

PCG Part 3: Silent VOLE and OT Protocols from LPN

Peter Scholl

26 January 2022, Bar-Ilan University Winter School

Based on joint work with:

Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal

This week's talks

VOLE 1: introduction, basic protocols & applications

VOLE 2: application to efficient zero knowledge

PCG 1-2

PCG 3: PCGs from LPN: the gory details

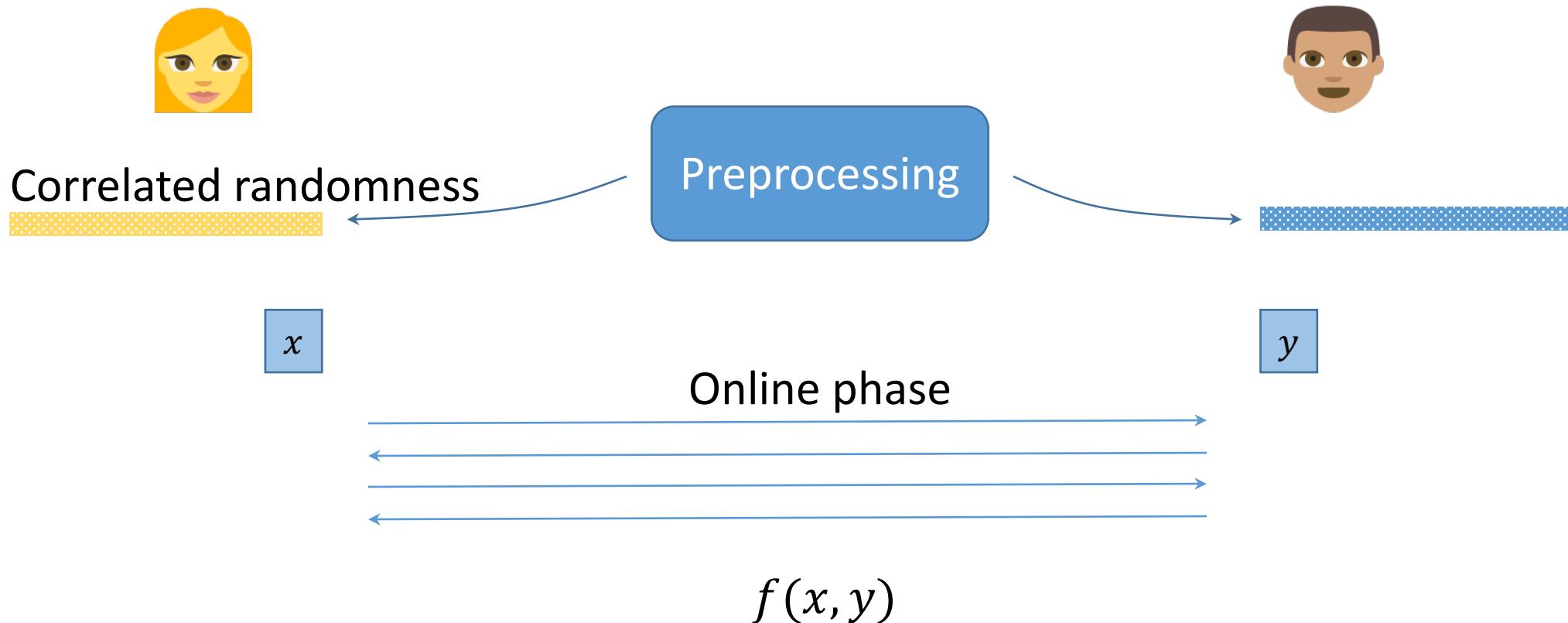
PCG 4: PCFs from number-theoretic assumptions

Outline

- Recap of OT extension (non-silent!)
- Blueprint for silent OT
 - Instantiate with LPN
- PCG setup protocol for silent OT/VOLE
 - Two-rounds, active security
- Conclusion & open problems

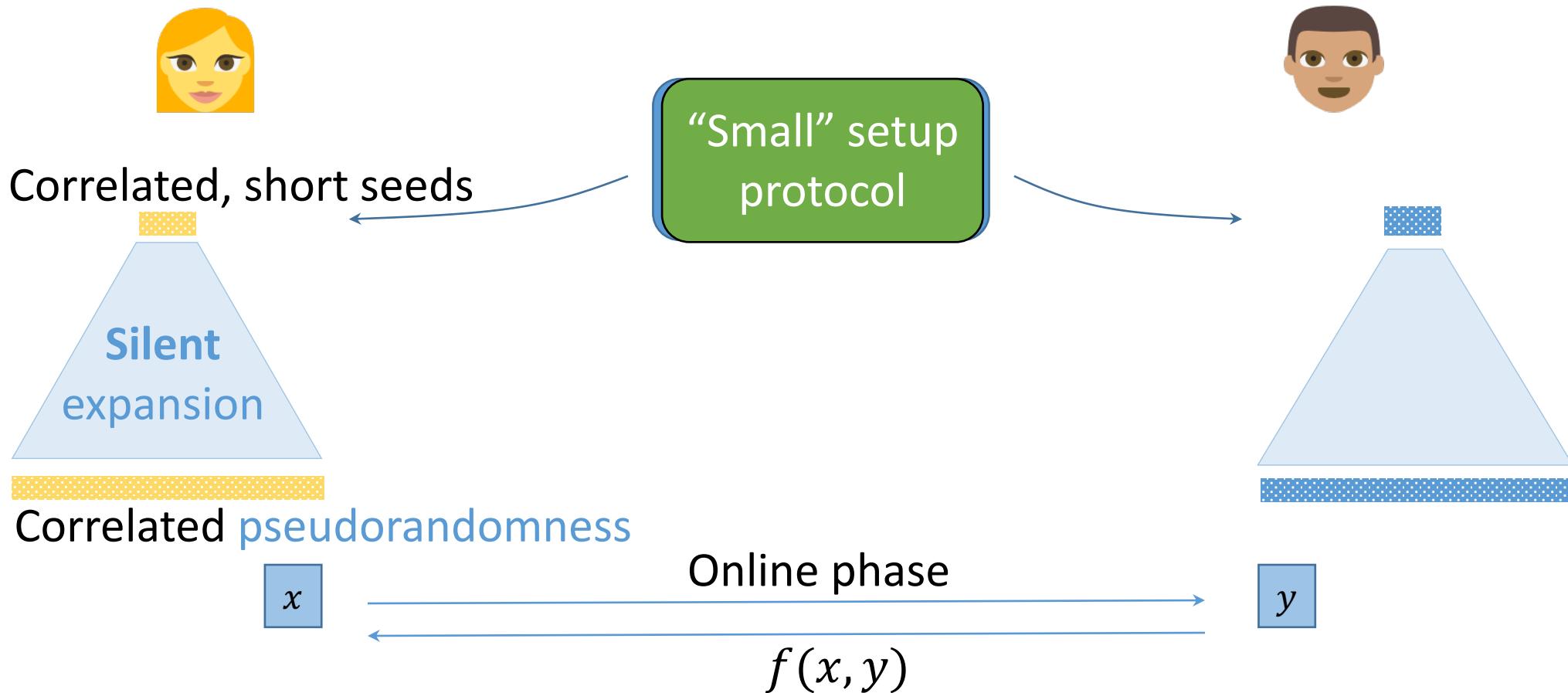
Secure Computation with Preprocessing

[Beaver '91]



Secure Computation with Silent Preprocessing

[BCGI 18, BCGIKS 19]

