Attacks and security notions for the TLS

secure channel

LONY ONG ONG ONGONG ONG ONAONPONY.

Kenny Paterson @kennyog
Based on joint work with Martin Albrecht, Jean Paul
Degabriele and Torben Hansen

ZONOZONOZONOZONOTON YAVYA‘?YA@@?A‘GY




Overview

1. TheTLS Record Protocol

2. Anunfortunate sequence of attacks on the TLS
Record Protocol

3. Security modelling for streaming secure channels

4. Concluding remarks
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TLS Protocol Architecture

Record Protocol

TCP




TLS Record Protocol

TLS Record Protocol provides:

Data origin authentication, integrity using a MAC.
Confidentiality using a symmetric encryption algorithm.
Anti-replay using sequence numbers protected by the MAC.

(Optional compression.)

TLS presents a stream-oriented API to applications.

SoTLS may fragment into smaller records or coalesce into larger
records any data supplied by the calling application.

Hence if the calling application wants to deliver “atomic”
messages, then it needs to add its own message delimiters.



TLS Record Protocol: MAC-Encode-Encrypt

SQN || HDR Payload fragment
' Cwac '
|
|
Payload fragment MAC tag Padding
' Enat '
HDR Ciphertext

Ve  HMAC-MD5, HMAC-SHA1, HMAC-SHA256
BERePE  CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

Padding “00” or “01 01” or “02 02 02" or ... or “FF FF....FF’

—




Operation of TLS Record Protocol

« Datafrom layer above is received and partitioned into fragments (max size 214
bytes).

* Optional data compression.
» Default option is no compression.

* (Calculate MAC on sequence number, header fields, and data, and append MAC
to data.

* Pad (if needed by encryption mode), then encrypt.
* Prepend 5-byte header, containing:

* Content type (1 byte, indicating content of record, e.g. handshake message,
application message, etc),

e SSL/TLS version (2 bytes),
* Length of fragment (2 bytes).

Submitto TCP.



Operation of TLS Record Protocol

In-bound processing steps reverses these steps:

1. Receive message, of length specified in HDR.
2. Decrypt.

3. Remove padding.

4. Check MAC.

5. (Decompress payload.)

6. Pass payload to upper layer

(NB: no defragmentation; TLS just provides a stream of fragments to the
application).

Errors can arise from any of decryption, padding removal or MAC checking steps.

All of these are fatal errors in TLS: error message sent and connection is terminated.



AEAD and TLS Record Protocol

Dedicated Authenticated Encryption with Associated Data (AEAD)
algorithms were added in TLS 1.2, along with the MEE construction.

AEAD: single algorithm providing both confidentiality and integrity/data
origin (authentication)

Need not conform to MEE template.
General AEAD interface specified in RFC 5116.

Nonce construction not fully specified; natural choice is to use TLS SQN or
random values.

AES-GCM specified in RFC 5288.
AES-CCM specified in RFC 6655,
ChaCha2o-Poly1305 specified in RFC 7539 and RFC 7905.



TLS Record Protocol Design Decisions

 Stream-oriented.

* Application layer is responsible for demarcating message boundaries
if desired.

* Fragmentation done by Record Protocol when sending, but
defragmentation not done when receiving.

* Most errors are fatal.

* TLSruns over TCP, which is assumed to provide reliable transport.

* Hence any error arising during in-bound processing should be
treated as an attack.

* Session terminated with error message, keys thrown away.

* So DoS attacks are trivial to mount.

* Noretransmission of lost messages by TLS itself.



TLS Record Protocol Design Decisions

* Implicit sequence numbers.

* 8-byte SQN included in MAC calculation, but not sent on the wire as part of
Record Protocol messages.

* Sender and receiver are assumed to maintain local copies of SQN,
incrementing for each message sent/received.

* Any replay, re-ordering or dropping of messages should be detected
through MAC verification failure at receiver.

» MAC verification failure is a fatal error.

* No attempt to hide message/fragment lengths.

* Leadsto fingerprinting attacks (e.g. Pironti-Strub-Bhargavan, INRIA
research report 8067, 2012).

* Made worse by switch to AES-GCM.
* Can be partially addressed by use of variable length padding in CBC mode.



