

Pseudorandom Correlation Generators

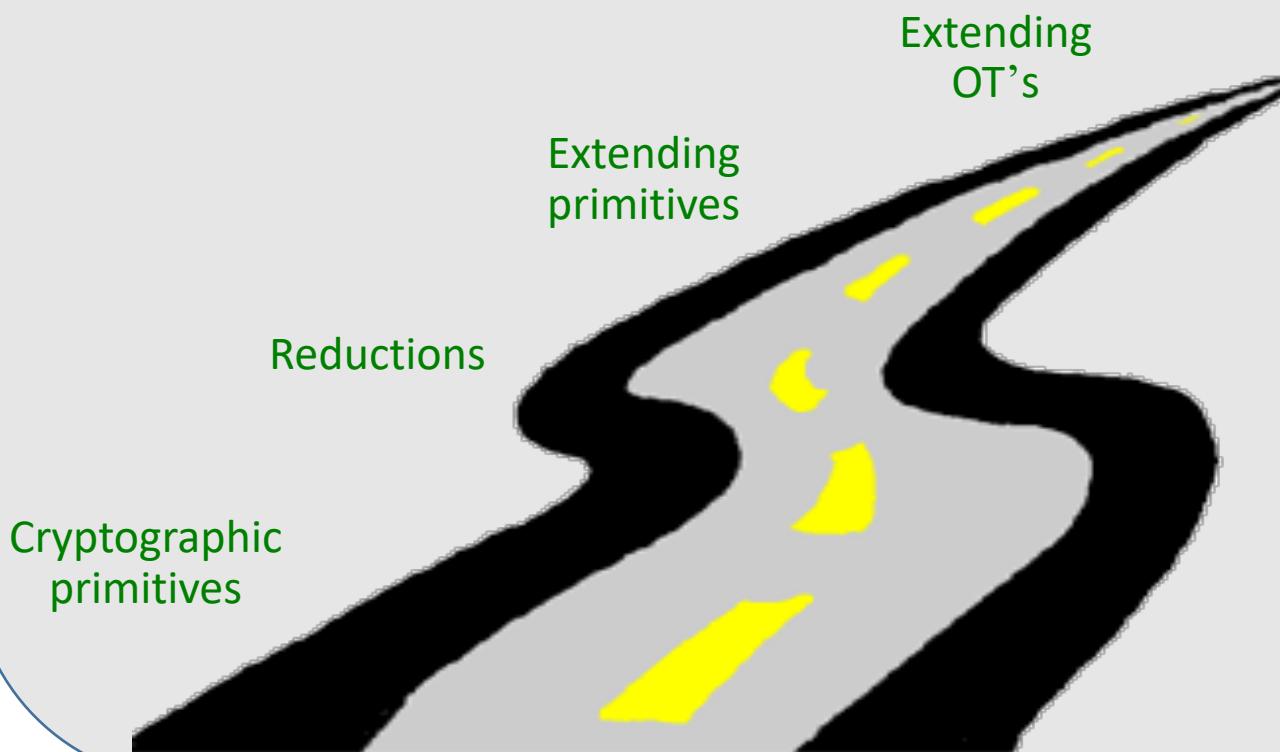
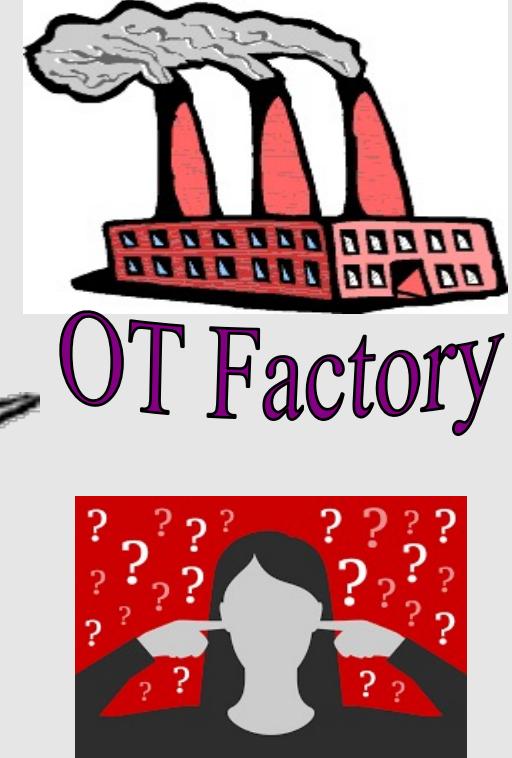
Yuval Ishai

Technion

Mostly based on works with Elette Boyle, Geoffroy Couteau,
Niv Gilboa, Lisa Kohl, and Peter Scholl

Road Map

IKNP, Crypto 2003
“Extending Oblivious
Transfers Efficiently”



Road Map

Today's
lectures

Part III

Part IV

Part I

Part II

Constructions
From LPN

Constructions
from PRG

Definitions

Motivation

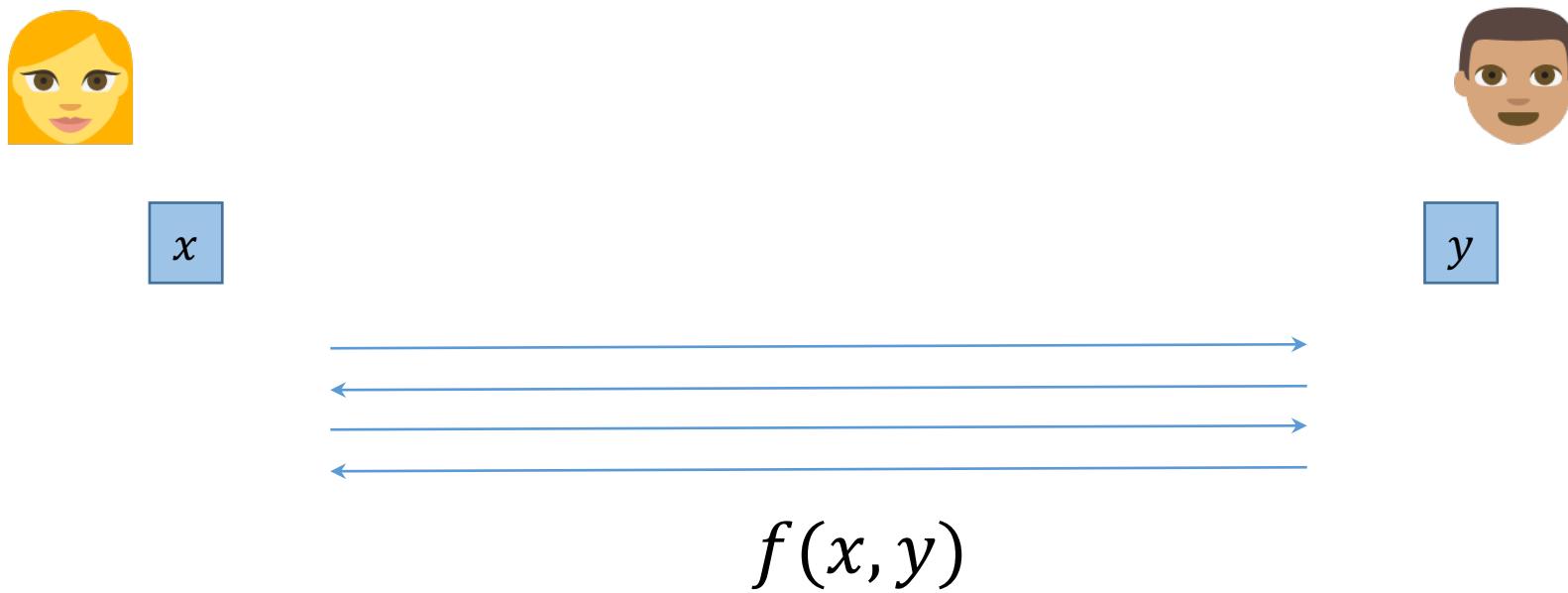
Peter
tomorrow

Silent
OT Factory
+
VOLE
+
more...

Background and Motivation

Secure (2-Party) Computation

[Yao86,GMW87]



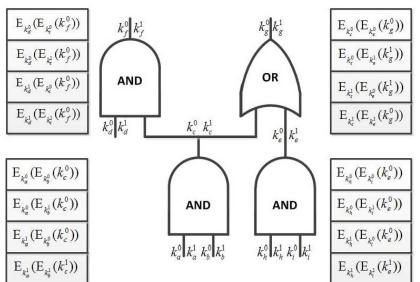
Learn $f(x, y)$ and **nothing else** about x, y

Secure Computation Paradigms

2 semi-honest parties

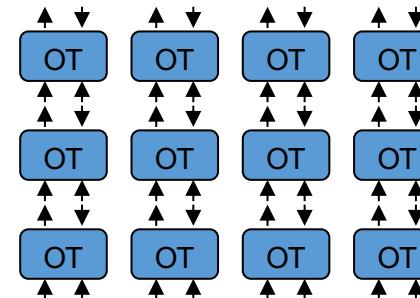
Garbled Circuits

[Yao 86,...]



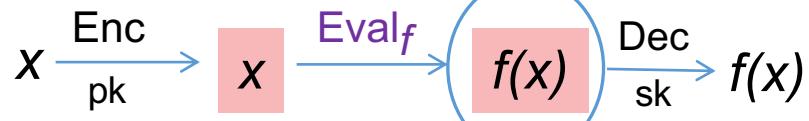
Linear Secret Sharing

[Goldreich-Micali-Wigderson 87, ...]



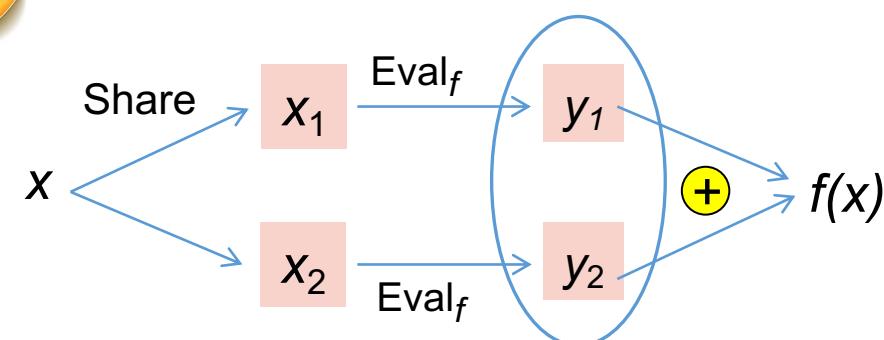
Fully Homomorphic Encryption

[Gentry 09,...]



Homomorphic Secret Sharing

[Boyle-Gilboa-I 15,...]

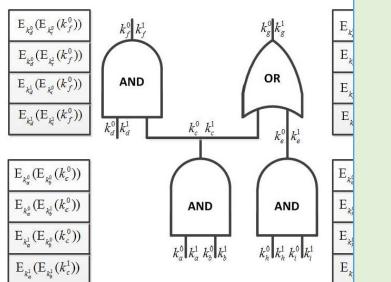


Secure Computation Paradigms

2 semi-honest parties

Garbled Circuits

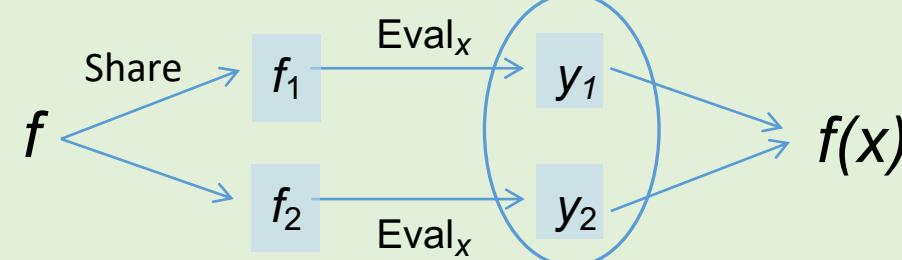
[Yao 86, ...]



Linear Secret Sharing

[Goldreich-Micali-Wigderson 87, ...]

