
Pseudorandom Correlation Generators

Yuval Ishai
Technion

Mostly based on works with Elette Boyle, Geoffroy Couteau,
Niv Gilboa, Lisa Kohl, and Peter Scholl

Road Map

Cryptographic
primitives

Reductions

Extending
primitives

Extending
OT’s

IKNP, Crypto 2003
“Extending Oblivious
Transfers Efficiently”

Road Map

Motivation

Definitions

Constructions
from PRG

Today’s
lectures

Constructions
From LPN

Part I

Part II

Part III

Part IV

Peter
tomorrow

Background and Motivation

Secure (2-Party) Computation

𝑦𝑥

𝑓(𝑥, 𝑦)

5

Learn 𝑓(𝑥, 𝑦) and nothing else about 𝑥, 𝑦

[Yao86,GMW87]

Secure Computation Paradigms
2 semi-honest parties

Garbled Circuits
[Yao 86,…]

Fully Homomorphic Encryption
[Gentry 09,…]

f(x)f(x)
Evalfxx Enc Dec

pk sk

Homomorphic Secret Sharing
[Boyle-Gilboa-I 15,…]

f(x)

y1

y2Evalf

Evalfx1

x2

x
Share

+

Linear Secret Sharing
[Goldreich-Micali-Wigderson 87, …]

OT OT OT OT

OT OT OT OT

OT OT OT OT

Secure Computation Paradigms
2 semi-honest parties

Garbled Circuits
[Yao 86,…]

Fully Homomorphic Encryption
[Gentry 09,…]

f(x)f(x)
Evalfxx Enc Dec

pk sk

Homomorphic Secret Sharing
[Boyle-Gilboa-I 15,…]

f(x)

y1

y2Evalf

Evalfx1

x2

x
Share

+

Linear Secret Sharing
[Goldreich-Micali-Wigderson 87, …]

OT OT OT OT

OT OT OT OT

OT OT OT OT

f(x)
y1

y2Evalx

Evalx
f1

f2
f

Share

Function Secret Sharing

Current HSS Worlds
“Homomorphia”

– LWE+ Circuits [DHRW16, BGI15, BGILT18]

“Cryptomania”
– DDH Branching Programs [BGI16, BCGIO17, DKK18]
– Paillier Branching Programs [FGJS17, OSY21, RS21]
– LWE Branching Programs [BKS19]

“Minicrypt”
– OWF Point Functions [GI14, BGI15, BGI16]

Intervals
Decision Trees

“Algorithmica”
– None Linear Functions [Ben86]

“Lapland” Low-degree
- LPN polynomials [BCGI18,BCGIKS19,BCGIKS20,CM21]

Challenge

Honest-majority 3PC Dream goal for 2PC

Same?Cost per AND
• Communication: 1 bit per party
• Computation: cheaper…

[BGW88, CCD88, ALFNO16]

FHE / HSS: heavy computation
Yao / GMW+ OT extension: heavy communication

Meeting challenge using correlated randomness

Trusted Dealer

𝑦𝑥 Online phase

𝑓(𝑥, 𝑦)

Correlated randomness

[Beaver ’91]

Information-theoretic security
Constant computational overhead

Fast!

[Bea95, Bea97, IPS08, BDOZ11, BIKW12, NNOB12, DPSZ12, IKMOP13, DZ13, DLT14, BIKK14,
LOS14, FKOS15, DZ16, KOS16, DNNR17, Cou19, BGI19, BNO19, CG20, BGIN21,…]

Meeting challenge without correlated randomness?

𝑦𝑥 Online phase

𝑓(𝑥, 𝑦)

Correlated randomness

>> online cost

interactive
preprocessing

Pseudorandom Correlation Generator (PCG)

k0 k1

Expand(k1)Expand (k0)

Gen

[Boyle-Couteau-Gilboa-I18, BCGI-Kohl-Scholl19]

Target correlation: 𝑅#, 𝑅$

Expand 𝑘# , Expand 𝑘$ ≈ (𝑅#, 𝑅$)

Also for insiders!