TLS Record Protocol Design Decisions

Use of compression was known in theory to be dangerous.
* Kelsey, FSE'o4.
Choice of MEE is not fully-supported by theory.

* MtE known to be not generically secure (Bellare-Namprempre,
Asiacrypt’oa).

* Krawczyk (Crypto’o1) provides support for MtE when CBC-mode is
used or when stream cipher is used.

* But the analysis assumes:

* Random per message IV, no padding, block-size = MAC tag size for CBC
mode.

*  Stream cipher has outputs that are indistinguishable from random.

* More recent analysis of Namprempre-Rogaway-Shrimpton- (EC'14)
says MtE provides AE if "E" is “tidy".

* TLS'schoice of "E” is not tidy!



TLS Record Protocol Design Decisions

* The factis that suitable theory did not exist at the time TLS
was designed.

» Essentially, we need stateful AEAD security.
* Consensus then was that "MtE" is better than "EtM".

* “Authenticate what you mean to say, not an encrypted version
of it.” —the Horton principle.

* "“Maybe our MAC algorithms are weak, so we should protect
the MAC value by encrypting it.”

* Today, we have better theory, but it's been hard to get it
deployed.

* Because it had to displace what's already been massively
deployed.

* Change has been driven by attacks!



Adoption of AEAD in TLS

89.2% of the Alexa top 135k websites now support TLS 1.2 and hence AEAD.

(Up from 82.6% one year ago, 69.5% two years ago, 42.6% three years ago, 17% four
years ago and 5% five years ago.)

(source: ssl pulse, Dec. 2017)
TLS 1.2 support in browsers:
@ Chrome: since release 30.
@, Firefox: since release 28.

5 |E: since IE11.

Safarl since iOS5 and OS X 10.9.

(source: wikipedia, Nov. 2013)

Stronger, modern AEAD designs are increasingly being used.
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AEAD Usage in TLS: September 2014

Snapshot from ICSI Certificate Notary Project

B TLS RSA_WITH_RC4_128 SHA

B TLS ECDHE_RSA_WITH_AES 128 CBC_S..
TLS_RSA_WITH_RC4_128_MDS

B TLS RSA_WITH_AES 256 CBC_SHA

B TLS ECDHE_ECDSA WITH_AES_128 GC... |(Cmmm—

B TLS_RSA_WITH_AES 128_CBC_SHA 16.3%

B TLS_ECDHE_RSA_WITH_AES_128_GCM_S... |(Cummmm—

Bl TLE_ECDHE_RSA_WITH_RC4_128_SHA

B other

B TLS ECDHE _ECDSA_WITH_AES_128 CBC..

B TLS RSA_WITH_NULL_SHA

B TLS ECDHE_ECDSA WITH_RC4 128 _SHA

B TLS ECDHE_RSA_WITH_AES_ 256 CBC_S...

B TLS DHE_RSA_WITH_AES 128 CBC_SHA

B TLS_ECDHE_RSA_WITH_AES_128_CBC_S..

B TLS_ECDHE_RSA_WITH_AES_256_CBC_S.

Bl TLS_ECDHE_ECDSA_WITH_CHACHA20 P.. |€—— 1.6%

B TLS_DHE_RSA_WITH_AES_256_CBC_SHA

B TLS_ECDH_RSA_WITH_AES_256_CBC_SHA




AEAD Usage in TLS: December 2015

Snapshot from ICSI Certificate Notary Project:

ECDHE_RSA_AES_128_GCM_SHA256
Bl FCDHE ECDSA_AES_128_GCM_SHA256

ECDHE_RSA_AES_256_CBC_SHA384
other

B ECDHE_RSA_AES_256_GCM_SHA384
RSA_RC4_128_MD5S

B ECDHE_RSA_AES_256_CBC_SHA

I ECDHE_RSA_AES_128_CBC_SHA256
RSA_AES_256_CBC_SHA
RSA_AES_128 CBC_SHA

Bl RSA_NULL_SHA256
ECDHE_ECDSA_AES_128_CBC_SHA
RSA_RC4 128 SHA

Total of AES-GCM just below 50%




AEAD Usage in TLS: December 2016

I
Snapshot from ICSI Certificate Notary Project: |

l

ECDHE_RSA_AES_128_GCM_SHA256
Bl ECDHE_RSA_AES_256_GCM_SHA384
ECDHE_ECDSA_AES_128_GCM_SHA256
HA384

B ECDHE_RSA_AES_128 CBC_SHA
ECDHE_RSA_AES_256_CBC_SHA
B RSA_AES_256_CBC_SHA
B RSA_AES_128 CBC_SHA
ECDHE_RSA AES 128 CBC SHA256
RSA_AES_128 GCM_SHA256
B ECDHE_ECDSA CHACHA20 POLY1305 SHA
ECDHE_ECDSA_AES_128 CBC_SHA
ECDHE_ECDSA_AES 256 GCM SHA384

B RSA_AES_256_GCM_SHA384

Total of AES-GCM above 66%




AEAD Usage in TLS: February 2018

Snapshot from ICSI Certificate Notary Project

ECDHE_RSA_AES 128 GCM_SHA256

ECDHE_RSA_AES 256 GCM SHA384

ECDHE_ECDSA_AES_128 GCM_SHA256

ECDHE_RSA_AES_256_CBC_SHA384

I other

ECDHE_ECDSA_AES 256 _GCM_SHA384

RSA_AES 128 GCM SHA256

I ECDHE_RSA_AES 256 _CBC_SHA

B RSA_AES_256_CBC_SHA
RSA_AES 128 CBC _SHA
ECDHE_RSA_AES_128 CBC_SHA256

I ECDHE RSA AES 128 CBC SHA
DH_ANON_AES_256_GCM_SHA384
RSA_AES 256 GCM SHA384

B ECDHE_RSA_CHACHA20_POLY1305_SHA25!

Nearly 80% is now AEAD (AES-GCM), 14% is CBC.
1.1% ChaCha20-Poly1305 (other sources report 10%).
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Overview of TLS Record Protocol attacks

* BEAST (2011)- exploits TLS 1.0's use of predictable IVs.

* CRIME (and BREACH, TIME) (2012) — exploits TLS and
applications support for compression.

* Padding oracle attack (2002, 2003) — exploits TLS 1.0’s use of
distinguishable error messages for padding and MAC failures.

* Lucky 13 (2013) — padding oracle attacks are still possible, even
after application of recommended countermeasures; MEE with
CBCis hard to implement without side channels.

 POODLE (2014) — a special kind of padding oracle attack for
SSL3.0, based on error messages rather than timing; SSL3.o-killer.

* RC4 attacks (2013-2015) — RC4 is not such a good stream cipher
after all.

* Sweet 32 —small block-size block ciphers in CBC mode start to leak
plaintext after 232 — 235 blocks.
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BEAST

IV chaining in SSLv3 and TLS 1.0 CBC mode leads to a chosen-
plaintext distinguishing attack against TLS.

* First observed for CBC mode in general by Rogaway in 1995.

* Application to TLS noted by Dai and Moeller in 2004.

Extended to theoretical plaintext recovery attack by Bard in
2004/2006.

Turned into a practical plaintext recovery attack on HTTP cookies
by Duong and Rizzo in 2011 —the BEAST.

* BEAST = Browser Exploit Against SSL/TLS

* 16-year demonstration that attacks do get better with time.



BEAST — Impact

The BEAST was a major headache for TLS vendors.

* Perceived to be arealistic attack.
* Most client implementations were "stuck” at TLS 1.0.

Best solution: switch to using TLS 1.1 or 1.2.
* Usesrandom IVs, so attack prevented.
* But needs server-side support too.

ForTLS 1.0, various hacks were done:

* Use 1/n-1record splitting in client.
. Now implemented in most but not all (?) browsers.
* Send o-length dummy record ahead of each real record.
*  Breaks some implementations.
*  Orswitch to using RC4?
*  Asrecommended by many expert commentators.
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TLS Record Protocol: MAC-Encode-Encrypt

SQN || HDR Payload
' e '

|
| ,/"_--N\\\
Payload MAC tag ( Padding !
N U4

N Y 4
| Encrypt
HDR Ciphertext

PR  HMAC-MD5, HMAC-SHA1, HMAC-SHA256

BEREBl  CBC-AES128, CBC-AES256, CBC-3DES, RC4-128
Padding “00” or “01 01" or “02 02 02" or ... or “FF FF....FF”

—




Padding Check in TLS

*  We suppose that TLS does a full padding check.

