Efficient MPC with an
Honest Majority

Yuval Ishai
Technion

Advertisement: TPMPC 2020

=== Theory & Practice of Multi-Party Computation Workshop 2020 ===

The TPMPC workshops aim to bring together practitioners and theorists
working in multi-party computation. This year's event will be held in
Aarhus, Denmark from May 25th to May 28th.

Call for Contributed Talks
Deadline: 25 February 2020

TPMPC solicits contributed talks in the area of the theory and/or practice
of secure multiparty computation. Talks can include papers published
recently in top conferences, or work yet to be published. Areas of interest
include:

- Theoretical foundations of multiparty computation: feasibility,
assumptions, asymptotic efficiency, etc.

- Efficient MPC protocols for general or specific tasks of interest
- Implementations and applications of MPC

For further details regarding contributed talks and submissions, see:
https://www.multipartycomputation.com/tpmpc-2020

https://www.multipartycomputation.com/tpmpc-2020

MPC with an Honest Majority

» Several potential advantages
> Unconditional security
- Guaranteed output and fairness
> Universally composable security with no setup
- This talk: efficiency

» Main feasibility results

- Perfect security with t<n/3 [BGW88,CCD88]

- Statistical security with t<n/2 (over broadcast) [RB89]
» Goal: IT security with minimal complexity

- Communication

- Computation
> Rounds

Where is IT MPC stuck?

Ideal goal: security for free

In reality... ﬁ Even for passive security, even whent << n }]

» Communication: can’t beat circuit size
- Except for “very structured” or “very complex” functions
> 3—-party case: ~ 2V1x1 via 3-server PIR [Efr09,BIKK14]

» Computation: can’t get constant overhead
- Except when t=0(1)

» Rounds: can’t significantly beat circuit depth

- Except for functions that are “not too complex”
> Benny’s talk...

Can we do better with (comp.) 2PC?

/ Even worse. \
Passive: Boolean+arithmetic Yes we can, using FHE [Gen09]
[IKOS08, ADINZ18] or HSS [BGIT16], but with big
Using poly-stretch local PRGs concrete overhead
Active: only arithmetic . e .
T CIrcuit size

\ [BCGGHJ17, BCGI18] _
AN or “very complex” functions

> 3-party case: ia 3-server PIR [Efr09,BIKK14]
» Computation: 't get constant overhead

- Except when t=0(1)
» Rounds: can’t significantly beat circuit depth

- Except for fun are “not too complex”
> Benny’s talk...

Yes we can, using garbled circuits [Yao86],
even with low communication via FHE or HSS

What can we realistically hope for?

Best known
Active security ~ Passive security
Big # parties n Total O(1) parties
cost t=1

» Optimal resilience

» Communication: O(|C|)

» Computation: polylog(n) overhead
» Rounds: O(depth)

What can we get?

Best known
Active security ~ Passive security
Big # parties n Total O(1) parties
cost t=1

Near-optimal resilience
- E.g., t<0.33n perfect, t<0.49n statistical

Communication: O(|C|)

> Assuming n< |C| , depth(C)« |C|

Computation: polylog(n) overhead (log for arithmetic)
Rounds: O(depth)

v

v

v v

What can we get?

Best known
Passive security

Needed for eliminating O(n) overhead [DLN19]
Good price to pay when n is big

(e.g., repetition vs. asymptotically good code)
Makes almost no difference for “MPC in the head”

Near-optimal resilience

- E.g., t<0.33n perfect, t<0.49n statistical
Communication: O(|C|)

> Assuming n<|C| , depth(C)«|C|

Computation: polylog(n) overhead (log for arithmetic)
Rounds: O(depth)

v

v

v v

What can we get?

