
Bar‐IlanWinter School
Lecture 6
Attacks and security notions for the TLS
secure channel

Kenny Paterson @kennyog
Based on joint work with Martin Albrecht, Jean Paul
Degabriele and Torben Hansen

Overview

1. The TLS Record Protocol

2. An unfortunate sequence of attacks on the TLS
Record Protocol

3. Security modelling for streaming secure channels

4. Concluding remarks

2

The TLS Record Protocol

TLS Protocol Architecture

TCP

Record Protocol

Handshake
Protocol

Alert
Protocol

HTTP,
other apps

Change
Cipher
Spec

Protocol

4

TLS Record Protocol

TLS Record Protocol provides:
• Data origin authentication, integrity using a MAC.

• Confidentiality using a symmetric encryption algorithm.

• Anti‐replay using sequence numbers protected by the MAC.

• (Optional compression.)

• TLS presents a stream‐oriented API to applications.

• So TLS may fragment into smaller records or coalesce into larger
records any data supplied by the calling application.

• Hence if the calling application wants to deliver “atomic”
messages, then it needs to add its own message delimiters.

5

TLS Record Protocol: MAC‐Encode‐Encrypt

MAC

SQN || HDR Payload fragment

Padding

Encrypt

Ciphertext

MAC tag

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

66
Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF”

Payload fragment

Operation of TLS Record Protocol

• Data from layer above is received and partitioned into fragments (max size 214

bytes).

• Optional data compression.

• Default option is no compression.

• Calculate MAC on sequence number, header fields, and data, and append MAC
to data.

• Pad (if needed by encryption mode), then encrypt.

• Prepend 5‐byte header, containing:

• Content type (1 byte, indicating content of record, e.g. handshake message,
application message, etc),

• SSL/TLS version (2 bytes),

• Length of fragment (2 bytes).

• Submit to TCP.

7

Operation of TLS Record Protocol

In‐bound processing steps reverses these steps:

1. Receive message, of length specified in HDR.

2. Decrypt.

3. Remove padding.

4. Check MAC.

5. (Decompress payload.)

6. Pass payload to upper layer

(NB: no defragmentation; TLS just provides a stream of fragments to the
application).

Errors can arise from any of decryption, padding removal or MAC checking steps.

All of these are fatal errors in TLS: error message sent and connection is terminated.

8

AEAD and TLS Record Protocol

Dedicated Authenticated Encryption with Associated Data (AEAD)
algorithms were added in TLS 1.2, along with the MEE construction.

• AEAD: single algorithm providing both confidentiality and integrity/data
origin (authentication)

• Need not conform to MEE template.

• General AEAD interface specified in RFC 5116.

• Nonce construction not fully specified; natural choice is to use TLS SQN or
random values.

• AES‐GCM specified in RFC 5288.

• AES‐CCM specified in RFC 6655.

• ChaCha20‐Poly1305 specified in RFC 7539 and RFC 7905.

9

10

TLS Record Protocol Design Decisions

• Stream‐oriented.

• Application layer is responsible for demarcating message boundaries
if desired.

• Fragmentation done by Record Protocol when sending, but
defragmentation not done when receiving.

• Most errors are fatal.

• TLS runs over TCP, which is assumed to provide reliable transport.

• Hence any error arising during in‐bound processing should be
treated as an attack.

• Session terminated with error message, keys thrown away.

• So DoS attacks are trivial to mount.

• No retransmission of lost messages by TLS itself.

11

TLS Record Protocol Design Decisions

• Implicit sequence numbers.

• 8‐byte SQN included in MAC calculation, but not sent on the wire as part of
Record Protocol messages.

• Sender and receiver are assumed to maintain local copies of SQN,
incrementing for each message sent/received.

• Any replay, re‐ordering or dropping of messages should be detected
through MAC verification failure at receiver.

• MAC verification failure is a fatal error.

• No attempt to hide message/fragment lengths.

• Leads to fingerprinting attacks (e.g. Pironti‐Strub‐Bhargavan, INRIA
research report 8067, 2012).

• Made worse by switch to AES‐GCM.

