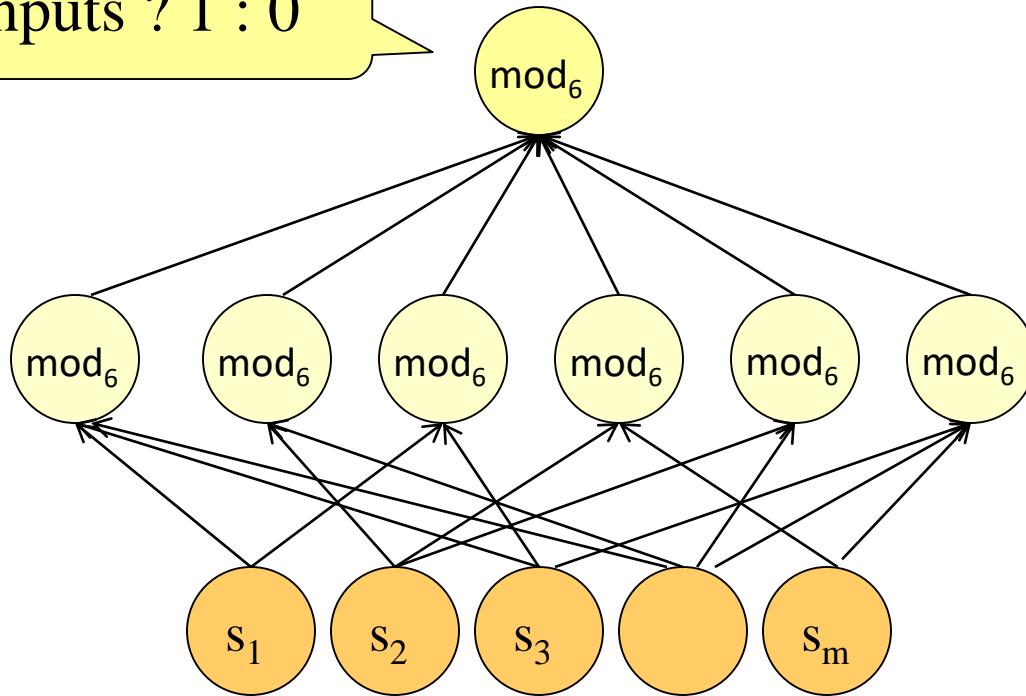
Power of Depth-2 Circuits



Only 2^m functions

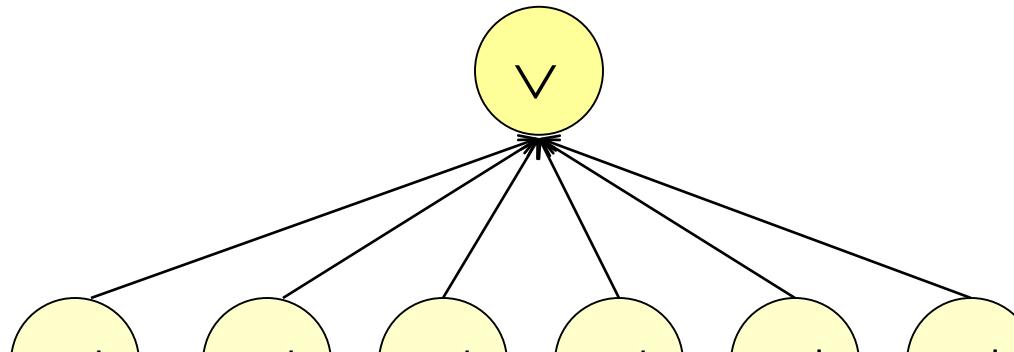
Power of Depth-2 Circuits

$6 \mid \Sigma$ inputs ? 1 : 0



All 2^{2^m} functions!