Function Secret Sharing



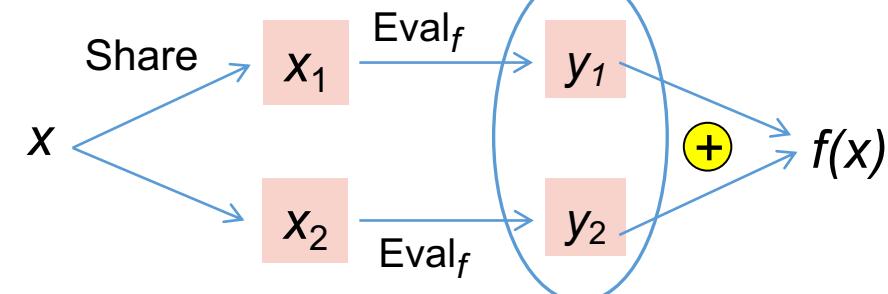
Fully Homomorphic Encryption

[Gentry 09, ...]

Homomorphic Secret Sharing

[Boyle-Gilboa-I 15, ...]

new



Current HSS Worlds

“Homomorphia”

- LWE+ Circuits [DHRW16, BGI15, BGILT18]

“Cryptomania”

- DDH Branching Programs [BGI16, BCGIO17, DKK18]
- Paillier Branching Programs [FGJS17, OSY21, RS21]
- LWE Branching Programs [BKS19]

“Lapland”

- LPN Low-degree polynomials [BCGI18,BCGIKS19,BCGIKS20,CM21]

“Minicrypt”

- OWF Point Functions [GI14, BGI15, BGI16]
Intervals
Decision Trees

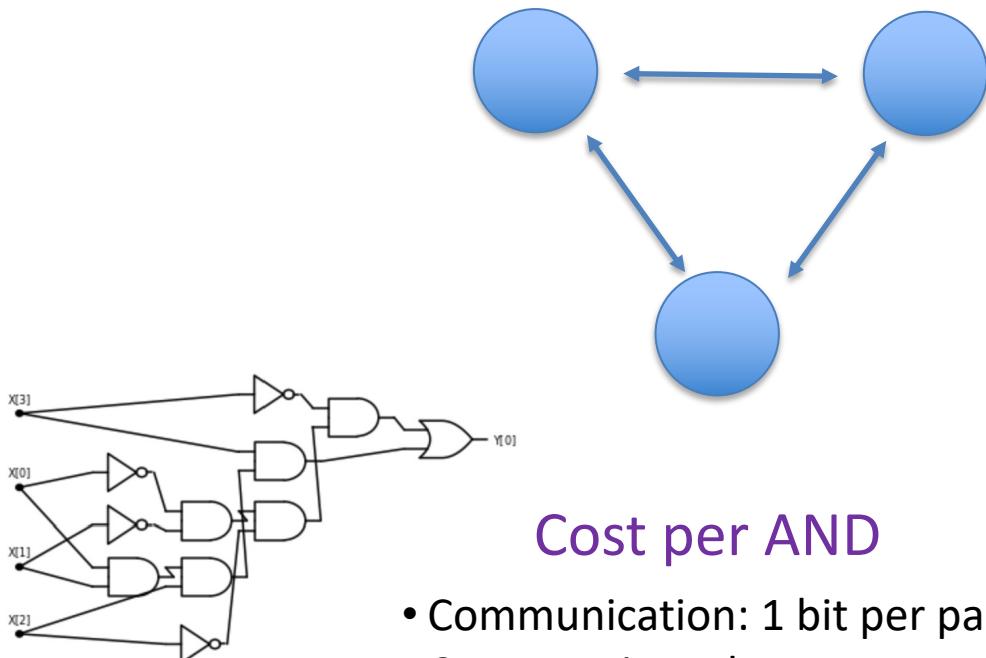
“Algorithmica”

- None Linear Functions [Ben86]

Challenge

Honest-majority 3PC

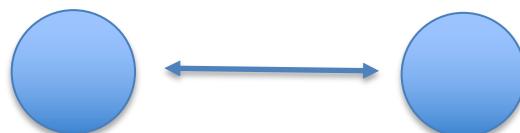
[BGW88, CCD88, ALFNO16]



Cost per AND

- Communication: 1 bit per party
- Computation: cheaper...

Dream goal for 2PC

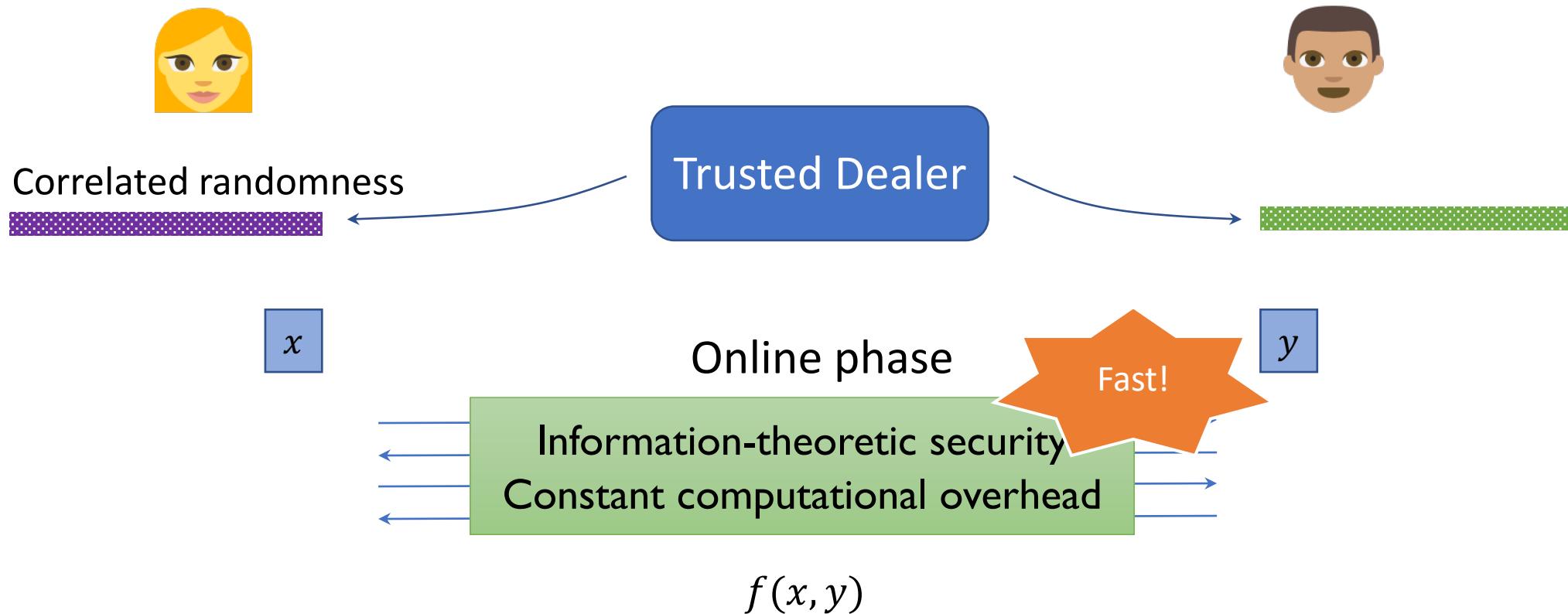


Same?

FHE / HSS: **heavy computation**
Yao / GMW+ OT extension: **heavy communication**

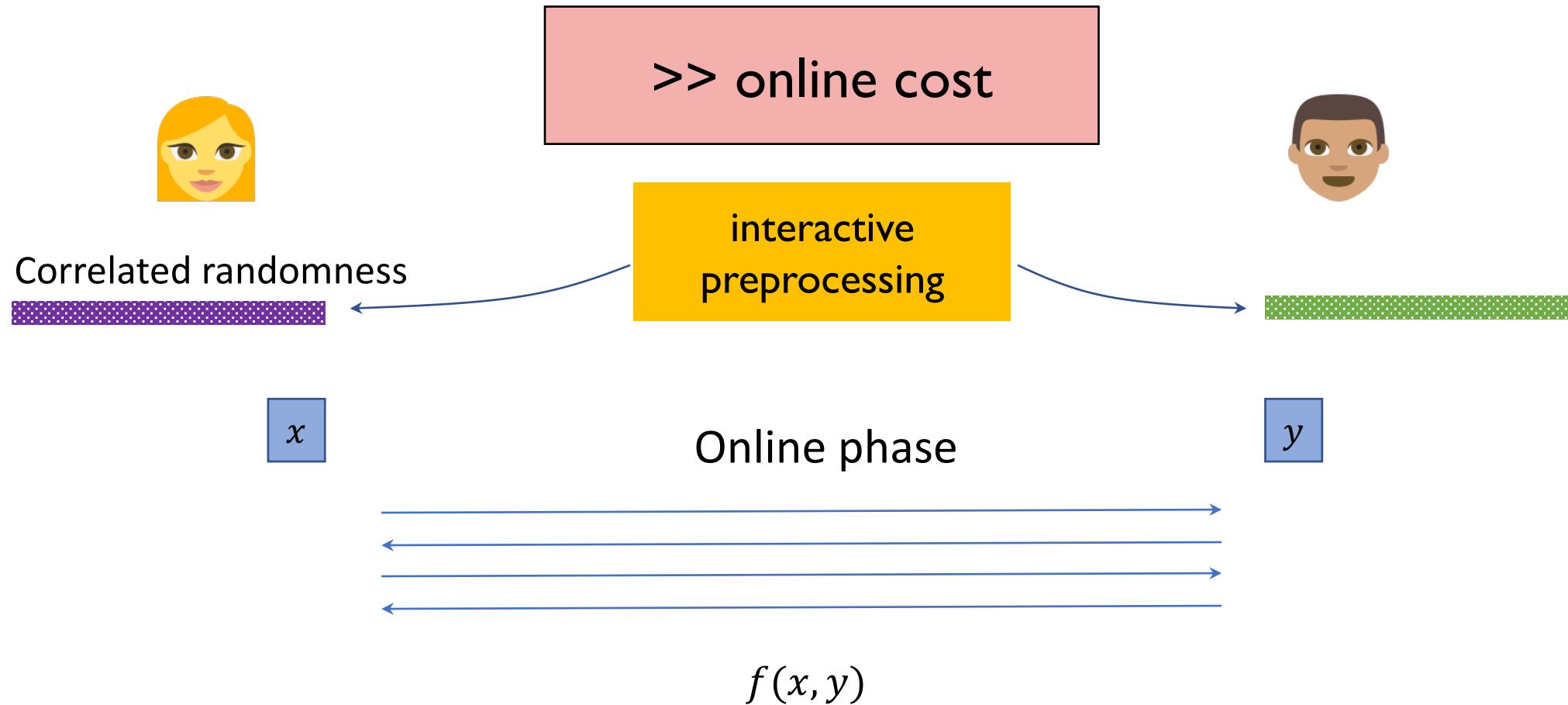
Meeting challenge using correlated randomness

[Beaver '91]