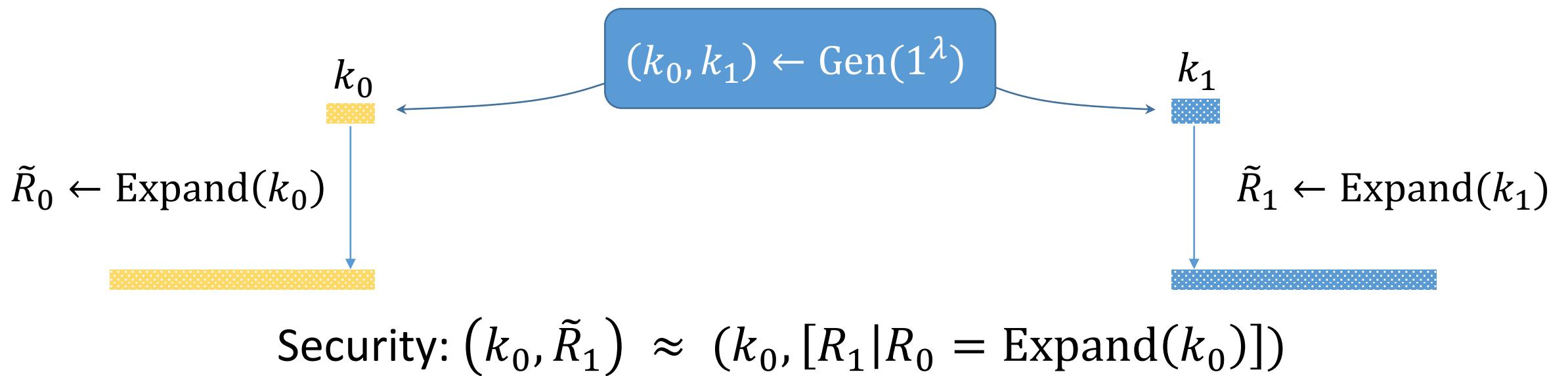


Pseudorandom Correlation Generators

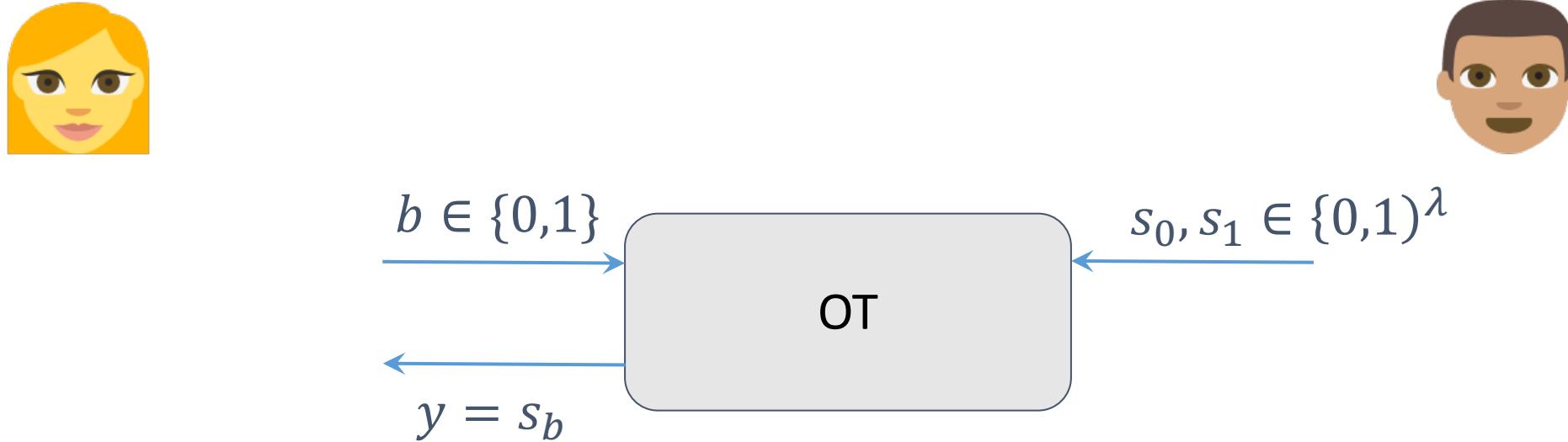
[BCGI 18, BCGIKS 19]

- Target correlation: (R_0, R_1)

- Algorithms Gen, Expand:



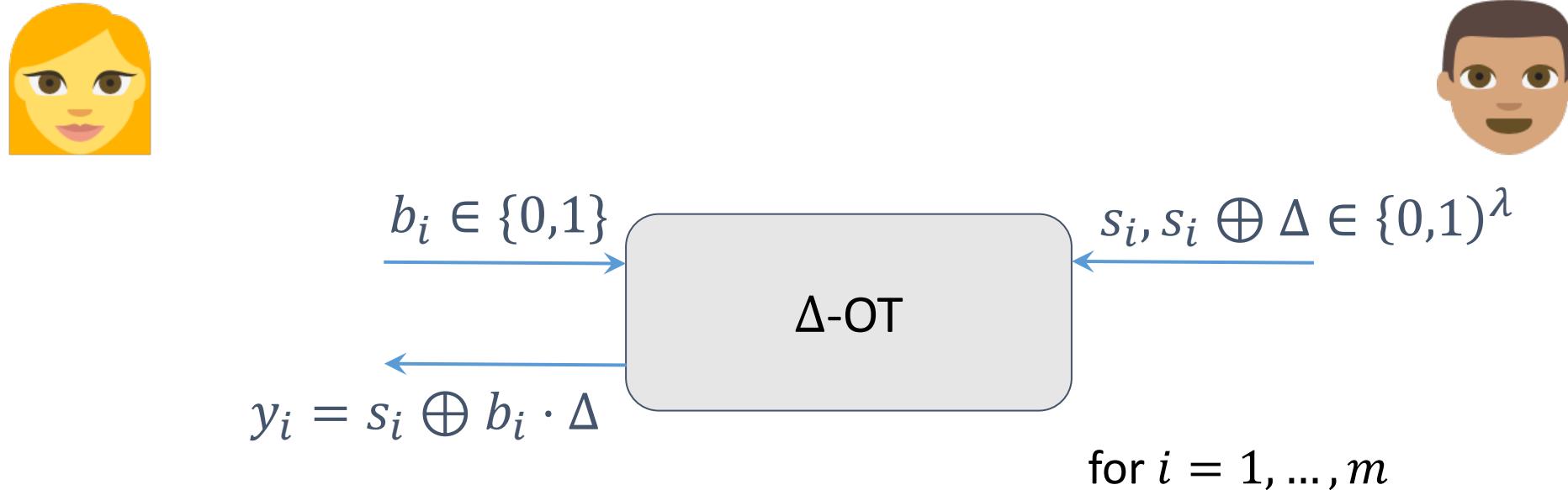
Oblivious Transfer



OT requires **public-key cryptography**

OT extension: costly PK operations **only in setup phase**

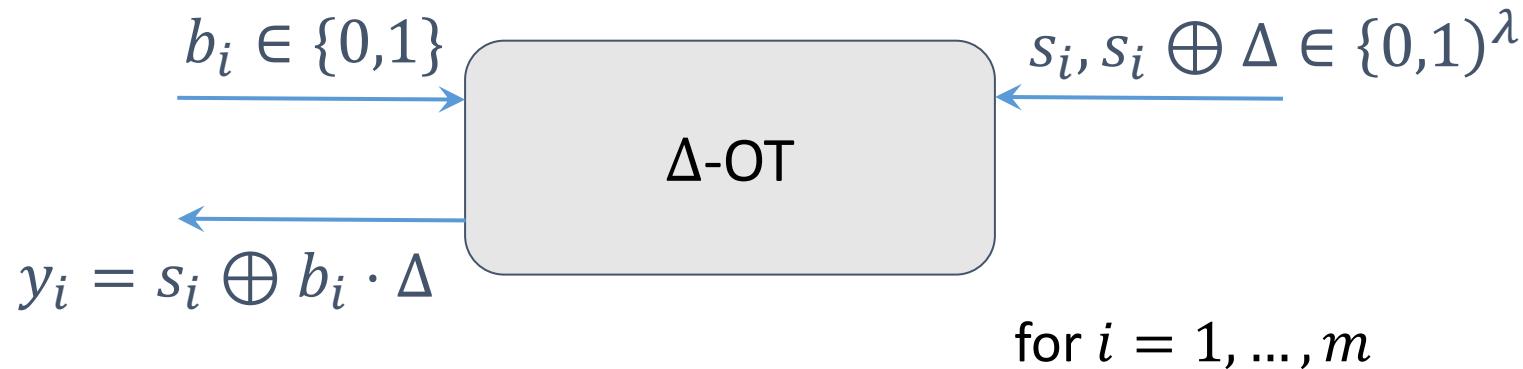
(Batch of) Correlated Oblivious Transfers