Power of Depth-2 Circuits



Related to size of:

- Set systems with restricted intersections [BF80, Gromlusz00]
- Matching vector sets [Yekanin07, Efremenko09, DvirGopalanYekhanin10]
- Degree of representing “OR” modulo 6 [BarringtonBeigelRudich92]

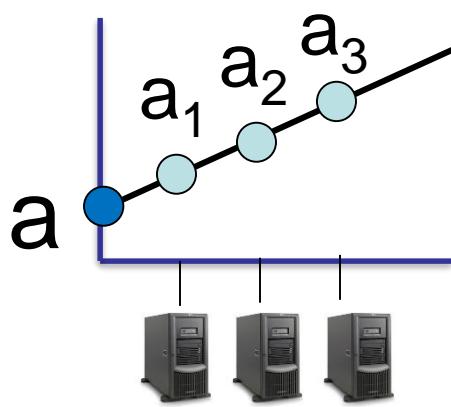
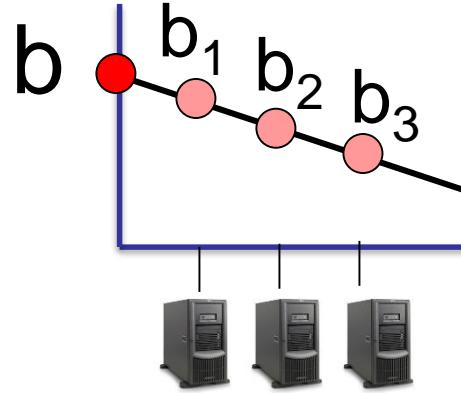
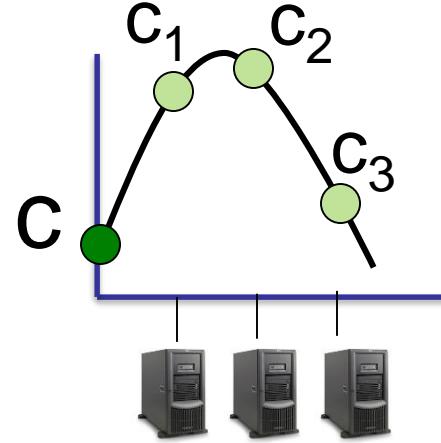
$$2^{m \log m} <$$

any functions!

$$<<2^{2^m}$$

How many ???

Another view of deg-2 HSS: What can we compute with Shamir?

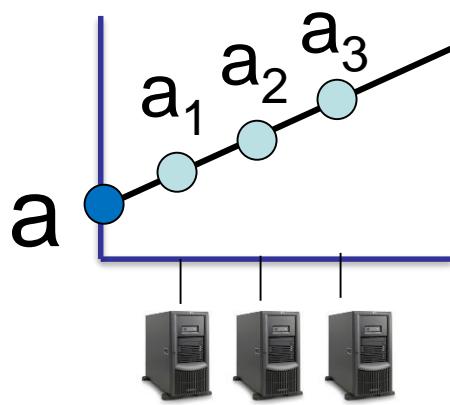
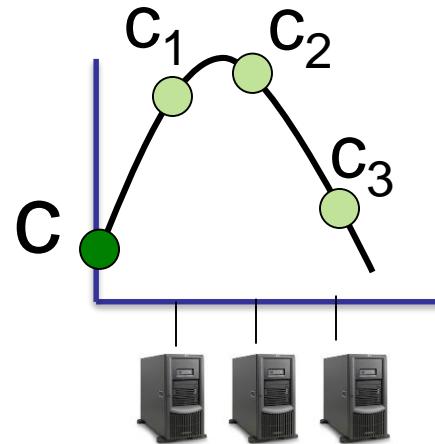


- Local addition
 - Does not increase degree
- Local multiplication
 - Increases degree to 2 (ok!)
 - Outputs can be added

→
HSS
for deg-2
polynomials

B: x_2 **T: +**

Yet another view: Squaring is enough



- Local addition
 - Does not increase degree
- Local **squaring**
 - Increases degree to 2
 - Outputs can be added

