Attacks and security notions for the SSH

secure channel

LONY ONG ONG ONGONG ONG ONAONPONY.

Kenny Paterson @kennyog
Based on joint work with Martin Albrecht, Jean Paul
Degabriele and Torben Hansen

ZONOZONOZONOZONOTON YAVYA‘?YA@@?A‘GY

Overview

1. Introducing SSH
2. SSH measurement study

3. Anunfortunate sequence of attacks on CBC-mode in
OpenSSH

4. Security models for the SSH secure channel

5. Security analysis of other SSH and OpenSSH modes
—CTR, ChaChaPoly, gEtM, AES-GCM

6. Better security for SSH: InterMAC

4» ¢
%*?v
,;,a.,» 5
4»4»

o8
Introducing SSH and related work

B BB 8 BR

ﬁeeﬁe&eﬁeﬁee‘e ,.36“9

0 ON *‘
“' D
2T /\/\ ‘

Introduction to SSH

Secure Shell or SSH is a network protocol that allows data to
be exchanged using a secure channel between two
networked devices. Used primarily on Linux and Unix based
systems to access shell accounts, SSH was designed as a
replacement for TELNET and other insecure remote shells,
which send information, notably passwords, in plaintext,
leaving them open for interception. The encryption used by
SSH provides confidentiality and integrity of data over
an insecure network, such as the Internet.

— Wikipedia

SSH Binary Packet Protocol

s

Sequence Packet Pad
Number 4 Length 4| Len 1

Payload Padding 4

MAC tag

e Stateful Encode-then-E&M construction

* Packet length field measures the size of the packet: |PadLen|+ |Payload| + |Padding|.
* RFC 4253 (2006): various block ciphers in CBC mode (with chained IV) and RC4.
* RFC 4344 (2006): added CTR mode for the corresponding block ciphers.

Timeline of related work on SSH BPP

2002.

* Formal security analysis of SSH BPP by Bellare, Kohno and Namprempre
[BKNo2]: introduce stateful security notions for symmetric encryption and
proved SSH-CTR and SSH-CBC variants (w/o IV chaining) secure.

20009.

* Albrecht, Paterson and Watson [APWog] discover a plaintext-recovery attack
against SSH in CBC mode.

* The attack exploits fragmented delivery in TCP/IP, and works on all CBC
variants considered in [BKNo2].

* The then leading implementation was OpenSSH (reported 80% of servers);
OpenSSH team release a patch in version 5.2 to stop the specific attack.

Timeline of related work on SSH BPP

2010.

* The [APWog] attack highlights deficiencies in the [BKNo2] security model.
* Paterson and Watson [PW10] prove SSH-CTR secure in an extended security model
that allows adversary to deliver fragmented ciphertexts.

2012.

* Boldyreva, Degabriele, Paterson and Stam [BDPS12] study ciphertext fragmentation
more generally, addressing limitations in the [PW10] model, introducing IND-CFA
security.

* [BDPSa2] also considers boundary hiding and resistance to a special type of denial
of service attack as additional security requirements.

4» ¢
o o‘«b’ (
4»“'4»"

°¢

IR R R R

ﬁeeﬁe&eﬁeﬁee‘e ,.36“9

SSH measurement study

* In [ADHP16], we performed a measurement study of SSH
deployment.

* We conducted two complete IPv4 address space scans in Nov/Dec
2015 and Jan 2016 using ZGrab/Zmap.

* Grabbing banners and SSH servers’ preferred algorithms.

* Actual cipher used in a given SSH connection depends on client and server
preferences.

* Roughly 224 servers found in each scan.

* Nmap fingerprinting suggests mostly embedded routers and firewall
devices.

