
Bar‐IlanWinter School
Lecture 4
Symmetric crypto for secure channels

Kenny Paterson @kennyog

Overview

• Secure channels and their properties

• A glance at the literature

• AEAD

• AEAD ≠ secure channel

• Building better models

• Closing remarks

2

Secure channels and their properties

Security properties

We assume that symmetric keys are already in place
(see days 1‐4!).

We then seek:

• Confidentiality – privacy for data

• Integrity – detection of data modification

• Authenticity – assurance concerning the source of
data

44

Some less obvious security properties

• Anti‐replay
• Detection that messages have been repeated.

• Detection of deletion (and truncation)
• Detection that messages or parts of messages have been deleted by the

adversary or dropped by the network.

• Detection of re‐0rdering
• Ensuring that the relative order of messages in each direction on the secure

channel is preserved.

• Possibly performing buffering of messages received out of order and re‐
ordering, in the event of violation.

• Possibly maintaining “correct interleaving” for messages in both directions.

• Prevention of traffic‐analysis.
• Using traffic padding and length‐hiding techniques.

• Switch from CBC‐mode to AES‐GCM makes traffic analysis trivial in TLS!

55

Possible functionality requirements

• Fast and low‐memory requirements.
• Performance may be heavily hardware‐dependent.

• May have different algorithms for different platforms,
e.g. AES on Intel CPUs, ChaCha20 on mobile CPUs.

• On‐line/parallelisable crypto‐operations

• IPR‐friendly
• This issue has slowed down adoption of many

otherwise good algorithms, e.g. OCB.

• Easy to implement
• Without introducing any side‐channels.

66

Additional requirements

• We need a clean and well‐defined API.

• Because the reality is that our secure channel protocol
will probably be used blindly by a security‐naïve
developer.

• Developers want to “open” and “close” secure
channels, and issue “send” and “recv” commands.

• They’d like to simply replace TCP with a “secure TCP”
having the same API.

• Or to just have a simple API for wrapping atomic
messages securely.

77

Additional API‐driven requirements

• Does the channel provide a stream‐based functionality or a
message‐oriented functionality? (TCP‐like or UDP‐like)

• Does the channel accept messages of arbitrary length and
perform its own fragmentation and reassembly, or is there a
maximum message length?

• Does the channel offer data compression?

• How is error handling performed? Is a single error fatal,
leading to tear‐down of channel, or is the channel tolerant of
errors?

• How are these errors signalled to the calling application? How
should the programmer handle them?

88

Additional API‐driven requirements

• Does the secure channel itself handle retransmissions if they
are needed? (QUIC)

• Or is this left up to the application using the secure channel if
it desires to have it? (DTLS, IPsec, WEP/WPA/WPA2)

• Or is it assumed to be handled by the underlying network
transport? (SSH, TLS)

• These are design choices that all impact on security
• They are not well‐reflected in the basic security definitions

for symmetric encryption

99

What does the literature tell us?

• Shoup (http://shoup.net/papers/skey.pdf, 1999):
• 2 pages on secure sessions in a 50 page+ paper on key exchange.
• Simulation‐based rather than game‐based indistinguishability

notions.
• “It should be simple to fill in the details…”

• Canetti (eprint 2000/067):
• The Universal Composability framework.
• Heavy use of ideal secure channels.
• Impractical construction of secure channels via one‐time use of

public keys and ideal authenticated channels.
• Needs non‐committing encryption to achieve UC against adaptive

corruptions.

• Canetti‐Krawczyk (eprint 2001/040):
• Basic definition for secure channels using game‐based,

indistinguishability notion.
• Construction via “EtM”.1010

What does the literature tell us?

• Canetti‐Krawczyk (eprint 2002/059):
• UC notion for secure channels, realization using EtM.

• Bellare‐Kohno‐Namprempre (CCS’o2):
• Game‐based stateful security notions for Authenticated

Encryption (AE).

• Capturing reordering and dropping attacks in addition to the
usual CIA attacks.

• Kohno‐Palacio‐Black (eprint 2003/177):
• Explicit consideration of reordering, replay, packet drop issues in

game‐based setting.

• Different models allowing/denying different combinations of
features.

1111

What does the literature tell us?

• Maurer‐Tackmann (CCS’10)
• Secure channels in the “constructive cryptography”

framework.

• Paterson‐Ristenpart‐Shrimpton (Asiacrypt’11)
• LH‐AEAD notion.

• Incorporating basic length‐hiding into AEAD notions.

• Jager‐Kohlar‐Shäge‐Schwenk (Crypto’12)
• ACCE: secure key establishment and channel definition

built on LH‐AEAD + key exchange.

• Monolithic and hard to work with, but justified for
analysing TLS.

• Used in Krawczyk‐Paterson‐Wee (Crypto’13) to analyse
several TLS modes.

1212

What does the literature tell us?

• Boldyeva‐Degabriele‐Paterson‐Stam (EC’12); Albrecht‐
Degabriele‐Hansen‐Paterson (CCS’16):

• Development of “symmetric encryption supporting
fragmented decryption” framework, capturing SSH’s
specific security goals.