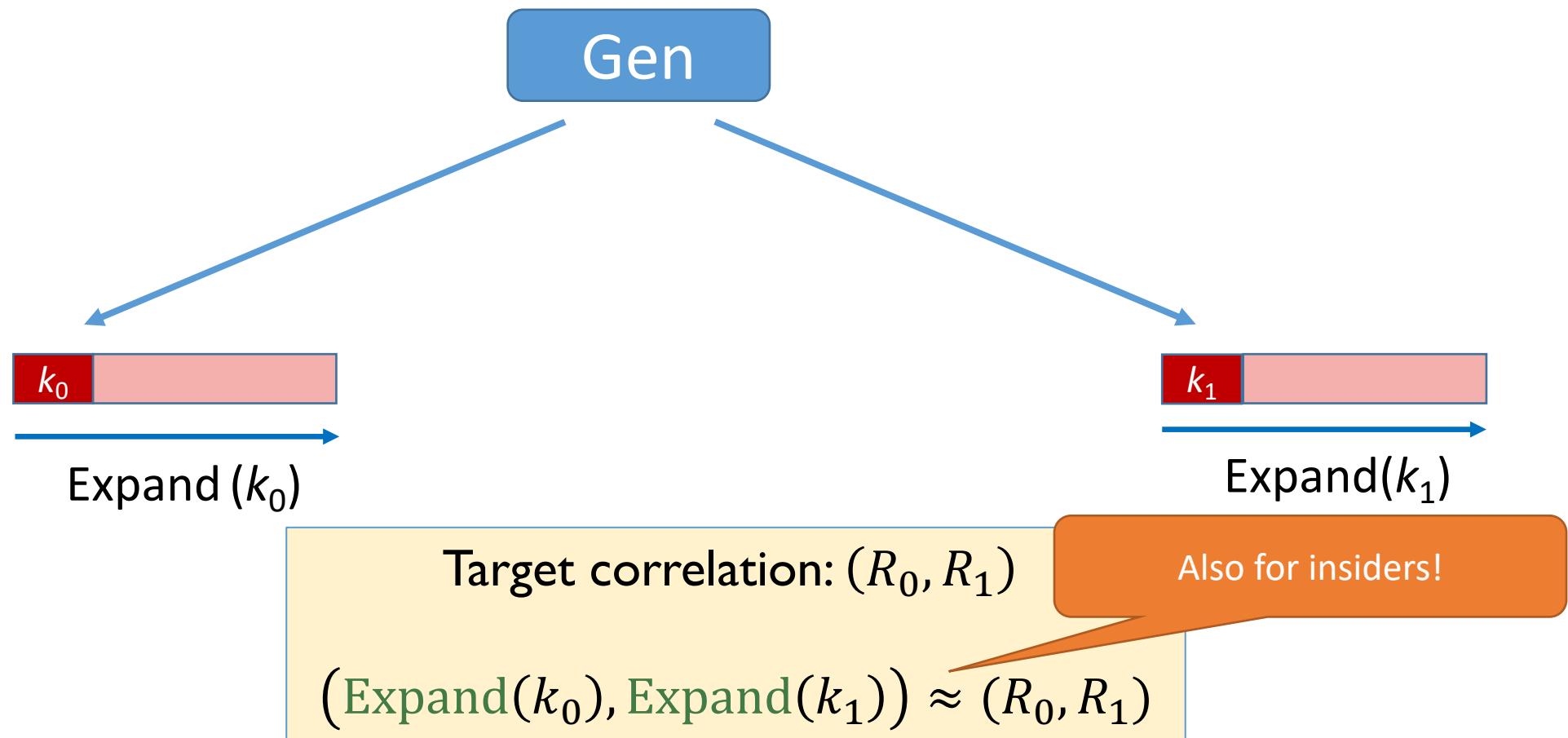
[Bea95, Bea97, IPS08, BDOZ11, BIKW12, NNOB12, DPSZ12, IKMOP13, DZ13, DLT14, BIKK14, LOS14, FKOS15, DZ16, KOS16, DNNR17, Cou19, BGI19, BNO19, CG20, BGIN21, ...]

Meeting challenge **without** correlated randomness?

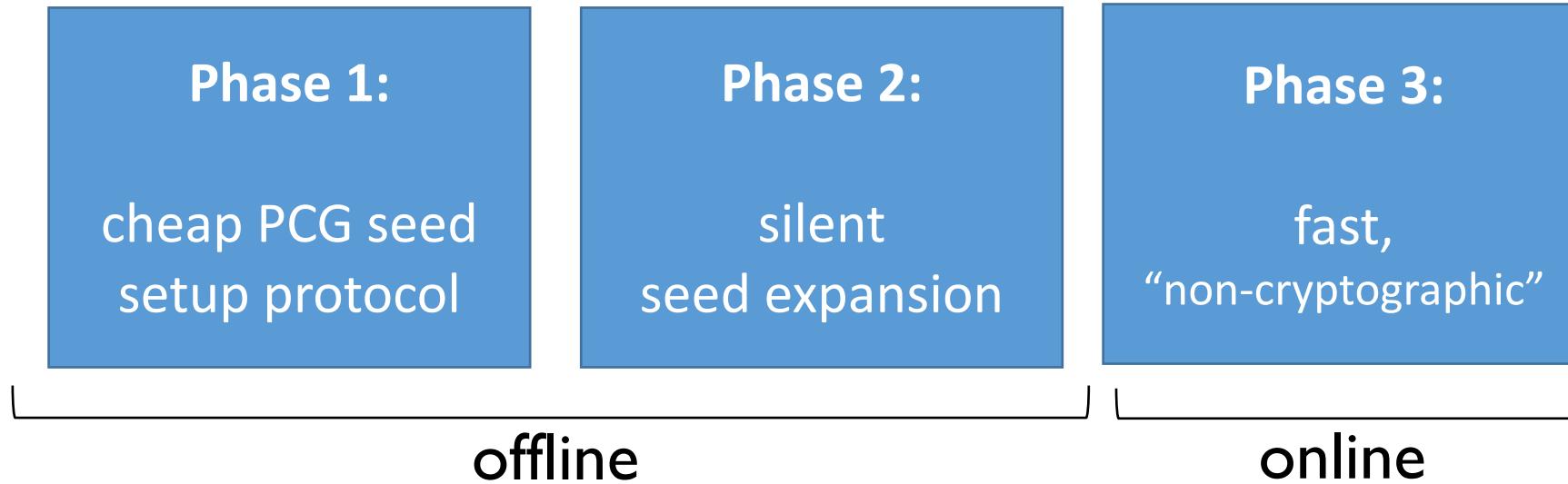


Pseudorandom Correlation Generator (PCG)

[Boyle-Couteau-Gilboa-118, BCGI-Kohl-Scholl19]

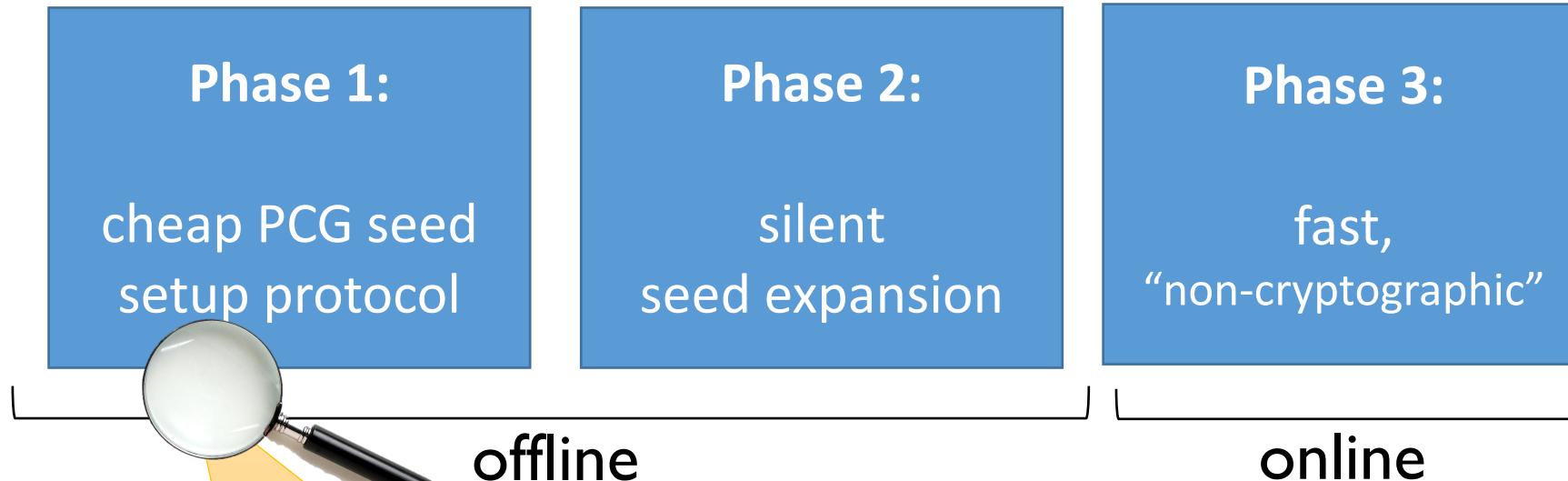


Secure Computation with Silent Preprocessing



- Total communication & online computation meet challenge
 - Fast Expand → fully meet challenge!
- Malicious security with vanishing amortized cost

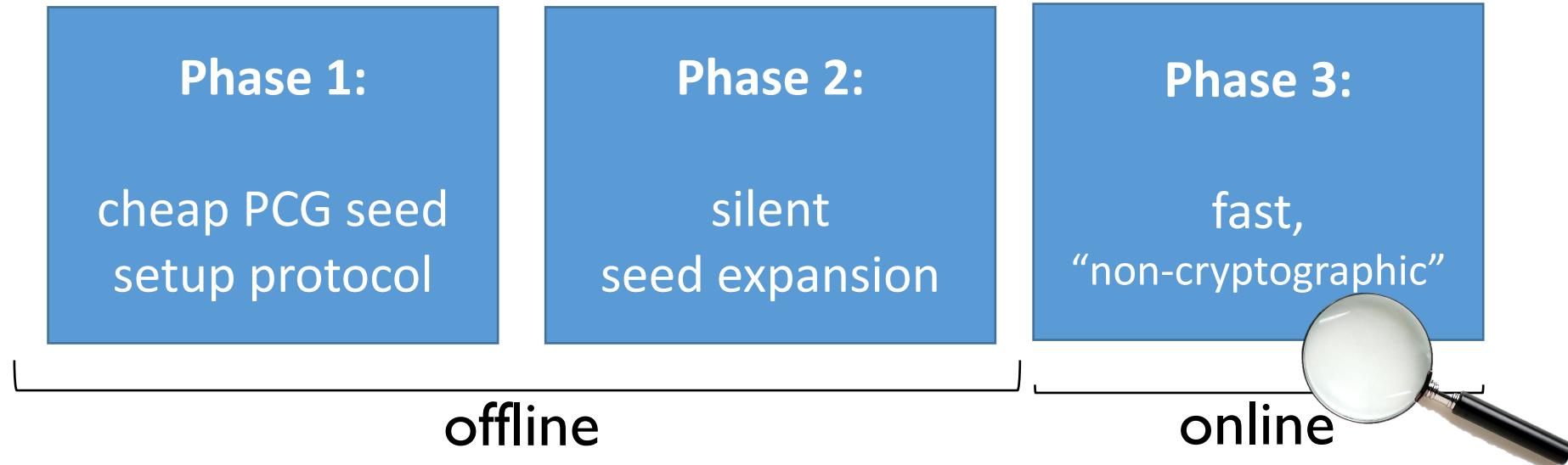
Secure Computation with Silent Preprocessing



- ✓ Ad-hoc future interactions
- ✓ Hiding communication pattern
- ✓ Hiding future plans

Concrete cost of setup:
Peter’s talk tomorrow

Secure Computation with Silent Preprocessing



Main difference from [Laconic SFE](#)
[QuachWeeWichs18]

Non-cryptographic online phase?