(Equivalent to subfield VOLE, or information-theoretic MACs over \mathbb{F}_2)

From correlated OT to random OT

[IKNP 03]



$$m_i^{b_i} = H(y_i)$$

H : correlation robust hash function

$$m_i^0 = H(s_i)$$
$$m_i^1 = H(s_i \oplus \Delta)$$

IKNP OT Extension: Correlate, Transpose & Hash

[IKNP 03]

IKNP: correlate

y

=

s

+

b

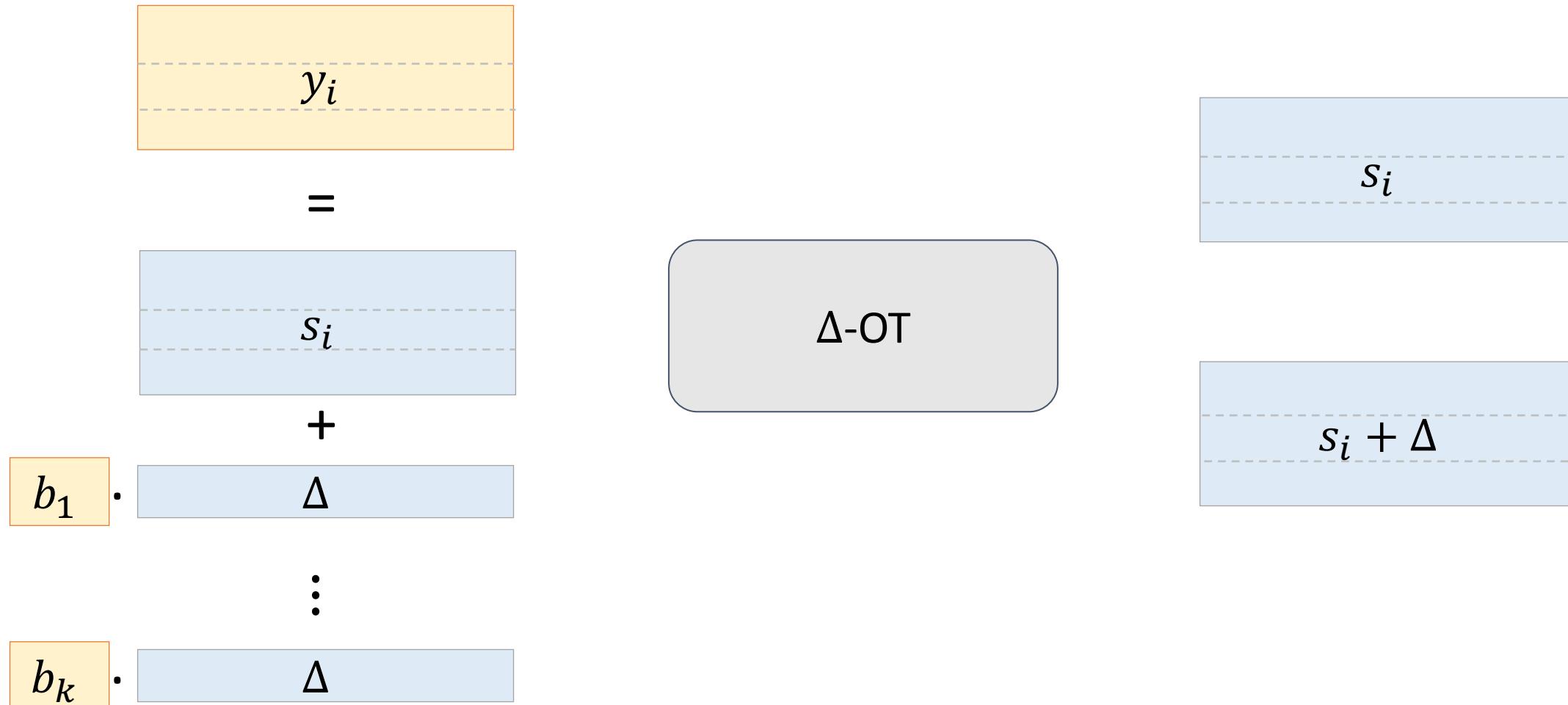