* Sodecryption checks that bytes at the end of the plaintext have one of the
following formats:

00;
01, 01;

02, 02, 02;

FF, FFpurnnn..... FF;

and outputs an error if none of these formats is found.

* NB Other “sanity” checks may also be needed during decryption.



Reminder: Padding Oracles

Padding
Oracle

Valid/Invalid
>

For CBC mode and for certain padding schemes, a padding
oracle can be used to build a decryption oracle!

:



TLS Padding Oracles In Practice?

* InTLS, an error message during decryption can arise from
either a failure of the padding check or a MAC failure.

* A padding oracle attack will produce an error of one type or
the other.

* Padding failure indicates incorrect padding.

* MAC failure indicates correct padding.

* Ifthese errors are distinguishable, then a padding oracle
attack should be possible.



TLS Padding Oracles In Practice?

Good news (for the attacker):

* The error messages arising in TLS 1.0 are different:

« Dbad record mac

« decryption_failed

Bad news:

* Butthe error messages are encrypted, so cannot be seen by
the attacker.

* Andan error of either type is fatal, leading to immediate
termination of the TLS session.



TLS Padding Oracles In Practice?

Canvel et al. [CHVVo03] :

A MAC failure error message will appear on the network later than
a padding failure error message.

Because an implementation would only bother to check the MAC if
the padding is good.

So timing the appearance of error messages might give us the
required padding oracle.

* Evenif the error messages are encrypted!

*  Amplify the timing difference by using long messages.

But the errors are fatal, so it seems the attacker can still only learn
one byte of plaintext, and then with probability only 1/256.



OpenSSL and Padding Oracles

Canvel et al. [CHVVo03]:

* The attacker can still decrypt reliably if a fixed plaintext is repeated in a
fixed location across many TLS sessions.

. e.g. password in login protocol or an HTTP session cookie.

. Modern viewpoint: use BEAST-style Javascript in the browser to generate the
required encryptions.

* The OpenSSL implementation had a detectable timing difference.

. Roughly 2ms difference for long messages (close to 2% byte maximum).

. Enabling recovery of TLS-protected Outlook passwords in about 3 hours.



Padding Oracle Attack Countermeasures?

* RedesignTLS:
* Pad-MAC-Encrypt or Pad-Encrypt-MAC.

* Tooinvasive, did not happen.

* Switchto RC4?

e QOradd afixto ensure uniform errors:

* Check the MAC anyway, even if the padding is bad.

 If attacker can't tell difference between MAC and pad errors, then maybe
TLS’s MEE construction is secure?

* FixincludedinTLS 1.1 and 1.2 specifications.



Padding Oracle Countermeasures, Revisited

From the TLS 1.1 and 1.2 specifications:

...Implementations MUST ensure that record processing time is
essentially the same whether or not the padding is correct.

In general, the best way to do this is to compute the MAC even if the
padding is incorrect, and only then reject the packet.

Compute the MAC on what though?



TLS Record Protocol: MAC-Encode-Encrypt

SQN || HDR

Payload

Payload

= — -
MAC tag Padding |
-

-y
~_-—-----

-

HDR

Ciphertext

Problem is: how to parse plaintext as payload, padding and MAC fields
when the padding is not one of the expected patterns oo, 01 01,... ?



Ensuring Uniform Errors

From the TLS 1.1 and 1.2 specifications:

For instance, if the pad appears to be incorrect, the implementation
might assume a zero-length pad and then compute the MAC.

* This approach was adopted in many implementations,
including OpenSSL, NSS (Chrome, Firefox), BouncyCastle,
OpenlDK, ...

* Otherapproaches possible (GnuTLS).



Ensuring Uniform Errors

... This leaves a small timing channel, since MAC performance

depends to some extent on the size of the data fragment, but it is
not believed to be large enough to be exploitable, due to the large
block size of existing MACs and the small size of the timing signal.