• Can be partially addressed by use of variable length padding in CBC mode.

12

TLS Record Protocol Design Decisions

• Use of compression was known in theory to be dangerous.
• Kelsey, FSE’04.

• Choice of MEE is not fully‐supported by theory.
• MtE known to be not generically secure (Bellare‐Namprempre,

Asiacrypt’01).

• Krawczyk (Crypto’01) provides support for MtE when CBC‐mode is
used or when stream cipher is used.

• But the analysis assumes:

• Random per message IV, no padding, block‐size = MAC tag size for CBC
mode.

• Stream cipher has outputs that are indistinguishable from random.

• More recent analysis of Namprempre‐Rogaway‐Shrimpton‐ (EC’14)
says MtE provides AE if “E” is “tidy”.

• TLS’s choice of “E” is not tidy!

13

TLS Record Protocol Design Decisions

• The fact is that suitable theory did not exist at the time TLS
was designed.

• Essentially, we need stateful AEAD security.

• Consensus then was that “MtE” is better than “EtM”.
• “Authenticate what you mean to say, not an encrypted version

of it.” – the Horton principle.

• “Maybe our MAC algorithms are weak, so we should protect
the MAC value by encrypting it.”

• Today, we have better theory, but it’s been hard to get it
deployed.

• Because it had to displace what’s already been massively
deployed.

• Change has been driven by attacks!

14

Adoption of AEAD in TLS

89.2% of the Alexa top 135k websites now support TLS 1.2 and hence AEAD.

(Up from 82.6% one year ago, 69.5% two years ago, 42.6% three years ago, 17% four
years ago and 5% five years ago.)

(source: ssl pulse, Dec. 2017)

TLS 1.2 support in browsers:

Chrome: since release 30.

Firefox: since release 28.

IE: since IE11.

Safari: since iOS5 and OS X 10.9.

(source: wikipedia, Nov. 2013)

Stronger, modern AEAD designs are increasingly being used.

14

15

SSL/TLS Versions in Use on the Internet

Source: Amann et al. “Mission Accomplished? HTTPS Security after DigiNotar”,
IMC 2017.15

AEAD Usage in TLS: September 2014

Snapshot from ICSI Certificate Notary Project

16

16.3%

1.6%

AEAD Usage in TLS: December 2015

Snapshot from ICSI Certificate Notary Project:

17

Total of AES‐GCM just below 50%

AEAD Usage in TLS: December 2016

Snapshot from ICSI Certificate Notary Project:

18

Total of AES‐GCM above 66%

AEAD Usage in TLS: February 2018

Snapshot from ICSI Certificate Notary Project

19

Nearly 80% is now AEAD (AES‐GCM), 14% is CBC.
1.1% ChaCha20‐Poly1305 (other sources report 10%).

TLS Record Protocol Security Issues

21

Overview of TLS Record Protocol attacks

• BEAST (2011)– exploits TLS 1.0’s use of predictable IVs.

• CRIME (and BREACH, TIME) (2012) – exploits TLS and
applications support for compression.

• Padding oracle attack (2002, 2003) – exploits TLS 1.0’s use of
distinguishable error messages for padding and MAC failures.

• Lucky 13 (2013) – padding oracle attacks are still possible, even
after application of recommended countermeasures; MEE with
CBC is hard to implement without side channels.

• POODLE (2014) – a special kind of padding oracle attack for
SSL3.0, based on error messages rather than timing; SSL3.0‐killer.

• RC4 attacks (2013‐2015) – RC4 is not such a good stream cipher
after all.

• Sweet 32 – small block‐size block ciphers in CBC mode start to leak
plaintext after 232 – 235 blocks.

BEAST

23

BEAST

IV chaining in SSLv3 and TLS 1.0 CBC mode leads to a chosen‐
plaintext distinguishing attack against TLS.

• First observed for CBC mode in general by Rogaway in 1995.

• Application to TLS noted by Dai and Moeller in 2004.

Extended to theoretical plaintext recovery attack by Bard in
2004/2006.

Turned into a practical plaintext recovery attack on HTTP cookies
by Duong and Rizzo in 2011 – the BEAST.