* Data available at:

https://bitbucket.org/malb/a-surfeit-of-ssh-cipher-suites/overview

SSH versions

software

scan 201512

scan 201601

dropbear_2014.66
OpenS5H_5.3
OpenSSH_6.6.1pl
OpenSSH_6.0pl
OpenSSH_5.9pl
dropbear_2014.63
dropbear_0.51
dropbear_2011.54
ROSS5SH
OpenSSH_6.6.1
dropbear_0.46
OpenSSH_5.5pl
OpenSSH_6.7pl
OpenSSH_6.2
dropbear_2013.58
dropbear_0.53
dropbear_0.52
OpenSSH
OpenSS5SH_5.8
OpenSSH_5.1
OpenSSH_5.3pl
OpenSSH_7.1

7,229,491
9,108,738
1,198,987
554,295
467,899
422,764
403,923
383,575
345,916
338,787
301,913
262,367
261,867
955,088
236,409
917,970
132,668
110,602
88,258
86,338
84,559
83,793

(42.0%)
(12.3%)
(7.0%)
(3.2%)
(2.7%)
(2.5%)
(2.3%)
(2.2%)
(2.0%)
(2.0%)
(1.8%)
(1.5%)
(1.5%)
(1.5%)
(1.4%)
(1.3%)
(0.8%)
(0.6%)
(0.5%)
(0.5%)
(0.5%)
(0.5%)

8,334,758
2,133,772
1,124,914
573,634
500,975
197,353
434,839
64,666
333,992
252,856
335,425
272,990
213,843
288,710
249 284
213,670
136,196
108,520

SSH versions

software scan 201512 scan 201601

bear 2014.66
OpenSSH_5.3 2,108,738 (12.3%) 2,133,772 (12.0%)
OpenSSH_6.6.1pl 1,198,987 1,124,914 (6.3%)
OpenSSH_6.0pl 5 5 573,634 :
\ OpenSSH_5.9pl1 000,975
. dropbear 2014,.63 2 422 78)

ROS5SH

OpenSSH_6.6.1 338, 787

GpenSSH 5.5pl 262,367
OpenSSH_6.7pl 261,867
DpenSSH 6.2 255,088

272,99
213,84:
288,710

draphear g.57
OpenSSH
OpenSS5SH_5.8
OpenSSH_5.1
OpenSSH_5.3pl
OpenSSH_7.1

Iiil

The state of SSH today: SSH versions

12

software scan 2015-12 scan 2016-01
dropbear_2014.66 7,229,491 (42.0%) 8,334,758 {4?.[1%)

dropbear_ 2014. 63 422,764 (2.5%) 197,353

(1.1%)

dropbear_0.51 403,923 (2.3%) 434,839 (2.5%)
dropbear_2011.54 383,575 (2.2%) 64,666 (0.4%)
ROSSSH 345,916 (2.0%) 333,092 (1.9%)

dropbear_ 0.46
@penSSH 5. Spi’

dropbear_2013.58 936,409
dropbear_0.53 217,970
d pbear_ﬂ .52 32,66

Openseld 5. &

OpentSsH 5. 1

SSH versions

* Dropbear dominates over OpenSSH.

* Long tail of old software versions.

* Most popular version of OpenSSH was version 5.3, released Oct 2009
(current version is 7.5).

* Determined by major Linux distros?

* Non-negligible percentage of Dropbear and OpenSSH servers
were potentially still vulnerable to the 2009 attack.

* 8.4% for Dropbear.

OpenSSH preferred algorithms

encryption and mac algorithm count

hmac-mdb

aeslZ28-ctr

|
ezl 28-ctr +
aesl2B-ctr + u

|

aesl28-ctr + hmac-shal

68,027 (1.01%)
des + hmac-md5)

40,418

~F hmac-shaZ-512 :
aesl28-cbec + hmac-shal 11,082
aesl28-ctr + hmac-ripemdlé&0 10,621

OpenSSH preferred algorithms (““Q”’=“@openssh.com”)

Lots of diversity (155 different combinations).

CTR dominates, followed by CBC, surprising amount of EtM.
ChaCha2o-Poly1305 on the rise? (became default in OpenSSH 6.9).
Small amount of GCM.