Secure Computation with Silent Preprocessing

•Total communication & online computation meet challenge
• Fast Expand è fully meet challenge!

•Malicious security with vanishing amortized cost

Phase 1:

cheap PCG seed
setup protocol

Phase 2:

silent
seed expansion

Phase 3:

fast,
“non-cryptographic”

offline online

Secure Computation with Silent Preprocessing

Phase 1:

cheap PCG seed
setup protocol

Phase 2:

silent
seed expansion

Phase 3:

fast,
“non-cryptographic”

offline online

ü Ad-hoc future interactions
ü Hiding communication pattern
ü Hiding future plans

Concrete cost of setup:
Peter’s talk tomorrow

Non-cryptographic online phase?
• Know it when you see it…
• Efficiency: asymptotic and concrete
• “Indistinguishable from info-theoretic”

Phase 1:

cheap PCG seed
setup protocol

Phase 2:

silent
seed expansion

Phase 3:

fast,
“non-cryptographic”

offline online

Main difference from Laconic SFE
[QuachWeeWichs18]

Secure Computation with Silent Preprocessing

Definitions

PCG Security Definition: Take I

• Real = 𝑘', Expand(𝑘() ≈ Sim 𝑅' , 𝑅(= Ideal

Securely realizing ideal correlation functionality (𝑅', 𝑅()

Good for all applications

Not realizable even for simple correlations

• Real = 𝑘', Expand(𝑘() ≈ Sim 𝑅' , 𝑅(= Ideal

• Real = 𝑘', Expand(𝑘() ≈ 𝑘', [𝑅(| 𝑅'= Expand 𝑘']

Securely realizing “corruptible” target correlation

Good for natural applications

Realizable for useful correlations

PCG Security Definition: Take II

• Combines Setup + Expand

• Sublinear-communication protocol for corruptible version of (𝑅', 𝑅()

PCG protocol

𝑟# 𝑟$ ← [𝑅$ | 𝑅#= 𝑟#]
𝑟# 𝑟$

Real Ideal

Naturally extends to n parties

Correlations

Useful target correlations: 3+ parties

Linear n-party 𝑅$, … , 𝑅% ∈& Linear space V
correlations N x deg-t Shamir of random secret

N x additive shares of 0

VSS, honest-majority MPC
Proactive secret sharing
Secure sum / aggregation

x1 x2 x3 x4 x5

+ + + + +
r1 r2 r3 r4 r5 Additive shares of 0

Additive shares of ∑𝑥!m1 m2 m3 m4 m5

Goal: securely aggregate

Useful target correlations: 3+ parties

Linear n-party 𝑅#, … , 𝑅% ∈& Linear space V
correlations N x deg-t Shamir of random secret

N x additive shares of 0

VSS, honest-majority MPC
Proactive secret sharing
Secure sum / aggregation

x

r1 r2 r3 r4 r5 Shamir-shares of r

Goal: Shamir-share x between servers

x-r

r

Useful target correlations: 2+ parties

Oblivious transfer
(OT) N x

2PC of Boolean circuits
GMW-style, semi-honest:
2 x bit-OT + 4 comm. bits per AND

OT(s0,s1) (c,sc)

Oblivious Linear-
function Evaluation N x
(OLE), mult. triples

OLE(a,b) (x,ax+b)
2PC of Arithmetic circuits
GMW-style, semi-honest:
2 x OLE + 4 ring elements per MULT

Vector OLE
(VOLE) VOLE(a,b) (x,ax+b)

2PC of scalar-vector product
ZK, batch-OPRF, PSI, ...
(Yesterday - Peter’s talks)