• BEAST = Browser Exploit Against SSL/TLS

• 16‐year demonstration that attacks do get better with time.

23

24

BEAST – Impact

The BEAST was a major headache for TLS vendors.
• Perceived to be a realistic attack.
• Most client implementations were “stuck” at TLS 1.0.

Best solution: switch to using TLS 1.1 or 1.2.
• Uses random IVs, so attack prevented.
• But needs server‐side support too.

For TLS 1.0, various hacks were done:
• Use 1/n‐1 record splitting in client.

• Now implemented in most but not all (?) browsers.
• Send 0‐length dummy record ahead of each real record.

• Breaks some implementations.
• Or switch to using RC4?

• As recommended by many expert commentators.

24

Padding oracles/Lucky 13

TLS Record Protocol: MAC‐Encode‐Encrypt

MAC

SQN || HDR Payload

Padding

Encrypt

Ciphertext

MAC tagPayload

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

2626
Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF”

Padding Check in TLS

• We suppose that TLS does a full padding check.

• So decryption checks that bytes at the end of the plaintext have one of the
following formats:

00;

01, 01;

02, 02, 02;

….

FF, FF,………..FF;

and outputs an error if none of these formats is found.

• NB Other “sanity” checks may also be needed during decryption.

27

Reminder: Padding Oracles

28 28

C

Valid/Invalid

For CBC mode and for certain padding schemes, a padding
oracle can be used to build a decryption oracle!

Padding
Oracle

P=DecK(C)

Check
padding of P

TLS Padding Oracles In Practice?

• In TLS, an error message during decryption can arise from
either a failure of the padding check or a MAC failure.

• A padding oracle attack will produce an error of one type or
the other.

• Padding failure indicates incorrect padding.

• MAC failure indicates correct padding.

• If these errors are distinguishable, then a padding oracle
attack should be possible.

29

TLS Padding Oracles In Practice?

Good news (for the attacker):

• The error messages arising in TLS 1.0 are different:
• bad_record_mac

• decryption_failed

Bad news:

• But the error messages are encrypted, so cannot be seen by
the attacker.

• And an error of either type is fatal, leading to immediate
termination of the TLS session.

•30

TLS Padding Oracles In Practice?

Canvel et al. [CHVV03] :

• A MAC failure error message will appear on the network later than
a padding failure error message.

• Because an implementation would only bother to check the MAC if
the padding is good.

• So timing the appearance of error messages might give us the
required padding oracle.

• Even if the error messages are encrypted!

• Amplify the timing difference by using long messages.

• But the errors are fatal, so it seems the attacker can still only learn
one byte of plaintext, and then with probability only 1/256.

31

OpenSSL and Padding Oracles

Canvel et al. [CHVV03]:

• The attacker can still decrypt reliably if a fixed plaintext is repeated in a
fixed location across many TLS sessions.

• e.g. password in login protocol or an HTTP session cookie.

• Modern viewpoint: use BEAST‐style Javascript in the browser to generate the
required encryptions.

• The OpenSSL implementation had a detectable timing difference.

• Roughly 2ms difference for long messages (close to 214 byte maximum).

• Enabling recovery of TLS‐protected Outlook passwords in about 3 hours.

32

33

Padding Oracle Attack Countermeasures?

• Redesign TLS:
• Pad‐MAC‐Encrypt or Pad‐Encrypt‐MAC.

• Too invasive, did not happen.

• Switch to RC4?

• Or add a fix to ensure uniform errors:
• Check the MAC anyway, even if the padding is bad.

• If attacker can’t tell difference between MAC and pad errors, then maybe
TLS’s MEE construction is secure?

• Fix included in TLS 1.1 and 1.2 specifications.

33

34

Padding Oracle Countermeasures, Revisited

From the TLS 1.1 and 1.2 specifications:

…implementations MUST ensure that record processing time is
essentially the same whether or not the padding is correct.

In general, the best way to do this is to compute the MAC even if the
padding is incorrect, and only then reject the packet.

Compute the MAC on what though?