» This talk: several simplifying assumptions
> Inputs originate from a constant number of “clients”
> Security with abort
- Statistical security against static active adversary
- Small fractional resilience
- Broadcast

» Assumptions can be eliminated

The model

» m=2 clients, n servers
> Only clients have inputs and outputs
- Assume m=0(1) in most of this talk
> Motivated by “MPC in the head” (next talk)
> Results extend to standard n-party model

servers
® ¢ 6.0 .0 0 O

clients 10

The model

» Synchronous secure point-to-point channels
+ broadcast
> Servers only talk to clients

» Active, static adversary corrupting:
- at most cn servers for some constant O<c<1/2
- any subset of the m clients

» Statistical security with abort

11

Some literature pointers

» Hirt-Maurer 01, Damgard-Nielsen 07, Beerliova-Hirt 08,
BenSasson-Fehr-Ostrovsky 12, Genkin-1-Prabhakaran-Sahai-
Tromer 14, I-Kushilevitz-Prabhakaran-Sahai-Yu 16, Cascudo-
Cramer-Xing-Yuan 18, Chida-Genkin-Hamada-lkarashi-Kikuchi-
Lindell-Nof 18, ...

o n-party perfect/statistical MPC with optimal resilience
o Total communication scales (almost) linearly with n

Damgard-I 06, I-Prabhakaran-Sahai 09
o O(1)-client n-server statistical MPC with near-optimal resilience

o Total communication insensitive to n

o Total computation scales with log(n)
(x statistical-security parameter in Boolean case)

» Damgard-I-Kroigaard-Nielsen-Smith 08, Damgard-1-Kroigaard 10
o Essentially the same for perfect MPC in standard n-party model

Some literature pointers

» Bracha 87

> Using committees to boost security threshold

» Franklin-Yung 92

o Share packing technique

» Chen-Cramer 06

- Using constant-size fields via AG codes
- Helps reduce communication for Boolean circuits

» ... Araki-Furukawa-Lindell-Nof-Oharal®6 ...
o Different line of work

> Minimizing concrete overhead for a small number of parties
... more in Niv’s talk

Starting point: BGW/CCD

» Secret-share inputs
» Evaluate C on shares -
- Non-interactive addition *

> Interactive multiplication
» Recover outputs y

» Secure with t<n/2 (passive S1 S; S3 S4 S5 Sg Sy
or t<n/3 (active)

« Complexity: |C|-O(n?) (passive)
|C|-poly(n) (active)

14

Sources of overhead

» Each wire value is split into n shares
o Use “packed secret sharing” to amortize cost

» Multiplication involves communication
between each pair of servers
- Reveal blinded products to a single client

» EXpensive consistency checks
- Efficient batch verification

15

Share packing

Denote shared block by
[X7,- X lg

S, S, S; S, S¢ Sy S,

» Handle block of w secrets for price of one.
 Security threshold degrades from d to d-w+1
 w=n/10 = Q(n) savings for small security loss

« Compare with error correcting codes

16

BGW with share packing?

YES: evaluate a circuit on NO: evaluate a circuit on a
multiple inputs in parallel single input

& &5

|
X y Z Vv w X y Z Vv w
ole oll® ® @ @ C 2N) ()
3 inputs 0] ® e |o
o0 CAC @
5 blocks

17
“SIMD-friendly” computation

Warmup: Passive, depth 1

Client C

Left-block A->S: pAz[a]1a21a2]d

CIA= [a] ’a] 1a2]d
ZA=[01010]2d

B%S sz[b] ,bz,b]]d
dg=[b,,b;,b,]4
ZBZ[O,O’O]Zd

S>C: paPg+za+2zZg
datds

Client A Client B

Extends to constant-depth circuits

Still 2 rounds, t=Q(n)

18

Passive, any depth

» Assume circuit is composed of layers 1,...,H.
» Clients share inputs into [left'],and [right']
» For h=1 to H-1:

- Clients generate random blocks [r],4 [left_r]; and
[right_r], replicated according to structure of layer h+1

- Servers send masked output shares of layer h to Client A:
lyl,g=[lefth]*[right"]y+[rl,4 * € {x,+,-})
- A decodes, rearranges and reshares y into [left_yly, [right_y],
> Servers let
- [lefth+1],=[left_yl —[left_rl,
- [righth+1],=[right_y]~[right_r]
» Servers reveal output shares

[leftH] ;*[rightH] ;+[0], 4

19

Example

Active security

» Need to protect against t=Q(n) malicious
servers and t’<m malicious clients.