Useful target correlations: 2+ parties

Authenticated ([ai],[bi],[ci], [𝛼ai],[𝛼bi],[𝛼ci])
Multiplication ci=aibi
Triples

2PC of Arithmetic circuits
SPDZ-style, malicious

Truth-Table
2PC of “unstructured”
functions

Additive R0+R1 = R Generalizes the above

Randomly shifted,
secret-shared TT

State of the Art

Current PCG Feasibility Landscape

“Obfustopia” iO General [HW15, HIJKR16]

“Minicrypt” PRG Linear [GI99, CDI05, BBGHIN21]

Truth table [BCGIKS19]

“Homomorphia” LWE+ Additive [DHRW16, BCGIKS19]

“Cryptomania” DDH,DCR Low-depth [BGI16, BCGIO17, OSY21]

“Lapland” LPN VOLE, OT [BCGI18, BCGIKS19]

Ring-LPN OLE, (Auth.) Triples [BCGIKS20a]

VD-LPN PCF for VOLE, OT [BCGIKS20b]

Current PCG Feasibility Landscape

“Obfustopia” iO General [HW15, HIJKR16]

“Minicrypt” PRG Linear [GI99, CDI05, BBGHIN21]

Truth table [BCGIKS19]

“Homomorphia” LWE+ Additive [DHRW16, BCGIKS19]

“Cryptomania” DDH,DCR Low-depth [BGI16, BCGIO17, OSY21]

“Lapland” LPN VOLE, OT [BCGI18, BCGIKS19]

Ring-LPN OLE, (Auth.) Triples [BCGIKS20a]

VD-LPN PCF for VOLE, OT [BCGIKS20b]

Constant-degree additive
(poly(N) expansion time)

Good concrete efficiency?

“Obfustopia” iO General [HW15, HIJKR16]

“Minicrypt” PRG Linear [GI99, CDI05, BBGHIN21]

Truth table [BCGIKS19]

“Homomorphia” LWE+ Additive [DHRW16, BCGIKS19]

“Cryptomania” DDH,DCR Low-depth [BGI16, BCGIO17, OSY21]

“Lapland” LPN VOLE, OT [BCGI18, BCGIKS19]

Ring-LPN OLE, (Auth.) Triples [BCGIKS20a]

VD-LPN PCF for VOLE, OT [BCGIKS20b]

Getting better and better…
[SGRR19, BCGIKRS19, YWLZW20, CRR21]

Generic Construction from HSS

Additive Correlation

Distribution R

R1

R0

Additive shares

Homomorphic Secret Sharing (HSS)
[Benaloh86, Boyle-Gilboa-Ishai16]

= f(x)
y0

y1

+

Evalf

Evalf
x0

x1
x

Share

HSS ⇒ PCG for Additive Correlations

Sampling function f:

EvalfEvalf

s0 s1

sShare

Distribution R R0 R1

s

Long pseudorandomness

PRG
expansion

Sampling from R

PCGs in Minicrypt

Linear Multiparty Correlations:
Pseudorandom Secret Sharing (PRSS)

[Gilboa-I 99, Cramer-Damgård-I 05]

Replicated, independent field elements

Local, linear mapping

Linear target correlation

r1 r2 r3 r4 r5 r6 r7

Replicated, independent field elements

Linear target correlation

r1 r2 r3 r4 r5 r6 r7

Conditioned on

distributed as it should be

General solution
using min-support

codewords

Linear Multiparty Correlations:
Pseudorandom Secret Sharing (PRSS)

[Gilboa-I 99, Cramer-Damgård-I 05]

Linear Multiparty Correlations:
Pseudorandom Secret Sharing (PRSS)

[Gilboa-I 99, Cramer-Damgård-I 05]

Replicated, independent PRG seeds

Local, linear mapping

Additive Shares of 0

r1

r2

r3

r4

r5

r6

s43

s12 s16

s65

s51

s32 s25

ri =Σ inboxi –Σ outboxi

Degree-d Shamir Shares

𝑛
𝑑 replicated elements

each given to n-d parties

* 1

1*

+

Concrete efficiency: n=7, d=3, N=106

~ 0.3 KB seeds

106 x deg-3 Shamir

~ 0.1 second

Generalized PRSS from Covering Designs
[Benhamooda-Boyle-Gilboa-Halevi-I-Nof 21]