- Know it when you see it...
- **Efficiency: asymptotic and concrete**
- **“Indistinguishable from info-theoretic”**

Definitions

PCG Security Definition: Take I

- $\mathbf{Real} = (k_0, \text{Expand}(k_1)) \approx (\text{Sim}(R_0), R_1) = \mathbf{Ideal}$

Securely realizing ideal correlation functionality (R_0, R_1)

Good for all applications

Not realizable even for simple correlations

PCG Security Definition: Take II

- Real = $(k_0, \text{Expand}(k_1)) \approx (\text{Sim}(R_0), R_1) = \text{Ideal}$
- Real = $(k_0, \text{Expand}(k_1)) \approx (k_0, [R_1 \mid R_0 = \text{Expand}(k_0)])$

Securely realizing “corruptible” target correlation

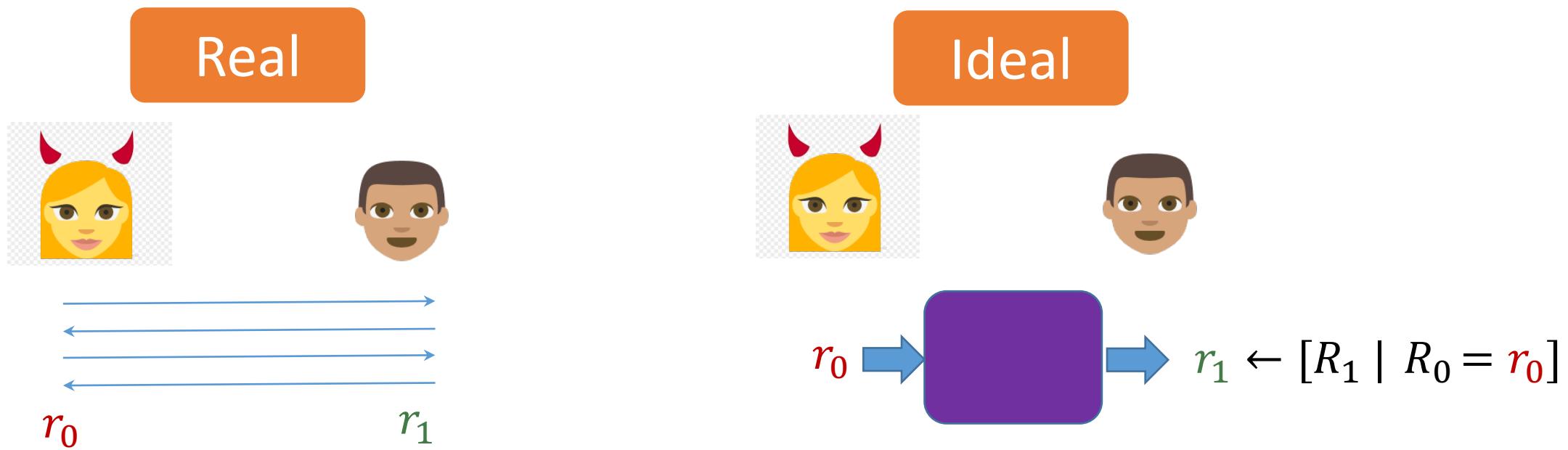
Good for natural applications

Realizable for useful correlations

PCG protocol

- Combines Setup + Expand
- Sublinear-communication protocol for corruptible version of (R_0, R_1)

Naturally extends to n parties



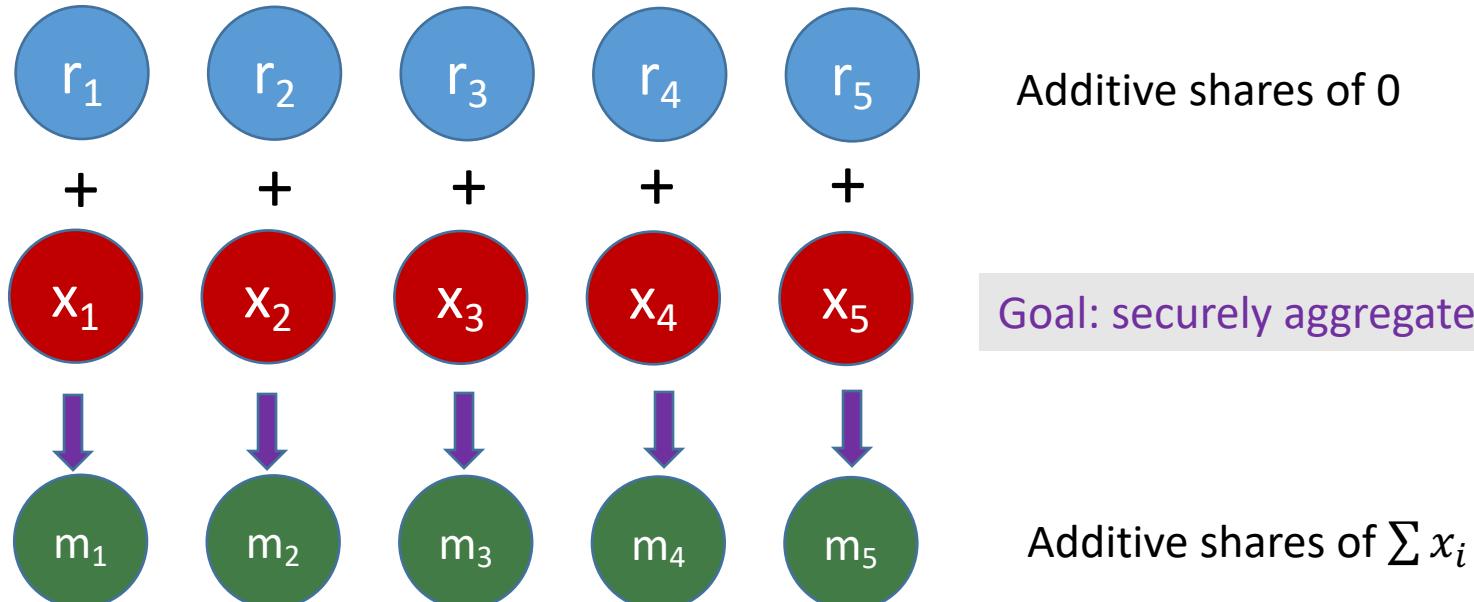
Correlations

Useful target correlations: 3+ parties

Linear n-party correlations

$(R_1, \dots, R_n) \in_R$ Linear space \mathbb{V}
 $N \times \text{deg-}t$ Shamir of random secret
 $N \times$ additive shares of 0

VSS, honest-majority MPC
Proactive secret sharing
Secure sum / aggregation

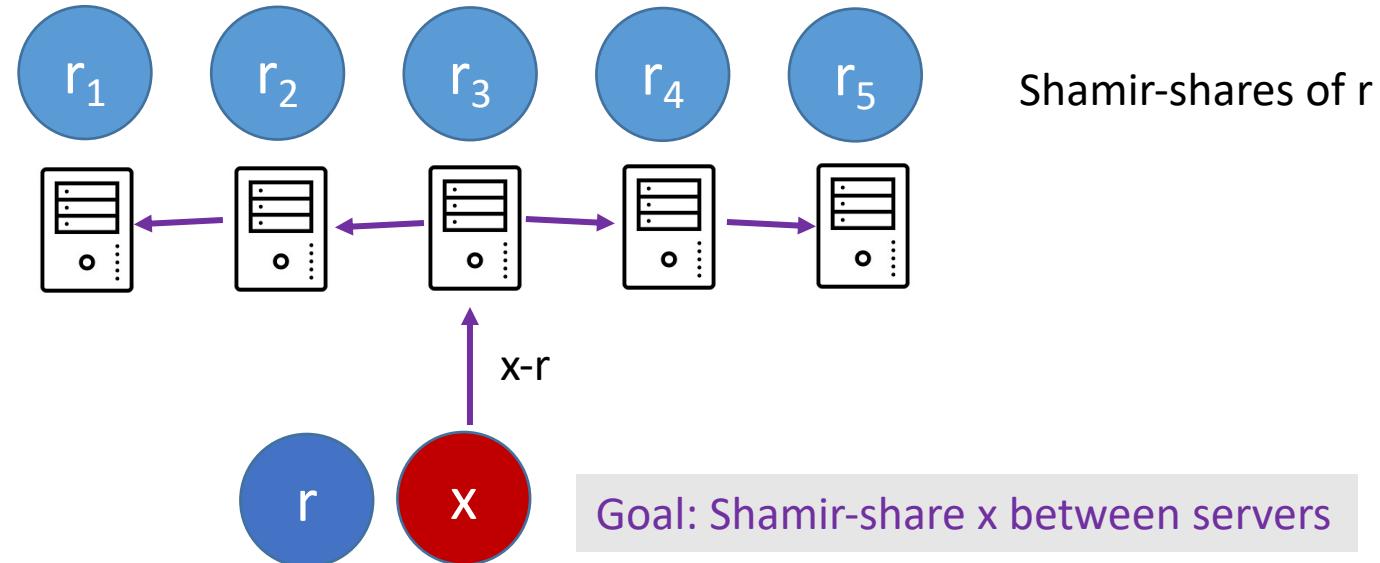


Useful target correlations: 3+ parties

Linear n-party correlations

$(R_0, \dots, R_n) \in_R$ Linear space V
 $N \times \text{deg-}t$ Shamir of random secret
 $N \times$ additive shares of 0

VSS, honest-majority MPC
Proactive secret sharing
Secure sum / aggregation



Useful target correlations: 2+ parties

Oblivious transfer
(OT)

2PC of Boolean circuits
GMW-style, semi-honest:
2 x bit-OT + 4 comm. bits per AND

Oblivious Linear-
function Evaluation
(OLE), mult. triples

2PC of Arithmetic circuits
GMW-style, semi-honest:
2 x OLE + 4 ring elements per MULT

Vector OLE
(VOLE)

2PC of scalar-vector product
ZK, batch-OPRF, PSI, ...
(Yesterday - Peter's talks)

Useful target correlations: 2+ parties

Authenticated
Multiplication
Triples

$([a_i], [b_i], [c_i], [\alpha a_i], [\alpha b_i], [\alpha c_i])$
 $c_i = a_i b_i$

2PC of Arithmetic circuits
SPDZ-style, malicious

Truth-Table

Randomly shifted,
secret-shared TT

2PC of “unstructured”
functions

Additive

$R0 + R1 = R$

Generalizes the above

State of the Art

Current PCG Feasibility Landscape

“Obfustopia”

iO

General

[HW15, HJKR16]

“Homomorphia”

LWE+

Additive

[DHRW16, BCGIKS19]

“Cryptomania”

DDH, DCR

Low-depth

[BGI16, BCGIO17, OSY21]

“Lapland”

LPN

VOLE, OT

[BCGI18, BCGIKS19]

Ring-LPN

OLE, (Auth.) Triples

[BCGIKS20a]

VD-LPN

PCF for VOLE, OT

[BCGIKS20b]

“Minicrypt”

PRG

Linear [GI99, CDI05, BBGHIN21]

Truth table [BCGIKS19]

Current PCG Feasibility Landscape

“Obfustopia”

iO

General

[HW15, HJKR16]

“Homomorphia”

LWE+

Additive

[DHRW16, BCGIKS19]

“Cryptomania”

DDH, DCR

Low-depth

[BGI16, BCGIO17, OSY21]

“Lapland”

LPN

Ring-LPN

VD-LPN

Constant-degree additive
(poly(N) expansion time)

“Minicrypt”

PRG

Linear [GI99, CDI05, BBGHIN21]

Truth table [BCGIKS19]

Good concrete efficiency?

“Obfustopia”

iO

General

[HW15, HIKR16]

“Homomorphia”

Getting better and better...

[SGRR19, BCGIKRS19, YWLZW20, CRR21]

“Cryptomania”

DB, P, PHE

[BPS17, BPS18, BPS19, BSY21]

“Lapland”

LPN

VOLE, OT [BCGI18, BCGIKS19]

Ring-LPN

OLE, (Auth.) Triples [BCGIKS20a]

VD-LPN

PCF for VOLE, OT [BCGIKS20b]

“Minicrypt”

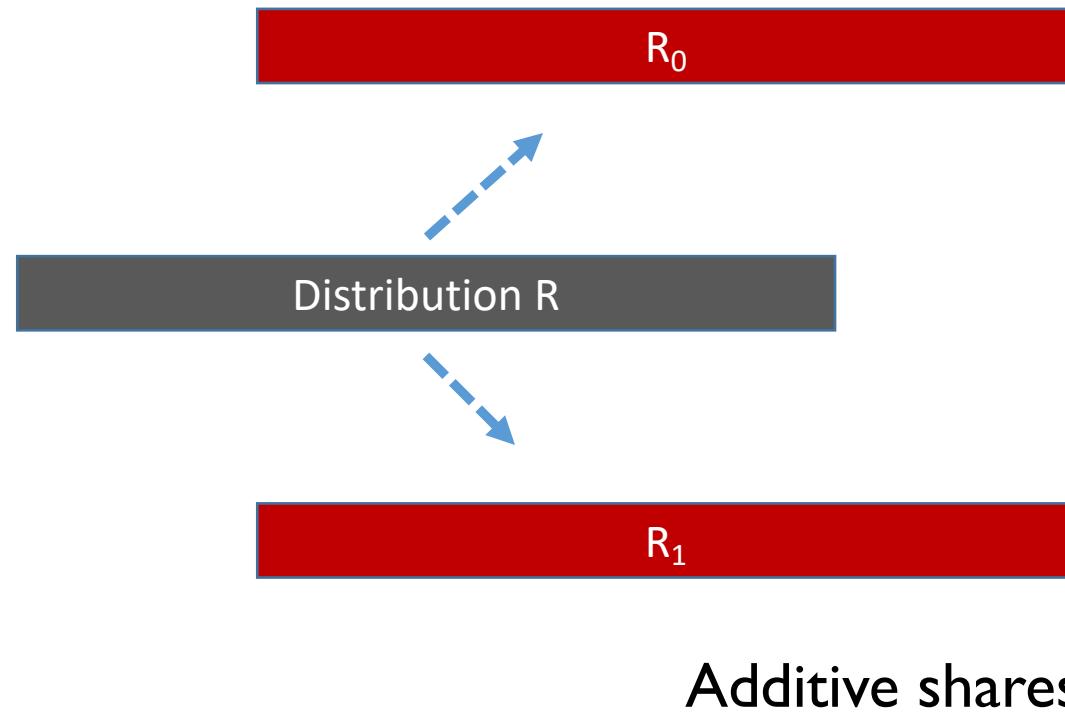
PRG

Linear [GI99, CDI05, BBGHIN21]