\cdot Δ

Δ -OT

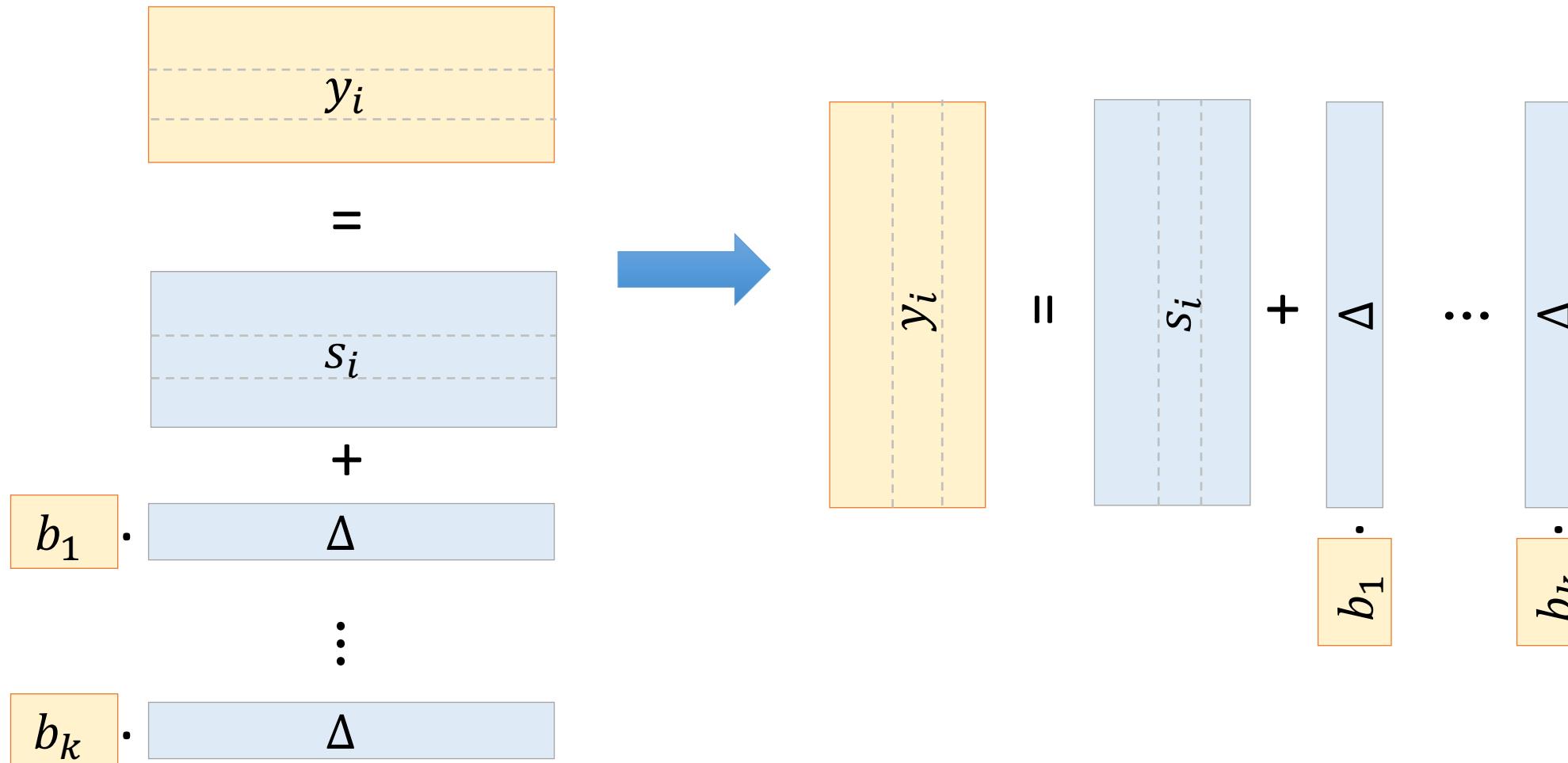
s

$s + \Delta$

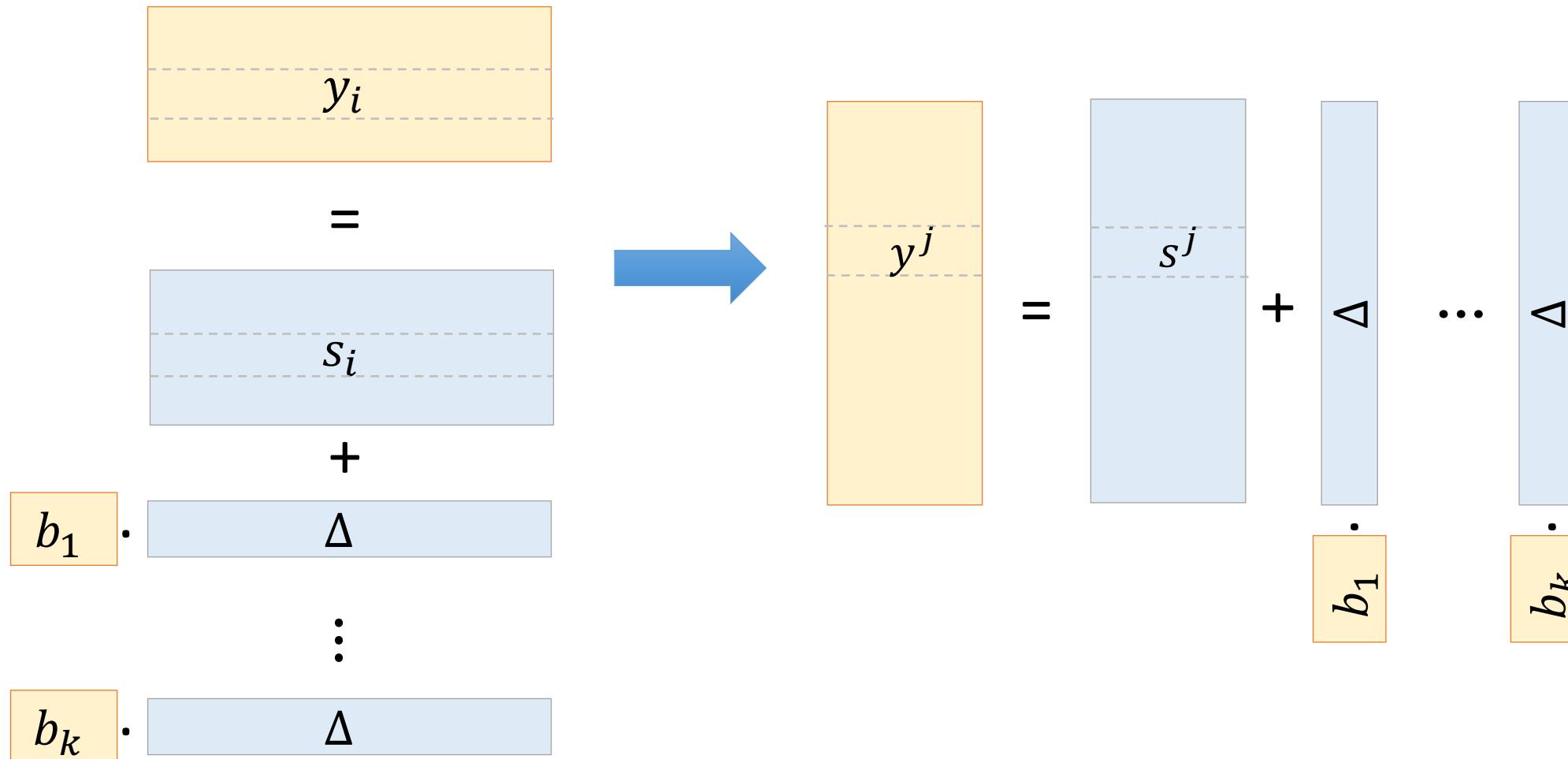
IKNP: correlate



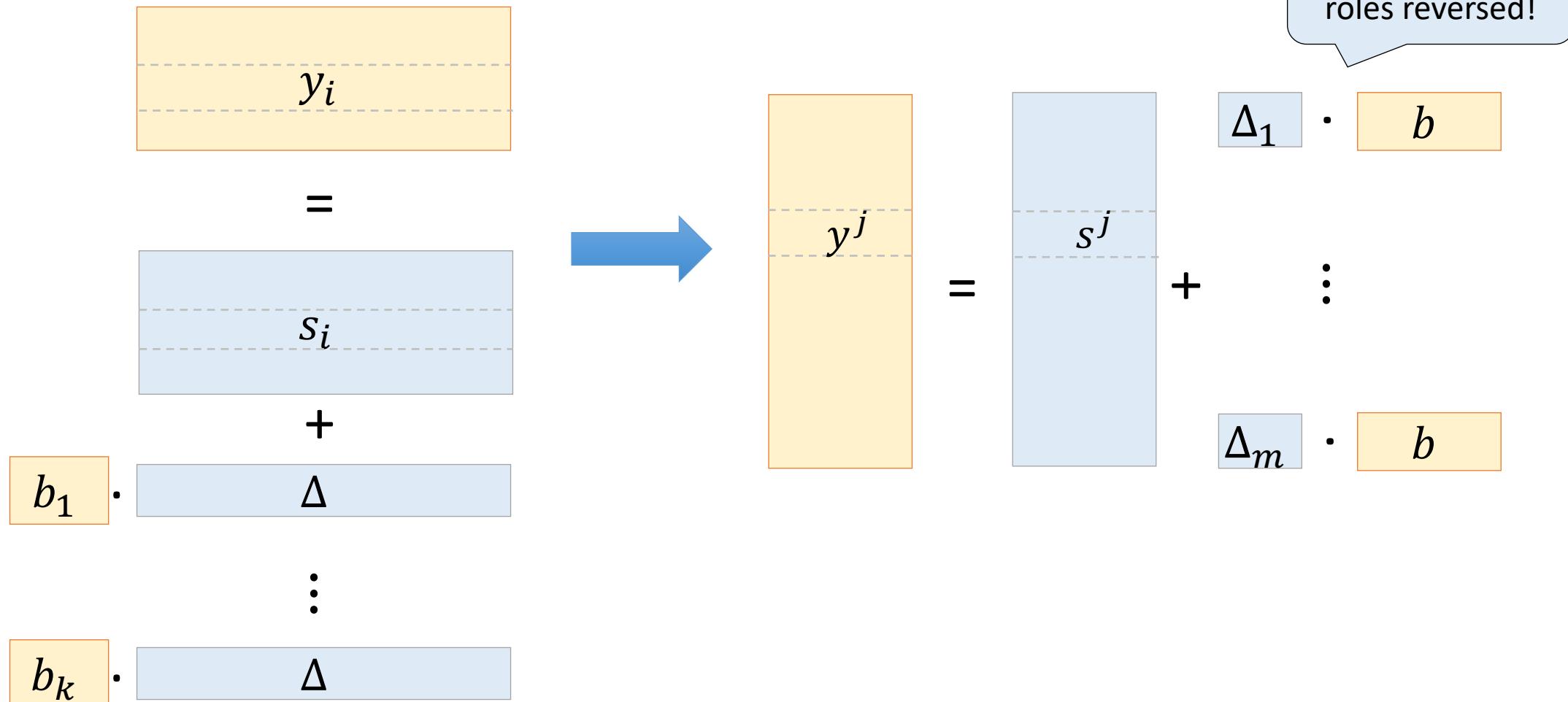
IKNP: correlate, transpose



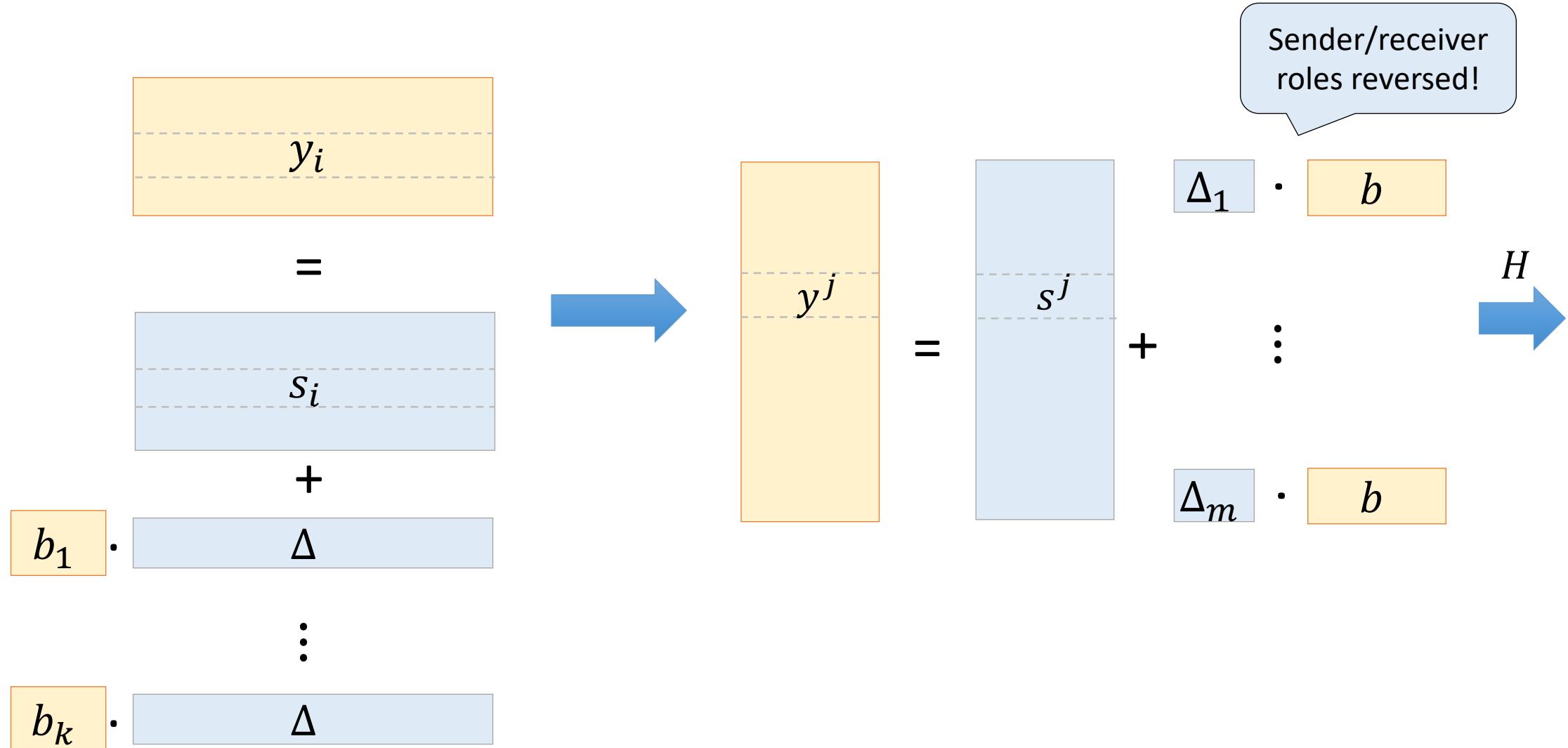
IKNP: correlate, transpose



IKNP: correlate, transpose



IKNP: correlate, transpose and hash