• Goal: avoid
𝑛
𝑑 overhead when security threshold t < degree d

• O(n) share size for constant t regardless of degree
• Application: Efficient MPC with share packing

• Construction from covering designs
• (n, m, t)-cover: m-subsets of [n] covering all t-subsets

• (n, d+1, t)-cover of size k è PRSS with k(n-d)(d+1) storage
• Tight up to a (d+1) factor

Generalized PRSS from Covering Designs
[Benhamooda-Boyle-Gilboa-Halevi-I-Nof 21]

(n,m, t) Baseline Best known Lower bound CDI seeds PRSS seeds
cover size cover size cover size per party per party

(9, 3, 1) 3 3 3 8 7
(15, 5, 1) 3 3 3 14 11
(15, 5, 2) 49 13 13 91 48
(48, 16, 1) 3 3 3 47 33
(48, 16, 2) 15 13 13 1081 143
(48, 16, 4) 495 252 173 178365 2772
(48, 20, 4) 490 87 60 178365 1052
(48, 20, 6) 5168 1280 459 1.07 · 106 15467
(49, 24, 2) 31 7 7 1128 90
(49, 24, 4) 245 38 31 194580 484
(49, 24, 8) 12219 4498 968 3.7 · 108 57281
(72, 24, 2) 15 12 12 2485 196
(72, 24, 4) 495 180 126 971635 2940
(72, 24, 6) 18564 4998 1419 1.4 · 108 81634

Table 1: Concrete bounds for (n,m, t)-covers and generalized PRSS. The baseline cover size captures
a simple upper bound given by the minimum between

�n
t

�
/
�m
t

�
ln

�n
t

�
and

�nt/m
t

�
when applicable,

i.e. when m/t and n/m are integers. The best known cover size and the lower bound on the cover
size are given by [1]. The “CDI seeds per party” column refers to the variant of the construction
from [21] described in Footnote 2, which requires

�n�1

t

�
seeds per party. The “PRSS seeds per

party” column refers to the PRSS given by Theorem 3.3 for the linear correlation defined by
random polynomials of degree m � 1 using the best known cover size k, namely multiplying k by
m(n�m+ 1)/n.

18

2-Party PCG in Minicrypt: Truth-Table Correlation
[BCGIKS19]

• Truth-table correlation for 𝑔: additive sharing of TT! ≪ r, r
• Authenticate via a random multiplier for malicious security

• Recall: DPF = FSS for a point function 𝑓",$: 𝑁 → 𝔾
• 𝑎 = 𝑟, 𝑏 = 1, give PCG for additive shares of random unit vector 𝑒!
• Convert to TT correlation via matrix-vector multiplication

• Matrix is circulant è (offline) Expand time = %𝑂(𝑁)
• Alternatively: locally expand online in time 𝑂 𝑁
• Authentication almost for free

• Comparison with “FSS gates” [BGI19, BCGGIKR21] (Elette’s talk)
• Works for every gate 𝑔
• Infeasible for large input domains

Part II:

PCGs in Lapland

Learning Parity with Noise (LPN) over 𝔽
(LWE with low-Hamming noise)

secret
Public G

Sparse noise +

Uniform

≈ (Even given G)

Parameterized by G & by noise distribution

Random 𝔽 elements

Limitation:
|noise|*|secret|>|output|

è at most quadratic stretch

[BFKL93]

LPN-based PCGs: Tools

sparse

Public
Linear

random

Also over large fields / rings

(Dual) LPN

≈

(Quasi)linear
time

Compressed secret-sharing of (N,w) sparse vector

Distributed Point Function
Function Secret Sharing

[GI14,BGI15,BGI16]

Puncturable PRF
[KPTZ13,BW13,BGI14]

VOLE, OT

w⋅log(N) PRG seeds
O(N) x PRG calls expansion

OLE, Triples
Truth-table, PCF

Elette’s talk

Recall: VOLE correlation

VOLE
𝔽

(ax)0

xa

(ax)1

Idea: s p a r s e VOLE is compressible!