Truth table [BCGIKS19]

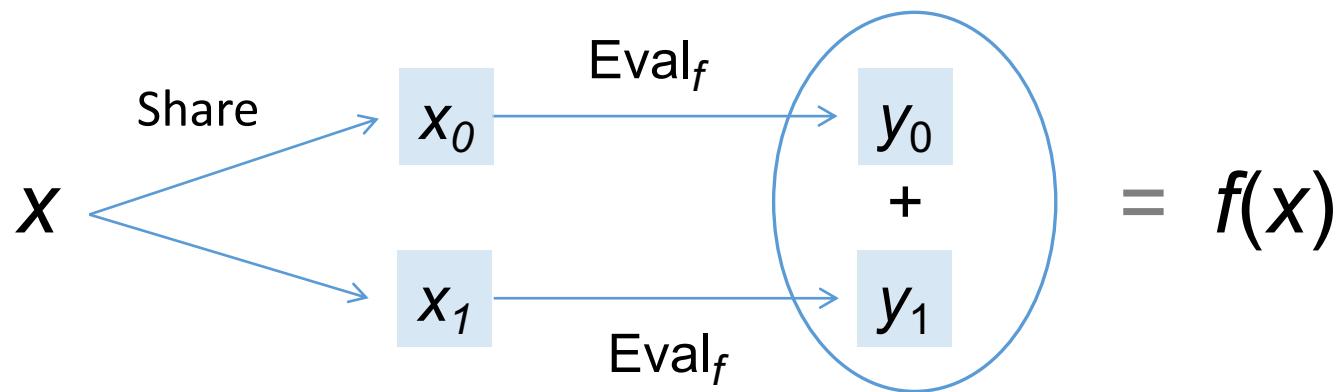
Generic Construction from HSS

Additive Correlation



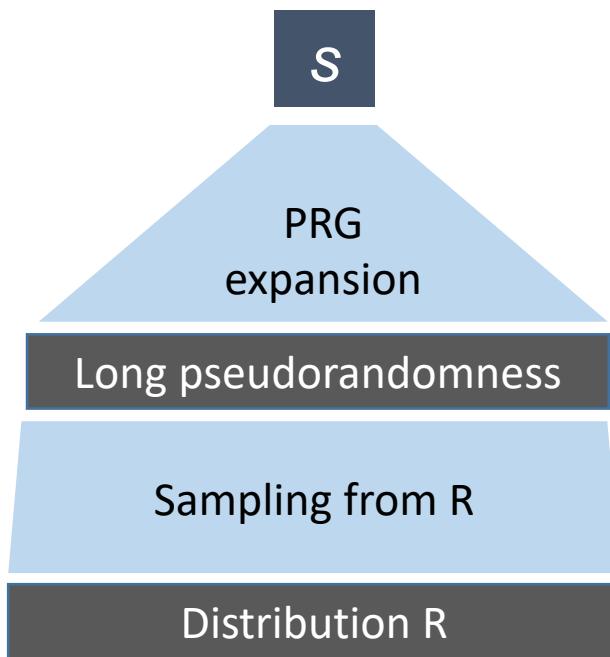
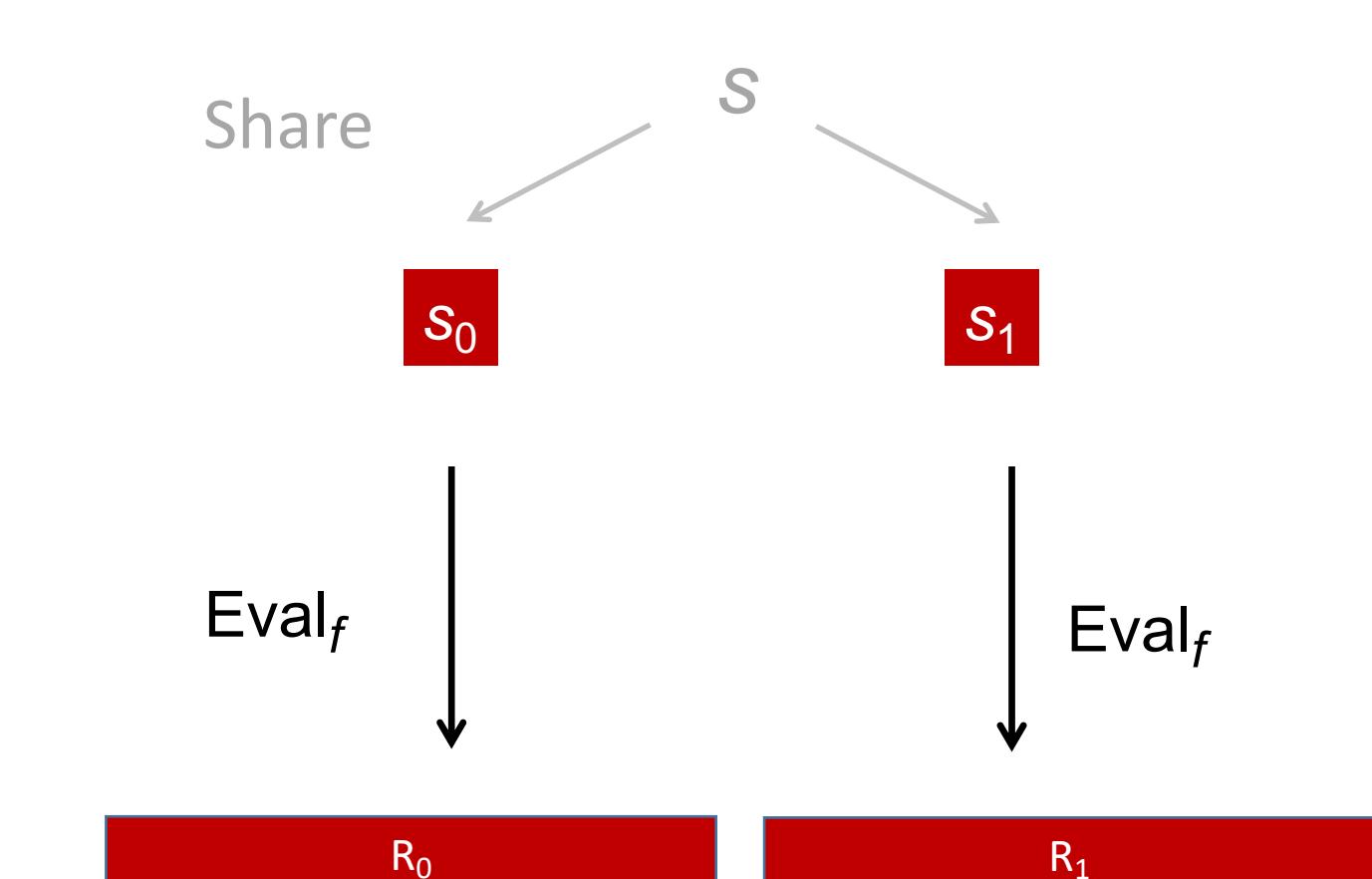
Homomorphic Secret Sharing (HSS)

[Benaloh86, Boyle-Gilboa-Ishai16]



HSS \Rightarrow PCG for Additive Correlations

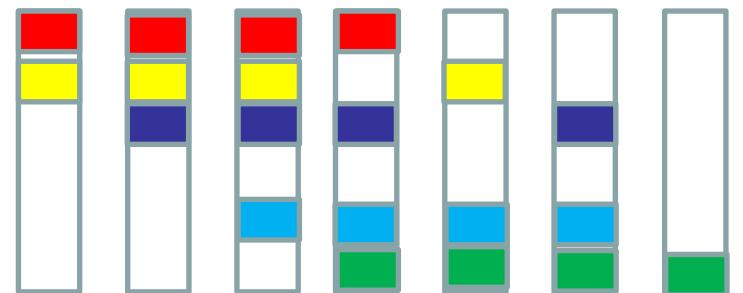
Sampling function f :



PCGs in Minicrypt

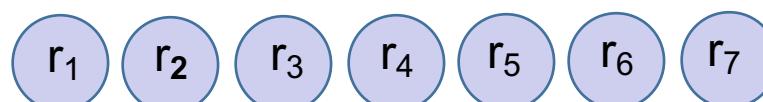
Linear Multiparty Correlations: Pseudorandom Secret Sharing (PRSS)

[Gilboa-I 99, Cramer-Damgård-I 05]



Replicated, independent field elements

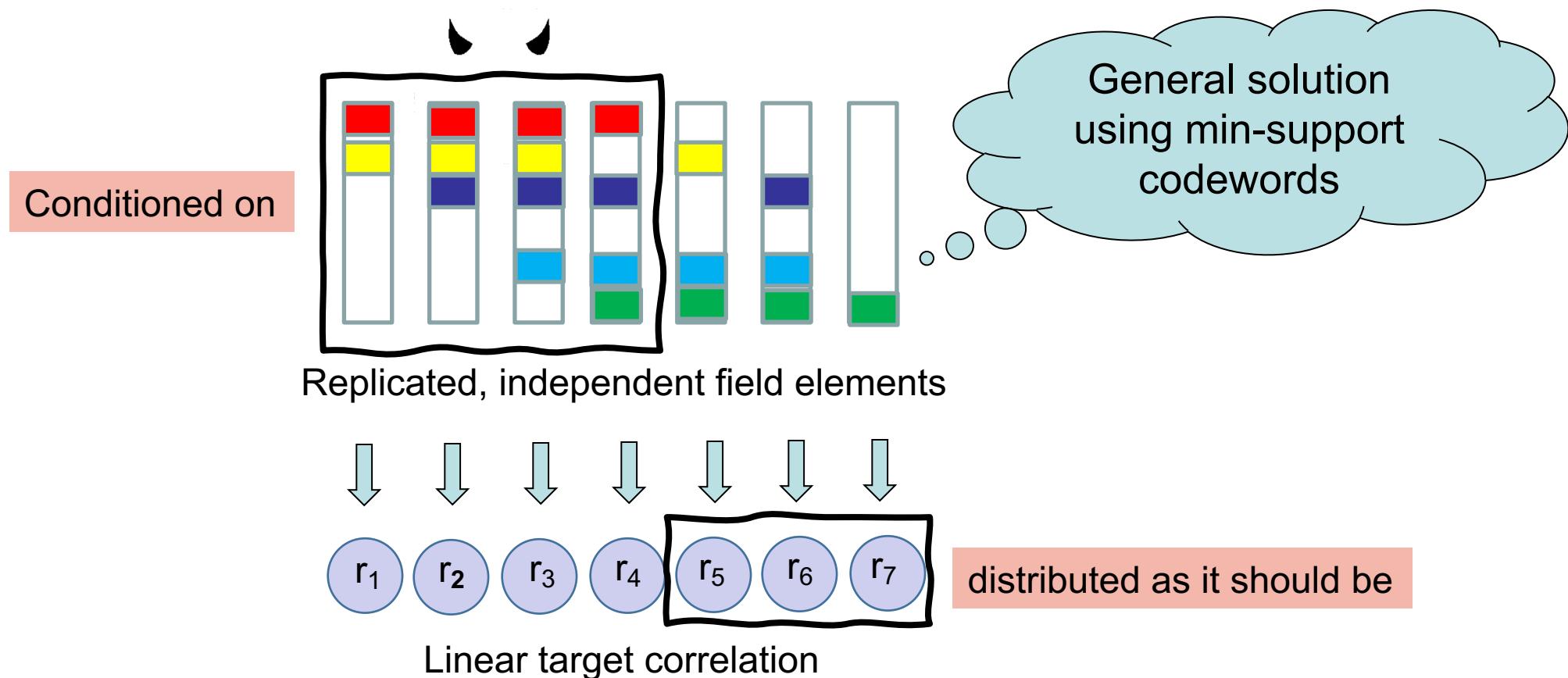
Local, linear mapping



Linear target correlation

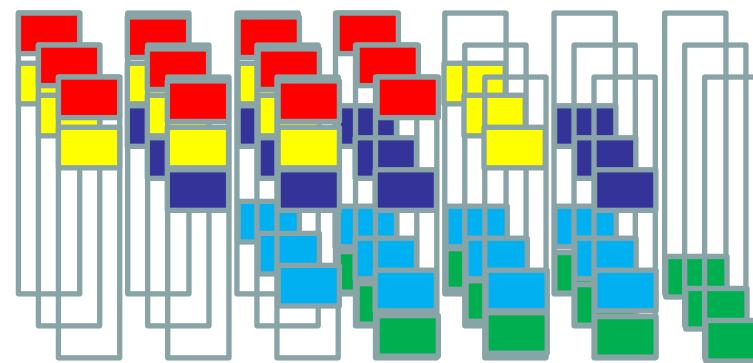
Linear Multiparty Correlations: Pseudorandom Secret Sharing (PRSS)