» Malicious servers handled via error correction
- Valid shares form a good error-correcting code
- Error detection sufficient for security with abort

» Malicious clients handled via efficient VSS
procedures (coming up)

21

Efficient statistical VSS

» Recall: only shoot for security with abort

» Two types of verification procedures
> Verify that shares lie in a linear space
- E.g., degree-d polynomials
- Verify that shared blocks satisfy a given replication
pattern

- E.g., [ry,r,ro,1] [rs,1r3,14,15]
» Cost is amortized over multiple instances

22

Verifying membership in a
linear space

» Suppose Client A distributed a vector v between servers.
> S; holds the i-th entry of v

- Can be generalized to an arbitrary partition of entries
» Goal: Prove in zero-knowledge to Client B that v is in
some (publicly known) linear space L over F.
» Protocol:
> A distributes a random ue, L
- B picks and broadcasts ce F
> Servers jointly send w=cv+u to B
> B checks that wel
» ZK: w is a random vector in L
» Soundness (static corruption):

- consider messages from honest servers
> cv+U, c’v+uel = (c-c’)velL = vel
> soundness error < 1/|F|

23

Amortizing cost

Can be jointly generated by clients
Can be pseudorandom
Unconditional PRG suffices

C . .
2 Adaptive security:
C3
 Needed for ZK/2PC application
Cy e« Union bound too loose
« Tighter analysis: AHIV17,...
Cs

Verifying replication pattern

secret abcd e fgh

inner product

public publ pub?2

1. Write replication requirement 2. Take random linear combination:
as linear equations:

r1*(b-a)+
b-a=0 r2*(e-b)+
e-b=0 r3*(g-e)+
g-e=0 r4*(h-g)+
h-g=0 r5*(d-c)+
d-c=0 r6*(f-d) = 0
f-d=0

3. Bring to a <secret , public > format

25

Verifying replication pattern

secret abcd e fgh

inner product

public pub] pub?2
abcd efgh
X + X
publ pub?2

+ | 4142 23 24

Random block with sum O
Generated by prover
26

Asymptotic efficiency

» Communication
- O(|C]) field elements (|F|>n) + “low order terms”

> Low order terms include:

- Additive term of O(depth-n) for layered circuits
- depth = # “communicating layer pairs” for general circuits

- Multiply by k/log|F| for small fields
(k = statistical security parameter)

» Computation

- Communication x O(log n)
- Uses FFT for polynomial operations
- Multiply by k/log|F| for small fields

27

Boosting security threshold

» Goal: small fractional resilience =
nearly optimal resilience
> without increasing asymptotic complexity!

» Solution: Bracha-style server virtualization
- Example: 0.01n-secure IT = 0.33n-secure IT’
> Pick n committees of servers such that

- Each committee is of size s=0(1)

- If 0.33n servers are corrupted, then > 99% of the committees
have < s/3 corrupted members

- Choose committees at random, or use explicit constructions

» II" uses s—-party BGW to simulate
each server in II by a committee
> Overhead poly(s)=0(1)

28

Using constant-size fields

» Consider a boolean circuit C with |C|» depth

» Previous protocol requires |F|>n
> O(]C| logn) bits of communication

» Can we get rid of the logn term?

» Yes, using algebraic-geometric codes
- Field size independent of n
- Small fractional loss of resilience

29

Other extensions

» Many clients
> Previous protocol required generating secret blocks

- Easy to implement by summing blocks generated by all clients

- Overhead can be amortized if only a constant fraction of clients
are corrupted

- Use routing network to convert circuit into regular form

- Replace summing blocks by better randomness extraction

> Gives protocols with polylog(n) overhead in standard n-party
setting with t=Q(n).

» Perfect security
- Use efficient variant of BGW VSS with share packing
- Alternatively: “hyperinvertible matrix” approach [BHOS8]

30

Conclusions

» Honest-majority MPC protocols are efficient!

- Total communication = O(|C|) (+ low-order terms)
- At most polylog(|C|) overhead with n clients
> Total computation O~(|C]|)

- Relevant to MPC with dishonest majority (next talk)

» Open efficiency questions
- Break circuit size communication barrier for IT security
- Constant computational overhead for t=Q(n)

31