34

TLS Record Protocol: MAC‐Encode‐Encrypt

MAC

SQN || HDR Payload

Padding

Encrypt

Ciphertext

MAC tagPayload

HDR

Problem is: how to parse plaintext as payload, padding and MAC fields
when the padding is not one of the expected patterns 00, 01 01,… ?

3535

36

Ensuring Uniform Errors

From the TLS 1.1 and 1.2 specifications:

For instance, if the pad appears to be incorrect, the implementation
might assume a zero‐length pad and then compute the MAC.

• This approach was adopted in many implementations,
including OpenSSL, NSS (Chrome, Firefox), BouncyCastle,
OpenJDK, …

• Other approaches possible (GnuTLS).

36

37

Ensuring Uniform Errors

… This leaves a small timing channel, since MAC performance
depends to some extent on the size of the data fragment, but it is
not believed to be large enough to be exploitable, due to the large
block size of existing MACs and the small size of the timing signal.

37

38

Ensuring Uniform Errors

… This leaves a small timing channel, since MAC performance
depends to some extent on the size of the data fragment, but it is
not believed to be large enough to be exploitable, due to the large
block size of existing MACs and the small size of the timing signal.

38

39

Lucky 13: Main Idea

• TLS decryption removes padding and MAC tag to extract PAYLOAD.

• HMAC computed on SQN || HDR || PAYLOAD.

• HMAC computation involves adding ≥9 bytes of padding and iteration of hash
compression function, e.g. MD5, SHA‐1, SHA‐256.

• Running time of HMAC depends on L, the exact byte length of SQN || HDR ||
PAYLOAD:

• L ≤ 55 bytes: 4 compression function calls;

• 56 ≤ L ≤ 119: 5 compression function calls;

• 120 ≤ L ≤ 183: 6 compression function calls;

• ….

39

40

Lucky 13 – Plaintext Recovery

40

XOR 2-byte Δ here
and submit for decryption

Produces valid
patterns “01 01”

(or longer valid pad)
or “00”,

OR bad pad.

Ct

Pt

dK

Ct-1

dK

R2R1

dKdK

IV

(HMAC‐SHA‐1 + AES‐CBC)

Target
ciphertext
block from

stream

41

Case 1: “01 01” (or longer valid pad)

41

Ct

Pt

dK

Ct-1

dK

R2R1

dKdK

IV

XOR 2-byte Δ here
and submit for decryption

SQN||HDR

13 + 16 + 16 + 10 = 55 bytes 20 bytes

4 SHA‐1 compression function
evaluations

“01 01”
(or longer
valid pad)

42

Case 2: “00”

42

Ct

Pt

dK

Ct-1

dK

R2R1

dKdK

IV

XOR 2-byte Δ here
and submit for decryption

SQN||HDR

56 bytes 20 bytes

5 SHA‐1 compression function
evaluations

“00”

43

Case 3: Bad padding

43

Ct

Pt

dK

Ct-1

dK

R2R1

dKdK

IV

XOR 2-byte Δ here
and submit for decryption

SQN||HDR

57 bytes 20 bytes

5 SHA‐1 compression function
evaluations

zero-length
pad

44

Lucky 13 – Plaintext Recovery

44

The injected ciphertext causes bad padding and/or a bad MAC.
This leads to a TLS error message, which the attacker times.

There is a timing difference between “01 01” case and the other 2 cases.
A single SHA‐1 compression function evaluation.

Roughly 500 clock cycles, well below 1μs on a typical processor.

But measurable difference on same host, LAN, or a few hops away.

(Compare with original padding oracle attack: 2ms.)

Detecting the “01 01” case allows last 2 plaintext bytes in the target block Ct to
be recovered.

Using the standard CBC algebra: Pt  (…..Δ1Δ0) = (….0101).
Attack then extends to all bytes as in a standard padding oracle attack.

45

Constant Time Decryption for MEE

• Proper constant‐time, constant‐memory access implementation of MEE
decryption is really needed.

• Challenging to test padding correctness and do sanity checking without
branching on secret data.

• See Adam Langley’s blogpost at:

https://www.imperialviolet.org/2013/02/04/luckythirteen.html

for full details on how Lucky 13 was fixed in OpenSSL and NSS.