VOLE
𝔽

(ax)0

x

(ax)1

a

Shares of sparse vector
compressible via FSS/PPRF

PCG for VOLE from LPN
[Boyle-Couteau-Gilboa-I18]

VOLE
𝔽

(ax)0

a

(ax)1

x

Public
Linear H

(Hax)0

Public
Linear H

(Hax)1

Public
Linear H

Ha

Secure under LPN for code
checked by H

PCG for VOLE è PCG for OT
[Boyle-Couteau-Gilboa-I-Kohl-Scholl19, +Rindal19]

• Use VOLE over 𝔽!! (𝜆 = 128 in practice)
• VOLE sender = OT receiver, b = sender’s share of ax

• Pick entries of a from base field, x and b from extension field
• Each bit ai selects between bi (known) and x+bi (unknown)
• For each received ci=aix+bi, VOLE sender knows one of (ci,ci+x)
• Destroy correlations between unknown strings via hash function, a-la [IKNP03]

“Silent OT Extension”

Goal: generate [p(r)] for degree-d polynomial map p
• Pick a random sparse a
• Gen: Use FSS to additively share a, axa, axaxa, … , (a)d
• Expand: Write p(Ha) as a linear function L of shared values, and apply L to shares

PCG for degree-d correlations from LPN

Problem: poor concrete efficiency
• Even for OLE or triples, and with circulant H, takes Ω 𝑁* computation

• Idea: Use evaluations of sparse polynomials 𝑠, 𝑠) 𝑎𝑛𝑑 𝑠 ⋅ 𝑠′

Towards PCGs for triples

Vandermonde matrix 𝑉

Coefficients of secret sparse polynomial 𝑠

Good news:
𝑠 𝛼* ⋅ 𝑠+ 𝛼* = (𝑠 ⋅ 𝑠′)(𝛼*)
Expand requires time ?𝑂(𝑁)

Bad news:
LPN broken by algebraic decoding techniques

• Idea: Defeat algebraic decoding attacks by building on ring-LPN

Arithmetic ring-LPN assumption

Ring-LPN assumption: 𝑅+ = ℤ+ 𝑋 /𝐹(𝑋):
𝑎, 𝑎 ⋅ 𝑒 + 𝑓 ≈ (𝑎, $)

𝑎 ← 𝑅+, 𝑒, 𝑓 t-sparse in 𝑅+
𝐹(𝑋) splits into linear factors ⇒𝑅+ ≅ ℤ+,

Splittable ring-LPN:
• Slightly better known attacks
• Requires slightly more noise

PCG for triples from Ring-LPN

𝑎 ⋅ 𝑒 + 𝑓 ⋅ 𝑎 ⋅ 𝑒+ + 𝑓+
= 𝑎, ⋅ 𝑒𝑒+ + 𝑎 ⋅ 𝑒𝑓+ + 𝑓𝑒+ + 𝑓𝑓+

• Share 𝑒𝑒+, 𝑒𝑓+, 𝑓𝑒+, 𝑓𝑓+ via FSS
• Expand via polynomial multiplication +

multi-evaluation
⇒ time ?𝑂(𝑁)
Security based on (splittable) ring-LPN

Cost analysis and extensions

• Cost: for 𝑁 triples over ℤ*
• 𝑂 𝑡* DPF keys
• 𝑂 𝑁𝑡* PRG calls + 𝑂 𝑁 log 𝑁 arithmetic operations

• Extensions:
• Extends to authenticated multiplication triples with < 2x overhead
• Matrix triples, degree-2 correlations (less efficient)
• Multi-party correlations (only non-authenticated)

𝑂 𝑁𝑡 using regular noise

Multi-party multiplication triples

• Goal: PCG for additive n-out-of-n shares of N multiplication triples
• Online communication scales linearly with n