→ HSS
for deg-2
polynomials

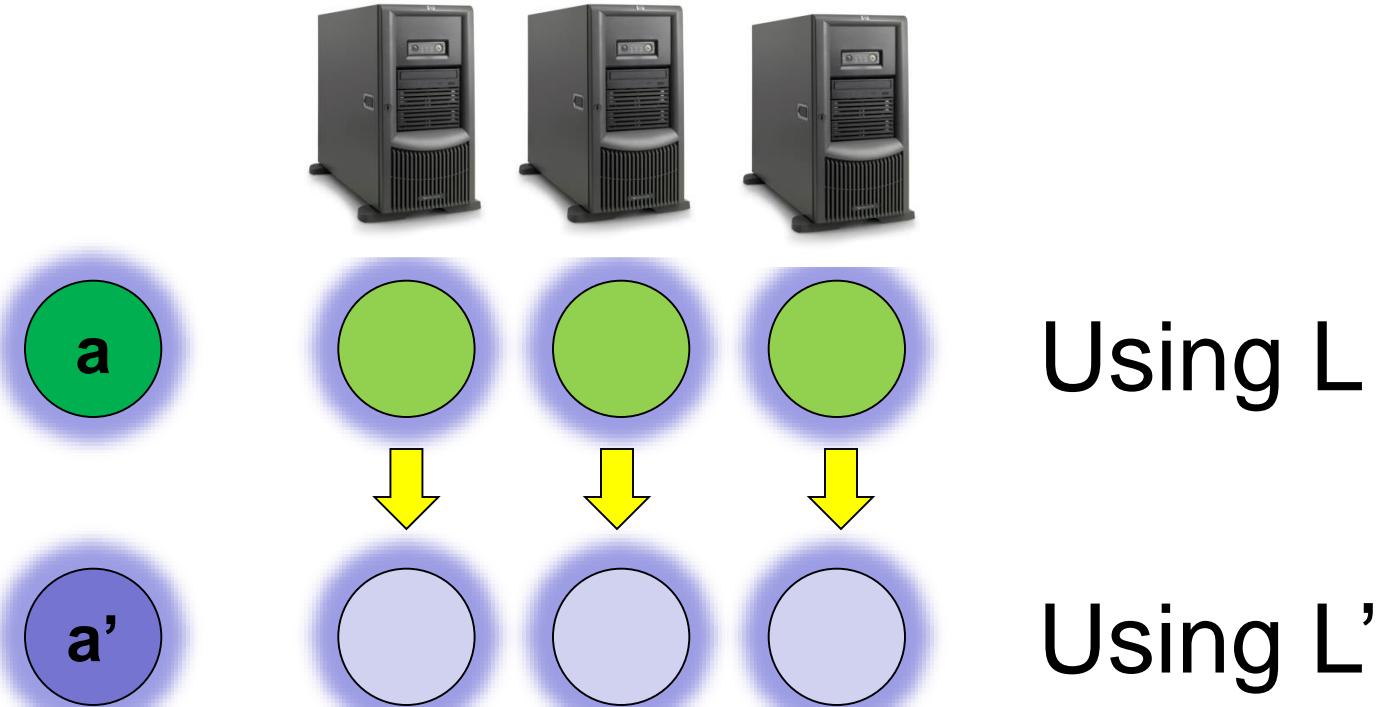
B: SQ T: +

Going Crazy?

- CRAZY secret sharing

- CRAZY computations on shares → HSS for CRAZY functions
- Problem: Dec output will depend not only on inputs, but also on randomness of Share.