Dropbear preferred algorithms

encryption and mac algorithm count
aesl28-ctr + hmac-shal-96 8,724,863 (90.44%)
aesl28-cbe + hmac-shal-96 478,181 (4.96%)
3des-cbe + hmac-shal 321,492 (3.33%)
aesl28-ctr + hmac-shal 62,465 (0.65%)
aesl28-ctr + hmac-sha2-256 36,150 (0.37%)
aesl28-cbec + hmac-shal 14,477 (0.15%)

Dropbear preferred algorithms

* Less diversity than OpenSSH.
* (TR also dominates, followed by CBC.
* No "exotic” options.

* AllCBC modes unpatched against variant of 2009 attack (8.4%).

4»«»
«.,»
4»

°¢

An unfortunate sequence of attacks on CBC
mode in OpenSSH

IR R R R

ﬁeeﬁe&eﬁeﬁee‘e ,.36“9

SSH Binary Packet Protocol

T
| |
Sequence Packet Pad :
Number 4 Length 4| Len 1 Payload Padding >4

MAC tag

How would you perform decryption for an incoming sequence
of ciphertext fragments?

The [APWog] attack (simplified)

* Decryption in OpenSSH CBC mode (prior to 5.2):

Use a buffer to hold the incoming sequence of ciphertext fragments.
Decrypt the fragments block-by-block as they arrive.

4-byte packet length field LF is obtained from the first block of the first
fragment to be received.

Continue to buffer+decrypt until a total of LF+|MAC| bytes have been
received.

Verify the MAC on SQN || PTXT (with connection termination and error
message if MAC verification fails).

Breaking CBC mode in SSH [APWog]

Cis C ~~_| Target ciphertext
| block from stream

dg

v

P

Breaking CBC mode in SSH [APWog]

Ci* Inj
ject target
\ block as first block of

new ciphertext!

Breaking CBC mode in SSH [APWog]

\Y; o
|

Treated as length field

Breaking CBC mode in SSH [APWog]

IV CI* R R
| I
dy dy dy
. > (D

Breaking CBC mode in SSH [APWog]

\Y o R R
I I
dy dy dy
> > D

MAC tag

Once enough data has arrived, the receiver will get what it thinks is the

MAC tag
— The MAC verification will fail with overwhelming probability
— So the connection is terminated (with an error message)

Question: How much data is "enough” so that the receiver decides to

check the MAC?
Answer: whatever is specified in the length field: .

Breaking CBC mode in SSH [APWog]

IV Ci* Ci-l* Ci*
I I

dy > dy

v

* Knowing IV and 32 bits of P, the attacker can now recover
32 bits of the target plaintext block P,

. ®V]y .= | |®Cs s

The [APWog] attack (less simplified)

* OpenSSHs.1 actually performs two sanity checks on the
length field when decrypting the first ciphertext block:

* Check1:5<LF<2%
* Check 2: total length (LF+4) is a multiple of the block size:
LF +4 mod BL = o.

* Each check produces a different error message on the
network, distinguishable by attacker.

* If both checks pass, then OpenSSH waits for more bytes,
then performs MAC check, resulting in a third distinct
error message.

* The different error messages allow up to 32 bits of
plaintext to be recovered with probability 2-8.

OpenSSH 5.2 patch against [APWog] attack

Sanity checks:

5<LF<2¥® —= FAIL — ssh2_msg<disconnect
LF+4modBL=0

1 , Wait until 228 bytes have arrived,
PASS then check a MAC on 228 bytes.

}

Wait for LF+|MAC| bytes

- — FAIL — "corrup AC on input”

, Wait until 228 bytes have arrived,
then check a MAC on 2 bytes.

No error message is sent until 228 bytes of ciphertext have arrived.

Is this a good patch?

OpenSSH 5.2 patch against [APWog] attack

Sanity checks:

5<LF<2¥® —= FAIL — ssh2_msg<disconnect
LF+4modBL=0

1 , Wait until 228 bytes have arrived,
PASS then check a MAC on 228 bytes.
1 MAC on 28 bytes

Wait for LF+|MAC| bytes

- — FAIL — "corrup AC on input”

MACon ~LF bytes+ _, Wait until 2*8 bytes have arrived,
MAC on 28 bytes then check a MAC on 28 bytes.