• Fix required around 500 lines of new code.

45

46

Lucky 13 – Impact

46

OpenSSL patched in versions 1.0.1d, 1.0.0k and 0.9.8y, released 05/02/2013.

NSS (Firefox, Chrome) patched in version 3.14.3, released 15/02/2013.

Apple: patched in OS X v10.8.5 (iOS version tbd).

Opera patched in version 12.13, released 30/01/2013

Oracle released a special critical patch update of JavaSE, 19/02/2013.

BouncyCastle patched in version 1.48, 10/02/2013

Also GnuTLS, PolarSSL, CyaSSL, MatrixSSL,…

Microsoft “determined that the issue had been adequately addressed in
previous modifications to their TLS and DTLS implementation”.

(Full details at: www.isg.rhul.ac.uk/tls/lucky13.html)

47

Lucky 13 – Lessons

47

TLS’s MAC‐Encode‐Encrypt construction is hard to implement
securely and hard to prove positive security results about.

• Long history of attacks and fixes.

• Each fix was the “easiest option at the time”.

• Now reached point where a 500 line patch to OpenSSL was needed to fully
eliminate the Lucky 13 attack.

Better to use an EtM construction from day one, or eat the cost of
switching at the first sign of trouble.

• A conservative approach seems merited for such an important protocol.

• At the time TLS was first designed, EtM versus MtE debate was not so clear cut.

POODLE

Exploiting Weak Padding Checks – Moeller Attack

Recall SSL/TLS decryption sequence:
CBC mode decrypt, remove padding, check MAC.

[Moeller, 2002 & 2004]: failure to check padding format leads to a
simple attack recovering the last byte of plaintext from any block.

Assumptions:
• Attacker has a special TLS ciphertext containing a complete block of

padding.

• So MAC ends on block boundary for this ciphertext.

• Padding is removed by inspecting last byte only.

49

Moeller Attack

50

Ct-1 Ct

dK dK

Ct-2

dK

…

…

Blocks from
special ciphertext

Byte value
is “0F” here

Moeller Attack

51

Ct-1 C*

dK dK

Decryption succeeds
if and only if byte
value is “0F” here

Target ciphertext
block from stream

Ct-2

dK

…

…

Blocks from
special ciphertext

Enabling recovery
of last byte of
dK(C*) here.

Moeller Attack

• Decryption succeeds if and only if:

Ct‐1 dK(C*) = (??,??,....??, 0F)

• Hence attacker can recover last byte of dK(C*) with probability 1/256.

• This enables recovery of last byte of original plaintext P* corresponding to
C* in the CBC stream, by solving system of eqns:

Ct‐1 dK(C*) = (??,??,....??,0F)

C*‐1 dK(C*) = P*

where C*‐1 is the block preceding C* in the stream.

• Hence, in TLS 1.1 and up:

Each uint8 in the padding data vector MUST be filled with the padding
length value. The receiver MUST check this padding….

52

Overview

53

POODLE = BEAST techniques + Moeller Attack

https://www.openssl.org/~bodo/ssl‐poodle.pdf

• In SSLv3, CBC mode encryption uses random padding; only the last
byte is used to remove padding.

• In other words, you can’t check the padding format!

Repeat:

1. Use Javascript in the browser to pad HTTP GET requests (as in BEAST),
ensuring that the target cookie byte is placed as last byte of block and
that the MAC field aligns on a block boundary.

2. Do Moeller’s attack with that block to recover the cookie byte with
probability 1/256.

Until (all cookie bytes are recovered).

54

Patching against POODLE?

A patch that does not work: upgrade decryption to do full
padding check and Lucky 13 protection.

• But sender may not use correct padding format (it’s not required in
SSLv3).

• So this would not be deployable unless ALL clients and servers
upgraded simultaneously.

• Should not use RC4 either (see next section).

• No ciphersuites left!

55

POODLE and SSL/TLS Fallback

The attack is made worse because of the active version
downgrade attack, aka SSL/TLS falbback.

• An active MITM attacker could always force client and server to downgrade
to SSLv3.