IKNP OT Extension: Correlate, Transpose & Hash

[IKNP 03]

- Bottleneck:
- Long correlated OTs
- Cost: 128 bits per OT

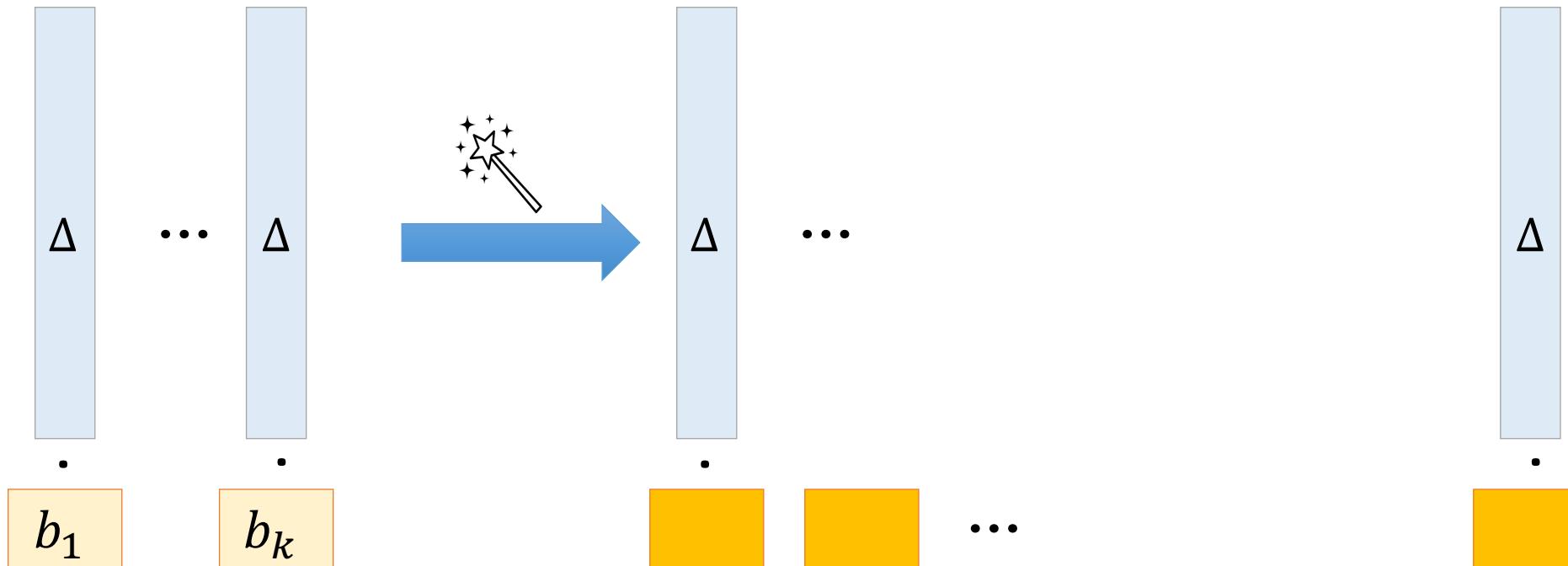
Silent OT Extension: Correlate, **Expand** & Hash

[BCGIKS 19]

Much “smaller” correlation

• Roles stay the same

Silent OT Extension: Correlate, Expand & Hash



Silent expansion via homomorphic PRGs?