Share Conversion

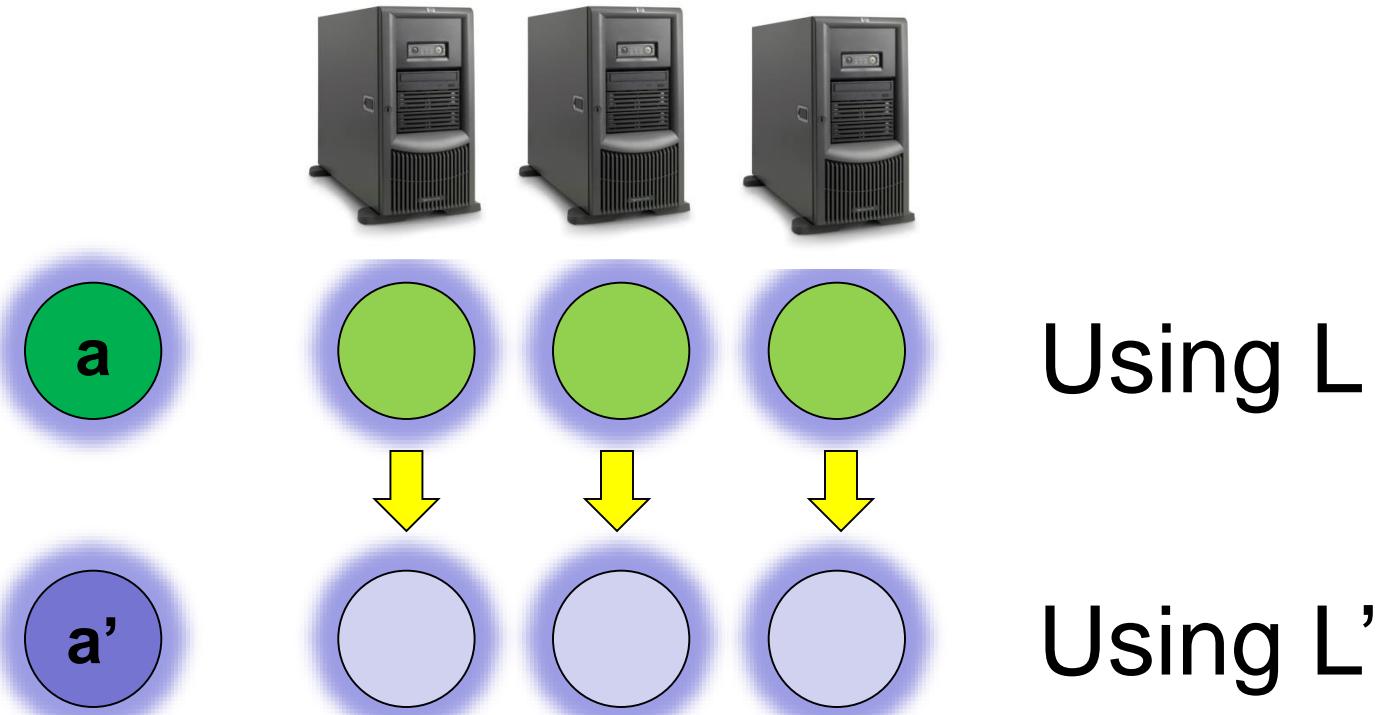


(a,a') satisfy a given relation

B: output a' for $a=\text{sum of inputs}$

T: + / OR

Which L and L' to choose?



(a, a') satisfy a given relation

Which L and L' to choose?