• Because the SSL/TLS version negotiation process is not stateful and was
not cryptographically protected across fallbacks.

• Various countermeasures now exist, but the safest option was to stop
supporting SSLv3.

56

RC4

58

TLS Record Protocol: RC4‐128

58

MAC

SQN || HDR Payload

Encrypt

Ciphertext

MAC tagPayload

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

59

TLS Record Protocol: RC4‐128

59

MAC

SQN || HDR Payload

Encrypt

Ciphertext

MAC tagPayload

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

MAC

Encrypt

Ciphertext

MAC tagPayload

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt

MAC tag

HDR

RC4 Key scheduling RC4 Keystream generation

RC4 State
Byte permutation and indices i and j

In the face of the BEAST and Lucky 13 attacks on CBC‐based cipher suites in
TLS, switching to RC4 was a recommended mitigation.

RC4 is also fast when AES hardware not available

Use of RC4 in the wild:

Problem: RC4 is known to have statistical weaknesses.

Use of RC4 in TLS

ICSI Certificate Notary

Jan. 2013 survey of 16 billion TLS connections:
Approx. 50% protected via RC4 cipher suites

Single‐byte Biases in the RC4 Keystream

[Mantin-Shamir 2001]:

[Mironov 2002]:
Described distribution of (bias away from 0, sine-like distribution)

[Maitra-Paul-Sen Gupta 2011]: for

[Sen Gupta-Maitra-Paul-Sarkar 2011]:

Zi = value of i‐th keystream byte

l = keylength

62

What’s Going On Here?

62

Why were people still using RC4 in half of all TLS connections when we already
knew it was a weak stream cipher?

“The biases are only in the first handful of bytes and they don’t encrypt anything
interesting in TLS”.

“The biases are not exploitable in any meaningful scenario”.

“RC4 is fast.”

“I’m worried about BEAST on CBC mode. Experts say `use RC4’”

“Google uses it, so it must be OK for my site”.

“There’s no demonstrated attack – show me the plaintext!”

Approach in [ABPPS13]:

Based on the output from 245 random independent 128‐bit RC4 keys, we estimated the
keystream byte distributions for the first 256 bytes

• Revealed many new biases in the RC4 keystream.

• Some of these were independently discovered by Isobe et al.

Complete Keystream Byte Distributions

Z1

...

Z2 Z3 ...

...

63

Keystream Distribution at
Position 1

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

64

Keystream Distribution at
Position 1

Keystream Distribution at
Position 2

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

65

Keystream Distribution at
Position 3

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

66

Keystream Distribution at
Position 4

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

67

Keystream Distribution at
Position 5

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

68

Keystream Distribution at
Position 6

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

69

Keystream Distribution at
Position 7

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

70

Keystream Distribution at
Position 8

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

71

Keystream Distribution at
Position 9

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

72

Keystream Distribution at
Position 10

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

73

Keystream Distribution at
Position 11

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

74

Keystream Distribution at
Position 12

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

75

Keystream Distribution at
Position 13

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

76

Keystream Distribution at
Position 14

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

77

Keystream Distribution at
Position 15

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

78

Keystream Distribution at
Position 16

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

79

Keystream Distribution at
Position 17

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

80

Keystream Distribution at
Position 18

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

81

Keystream Distribution at
Position 19

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

82

Keystream Distribution at
Position 20

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

83

Keystream Distribution at
Position 21

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

84

Keystream Distribution at
Position 22

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

85

Keystream Distribution at
Position 23

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

86

Keystream Distribution at
Position 24

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

87

Keystream Distribution at
Position 25

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

88

Keystream Distribution at
Position 26

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

89

Keystream Distribution at
Position 27

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

90

Keystream Distribution at
Position 28

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

91

Keystream Distribution at
Position 29

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

92

Keystream Distribution at
Position 30

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

93

Keystream Distribution at
Position 31

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

94

Keystream Distribution at
Position 32

Pr
ob

ab
ilit

y

0.003906

Byte value

0.003950

0.003878

95

All the Biases

96

• Pretty picture, but where’s the plaintext?