- Suppose we have a PRG where

$$G(s + \vec{v}, s) + G(t)$$

- Receiver can expand $\vec{b} \rightarrow G(\vec{b})$
 - Parties expand s_i, y_i the same way
 - Preserves OT relation
- G is **totally insecure!**
- Lattice-based PRGs are **almost-homomorphic**
 - Good enough for weaker form of silent OT [S 18]

Silent expansion via learning parity with noise

[BCGI 18]

Given $A \in \mathbb{Z}_p^{m \times n}$:

$$\begin{array}{c} A \\ \hline \end{array} + \begin{array}{c} s \\ \hline \end{array} + \begin{array}{c} e \\ \hline \end{array} \mod p \approx \begin{array}{c} u \\ \hline \end{array}$$

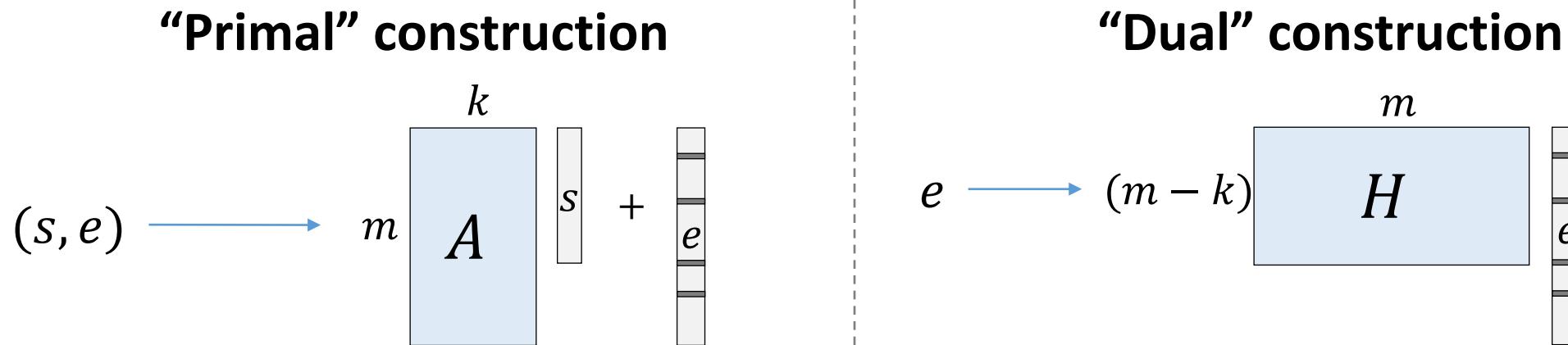
LWE

- $p > 2$
- $s \leftarrow \mathbb{Z}_p^n$
- $\|e\|_\infty$ is small

LPN

- $p \geq 2$ (arithmetic generalization)
- $s \leftarrow \mathbb{Z}_p^n$
- $HW(e)$ is small

“Linear-ish” PRGs from LPN



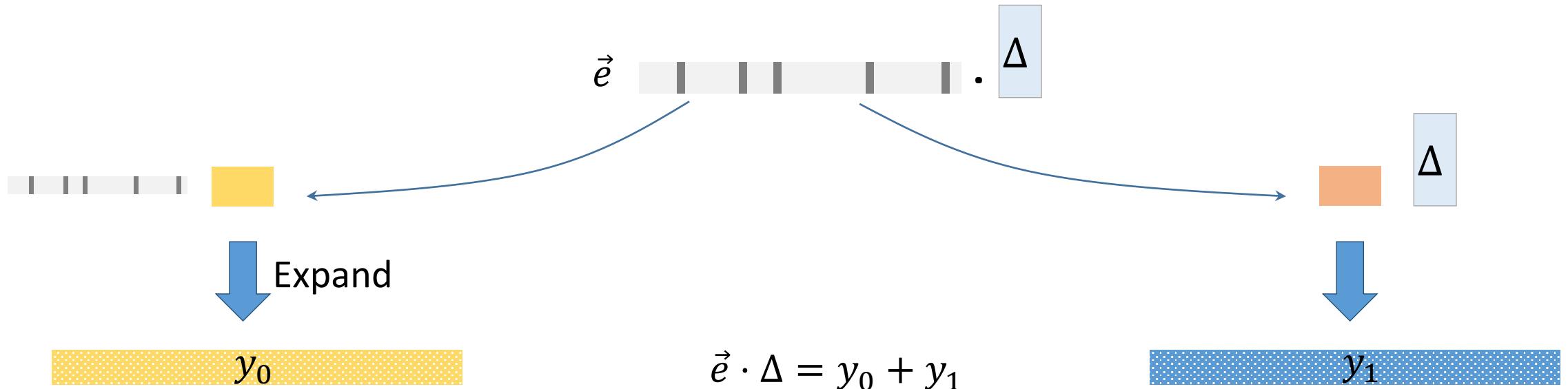
Evaluation is linear in $(s, e)!$

Limited to quadratic stretch

Arbitrary poly stretch
(increase m , fix $HW(e)$)
⇒ best attack: $\exp(HW(e))$

Secret-sharing sparse vectors: core of PCGs from LPN

Goal: compress secret-shares of sparse vector



Main tool: puncturable PRF

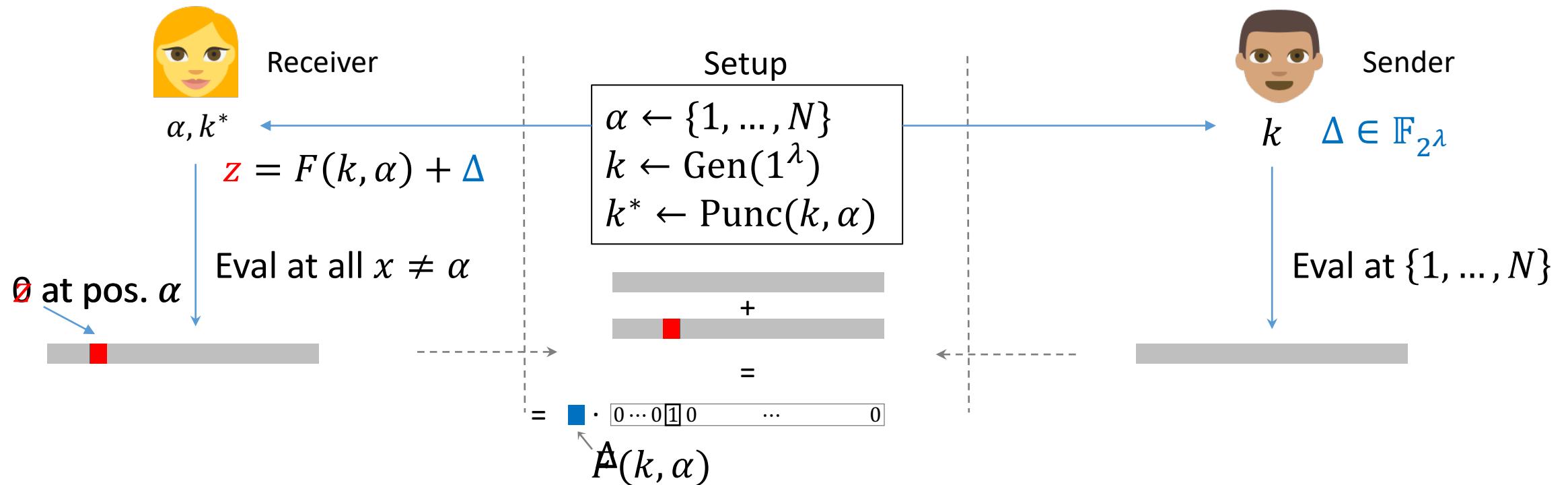
FSS is overkill!

- PRF $F : \{0,1\}^\lambda \times \{1, \dots, N\} \rightarrow \{0,1\}^\lambda$
- $k \leftarrow \text{Gen}(1^\lambda)$
 - Master key: allows evaluating $F(k, x)$ for all x
- $k^* \leftarrow \text{Punc}(k, \alpha)$
 - Punctured key: can evaluate at all points except for $x = \alpha$
- Security: $F(k, \alpha)$ is pseudorandom, given k^*

Simple tree-based construction from a PRG: $|k| = \lambda$, $|k^*| = \lambda \cdot \log N$

[BW13], [BGI 13], [KPTZ 13]

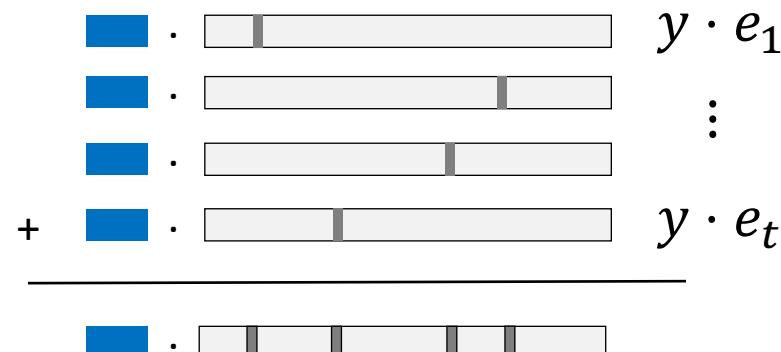
Sharing sparse vectors from puncturable PRF