No error message is sent until 228 bytes of ciphertext have arrived.

[ADHP16] attack against the OpenSSH 5.2 patch

»
>

2*° bytes (quickly)

Time { MAC error

Y

y

O Qd)t,,

MAC on ~LF bytes + MAC on 28 bytes
MAC on 28 bytes Sanity check FAIL
Sanity check PASS

 Attacker can distinguish PASS/FAIL conditions, leaking 18 bits of plaintext.
* With careful timing, attacker can recover ~30 bits of plaintext.

OpenSSH 7.3 patch against [ADHP16] attack

Sanity

checks:5 < LF — FAIL — ssh2_m3sg<disconnect
< 218

LF + ¢4 modlBL =0
—, Wait until 2*8 bytes have arrived,

PASS then check a MAC on 228 bytes.

1 MAC on 28 bytes
Wait for LF+|MAC| bytes

- — FAIL — "corrup AC on input”

MAC on ~LF bytes + _, Waituntil 2 ave arrived,
MAC on 28 - LF bytes then cheeka MA 8 bytes.

_, Wait until 228 bytes have arrived,
then check a MAC on 28 - LF bytes.

So is this a good patch?

Attacking the OpenSSH 7.3 patched patch

MAC on ~LF bytes|+ MAC on|2® bytes
MAC on|2%® - LF bytes| «Sanity check FAILY

Sanity check PASS _

| wonder if anyone noticed?

i M‘“
6 ‘ | think we got away with it!

i =

yf: 1 bt

L' qut ai{

’!1 u! ail .
o Q“%’ri é"j{ -

Disclosure of the attacks

* We first notified the OpenSSH team of the attack on the patch for
the [APWog] attack on 5/5/2016.

* They first set of countermeasures in OpenSSH 7.3 (released
1/8/2016).

* We then notified OpenSSH of the new attack on 15/12/2016, along
with some other, more subtle byte counting issues.

* These were partly addressed in OpenSSH 7.5 (released 20/3/2017).

* Butseveral residual issues remain unpatched, including the final
attack.

* Indefence of OpenSSH:

* OpenSSH has steadily been deprecating old algorithms and modes.
* For example, CBC mode was already disabled by default in OpenSSH

6.7.

“'I:
; 4» 4»

*“

Security analysis of other SSH and OpenSSH modes —
CTR, getM, AES-GCM, ChaCha2oPoly1305

AR A R
R R R R R

.3€.b€‘9€.b€.b€.b€.3€.b ,.36..3

OpenSSH encryption modes

A number of new schemes have been introduced in OpenSSH
since [APWog9]:

* AES-GCM: since v6.2; length field not encrypted but is instead
treated as associated data.

* generic Encrypt-then-MAC (gEtM): since v6.2; overrides native

E&M processing; length field not encrypted but protected by
MAC.

* ChaCha2o-Poly13o5@openssh.com: since v6.5 and promoted
to default in v6.9; reintroduces encryption of length field.

Binary Packet Protocol native E&M construction

s

Sequence Packet Pad
Number 4 Length 4| Len 1

Payload Padding 4

MAC tag

Binary Packet Protocol generic EtM construction

Sequence Packet Pad
Number 4 Length 4| Len 1

Payload Padding 4

Packet
Length

MAC tag

 Stateful Encode-then-EtM construction.

e AES-GCM works similarly.

* Note packet length field in the clear: construction gives up on hiding packet
lengths.

e (Code =documentation.

Binary Packet Protocol generic EtM security issue

(mac &8& mac->enabled &8 mac->etm) {
((r ac, S ->p_read.segnr, e

(mac && mac->enabled) {
(Imac->etm) ==

(

* Sequence: compute MAC, then decrypt, then check MAC.
* Issue arises because of retrofitting gEtM in legacy E&M code.