• Using the biased keystream byte distributions, we can
construct a plaintext recovery attack against TLS.

• The attack requires the same plaintext to be encrypted under
many different keys.

• Use Javascript in browser as mechanism, cookies as target.

• Reusing the BEAST mechanism once more.

Plaintext Recovery for TLS‐RC4

97

Plaintext Recovery Using Keystream Biases

98

C1

C2

C3

Cn

...

r yields induced
distribution on

keystream byte Zr

yields induced
distribution on

keystream byte Zr

combine with known distribution

Compute likelihood of p being
correct plaintext byte

Recovery algorithm:
Compute most likely plaintext byte

Encryptions of fixed plaintext
under different keys

Plaintext candidate
byte p

p

p

...

p

p

Success Probability 220 Sessions

99

100

Success Probability 221 Sessions

101

Success Probability 222 Sessions

102

Success Probability 223 Sessions

103

Success Probability 224 Sessions

104

Success Probability 225 Sessions

105

Success Probability 226 Sessions

106

Success Probability 227 Sessions

107

Success Probability 228 Sessions

108

Success Probability 229 Sessions

109

Success Probability 230 Sessions

110

Success Probability 231 Sessions

111

Success Probability 232 Sessions

Media – 2013

112

RC4: Subsequent Developments

[ABPPS13]: use Fluhrer‐McGrew biases on consecutive keystream bytes to
avoid many connections and target bytes later in the keystream, 234

encryptions, 2000 hours.

RFC 7465 “Prohibiting RC4 cipher suites”, Jan. 2015:

This document requires that TLS clients and servers never
negotiate the use of RC4 cipher suites.

[GPV15]: refinement of [ABPPS13] attacks focussed on password recovery from
early in the keystream: 60% success rate with 226 encryptions, 350 hours.

[VP15]: use of Mantin biases to recover cookies: 94% success rate with about 230

encryptions, 75 hours.

September 1st, 2015: Microsoft, Google, Mozilla all announce that Rc4 will be
fully disabled in their browsers in early 2016. (This eventually happened!).

Today: Almost no RC4 traffic from browsers, some from legacy equipment.
113

Sweet 32

Sweet 32 (Bhargavan‐Leurent, CCS’16)

• Sweet 32 applies to SSL/TLS cipher suites using 64‐bit block ciphers (DES,
triple DES).

• CBC mode ciphertext block collisions occur at the birthday bound: after 232

blocks have been encrypted under a fixed key for a 64‐bit block.

• Ciphertext block collisions leak some plaintext information:

Ci = Cj implies Ci‐1  Pi = Cj‐1  Pj.

• So, if Pi is known, then Pj can be recovered.

• Leads to an HTTP cookie recovery attack using roughly same attack
resources as are needed in RC4 attacks.

• All data must be in a single TLS connection (single key).

• More details at https://sweet32.info/

115

116

Summary of TLS Record Protocol Attacks

• BEAST (2011)– exploits TLS 1.0’s use of predictable IVs.

• CRIME (and BREACH, TIME) (2012) – exploits TLS and application
support for compression.

• Padding oracle attack (2002, 2003) – exploits TLS 1.0’s use of
distinguishable error messages for padding and MAC failures.

• Lucky 13 (2013) – padding oracle attacks are still possible, even
after application of recommended countermeasures; MEE with
CBC is hard to implement without side channels.

• POODLE (2014) – kind of padding oracle attack for SSL3.0, based
on error messages rather than timing; SSL3.0‐killer.

• RC4 attacks (2013‐2015) – RC4 is not such a good stream cipher
after all.

• Sweet 32 – small block‐size block ciphers in CBC mode start to leak
plaintext after 232 – 235 blocks.

Current Status

• CBC‐mode ciphersuites can be patched against BEAST and
Lucky 13, but their reputation has been damaged by the long
series of attacks.

• Relative performance also an issue (AES‐CBC + HMAC quite slow).

• RC4 is pretty much dead.

• AES‐GCM and AES‐CCM are only available for TLS 1.2, driving
the switchover to TLS 1.2.

• ChaCha20‐Poly1305 for environments where AES‐NI not
available.