Ensuring Uniform Errors

... This leaves a small timing channel, since MAC performance

depends to some extent on the size of the data fragment, but it is
not believed to be large enough to be exploitable, due to the large
block size of existing MACs and the small size of the timing signal.



Lucky 13: Main Idea

* HMAC computed on SQN || HDR || PAYLOAD.

TLS decryption removes padding and MAC tag to extract PAYLOAD.

 HMAC computation involves adding =g bytes of padding and iteration of hash
compression function, e.g. MD5, SHA-1, SHA-256.

* Running time of HMAC depends on L, the exact byte length of SQN || HDR ||

PAYLOAD:
. L < 55 bytes: 4 compression function calls;
. 56 < L <119: 5 compression function calls;
. 120 < L £183: 6 compression function calls;



Lucky 13 — Plaintext Recovery

v K| R,
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(HMAC-SHA-1 + AES-CB(Q)




Case 1: "01 01" (or longer valid pad)

dy dy di dy
- s ) B

13 +16 + 16 + 10 = 55 bytes 20 bytes




Case 2: "00”

56 bytes 20 bytes




Case 3: Bad padding

20 bytes




Lucky 13 — Plaintext Recovery

The injected ciphertext causes bad padding and/or a bad MAC.

This leads to a TLS error message, which the attacker times.

There is a timing difference between "01 01” case and the other 2 cases.
A single SHA-1 compression function evaluation.
Roughly 500 clock cycles, well below 1ps on a typical processor.
But measurable difference on same host, LAN, or a few hops away.

(Compare with original padding oracle attack: 2ms.)

Detecting the “01 01" case allows last 2 plaintext bytes in the target block C, to
be recovered.

Using the standard CBC algebra: P; @ (.....A,4,) = (....0101).

Attack then extends to all bytes as in a standard padding oracle attack.



Constant Time Decryption for MEE

* Proper constant-time, constant-memory access implementation of MEE
decryption is really needed.

. Challenging to test padding correctness and do sanity checking without
branching on secret data.

* See Adam Langley’s blogpost at:
https://www.imperialviolet.org/2013/02/04/luckythirteen.html
for full details on how Lucky 13 was fixed in OpenSSL and NSS.

* Fix required around 5oo lines of new code.



Lucky 13 — Impact

OpenSSL patched in versions 1.0.1d, 1.0.0k and 0.9.8y, released 05/02/2013.
NSS (Firefox, Chrome) patched in version 3.14.3, released 15/02/2013.
Apple: patched in OS X v10.8.5 (i0OS version tbd).

Opera patched in version 12.13, released 30/01/2013

Oracle released a special critical patch update of JavaSE, 19/02/2013.
BouncyCastle patched in version 1.48, 10/02/2013

Also GnuTLS, PolarSSL, CyaSSL, MatrixSSL,...

Microsoft “determined that the issue had been adequately addressed in
previous modifications to their TLS and DTLS implementation”.

(Full details at: www.isg.rhul.ac.uk/tls/lucky13.html)



Lucky 13 — Lessons

TLS's MAC-Encode-Encrypt construction is hard to implement
securely and hard to prove positive security results about.

* Long history of attacks and fixes.
* Eachfix was the “easiest option at the time”.

* Now reached point where a 500 line patch to OpenSSL was needed to fully
eliminate the Lucky 13 attack.

Better to use an EtM construction from day one, or eat the cost of
switching at the first sign of trouble.

* A conservative approach seems merited for such an important protocol.

* Atthe timeTLS was first designed, EtM versus MtE debate was not so clear cut.
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Exploiting Weak Padding Checks — Moeller Attack

Recall SSL/TLS decryption sequence:
CBC mode decrypt, remove padding, check MAC.

[Moeller, 2002 & 2004]: failure to check padding format leads to a
simple attack recovering the last byte of plaintext from any block.

Assumptions:

* Attacker has a special TLS ciphertext containing a complete block of
padding.

* So MACends on block boundary for this ciphertext.

* Paddingis removed by inspecting last byte only.