* No concrete attack, but dangerous to decrypt unauthenticated ciphertext (cf.
padding oracle attacks).

* Addressed in OpenSSH 7.3.

ChaChaz2o-Poly1305@0penssh.com

SQN Packet Pad
4 Length 4| Len 1

Payload

Padding 4

[SQN],,,Blk= [SQN],,.Bl

0256

[SQNJe4,BIK=IC

poly

e ChaCha20-Poly1305@openssh.com: since OpenSSH 6.5 and promoted to default in

v6.9; reintroduces encryption of length field.

* OpenSSH developers seem to care a lot about hiding packet lengths!

Security analysis from [ADHP16]

* We used the framework of [BDPS12] for symmetric
encryption schemes supporting ciphertext fragmentation to
analyse the security of these schemes.

* We identified and fixed a technical issue in the IND-sfCFA
confidentiality definition from [BDPS12].

* We introduced a matching notion of ciphertext integrity, INT-
sfCTXT, which was not considered in [BDPS12].

Symmetric Schemes supporting ciphertext

fragmentation: A flavour of the formal definitions

* [BDPSa12] introduced a class of symmetric encryption (SE)
schemes supporting ciphertext fragmentation.

* KGen: selects key K and sets initial encryption and decryption
states o, T,.

* Enc: takes complete plaintext and state as input and produces
corresponding ciphertext and an updated state:

(c,0') «— Enc(K,m,o)

* Dec: takes arbitrary bit-strings (and state) as input, and
produces bit-strings from (f0,1}" U {P}uS_,,)" X2
* S, :setofpossible error symbols arising during decryption.

* P:adistinguished “end of message” symbol.

* J:state space of decryption algorithm.

Correctness for SE schemes supporting fragmentation

* Informally: "Decryption works properly across fragmented and
concatenated ciphertexts”.

* Formally, for any sequence of calls to Enc:
(c, o) «— Enc(K,m,o0..) (fori=1,...,1)
and any sequence of ciphertext fragments:
f, f f

/ "2/ "I "n/

if ¢, ||c,||-. || c.isaprefixoff ||f,]|..-|| f,, and
(m’,) <« Dec(K,f,t._) (fori=z,...,n)
then

m,Pm,P ... m,Pisaprefixof m’, |[m’, || ... || m

I/
n

(NB other subtly different correctness definitions are possible!)

Security for SE schemes supporting ciphertext
fragmentation

* Confidentiality and integrity notions extend those of [BKNo2]
for stateful setting.

* INDsf-CFA: indistinguishability of encryptions under a stateful,
chosen fragment attack.

* Adversary has a reqular encryption oracle, called on equal-
length message pairs (m_,m.).

* Adversary has a decryption oracle accepting a sequence of
fragmentsf, f,,... asinput.

1’ 2,--

* Decryption oracle suppresses output until sequence ‘goes out
of sync’ with output of encryption oracle.

Security for SE schemes supporting ciphertext

fragmentation [ADHP16]

alg. INI

sync < true
1+ 0,70
C+[],M « []
Fee M ¢
b« {0,1}
(K,o,0) «+ K

return

alg. LR(b, mo, m1)

alg. DEC(f)

if |mg| # |m,| return ¢
(e,0) + Ex(myp, 0)

i+ 1+ 1,C[i] «c

M[i] my || §

return c

alg. ENC(m)
(e,0) + Ex(m, o)
i+ 14+ 1,C[i] + ¢
Mli] < m || §

return c

(m, o) + Dk (f,0)
F«F|fM M]|m
if sync = true
j+ min({n|C[l...n] £ F} U {i})
if F<CI[l...j]
m 4 €
else
m+— M % M[1...5—1]
ifC[l...5] 2 F
m «— M' % MJ1...j]
if m+#£e
sync < false

return m

Security analysis from [ADHP16]

CBC
fixed-CBC
CTR
fgEtM
AES-GCM
ChaCha20-Poly1305

Security comparison of SSH AE modes

Additional goals from [BDPS12]:
* BH-CPA (passive adversary) — boundary hiding for passive attackers.
* BH-sfCFA (active adversary) — boundary hiding for active attackers.