• Analysis of SSH’s constructions.

• Fischlin‐Günther‐Marson‐Paterson (C’15):
• Development of streaming secure channels framework,

capturing TLS security goals, from the API perspective.

• Delignat‐Lavaud et al. (IEEE S&P’17):
• Analysis of TLS 1.3 Record Protocol (as was) from a

streaming perspective.

1313

Summary of the literature

• Lots of literature on AE/AEAD.

• Much less on the more complex secure channel
primitive.

• Current models are do not yet capture all of
subtleties of secure channels as they are used in
practice.

• Work to be done!

1414

AEAD

Security for Symmetric Encryption

16

m1

m2

Pictures by GiorgiaAzzurra Marson

Security for Symmetric Encryption

17

m1

m2

K K

KE

Ch

Security for Symmetric Encryption

18

c1

c2

K K
Ch

c1 = EncK(m1)

m2= DecK(c2)

m1 = DecK(c1)

c2 = EncK(m2)

Security for Symmetric Encryption –Confidentiality

19

c1

c2

K K
Ch

c1 = EncK(m1)

m2= DecK(c2)

m1 = DecK(c1)

c2 = EncK(m2)

EncOracle

learn b in {0,1} from
c* = EncK(mb)

IND‐CPA
(Goldwasser‐Micali, 1984;
Bellare‐Desai‐Jokipii‐Rogaway, 1997).

Security for Symmetric Encryption –Confidentiality

20

c1

c2

K K
Ch

c1 = EncK(m1)

m2= DecK(c2)

m1 = DecK(c1)

c2 = EncK(m2)

EncOracle

learn b in {0,1} from
c* = EncK(mb)

IND‐CPA
(Goldwasser‐Micali, 1984;
Bellare‐Desai‐Jokipii‐Rogaway, 1997).

Dec Oracle

IND‐CCA
(Naor‐Yung, 1990;

Rackoff‐Simon, 1997).

Security for Symmetric Encryption – Integrity

21

c1

c2

K K
Ch

c1 = EncK(m1)

m2= DecK(c2)

m1 = DecK(c1)

c2 = EncK(m2)

Is this what you wrote?

Security for Symmetric Encryption – Integrity

22

c1

c2

K K
Ch

c1 = EncK(m1)

m2= DecK(c2)

m1 = DecK(c1)

c2 = EncK(m2)

EncOracle

come up with valid c*

Dec Oracle

INT‐CTXT
(Bellare, Rogaway, 2000)

Security for Symmetric Encryption – Integrity

23

c1

c2

K K
Ch

c1 = EncK(m1)

m2= DecK(c2)

m1 = DecK(c1)

c2 = EncK(m2)

EncOracle

come up with valid c*
for a new m*

Dec Oracle

INT‐CTXT
(Bellare, Rogaway, 2000)

INT‐PTXT
(Bellare‐Namprempre, 2000)

Security for Symmetric Encryption –AE

24

c1

c2

K K
Ch

c1 = EncK(m1)

m2= DecK(c2)

m1 = DecK(c1)

c2 = EncK(m2)

EncOracle Dec Oracle

INT‐CTXT
(Bellare, Rogaway, 2000)

INT‐PTXT
(Bellare‐Namprempre, 2000)

Authenticated Encryption
IND‐CPA + INT‐CTXT

(IND‐CCA)

Security for Symmetric Encryption –AEAD

25

c1

c2

K K
Ch

c1 = EncK(AD1,m1)

m2 = DecK(AD2,c2)

m1 = DecK(AD1,c1)

c2 = EncK(AD2,m2)

EncOracle Dec Oracle

Authenticated Encryption with Associated Data
AE security for message m

Integrity for associated data AD
Strong binding between c and AD

(Rogaway 2002)

Which came first?

Security for Symmetric Encryption – stateful AEAD

26

c1

c2

K K
Ch

c1 = EncK(AD1,m1)

m2 = DecK(AD2,c2)

m3 = DecK(AD3,c3)

m1 = DecK(AD1,c1)

c2 = EncK(AD2,m2)

c3 = EncK(AD3,m3)c3

Security for Symmetric Encryption – stateful AE(AD)

27

c1

c2

K K
Ch

c1 = EncK(AD1,m1)

m2 = DecK(AD2,c2)

m3 = DecK(AD3,c3)

m1 = DecK(AD1,c1)

c2 = EncK(AD2,m2)

c3 = EncK(AD3,m3)c3

EncOracle Dec Oracle

learn b in {0,1} from
c* = EncK(mb)

IND‐sfCCA
(Bellare‐Kohno‐Namprempre, 2002)

Security for Symmetric Encryption – stateful AE(AD)