Moeller Attack




Moeller Attack

C*

dK -




Moeller Attack

Decryption succeeds if and only if:
C,,® d(C*) = (?7,72,....77, OF)
* Hence attacker can recover last byte of d,(C*) with probability 1/256.

* This enables recovery of last byte of original plaintext P* corresponding to
C*in the CBC stream, by solving system of eqgns:

C.,® d/(C*) = (22,22,....22,0F)
C*,® dC*) = P*
where C*__is the block preceding C* in the stream.
* Hence, inTLS 1.1 and up:

Each uint8 in the padding data vector MUST be filled with the padding
length value. The receiver MUST check this padding....



eﬂﬂegister@

Data Centre Sofiware Neiworks Security Business Hardware Science Bootnotes Video Forums

SECURITY

Truly scary SSL 3.0 vuln to be revealed soon:
sources
So worrying, no one's breathing a word until patch is out

By Darren Pauli, 14 Oct 2014 % Follow - 2,546 followers

2 3 Gird your loins, sysadmins: The Register has learned that news of yet another major
security vulnerability - this time in SSL 3.0 - is probably imminent.

RELATED Maintainers have kept quiet about the vulnerability in the lead-up to a patch release
STORIES expected in in the late European evening, or not far from high noon Pacific Time.

OpenVPN open ; : .
to pre-auth Bash Details of the problem are under wraps due to the severity of the vulnerability.



POODLE = BEAST techniques + Moeller Attack

https://www.openssl.org/~bodo/ssl-poodle.pdf

* InSSLv3, CBC mode encryption uses random padding; only the last
byte is used to remove padding.

* Inother words, you can’t check the padding format!

Repeat:

1. Use Javascriptin the browser to pad HTTP GET requests (as in BEAST),
ensuring that the target cookie byte is placed as last byte of block and
that the MAC field aligns on a block boundary.

2. Do Moeller's attack with that block to recover the cookie byte with
probability 1/256.

Until (all cookie bytes are recovered).



Patching against POODLE?

A patch that does not work: upgrade decryption to do full
padding check and Lucky 13 protection.

* But sender may not use correct padding format (it's not required in
SSLv3).

* Sothis would not be deployable unless ALL clients and servers
upgraded simultaneously.

e Should not use RC4 either (see next section).

* No ciphersuites left!



POODLE and SSL/TLS Fallback

The attack is made worse because of the active version
downgrade attack, aka SSL/TLS falbback.

* An active MITM attacker could always force client and server to downgrade
to SSLvs.

* Because the SSL/TLS version negotiation process is not stateful and was
not cryptographically protected across fallbacks.

* Various countermeasures now exist, but the safest option was to stop
supporting SSLv3.
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TLS Record Protocol: RC4-128

[SONIIHBR|  rayioac

Payload Wi )

HDR Ciphertext

B  HMAC-MD5, HMAC-SHA1, HMAC-SHA256

BEReB} CBC-AES128, CBC-AES256, CBC-3DES(RC4-128



TLS Record Protocol: RC4-128




Use of RC4 in TLS

In the face of the BEAST and Lucky 13 attacks on CBC-based cipher suites in
TLS, switching to RC4 was a recommended mitigation.
(® @auas

RC4 is also fast when AES hardware not available

Use of RC4 in the wild:

ICSI Certificate Notary

-
l I
] Jan. 2013 survey of 16 billion TLS connections:
] ] Approx. 50% protected via RC4 cipher suites

.

Problem: RC4 is known to have statistical weaknesses.



Single-byte Biases in the RC4 Keystream

[Mantin-Shamir 2001]: _

PriZ, = 0] ~ &

[Mironov 2002]:

Described distribution of Z; (bias away from 0, sine-like distribution)

[Maitra-Paul-Sen Gupta 2011]: for 3 < r < 255

Pr(Z, = 0] = 5L + 55 0.242811 < ¢, < 1.337057

[Sen Gupta-Maitra-Paul-Sarkar 2011]:
Pr{Z; =256 — I] > 3z + e [ = keylength



What's Going On Here?

Why were people still using RC4 in half of all TLS connections when we already
knew it was a weak stream cipher?