- Shares compressed from $\lambda \cdot N$ to $\approx \lambda \cdot \log N$ bits
- Can tweak to multiply by arbitrary $\Delta \in \mathbb{F}_{2^\lambda}$

From weight-1 vectors to weight- t vectors

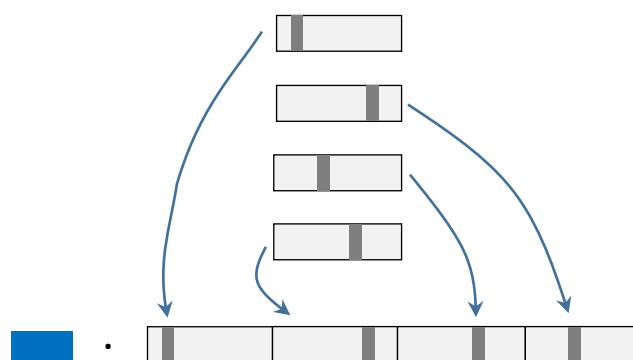
Approach 1: addition



Weight e.g. $t = 4$

Expansion cost: $O(t \cdot N)$ (naïve)
 $O(N)$ (cuckoo hashing [SGRR 19])

Approach 2: concatenation



$$O\left(t \cdot \frac{N}{t}\right) = O(N)$$

Note: regular error pattern

The missing pieces: plugging in LPN

- Use PPRF to share $\vec{e} \cdot \Delta$
- Primal: also share $\vec{s} \cdot \Delta$ via OT
- How to instantiate LPN matrix?

Matrix	Type	Complexity	Security
Sparse	Primal	$O(m)$	Back to [Ale 03]

The missing piece: plugging in LPN

- Use PPRF to share $\vec{e} \cdot \Delta$
- Primal: also share $\vec{s} \cdot \Delta$ via OT
- How to instantiate LPN matrix?

Matrix	Type	Complexity	Security
Sparse	Primal	$O(m)$	Back to [Ale 03]
Quasi-cyclic	Dual	$\tilde{O}(m)$	Same as NIST PQC

The missing piece: plugging in LPN

- Use PPRF to share $\vec{e} \cdot \Delta$
- Primal: also share $\vec{s} \cdot \Delta$ via OT
- How to instantiate LPN matrix?

Matrix	Type	Complexity	Security
Sparse	Primal	$O(m)$	Back to [Ale 03]
Quasi-cyclic	Dual	$\tilde{O}(m)$	Same as NIST PQC
Structured LDPC	Dual	$O(m)$	[CRR 21]

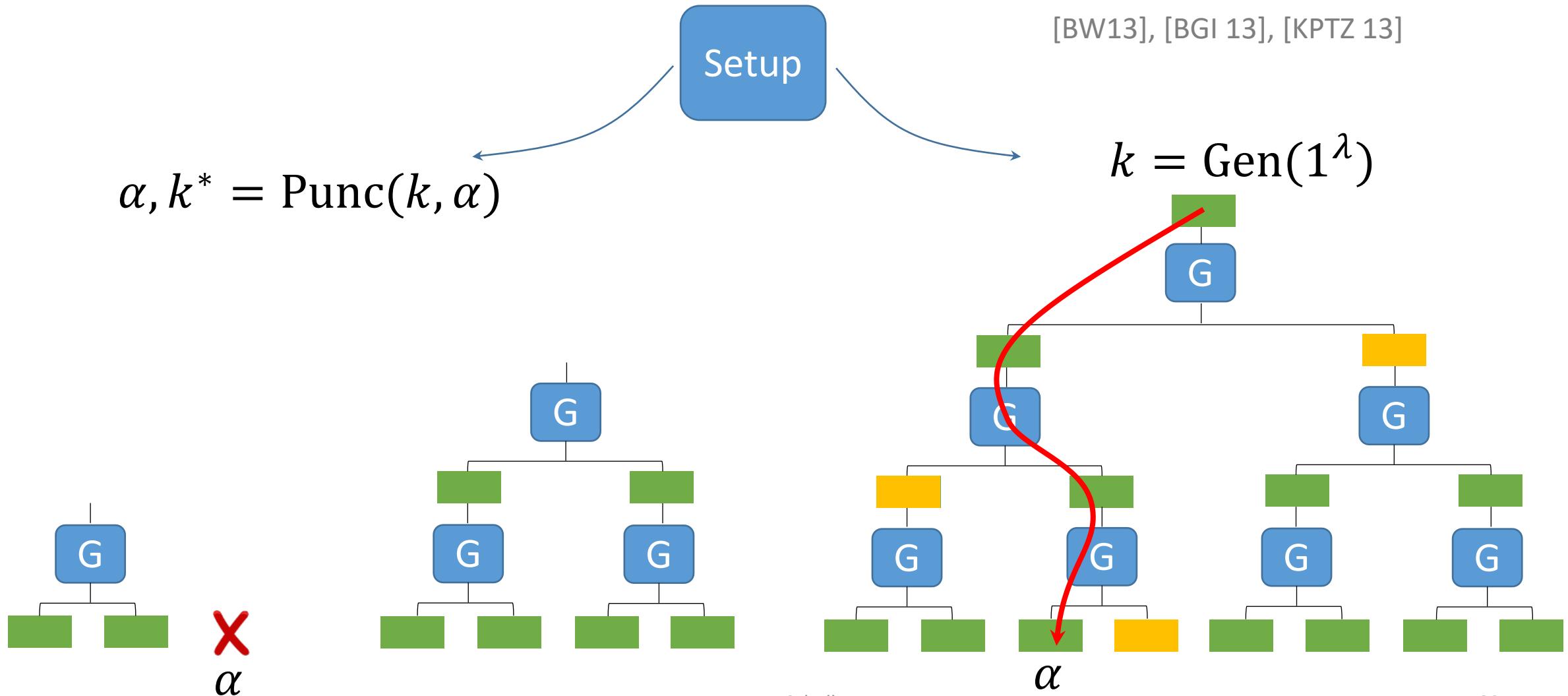
The missing piece: plugging in LPN

- Use PPRF to share $\vec{e} \cdot \Delta$
- Primal: also share $\vec{s} \cdot \Delta$ via OT
- How to instantiate LPN matrix?

Matrix	Type	Complexity	Security
Sparse	Primal	$O(m)$	Back to [Ale 03]
Quasi-cyclic	Dual	$\tilde{O}(m)$	Same as NIST PQC
Structured LDPC	Dual	$O(m)$	[CRR 21]
Cyclotomic ring-LPN (only for OLE)	Primal/dual	$\tilde{O}(m)$	[BCGIKS 20]

PCG setup protocol: some details

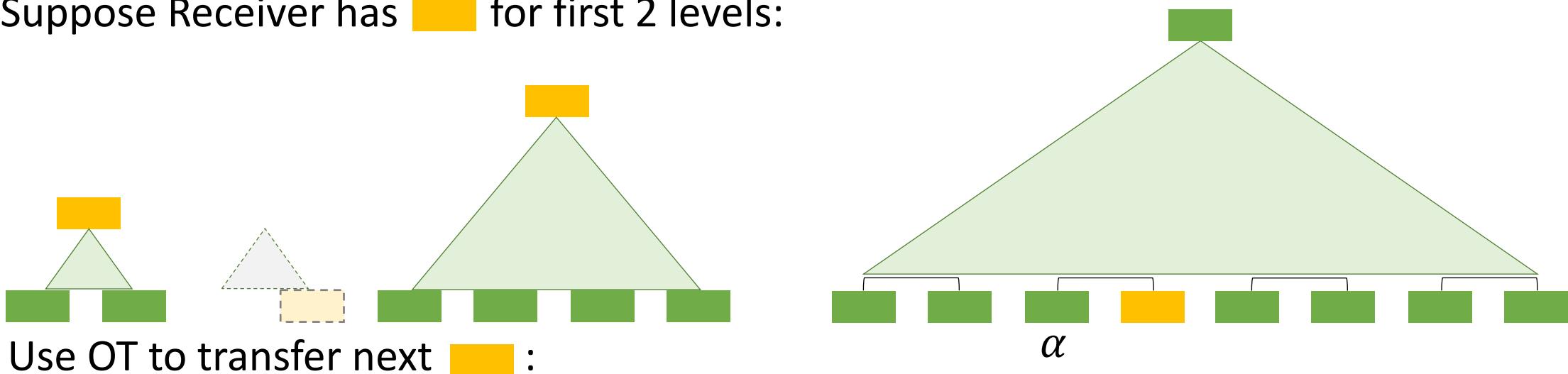
Setup protocol: inside the puncturable PRF