28

c1

c2

K K
Ch

c1 = EncK(AD1,m1)

m2 = DecK(AD2,c2)

m3 = DecK(AD3,c3)

m1 = DecK(AD1,c1)

c2 = EncK(AD2,m2)

c3 = EncK(AD3,m3)c3

EncOracle Dec Oracle

learn b in {0,1} from c* =
EncK(mb) or come up with

valid/out of order c*

IND‐sfCCA
(Bellare‐Kohno‐Namprempre, 2002)

INT‐sfCTXT

INT‐sfPTXT
(Brzuska‐Smart‐Warinschi‐Watson, 2013)

Stateful AEAD

Security for Symmetric Encryption – nonce‐based AEAD

29

c1

c2

K K
Ch

c1 = EncK(N1,AD1,m1)

m2 = DecK(N2,AD2,c2)

m1 = DecK(N1,AD1,c1)

c2 = EncK(N2,AD2,m2)

EncOracle Dec Oracle

Nonce‐based Authenticated Encryption with Associated Data
As per AEAD, but with additional input N to Enc and Dec algorithms

Adversary may arbitrarily specify N, but “no repeats” rule in Enc queries
Enc and Dec can now be stateless and deterministic

(Rogaway 2004)

From nonce‐based AEAD to a basic secure channel

30

c1

c2

K K
Ch

c1 = EncK(1,AD1,m1)

m2 = DecK(2,AD2,c2)

m1 = DecK(1,AD1,c1)

c2 = EncK(2,AD2,m2)

Nonce‐based AEAD scheme to build a basic secure channel:
Sender uses sequence of counter values for nonces.

Receiver maintains local copy of counter.
Integrity properties of AEAD catch reordering/deletion attacks.

CAESAR

31

• CAESAR: Competition for Authenticated Encryption:
Security, Applicability, and Robustness.

• Initiated by Dan Bernstein, supported by committee
of experts.

• Main goal is the design of a portfolio of AE schemes.
• CAESAR has involved dozens of person‐years of

effort and led to a major uptick in research activity.

• It seems that most of the cryptographic community
has settled on nonce‐based AEAD as their design
target.

AEAD ≠ secure channel

AEAD ≠ secure channel

• Recall our application developer:

• Perhaps he wants a drop‐in replacement for TCP that’s
secure.

• Actually, she might justwant to send and receive some
atomic messages and not a TCP‐like stream.

• To what extent does AEAD meet these requirements?

• It might meet some of them, but not the complete list
of possible – and conflicting – requirements we
highlighted earlier.

33

AEAD ≠ secure channel

There’s a significant semantic gap between AEAD’s functionality
and raw security guarantees, and the things a developer expects

a secure channel to provide.

34

m1

m2

ChEnc(.,.,.)

Dec(.,.,.)

+

An example of the gap: cookie cutters

Bhargavan, Delignat‐Lavaud, Fournet, Pironti, Strub 2014: cookie
cutter attack on “HTTP over SSL/TLS”.

• Attacker forces part of the HTTP header (e.g., cookie) to be cut off.

• Partial message/header arrives and might be misinterpreted.

35

c= Enc(Set-Cookie: SID=[AuthenticationToken]; secure)
Ch

Set-Cookie: SID=[AuthenticationToken]

Cookie cutters

Why doesn’t this violate the proven integrity of SSL/TLS
encryption?

6.2.1. Fragmentation

The record layer fragments information blocks
into TLSPlaintext records [...]. Client
message boundaries are not preserved in the
record layer (i.e., multiple client messages
of the same ContentType MAY be coalesced into
a single TLSPlaintext record, or a single
message MAY be fragmented across several
records).

RFC 5246 (TLS v1.2)
36

Cookie cutters

Why doesn’t this violate the proven integrity of SSL/TLS
encryption?

6.2.1. Fragmentation

The record layer fragments information blocks
into TLSPlaintext records [...]. Client
message boundaries are not preserved in the
record layer (i.e., multiple client messages
of the same ContentType MAY be coalesced into
a single TLSPlaintext record, or a single
message MAY be fragmented across several
records).

RFC 5246 (TLS v1.2)
37

Cookie cutters

• So SSL/TLS can (and will) fragment when sending.

• Protocols like SSH have to handle fragmentation when
receiving (but not usually when sending) – also a source of
problems…

38

Set-Cookie:
SID=[AuthToken];
secure

Ch
Set-
Cookie:
SID = …

Set-Cookie:
SID=[AuthToken]

2 TLS records

Cookie cutters

• It’s up to the calling application to deal with message boundaries if it
wants to use SSL/TLS for atomic message delivery.

• The cookie cutter attack relies on a buggy browser that does not
check for correct HTTP message termination.

• This happens in practice –evidence that developers do not fully
understand the interface provided by SSL/TLS.

39

Set-Cookie:
SID=[AuthToken];
secure

Ch
Set-
Cookie:
SID = …

Set-Cookie:
SID=[AuthToken]

What lies ahead

What lies ahead in the next two lectures

• Detailed discussion of symmetric crypto used in SSH and its
security (failings).

• Ditto for SSL/TLS.

• Building better models for SSH‐like and streaming secure
channels.

“Now this is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.”

41

Closing remarks

42