117

118

SSL/TLS Versions in Use on the Internet

Source: Amann et al. “Mission Accomplished? HTTPS Security after DigiNotar”,
IMC 2017.118

Attacks on AES‐GCM

• AES‐GCM is tricky to implement securely.

• One issue is avoiding leakage of hash key via side‐channel attack.

• Also needs side‐channel resistant implementation of AES.

• AES‐GCM absolutely must avoid repeating nonces, otherwise
there are well‐known injection and plaintext recovery attacks.

• RFCs do not insist on using SQN as nonce, possibly to support
environments where AES‐GCM processing happens on multiple devices
for a single connection.

• The inevitable happened: some implementations got it wrong or used
bad RNGs.

• See: Nonce Disrespecting Adversaries: Practical Forgery Attacks on GCM
in TLS. (Böck et al, WOOT’16)

119

TLS 1.3 Record Protocol

TLS 1.3 Record Protocol

• TLS 1.3 abandons legacy MEE mode, keeping only AEAD‐based
modes.

• Significant changes to TLS 1.2:
• Header keeps content type (1 byte), version (2 bytes), length (2 bytes).

• But content type is now a dummy value; true content type is now
encrypted.

• Plaintext can be arbitrarily padded to frustrate traffic analysis attacks.

• Explicit, SQN‐based nonce construction.

• Support for AES‐GCM, ChaCha20‐Poly1305 so far.

• No compression.

• No additional data.

• Explicit limits on key usage.
121

Streaming Secure Channels

Streaming Secure Channels

• TLS is not alone in presenting a streaming interface to
applications.

• Also SSH “tunnel mode”, QUIC.

• What security can we hope for from such a channel?

• In Fischlin‐Günther‐Marson‐Paterson (2015), we
provide a systematic study of streaming secure
channels.

• We took an API‐centric view, working top‐down from
application view rather than bottom‐up from AEAD.

123

Streaming Secure Channels

• Defining CCA and integrity notions in the full
streaming setting is non‐trivial!

• Hard part is to define when adversary’s decryption queries
deviate from a sent stream, and from which point on to
suppress decryption oracle outputs

• We develop streaming analogues of IND‐CPA, IND‐
CCA, INT‐PTXT and INT‐CTXT

• We recover an analogue of the classic relation

IND‐CPA + INT‐CTXT  IND‐CCA

124

Streaming Secure Channels

125

c1Enc
m

seqno

c2 c3

• We give a generic construction for a secure streaming channel that validates
the TLS design

• The construction uses AEAD as a component

• Security as streaming channel follows from standard AEAD security
properties

Streaming Secure Channels

126

Enc
m

seqno

< 2len‐1 bitslen lenlen 2len‐1 bits 2len‐1 bits

AEAD with AD = seqno remaining message on flush

• We give a generic construction for a secure streaming channel that validates
the SSL/TLS design

• The construction uses AEAD as a component

• Security as streaming channel follows from standard AEAD security
properties

Streaming Secure Channels

127

• We give a generic construction for a secure streaming channel that validates
the SSL/TLS design

• The construction uses AEAD as a component

• Security as streaming channel follows from standard AEAD security
properties

Enc
m

seqno

< 2len‐1 bitslen lenlen 2len‐1 bits 2len‐1 bits

AEAD with AD = seqno remaining message on flush

Dec

m

seqno

on AEAD failure

Concluding Remarks

Concluding remarks

• Secure channels are one of the most basic cryptographic
applications.

• We do not have formal models for secure channels that
accurately capture all the features expected by implementers.

• TLS as a case study highlights many of the real‐world issues.
• Design in the absence of good theory.

• Legacy and slow adoption of better crypto.

• Weak algorithms were hard to remove.

• Exploitation of novel network‐based, side‐channel attacks.

129129

Concluding Remarks

• Gap between AEAD and desired properties of secure
channels is large.

• AEAD is still a very useful primitive: it’s a good place
for cryptographers to put their abstraction boundary,
and a core component of secure channel
constructions.

• But the programmer’s API may look very different.

• Many interesting and challenging open problems yet
to be worked on.

130