* n-DOS-sfCFA: decryption must produce some output (plaintext or error) after
receiving at most an n-bit sequence of fragments chosen by adversary.

oo
.%....

e

04:‘, :

6

o BRI

IR R R R

ﬁeeﬁe&eﬁeﬁee‘e ,.36“9

InterMAC

An encryption scheme proposed in [BDPSz22].
Parameterised by a positive integer N (the chunk length).

Satisfies all 5 security notions:
IND-sfCFA, IND-sfCTF, BH-CPA, BH-sfCFA, (N + |[MAC|)-DOS-sfCFA.

Applies a generic EtM construction to chunks of data,
incorporating additional metadata in the MAC computation.

Simple, easy to analyse construction; advanced security
properties are intuitively obvious.

Small N: good DoS protection, but larger bandwidth overhead.

Idea: refine and implement InterMAC in OpenSSH to obtain
stronger security than is currently available.

InterMAC

Payload

N-1

| N-1
o)

ChunkCTR | ©

Msg CTR

-
N

l

G

InterMAC: From Theory to Practice

* Use byte-oriented rather than bit-oriented format.

* Abandon underlying SSH packet format (so no length field, no
padding byte, no random padding).

* Need some kind of plaintext padding (length not usually a multiple of
N-1!): variant of ABYTE padding.

* Replace EtM with nonce-based AEAD, e.qg. AES-GCM or ChaCha2o-
Poly130s.

* Chunk and message counter then become Associated Data, or are
used to construct the nonce.

* We choose the latter.

InterMACIib and OpenSSH

* C-implementation of InterMAC.

* Aim is to make the library easy to use for a
developer.

* API:im_initialise, im_encrypt, im_decrypt. 0

* Message counter and nonce management done by
the library. |

* Currently supports ChaCha-Poly and AES-GCM.

* Easy to extend with other AEAD schemes.

* POCintegration into OpenSSH (v7.4).

* SSH InterMAC cipher suites: im-aes128-gcm-N,
im-chacha-poly-N.

AWS > AWS
London US-Oregon

Throughput (100MB file)

MB/s

AWS SCP__| AWS
London US-Oregon

Throughput (100MB file)

Total encrypted bytes
im-chacha-poly-4096

im-aes128-gcm-4096
im-chacha-poly-2048
im-aes128-gcm-2048
im-chacha-poly-1024
im-aesl28-gcm-1024
im-chacha-poly-512
im-aesl28-gcm-512
im-chacha-poly-256
im-aes128-gcm-256
im-chacha-poly-128
im-aes128-gcm-128
aesl28-gcm@openssh.com
chacha20-polyl305@openssh.com
aesl28-ctr+hmac-ripemdl60
aesl28-cbc+hmac-shal
aes256-ctr+hmac-sha2-512
3des-cbc+hmac-md5
aesl28-ctr+hmac-shal
aesl28-ctr+umac-64-etm@openssh.com

aesl28-ctr+hmac-md5-etm@openssh.com

aesl28-ctr+hmac-md>5
0

N
o
EY
o
o)
o

=

@
0]
o

a X
“'
: a

<3

*‘ <

IR R R R

ﬁeeﬁe&eﬁeﬁee‘e ,.36“9

Concluding Remarks

* We have developed a deeper understanding of the diverse set
of encryption modes available in (Open)SSH.

* Measurement study, new attacks on CBC mode, security analysis
* Formal modelling of security for the goals targeted by SSH.

* None of the schemes in use possesses all the security
properties desirable for SSH.

* Boundary-hiding and DoS-resistance not achieved.
* Yet such schemes do exist, e.g. InterMAC from [BDPS12].

* In our current work, we are developing and prototyping
efficient, provably secure alternatives that have all the desired
properties.