"The biases are only in the first handful of bytes and they dont encrypt anything
interesting in TLS”.

"The biases are not exploitable in any meaningful scenario”.
"RC4 is fast.”
"I’'m worried about BEAST on CBC mode. Experts say 'use RC4"”
"Google uses it, so it must be OK for my site”.

"There’s no demonstrated attack — show me the plaintext!”



Complete Keystream Byte Distributions

Approach in [ABPPSa3]:

Based on the output from 24> random independent 128-bit RC4 keys, we estimated the
keystream byte distributions for the first 256 bytes

80 144 160 176 192 208 224 240 255 0 16 32 a8 &4 80 9 112 128 144 160 176 192 208 224 240 255
0.,255] Byie value [0,,2551

* Revealed many new biases in the RC4 keystream.

* Some of these were independently discovered by Isobe et al.



Keystream Distribution at
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Keystream Distribution at
Position 2

0.003950

Probability

0.003906

0.003878
0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 255

Byte value



Keystream Distribution at

Position 3

Probability

0.003950

0.003906 “
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Keystream Distribution at

Position 4

Probability

0.003950

0.003906
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Keystream Distribution at

Position 5

Probability
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Keystream Distribution at
Position 6
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Keystream Distribution at
Position 7
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Keystream Distribution at

Position 8

Probability
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Plaintext Recovery for TLS-RC4

* Pretty picture, but where’s the plaintext?

* Using the biased keystream byte distributions, we can
construct a plaintext recovery attack against TLS.

* The attack requires the same plaintext to be encrypted under
many different keys.

Use Javascript in browser as mechanism, cookies as target.

Reusing the BEAST mechanism once more.



Plaintext Recovery Using Keystream Biases
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Success Probability 232 Sessions
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RC4: Subsequent Developments

[ABPPS13]: use Fluhrer-McGrew biases on consecutive keystream bytes to
avoid many connections and target bytes later in the keystream, 234
encryptions, 2000 hours.

RFC 7465 “Prohibiting RC4 cipher suites”, Jan. 2015:

This document requires that TLS clients and servers never
negotiate the use of RC4 cipher suites.

[GPVa5]: refinement of [ABPPS13] attacks focussed on password recovery from
early in the keystream: 60% success rate with 226 encryptions, 350 hours.

[VP15]: use of Mantin biases to recover cookies: 94% success rate with about 23°
encryptions, 75 hours.

September 1%, 2015: Microsoft, Google, Mozilla all announce that Rc4 will be
fully disabled in their browsers in early 2016. (This eventually happened!).

Today: Almost no RCy traffic from browsers, some from legacy equipment.
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Sweet 32 (Bhargavan-Leurent, CCS'16)

* Sweet 32 applies to SSL/TLS cipher suites using 64-bit block ciphers (DES,
triple DES).

* (CBCmode ciphertext block collisions occur at the birthday bound: after 232
blocks have been encrypted under a fixed key for a 64-bit block.

* Ciphertext block collisions leak some plaintext information:
C; = C implies C,,®P,=C,®P,
* So, if P; is known, then P, can be recovered.

* Leadstoan HTTP cookie recovery attack using roughly same attack
resources as are needed in RC4 attacks.

* Alldata must bein a single TLS connection (single key).

* More details at https://sweet32.info/




Summary of TLS Record Protocol Attacks

* BEAST (2011)- exploits TLS 1.0's use of predictable IVs.

* CRIME (and BREACH, TIME) (2012) — exploits TLS and application
support for compression.

* Padding oracle attack (2002, 2003) — exploits TLS 1.0’s use of
distinguishable error messages for padding and MAC failures.

* Lucky 13 (2013) — padding oracle attacks are still possible, even
after application of recommended countermeasures; MEE with
CBCis hard to implement without side channels.

* POODLE (2014) — kind of padding oracle attack for SSL3.0, based
on error messages rather than timing; SSL3.o-killer.

* RC4 attacks (2013-2015) — RC4 is not such a good stream cipher
after all.

* Sweet 32 —small block-size block ciphers in CBC mode start to leak
plaintext after 232 — 235 blocks.



Current Status

* CBC-mode ciphersuites can be patched against BEAST and
Lucky 13, but their reputation has been damaged by the long
series of attacks.