[Cramer-Damgård-I05]: $a' = a$

“CNF secret-sharing” is maximal

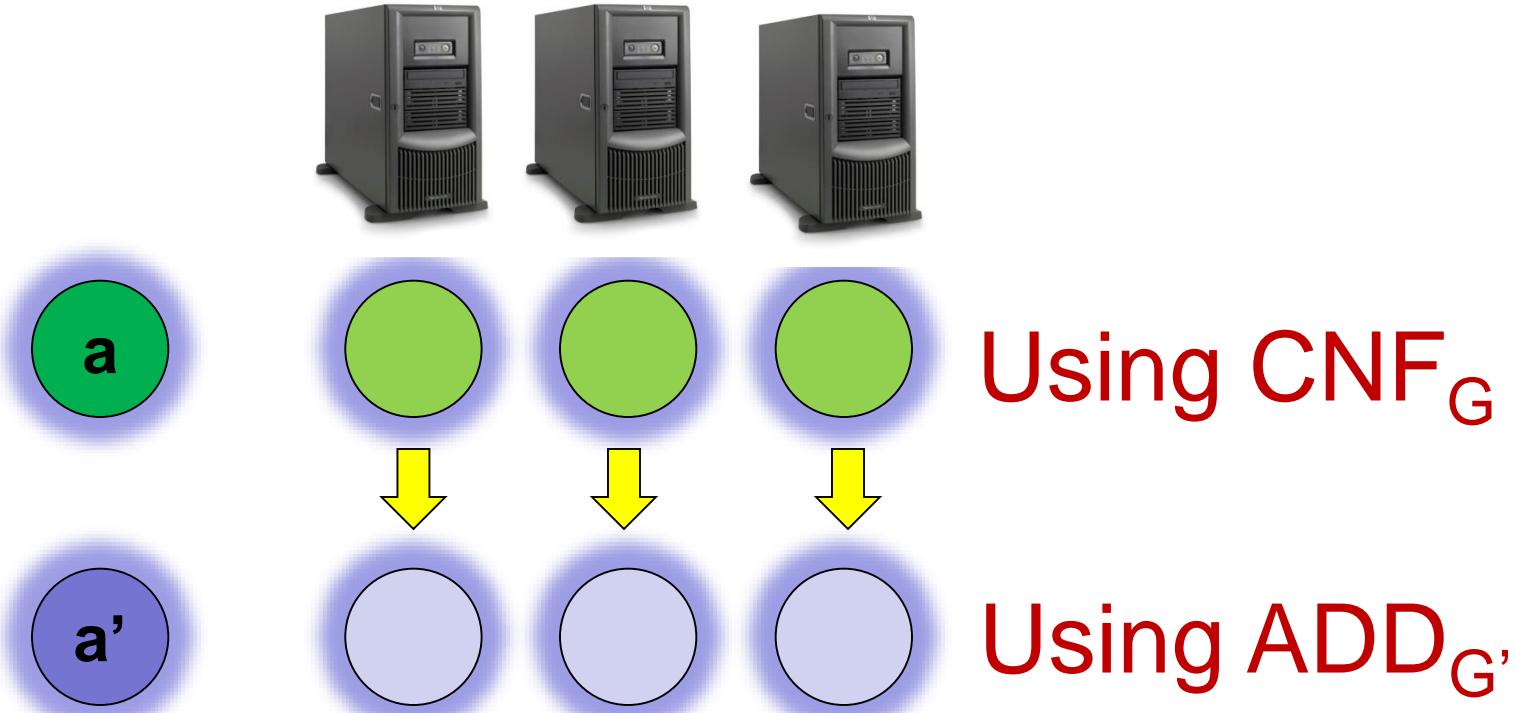
“DNF secret-sharing” is minimal

Using L

Using L'

(a, a') satisfy a given relation

Which L and L' to choose?



(a, a') satisfy a given relation

Applying Share Conversion

- Which circuit classes can we realize?
 - deg-2 polynomials $\text{VC-dim} = m^2$
 - $\text{OR} \circ \text{mod}_6$ $\text{VC-dim} = ??$

Requires either:

- $k > 3$ servers, or
- Promise on the Hamming weight of inputs for gates
"S-matching vectors" – Klim's talk

Applying Share Conversion

- Which circuit classes can we realize?
 - deg-2 polynomials $\text{VC-dim} = m^2$
 - $\text{OR}^\circ \text{mod}_c$ $\text{VC-dim} = m^{\Omega(\log m)}$

- Efremenko09: $c=511$ conversion from Shamir'
- BIKO12: $c=6$ conversion from CNF

Improves constant in exponent

Applying Share Conversion

- Which circuit classes can we realize?
 - deg-2 polynomials $\text{VC-dim} = m^2$
 - $\text{OR}^\circ \text{mod}_c$ $\text{VC-dim} = m^{\Omega(\log m)}$
 - $\text{OR}^\circ \text{AND}_d^\circ \text{mod}_c$ not much better...
- Wishful thinking: logarithmic PIR
 - $\text{mod}_6^\circ \text{mod}_6$ $\text{VC-dim} = 2^m$
 - suitable share conversion can be ruled out

A Practical Instance?