• Idea: Use n(n-1) instances of 2-party PCG for triples
• Separately share each term aibj
• Requires 2-party PCG to be programmable
• Does not work with PCG for OT, or authenticated triples

• Workarounds for authenticated triples:
• Use 3-party DPF [Abram-Scholl22] (less efficient)
• Use (unauthenticated) multiplication triples + fully-linear IOP [Boyle-Gilboa-I-Nof21]

Concrete efficiency: VOLE and OT

~ 10 KB seeds

Length-106 VOLE
over 128-bit field

~ 1 second

106 x 128-bit OT

~ 100 KB 2-round
seed generation

[BCGIKRS19]

Using quasi-cyclic codes

~ 20x speedup via LPN-friendly LDPCs
[Couteau-Rindal-Raghuraman21]

Concrete efficiency: OLE and Triples

~ 1 MB seeds

~ 10 / 20 seconds

106 x 128-bit OLE /
Authenticated Triples

Non-silent alternatives:
Overdrive [KPR18]
Leviosa [HIVM19]

x100-x1000 communication
comparable run time

~ 4 MB
seed generation
(bootstrapped)

Pseudorandom Correlation Functions (PCF)
[Boyle-Couteau-Gilboa-I-Kohl-Scholl20]

• Goal: securely generate correlation instances on the fly
• Pair of correlated (weak) PRFs (𝑓"!(𝑟), 𝑓"# 𝑟)
• Security against insiders

• GGM-style reduction to PCG does not apply…

• PCF for VOLE from WPRF 𝑓, and FSS:
• Pick random key 𝑘 and scalar 𝑥
• Give 𝑘 to P0, 𝑥 to P1
• Use FSS to share 𝑥 ⋅ 𝑓-
• Challenge: use PRG-based FSS!

𝐹 .,-$,-%,…,-& 𝑥 ≔ 𝑔∏'∈ & -'
)'

[NR97]

𝑘

𝑠# 𝑠$

𝑠## 𝑠#$ 𝑠$#

Sparse
polynomial

in
pu

t

ke
y

⊕

MPC-friendly WPRF Candidate

Secure under
variable-density
variant of LPN

Applications:
• PCF
• XOR-RKA security

Best possible security: 2 -

[Hellerstein-Servedio07]

PRGs and WPRFs with security against XOR related-key attacks. Previous constructions are
either heuristic or rely on strong assumptions such as multilinear maps [ABP19].

The remainder of the Introduction is organized as follows. First, in Section 1.2, we present
our main candidate as a low-complexity WPRF, and then (Section 1.3) explain how its conjec-
tured security can be viewed as a variable-density variant of the standard LPN assumption. In
Section 1.4, we discuss applications of this candidate WPRF to security against XOR related-key
attacks. Then, in Section 1.5, we discuss the construction of PCFs, which relies on the “FSS-
friendliness” of our WPRF candidate. We conclude by discussing applications and comparison
with alternative approaches and related works. A more detailed discussion of the conjectured
security of our main WPRF candidate and its variants is deferred to Section 2.

1.2 Our Low-Complexity WPRF Candidate

Motivated by the goals of improving the efficiency of PCFs and diversifying the underlying
assumptions, we put forth new WPRF candidates that are “FSS-friendly” in the sense of being
compatible with existing PRG-based FSS schemes. Our candidates are in a very low complexity
class: the class XOR � AND of polynomial-size, depth-2 boolean circuits with one layer of AND
gates at the bottom and a single XOR gate at the top (both of arbitrary fan-in).3 We also refer
to such a circuit as an XNF formula (for XOR Normal Form). This is similar to DNF, except
for replacing disjunction (OR) by XOR. We conjecture our candidates to have subexponential

security in both the key length and the input length. Concretely, our main candidate fk :
{0, 1}n ! {0, 1} is of the form

fk(x) =
DM

i=1

wM

j=1

î

h=1

(xi,j,h � ki,j,h), (1)

where w,D can be set to the security parameter �, and n = w ·D · (D � 1)/2. We conjecture
that this candidate is secure against 2o(n