* Relative performance also an issue (AES-CBC + HMAC quite slow).
* RC4 is pretty much dead.

* AES-GCM and AES-CCM are only available for TLS 1.2, driving
the switchoverto TLS 1.2.

* ChaCha2o-Poly1305 for environments where AES-NI not
available.
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Attacks on AES-GCM

* AES-GCMiis tricky to implement securely.

* Oneissue is avoiding leakage of hash key via side-channel attack.

* Also needs side-channel resistant implementation of AES.

* AES-GCM absolutely must avoid repeating nonces, otherwise
there are well-known injection and plaintext recovery attacks.

* RFCsdo notinsist on using SQN as nonce, possibly to support
environments where AES-GCM processing happens on multiple devices
for a single connection.

* The inevitable happened: some implementations got it wrong or used
bad RNGs.

* See: Nonce Disrespecting Adversaries: Practical Forgery Attacks on GCM
inTLS. (Bock et al, WOOT'16)
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TLS 1.3 Record Protocol

* TLS 1.3 abandons legacy MEE mode, keeping only AEAD-based
modes.

* Significant changes to TLS 1.2:

121

Header keeps content type (2 byte), version (2 bytes), length (2 bytes).

But content type is now a dummy value; true content type is now
encrypted.

Plaintext can be arbitrarily padded to frustrate traffic analysis attacks.
Explicit, SQN-based nonce construction.

Support for AES-GCM, ChaCha2o-Poly1305 so far.

No compression.

No additional data.

Explicit limits on key usage.
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Streaming Secure Channels

* TLS is not alone in presenting a streaming interface to
applications.

* Also SSH “tunnel mode”, QUIC.
* What security can we hope for from such a channel?

* In Fischlin-GUnther-Marson-Paterson (2015), we
provide a systematic study of streaming secure
channels.

* We took an API-centric view, working top-down from
application view rather than bottom-up from AEAD.



Streaming Secure Channels

* Defining CCA and integrity notions in the full
streaming setting is non-trivial!

* Hard partis to define when adversary’s decryption queries
deviate from a sent stream, and from which point on to
suppress decryption oracle outputs

* We develop streaming analogues of IND-CPA, IND-
CCA, INT-PTXT and INT-CTXT

* We recover an analogue of the classic relation
IND-CPA + INT-CTXT =» IND-CCA



Streaming Secure Channels

* We give a generic construction for a secure streaming channel that validates
the TLS design

* The construction uses AEAD as a component

* Security as streaming channel follows from standard AEAD security
properties

Enc C

seqno



Streaming Secure Channels

* We give a generic construction for a secure streaming channel that validates
the SSL/TLS design

* The construction uses AEAD as a component

* Security as streaming channel follows from standard AEAD security

properties
m .
Enc len § 2'*M-abits | | len i 2'n-1bits| | len i< 2'n-1 bits
seqno . 7‘ 7‘
AEAD with AD = seqgno remaining message on flush



Streaming Secure Channels

* We give a generic construction for a secure streaming channel that validates
the SSL/TLS design

* The construction uses AEAD as a component

* Security as streaming channel follows from standard AEAD security

properties
m
m .
Enc len | 2'e"-1 bits len i 2'en-1 bits || | len i< 2len-1 bits Dec
seqno _ 7‘ 7‘ seqno |
AEAD with AD = seqgno remaining message on flush 7\

on AEAD failure
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Concluding remarks

* Secure channels are one of the most basic cryptographic
applications.

* We do not have formal models for secure channels that
accurately capture all the features expected by implementers.

* TLS as a case study highlights many of the real-world issues.
* Designinthe absence of good theory.
* Legacy and slow adoption of better crypto.
* Weak algorithms were hard to remove.

* Exploitation of novel network-based, side-channel attacks.



Concluding Remarks

* Gap between AEAD and desired properties of secure
channels is large.

* AEAD is still a very useful primitive: it's a good place
for cryptographers to put their abstraction boundary,
and a core component of secure channel
constructions.

* But the programmer’s APl may look very different.
* Many interesting and challenging open problems yet

to be worked on.
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