[Gilboa-I 99, Cramer-Damgård-I 05]



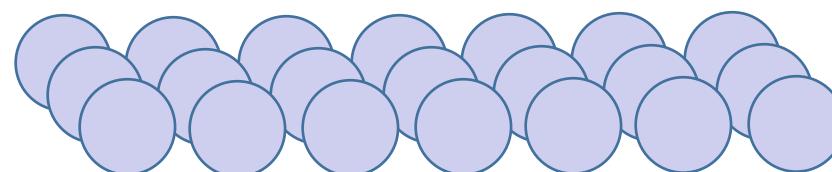
Linear Multiparty Correlations: Pseudorandom Secret Sharing (PRSS)

[Gilboa-I 99, Cramer-Damgård-I 05]

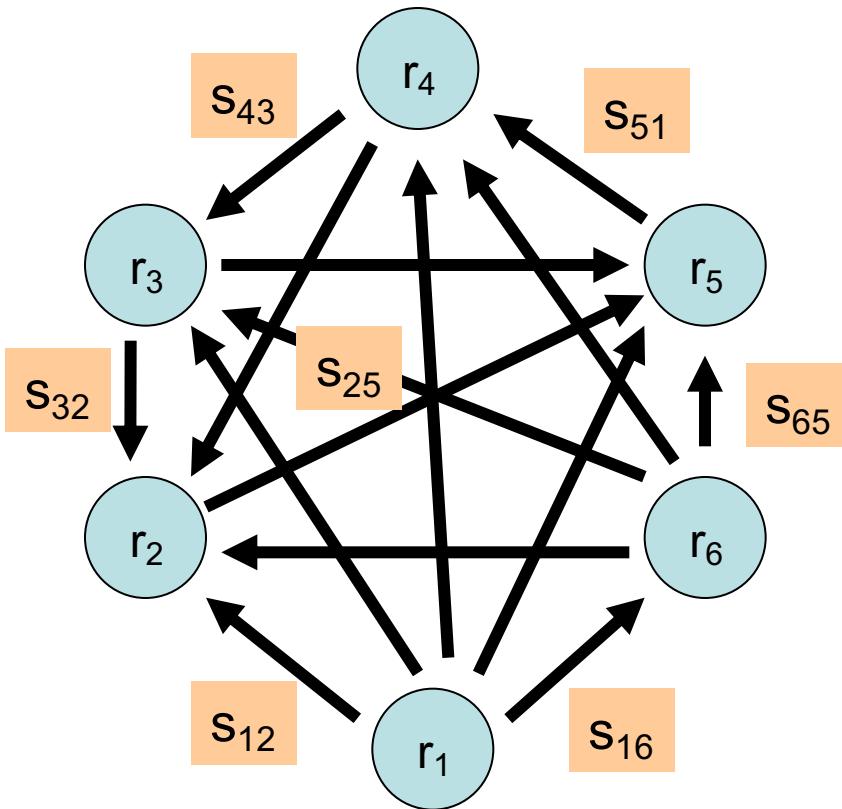


Replicated, independent PRG seeds

Local, linear mapping

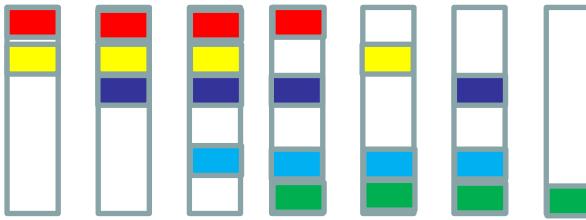


Additive Shares of 0

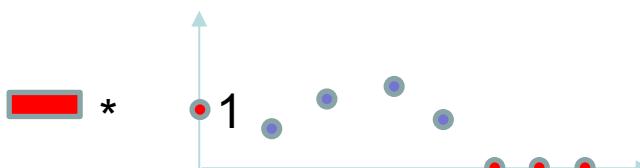
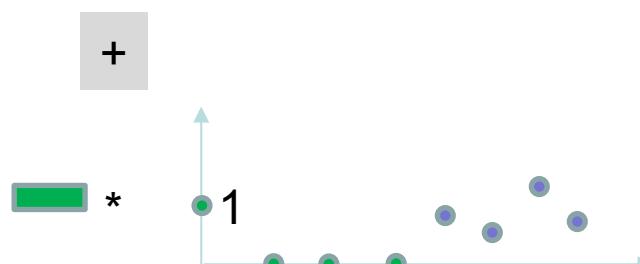


$$r_i = \sum \text{inbox}_i - \sum \text{outbox}_i$$

Degree-d Shamir Shares

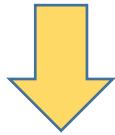
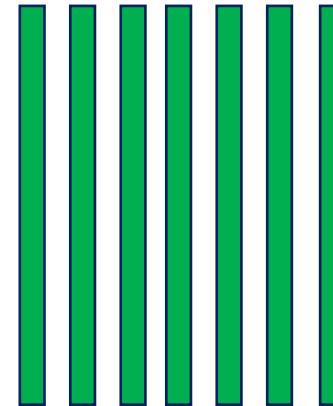


$\binom{n}{d}$ replicated elements
each given to $n-d$ parties



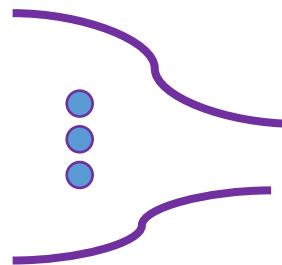
Concrete efficiency: $n=7, d=3, N=10^6$

~ 0.3 KB seeds



~ 0.1 second

$10^6 \times$ deg-3 Shamir



Generalized PRSS from Covering Designs

[Benhamooda-Boyle-Gilboa-Halevi-I-Nof 21]

- Goal: avoid $\binom{n}{d}$ overhead when security threshold $t <$ degree d
 - $O(n)$ share size for constant t regardless of degree
 - Application: Efficient MPC with share packing
- Construction from covering designs
 - (n, m, t) -cover: m -subsets of $[n]$ covering all t -subsets
 - $(n, d+1, t)$ -cover of size $k \rightarrow$ PRSS with $k(n-d)(d+1)$ storage
 - Tight up to a $(d+1)$ factor

Generalized PRSS from Covering Designs

[Benhamooda-Boyle-Gilboa-Halevi-I-Nof 21]

(n, m, t)	Baseline cover size	Best known cover size	Lower bound cover size	CDI seeds per party	PRSS seeds per party
(9, 3, 1)	3	3	3	8	7
(15, 5, 1)	3	3	3	14	11
(15, 5, 2)	49	13	13	91	48
(48, 16, 1)	3	3	3	47	33
(48, 16, 2)	15	13	13	1081	143
(48, 16, 4)	495	252	173	178365	2772
(48, 20, 4)	490	87	60	178365	1052
(48, 20, 6)	5168	1280	459	$1.07 \cdot 10^6$	15467
(49, 24, 2)	31	7	7	1128	90
(49, 24, 4)	245	38	31	194580	484
(49, 24, 8)	12219	4498	968	$3.7 \cdot 10^8$	57281
(72, 24, 2)	15	12	12	2485	196
(72, 24, 4)	495	180	126	971635	2940
(72, 24, 6)	18564	4998	1419	$1.4 \cdot 10^8$	81634

2-Party PCG in Minicrypt: Truth-Table Correlation

[BCGIKS19]

- Truth-table correlation for g : additive sharing of $(\text{TT}_g \ll \mathbf{r}, \mathbf{r})$
 - Authenticate via a random multiplier for malicious security
- Recall: DPF = FSS for a point function $f_{a,b}: [N] \rightarrow \mathbb{G}$
 - $a = r, b = 1$, give PCG for additive shares of random unit vector e_r
 - Convert to TT correlation via matrix-vector multiplication
 - Matrix is circulant \rightarrow (offline) Expand time = $\tilde{O}(N)$
 - Alternatively: *locally* expand online in time $O(N)$
 - Authentication almost for free
- Comparison with “FSS gates” [\[BGII19, BCGGIKR21\]](#) (Elette’s talk)
 - Works for every gate g
 - Infeasible for large input domains

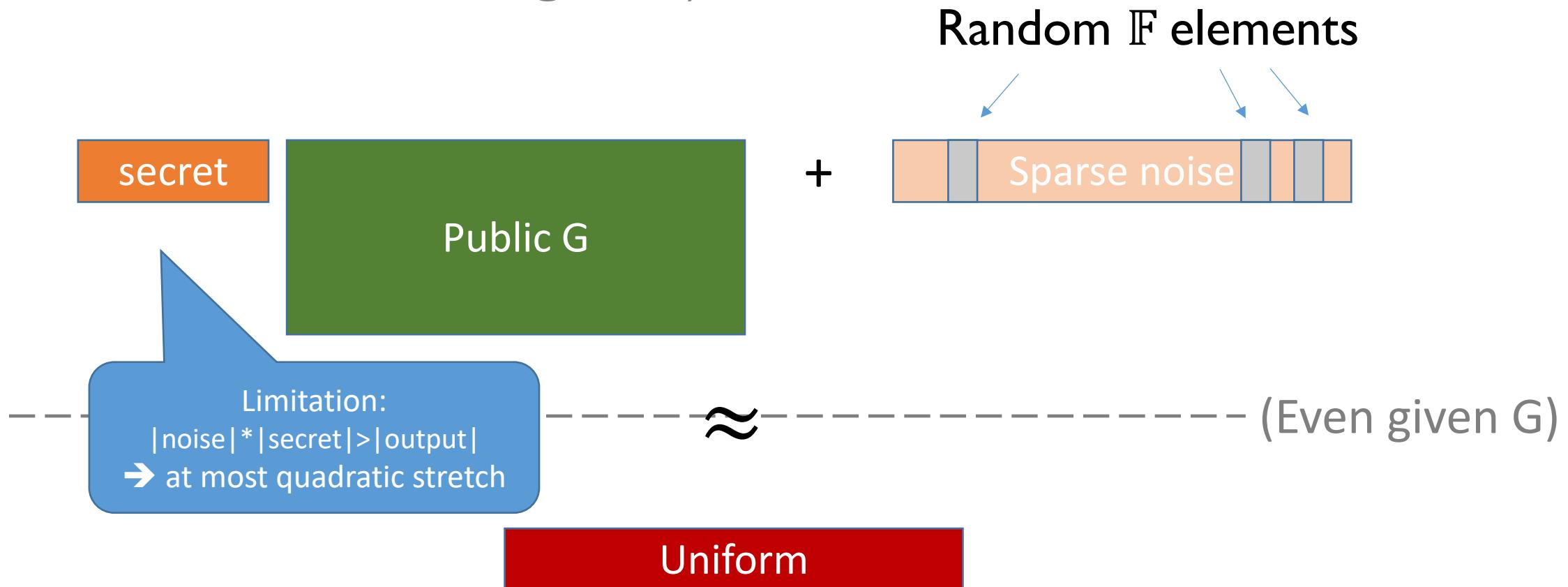
Part II:

PCGs in Lapland

Learning Parity with Noise (LPN) over \mathbb{F}

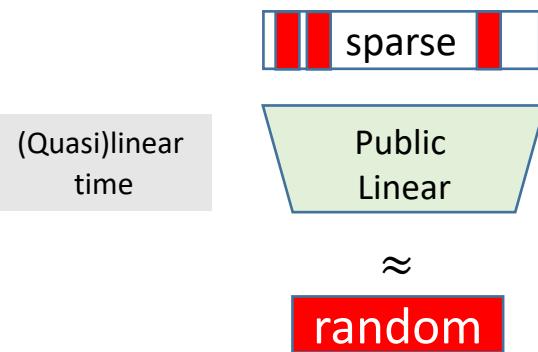
(LWE with low-Hamming noise)

[BFKL93]



LPN-based PCGs: Tools

(Dual) LPN



Also over large fields / rings

Compressed secret-sharing of (N, w) sparse vector

Distributed Point Function
Function Secret Sharing
[GI14, BGI15, BGI16]

Puncturable PRF
[KPTZ13, BW13, BGI14]

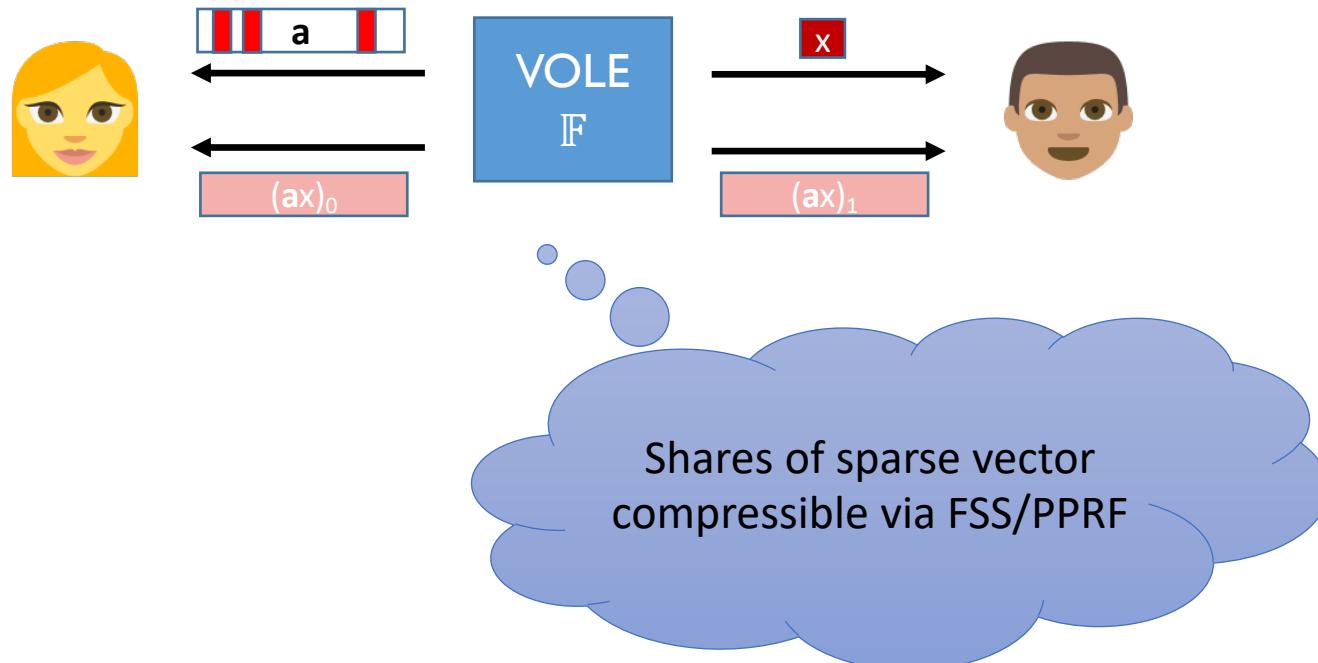
OLE, Triples
Truth-table, PCF

VOLE, OT

$w \cdot \log(N)$ PRG seeds
 $O(N) \times$ PRG calls expansion

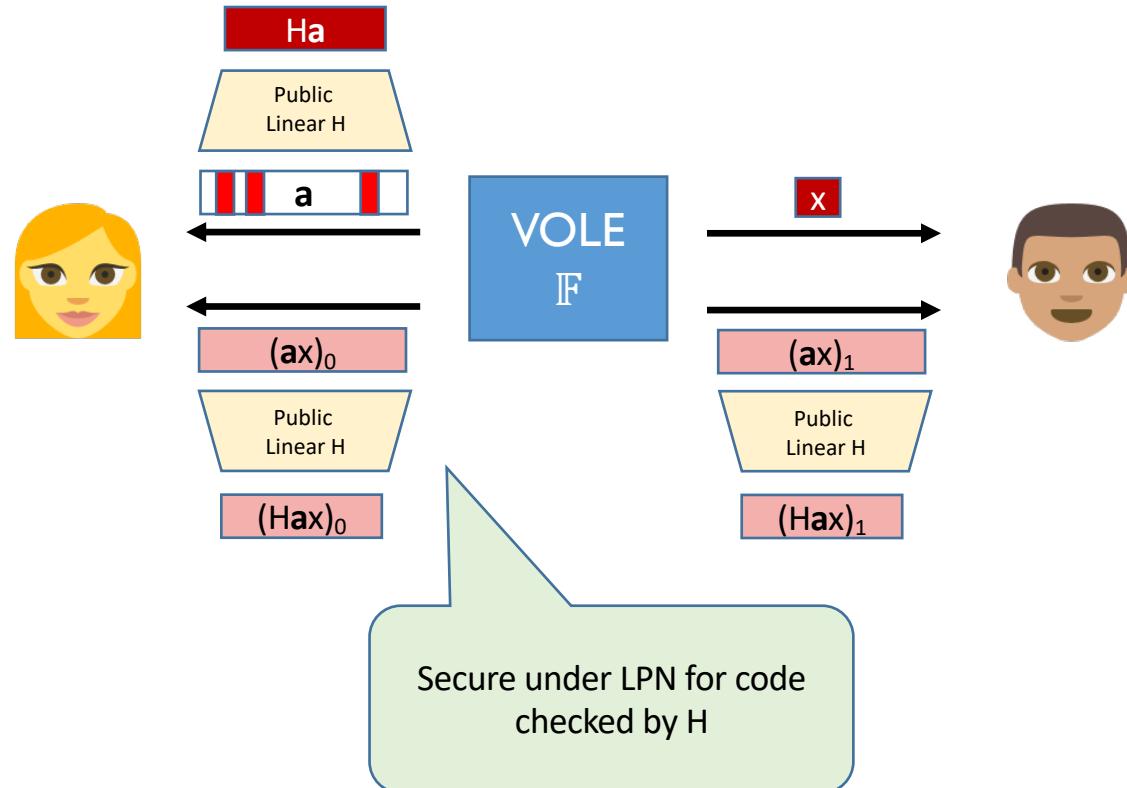
Recall: VOLE correlation

Idea: sparse VOLE is compressible!



PCG for VOLE from LPN

[Boyle-Couteau-Gilboa-118]



PCG for VOLE \rightarrow PCG for OT

[Boyle-Couteau-Gilboa-I-Kohl-Scholl19, +Rindall19]

- Use VOLE over \mathbb{F}_{2^λ} ($\lambda = 128$ in practice)
 - VOLE sender = OT receiver, \mathbf{b} = sender's share of \mathbf{ax}
- Pick entries of \mathbf{a} from base field, \mathbf{x} and \mathbf{b} from extension field
- Each bit a_i selects between b_i (known) and $x+b_i$ (unknown)
 - For each received $c_i = a_i x + b_i$, VOLE sender knows **one** of $(c_i, c_i + x)$
 - Destroy correlations between unknown strings via hash function, a-la [IKNP03]

“Silent OT Extension”

PCG for degree-d correlations from LPN

Goal: generate $[p(r)]$ for degree-d polynomial map p

- Pick a random sparse \mathbf{a}
- **Gen:** Use FSS to additively share \mathbf{a} , \mathbf{axa} , \mathbf{axaxa} , ..., $(\mathbf{a})^d$
- **Expand:** Write $\mathbf{p}(\mathbf{Ha})$ as a linear function \mathbf{L} of shared values, and apply \mathbf{L} to shares

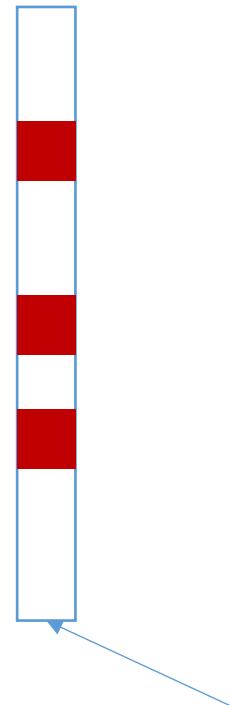
Problem: poor concrete efficiency

- Even for OLE or triples, and with circulant H , takes $\Omega(N^2)$ computation

Towards PCGs for triples

- **Idea:** Use evaluations of *sparse polynomials* s, s' and $s \cdot s'$

Vandermonde matrix V



Coefficients of secret sparse polynomial s

Good news:

$$s(\alpha_i) \cdot s'(\alpha_i) = (s \cdot s')(\alpha_i)$$

Expand requires time $\tilde{O}(N)$

Bad news:

LPN broken by algebraic decoding techniques

Arithmetic ring-LPN assumption

- **Idea:** Defeat algebraic decoding attacks by *building on ring-LPN*

Ring-LPN assumption: $R_p = \mathbb{Z}_p[X]/F(X)$:
 $(a, a \cdot e + f) \approx (a, \$)$

$a \leftarrow R_p$, e, f t -sparse in R_p

$F(X)$ splits into linear factors $\Rightarrow R_p \cong \mathbb{Z}_p^N$

Splittable ring-LPN:

- Slightly better known attacks
- Requires slightly more noise

PCG for triples from Ring-LPN

$$\begin{aligned}(a \cdot e + f) \cdot (a \cdot e' + f') \\= a^2 \cdot ee' + a \cdot (ef' + fe') + ff'\end{aligned}$$

- Share ee' , ef' , fe' , ff' via FSS
- Expand via polynomial multiplication + multi-evaluation

\Rightarrow time $\tilde{O}(N)$

Security based on (splittable) ring-LPN

Cost analysis and extensions

- **Cost:** for N triples over \mathbb{Z}_p
 - $O(t^2)$ DPF keys
 - $O(Nt^2)$ PRG calls + $O(N \log N)$ arithmetic operations