- 3 Servers, database size N
- **Communication**
 - Client: $7N^{1/4}$ -bit queries (compare with $1.4N^{1/2}$)
 - Feasible also for a virtual database of hash values
 - Servers: 2-bit answers (($b+1$) bits for b -bit records)
- **Computation**
 - Servers: 54 XORs for each nonzero record
 - Client: takes XOR of 3 answers

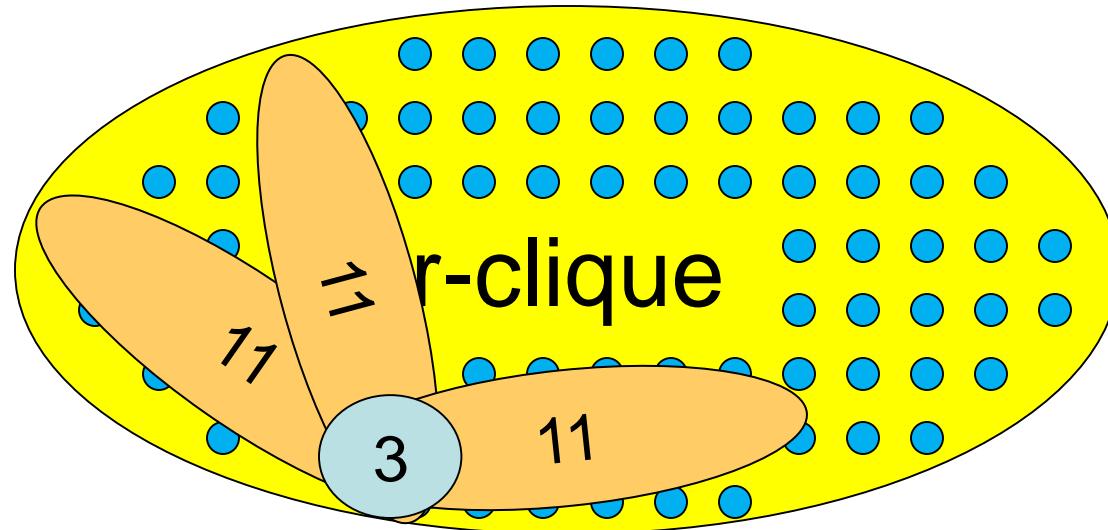
Secret Sauce I:

Big Set System with Limited mod-6 Intersections

- Goal: find N subsets T_i of $[h]$ such that:
 - $|T_i| \equiv 1 \pmod{6}$
 - $|T_i \cap T_j| \in \{0, 3, 4\} \pmod{6}$
- h = query length; N = database size
- **[Frankl83]:** $h = \binom{r}{2}$, $N = \binom{r-3}{8}$
 - $h \approx 7N^{1/4}$
- Better asymptotic constructions: Klim's talk

Secret Sauce I:

Big Set System with Limited mod-6 Intersections



$$h = \binom{r}{2}; N = \binom{r-3}{8}; |T_i| = \binom{11}{2} = 55 \equiv 1 \pmod{6}$$

$$|T_i \cap T_j| = \binom{t}{2}, \quad 3 \leq t \leq 10 \quad t \in \{0, 3, 4\} \pmod{6}$$

Secret Sauce II:

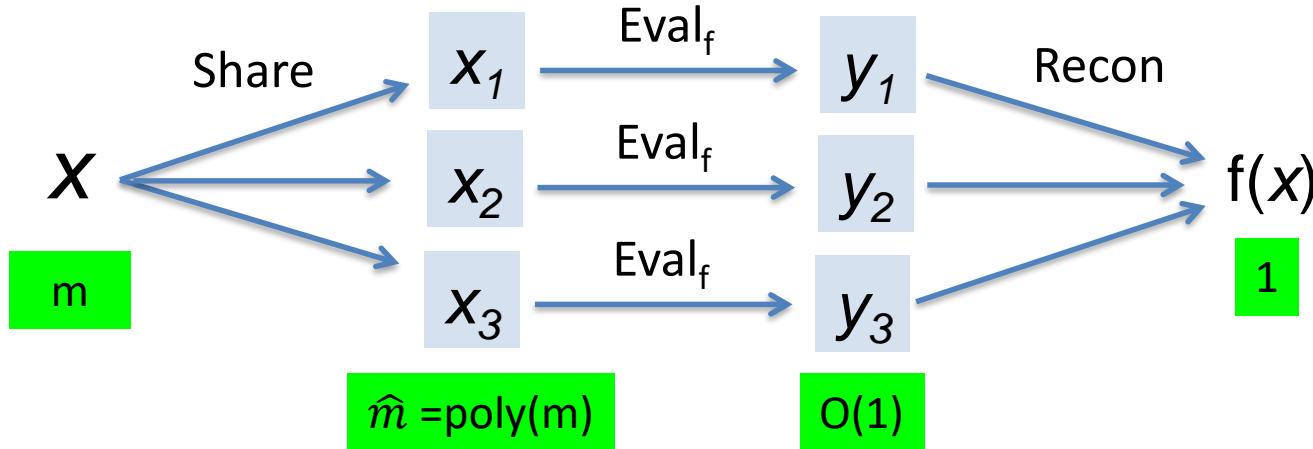
Convert CNF over Z_6 to ADD over Z_2^2

$a=0 \rightarrow a' \neq 0$

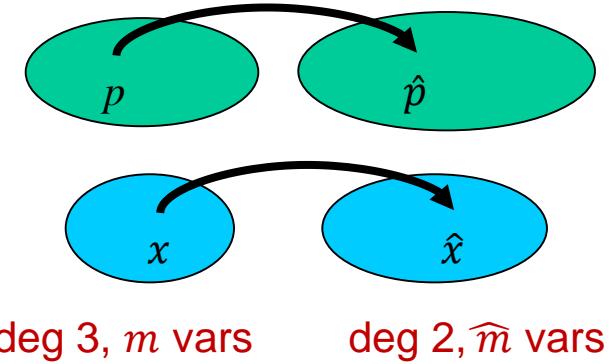
$a=1,3,4 \rightarrow a'=0$

$X_{a,b}$	$b = 0$	$b = 1$	$b = 2$	$b = 3$	$b = 4$	$b = 5$
$a = 0$	(1, 1)	(0, 0)	(1, 1)	(0, 0)	(0, 0)	(1, 1)
$a = 1$	(1, 1)	(0, 0)	(0, 0)	(1, 1)	(0, 1)	(1, 0)
$a = 2$	(0, 0)	(0, 0)	(1, 1)	(1, 0)	(1, 0)	(0, 0)
$a = 3$	(1, 1)	(1, 1)	(0, 1)	(0, 0)	(1, 1)	(0, 1)
$a = 4$	(1, 1)	(1, 0)	(0, 1)	(1, 1)	(1, 1)	(1, 1)
$a = 5$	(1, 1)	(1, 0)	(1, 1)	(0, 1)	(0, 0)	(0, 0)

An intriguing HSS question



- How big should \hat{m} be for F = degree-3 polynomials?
- Natural approach: reduce to degree-2 case
 - Embedding degree 3 to degree 2:
 - Map deg-3 $p[X_1, \dots, X_m] \rightarrow$ deg-2 $\hat{p}[X_1, \dots, X_{\hat{m}}]$
 - Map $x \in \mathbb{F}^m \rightarrow \hat{x} \in \mathbb{F}^{\hat{m}}$
 - $p(x) = \hat{p}(\hat{x})$
 - How big should \hat{m} be in such an embedding?
 - Gap between easy bounds: $\Omega(m^{1.5}) \leq \hat{m} \leq O(m^2)$



Open Questions

- Improve upper bounds for IT PIR
 - $\text{polylog}(N)$ with constant k ?
 - Beat $O(N^{1/k})$ in short-query regime?
- Understand power of IT HSS
 - New classes via new share conversions?
 - Other use cases for $\text{OR}^\circ \text{mod}_c$ circuits?
- Improved **t-private** PIR with $N^{o(1)}$ communication
 - 3^t servers [Barkol-I-Weinreb08] (short answers)
 - 2^t servers [BIW08] + [Dvir-Gopi15] (balanced)
- Better lower bounds
 - Any fundamental barriers?