1/3)-time distinguishers. The security of this WPRF
candidate is based on a natural variable-density flavor of the well-studied learning parity with

noise (LPN) assumption that we will discuss below. A slightly different candidate is plausibly
secure against 2o(

p
n)-time distinguishers, matching the best known learning algorithm for this

class [HS07]. (For both variants, restricting the distinguisher to 2D samples and D to
be, say, no(1), we get plausible security against 2o(n/ logn)-time distinguishers.) Subexponential
security is good enough to support � bits of security (against 2�-bounded adversaries) in poly(�)
time, and is typically the strongest level of security one can hope to obtain from standard cryp-
tographic assumptions. For a more thorough discussion on the security of our main candidate
and its variants we refer to Section 2.3.

In contrast to our candidates, previous WPRF candidates in AC0[�] (namely, of constant-
depth polynomial-size circuits with AND/OR/XOR gates of unbounded fan-in) were restricted
to quasipolynomial security, which is considered “borderline insecure” and cannot support � bits
of security in poly(�) time. Thus, our candidates fill a gap in the current landscape of (weak)
PRF candidates in low complexity classes. See Section 2 below for related work.

We support the conjectured security of our candidates by analysis that proves their security
against several classes of natural attacks, capturing essentially any relevant class of attacks we
are aware of. This includes, for instance, linear attacks that try to correlate the outputs via
an input-dependent linear combination, as well as algebraic attacks that exploit a low rational

degree. The latter yielded a quasipolynomial-time distinguisher for a previous WPRF candidate
in AC0[�] [ABG+14,BR17].

3As is common in the study of constant-depth PRFs, we consider the complexity of mapping the input to the
output when the key is fixed, where inputs can be negated without counting towards the depth. The latter is
consistent with, for instance, a DNF formula having depth 2. Viewed as a function of both the input and the
key, the depth increases to 3.

5

Variable-density LPN

≈

𝑤 non-zero entries in
interval of length 2" ⋅ 𝑤

𝑤 non-zero entries in
interval of length 2 ⋅ 𝑤

Secret key 𝑘

Public input 𝑟

Concrete efficiency: PCF

• PCFs for OT / VOLE from VDLPN (< 109 instances) [BCGIKS20]
• key size: ≈ 120kB (≈ 2MB conservative)
• evaluation: 8,000 PRG calls / instance => ≈ 20,000 instances / second / core

• PCFs from number-theoretic assumptions [Orlandi-Scholl-Yakoubov21]
• Public-key setup, small keys
• Slow evaluation Peter

tomorrow

Application: MPC-friendly symmetric crypto

“2-3-WPRF” candidate

[Boneh-I-Passelègue-Sahai-Wu18]

𝐾 ∈ ℤ!"×"

input x

B ∈ ℤ.-×ℓ

𝑛 = 256, ℓ = 81

output y

Secure protocol [K],[xi] à [yi]
[Dinur-Goldfeder-Halevi-I-Kelkar-
Sharma-Zaverucha 21]

With preprocessing:
Online cost 1024 bits, 2 rounds

Using PCGs for VOLE/OT, amortized
preprocessing cost: 353 bits

Main trick: converting random OT over ℤ5 to
“double-sharing” ([r]2,[r]3) deterministically
conditioned on OT sender’s inputs being distinct.
è1.5n OT instances produce n double-shares
è1.377n bits to communicate good subset

Remaining challenges

Better PCGs
• More correlations?
• Garbled circuits, FSS keys, …

• Multi-party binary or authenticated triples
• Smaller seeds, faster expansion and seed generation
• Scalable PCG for Shamir-shares

Better understanding of LPN-style assumptions
• Which codes?
• Which noise patterns?

Better PCFs

The End

• Questions?