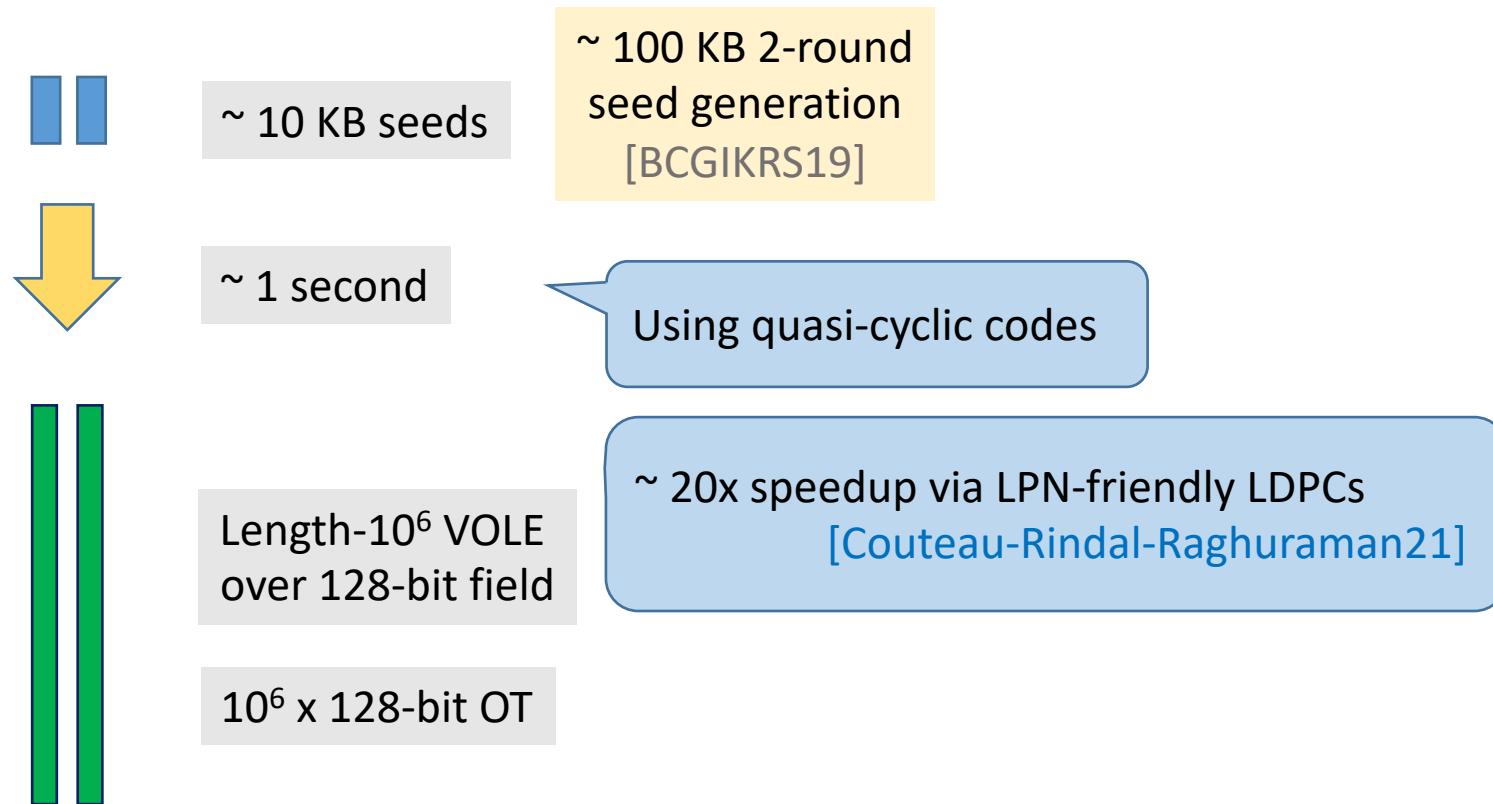
$O(Nt)$ using regular noise

- **Extensions:**
 - Extends to authenticated multiplication triples with < 2x overhead
 - Matrix triples, degree-2 correlations (**less efficient**)
 - Multi-party correlations (**only non-authenticated**)

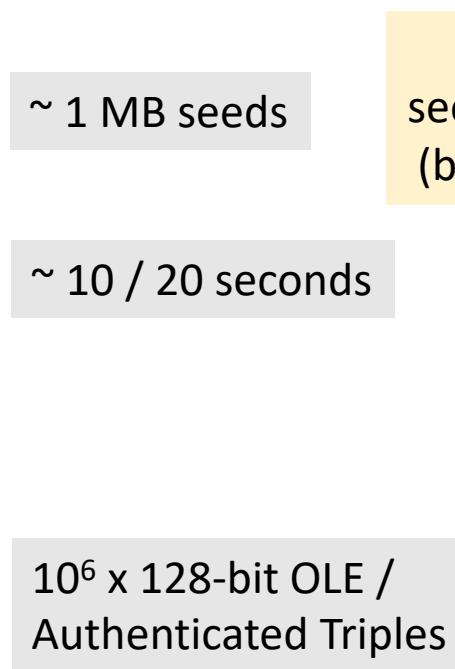
Multi-party multiplication triples

- Goal: PCG for *additive* n-out-of-n shares of N multiplication triples
 - Online communication scales **linearly** with n
- Idea: Use $n(n-1)$ instances of 2-party PCG for triples
 - Separately share each term $a_i b_j$
 - Requires 2-party PCG to be **programmable**
 - **Does not work with PCG for OT, or authenticated triples**
- Workarounds for authenticated triples:
 - Use 3-party DPF [\[Abram-Scholl22\]](#) (**less efficient**)
 - Use (unauthenticated) multiplication triples + fully-linear IOP [\[Boyle-Gilboa-I-Nof21\]](#)

Concrete efficiency: VOLE and OT



Concrete efficiency: OLE and Triples



~ 4 MB
seed generation
(bootstrapped)

Non-silent alternatives:

Overdrive [KPR18]

Leviosa [HIVM19]

x100-x1000 communication
comparable run time

Pseudorandom Correlation Functions (PCF)

[Boyle-Couteau-Gilboa-I-Kohl-Scholl20]

- **Goal:** securely generate correlation instances on the fly
 - Pair of correlated (weak) PRFs $(f_{k_0}(r), f_{k_1}(r))$
 - Security against insiders
- GGM-style reduction to PCG does not apply...
- PCF for VOLE from WPRF f_k and FSS:
 - Pick random key k and scalar x
 - Give k to P_0 , x to P_1
 - Use FSS to share $x \cdot f_k$
 - **Challenge:** use PRG-based FSS!

MPC-friendly WPRF Candidate

Best possible security: $2^{\sqrt{n}}$

[Hellerstein-Servedio07]

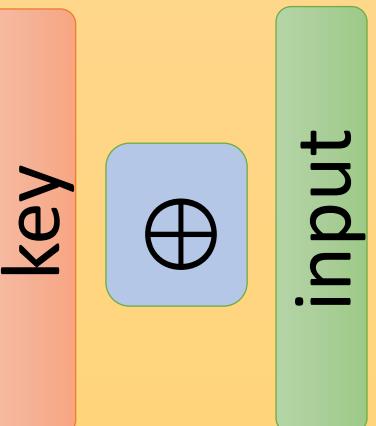
Secure under
variable-density
variant of LPN

$$f_k(x) = \bigoplus_{i=1}^D \bigoplus_{j=1}^w \bigwedge_{h=1}^i (x_{i,j,h} \oplus k_{i,j,h})$$

Sparse
polynomial

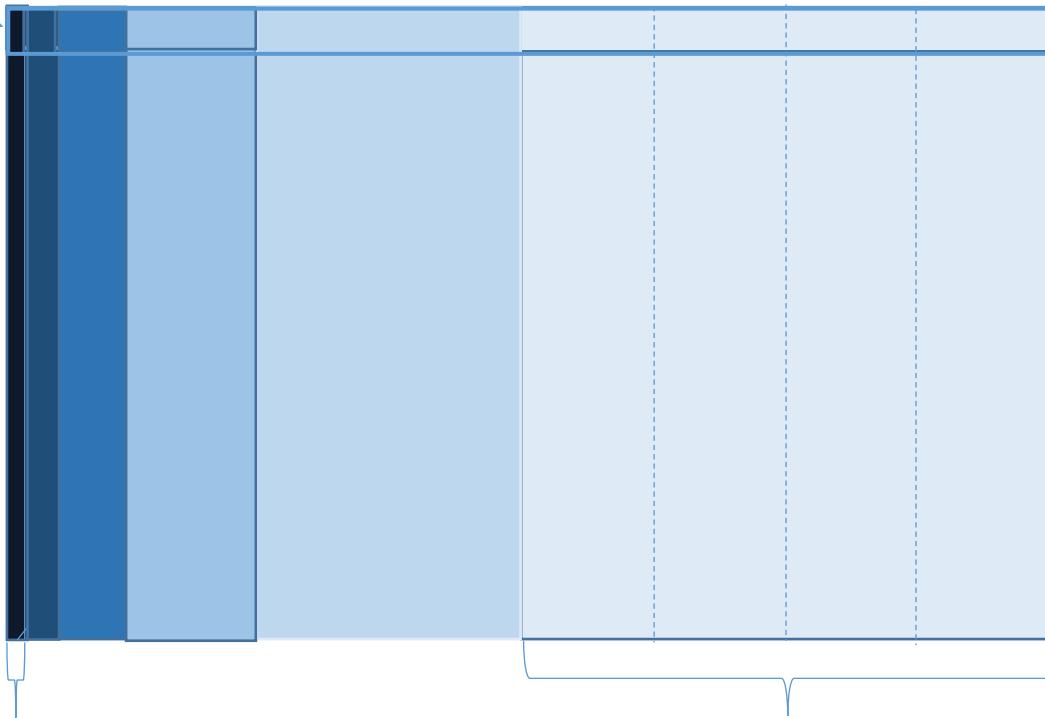
Applications:

- PCF
- XOR-RKA security

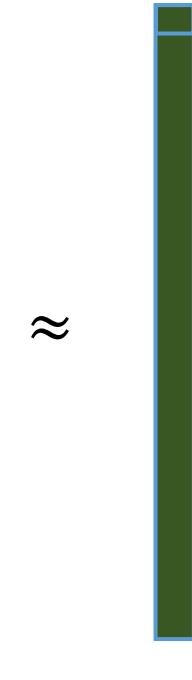


Variable-density LPN

Public input r



\approx



Secret key k

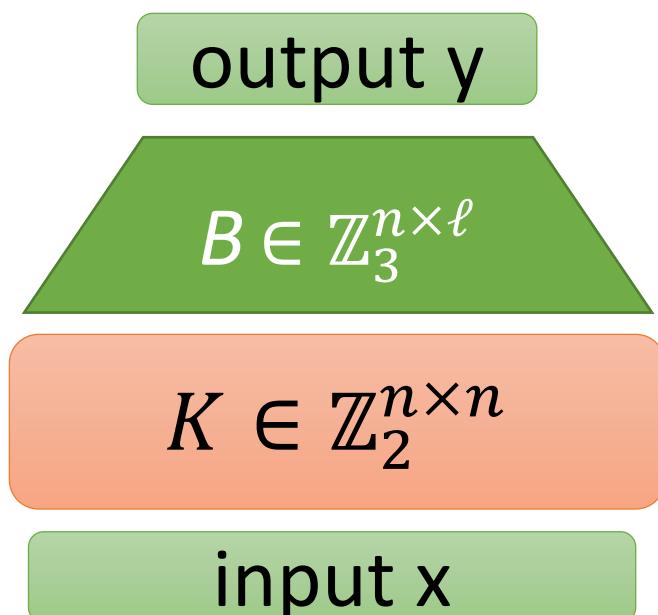
Concrete efficiency: PCF

- PCFs for OT / VOLE from VDLPN ($< 10^9$ instances) [BCGIKS20]
 - key size: $\approx 120\text{kB}$ ($\approx 2\text{MB}$ conservative)
 - evaluation: 8,000 PRG calls / instance $\Rightarrow \approx 20,000$ instances / second / core
- PCFs from number-theoretic assumptions [Orlandi-Scholl-Yakoubov21]
 - Public-key setup, small keys
 - Slow evaluation

Application: MPC-friendly symmetric crypto

“2-3-WPRF” candidate

[Boneh-I-Passelègue-Sahai-Wu18]



$$n = 256, \ell = 81$$

Secure protocol $[K], [x_i] \rightarrow [y_i]$

[Dinur-Goldfeder-Halevi-I-Kelkar-Sharma-Zaverucha 21]

With preprocessing:

Online cost 1024 bits, 2 rounds

Using PCGs for VOLE/OT, amortized preprocessing cost: 353 bits

Main trick: converting random OT over \mathbb{Z}_3 to “double-sharing” $([r]_2, [r]_3)$ deterministically conditioned on OT sender’s inputs being distinct.

→ 1.5n OT instances produce n double-shares

→ 1.377n bits to communicate good subset

Remaining challenges

Better PCGs

- More correlations?
 - Garbled circuits, FSS keys, ...
- Multi-party binary or authenticated triples
- Smaller seeds, faster expansion and seed generation
- Scalable PCG for Shamir-shares

Better understanding of LPN-style assumptions

- Which codes?
- Which noise patterns?

Better PCFs

The End

- Questions?