Setup protocol: inside the puncturable PRF

Based on [Doerner-shelat '17]

Suppose Receiver has for first 2 levels:



Left/right

OT

(sum of L, sum of R)

Recover

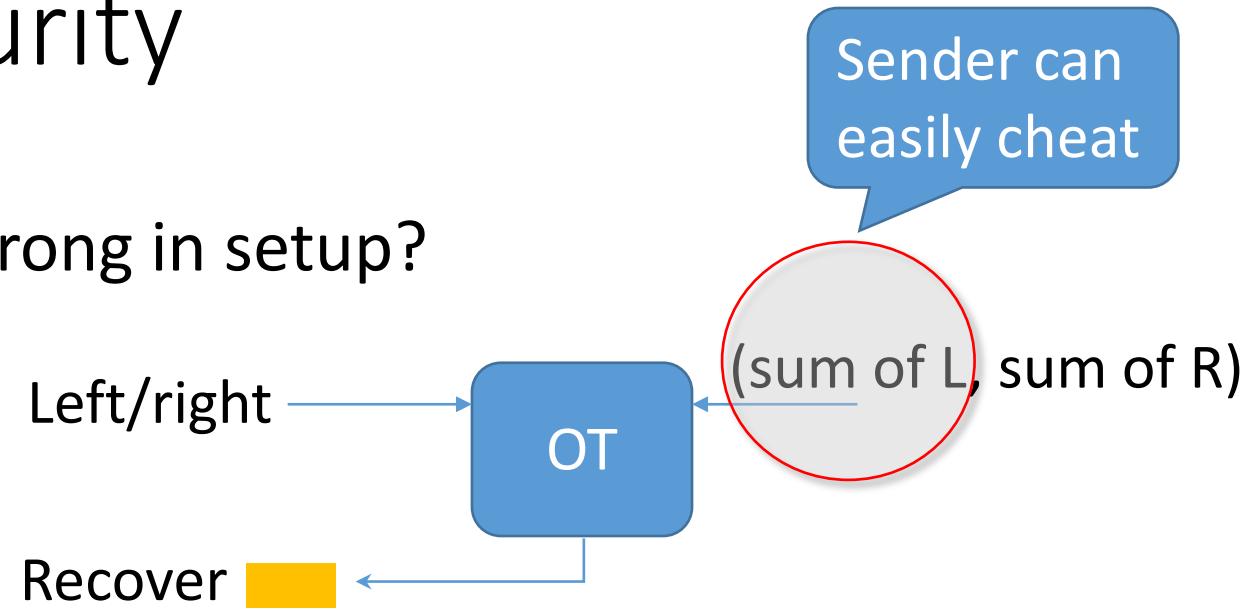
OTs for all levels can be
done in parallel!
(Unlike [Ds 17] for DPF)

Setup Protocol for Silent OT/VOLE

- 2-round **punctured PRF setup** from any 2-round OT
 - $\log N$ parallel OTs
- 2-round **Silent OT setup** from any 2-round OT
 - Total cost: $\approx t \log N$ “seed” OTs for LPN noise weight t
 - (VOLE: also need seed VOLE)
- Two-round OT extension on **chosen inputs**
 - Can convert from random \rightarrow chosen **in parallel with setup**
 - First **concretely efficient** two-round OT extension
(previously only [Beaver ‘95])

Active security

- What can go wrong in setup?

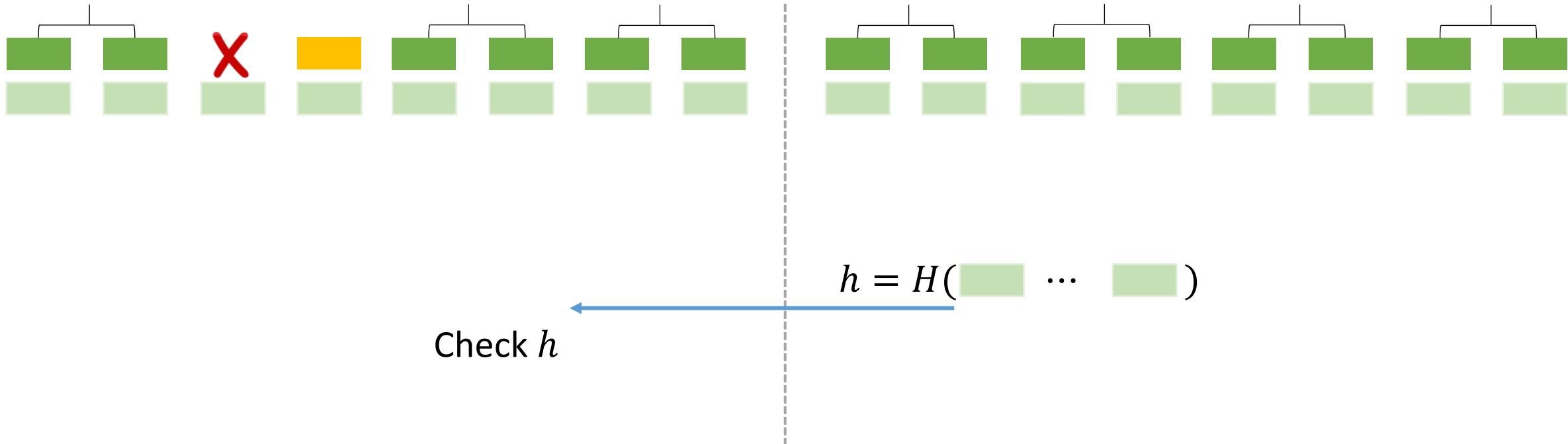


- Solution: **consistency checks**

- Still allows **selective failure attacks** – sender can guess 1 bit of LPN error
- Assume problem is hard with 1-bit leakage

Consistency check: hash the PPRF tree

[BCGIKRS 19]



Collision-resistance \Rightarrow tree is consistent

Ensuring consistency among the trees

- What if sender uses different Δ 's?
 - Hash check doesn't catch this...
- Solution: another check!
 - Random linear combination (like MAC check)
- Ferret/Wolverine [YWLZW 20, WYKW 21]:
 - Linear combination instead of hash check
 - Simpler, also ensures consistent Δ 's

Performance for $n=10$ million random OTs (LAN)

128-bit security

Protocol	One-time setup (kB)	Comms	Time (ms)	Primal/dual
IKNP	-	160 MB	~400	-
[BCGIKRS 19]	-	122 kB	~5000	Dual (quasi-cyclic)
Ferret [WYKY 20]	1130 kB	550 kB	~500	Primal
Silver [CRR 21]	-	122 kB	~300	Dual (structured LDPC)

Conclusion

- Silent OT and VOLE:
 - Linear structure of LPN
 - Sharing sparse vectors via PPRF
- Two-round setup protocols
 - Actively secure
 - Give two-round OT extension
- Open problems:
 - More **silent-friendly** applications
 - Optimize **multi-point PPRF**: $\lambda \log N \rightarrow \lambda + \log N$?
 - Setup: can we do **1-round**?
 - **Security** of LPN variants
 - Especially structured LDPC, VD-LPN, ring-LPN...

Thank you!

Efficient Pseudorandom Correlation Generators: Silent OT Extension and More

Boyle, Couteau, Gilboa, Ishai, Kohl, Scholl

<https://ia.cr/2019/129>

Two-Round OT Extension and Silent Non-Interactive Secure Computation

BCGIKS + Rindal

<https://ia.cr/2019/1159>