TLS: A Real-World Secure Channel Protocol

A ) L‘k‘lj/"r‘ '!\ x‘kl'/",‘ :‘\ L‘K‘IV/WA f". L‘;v \ YN

Kenny Paterson @kennyog

: = ‘ —— — 6 - — ) @ _-_—7__ — ——
\/ f ! \ \

VYV
¥ Iy
|
n

5
—_— -:{3:>




Lecture overview

Aim to provide a reasonably detailed picture of a complex,
widely-deployed protocol.

lllustrating how the different cryptographic concepts we've
been learning about are combined in a real protocol.

Understand some of the additional protocol features that
real-world requirements lead to.

Study some high-profile attacks on TLS, and see how the
protocol’s deployment has evolved over time.

Look at TLS 1.3 —the future of TLS.



BB R
::
* %

S R

&3&3&3&3&3 ,.36“9




TLS Overview

e SSL =Secure Sockets Layer.
* Developed by Netscape in mid 199o0s.
* SSLvi broken at birth.
* SSLv2 flawed in several ways, now IETF-deprecated (RFC 6176).
e SSLv3 now considered broken (POODLE + RCy4 attacks), but still widely supported.

* TLS =Transport Layer Security.
* |ETF-standardised version of SSL.
e TLS1.0in RFC 2246 (1999).
e TLS1.1in RFC 4346 (2006).
e TLS12.2in RFC 5246 (2008).

* TLS 1.3 currently in developmentin IETF.



Importance of TLS

* Originally designed for secure e-commerce, now used much more widely.
* Retail customer access to online banking facilities.
*  Access to gmail, facebook, Yahoo, etc.
* Mobile applications, including banking apps.

* Payment infrastructures.

* TLS has become a de facto secure protocol of choice.
* Used by hundreds of millions (billions?) of people and devices every day.
* Sowe should analyse it, in order to find and remove flaws.

*  Maybe we'll also find new requirements not well-reflected in the current key
exchange literature?



Highly Simplified View of TLS

Client Server

ﬂ Epm—




TLS Protocol Architecture

Record Protocol

TCP




The TLS Ecosystem (1/3)

* Servers
* Including managed service providers (CloudFlare, Akamai)
* Clients
* Ofall shapes and sizes
* Web browsers to embedded devices
* Certification Authorities (CAs)
* Ofallshapes, sizes and levels of security
* Typically 300 root CA keys in browser.
» Software vendors
* From Google (BoringSSL) down to one-man open-source operations

* OpenSSL somewhere in-between, once used by approx 9o% of web
servers.

e Hardware vendors



The TLS Ecosystem (2/3)

* TLS versions:
e SSL3.0,TLS12.0, TLS 1.2, TLS 1.2, TLS 1.3 nearly complete
* Some servers even still support SSL 2.0

* 200+ Cipher suites

*  https://www.thesprawl.org/research/tls-and-ssl-cipher suites

* Some very common, e.g.
TLS_RSA_WITH_AES_128_CBC_SHA256

* Some highly esoteric, e.g.
TLS_KRBs5_WITH_3DES_EDE_CBC_MDg

*  Some offering no security:
TLS_NULL_WITH_NULL_NULL'!

* TLS extensions
* Too numerous to mention.

 DTLS



The TLS Ecosystem (3/3)

* IETFTLS Working Group

* Also IETF UTA Working Group (UTA =Using TLS in Applications)
* And CFRG (Crypto Forum Research Group)

* Growing community of researchers

* Finding attacks and building security proofs
* Analysisof TLS 1.3

* TRON workshop and follow-ups, including CWTLS1.3 co-located with
CRYPTO 2018,

* TheTLS ecosystem has become very complex and vibrant.



BB R
::
* %

S R

&3&3&3&3&3 ,.36“9




e
Q
o+
O
O
O
)
Y




4» ¢
o o‘«b’ (
“'4»"

°¢

IR R R R

ﬁeeﬁe&eﬁeﬁee‘e ,.36“9




TLS Protocol Architecture

Record Protocol

TCP




TLS Handshake Protocol — Goals

Establishes keys (and IVs) needed by the Record Protocol.

Via establishment of the TLS master_secret and subsequent key derivation.

Provides authentication of server (usually) and client (rarely)

Using public key cryptography supported by digital certificates.

Or pre-shared key (less commonly).

Protects negotiation of all cryptographic parameters.
SSL/TLS version number.
Encryption and hash algorithms.
Authentication and key establishment methods.

To prevent version rollback and cipher suite downgrade attacks.



TLS Handshake Protocol — Key Establishment

TLS supports several key establishment mechanisms.

Method used is negotiated during the Handshake Protocol itself.

*  Client sends list of cipher suites it supports in ClientHello; server selects one and tells client in
ServerHello.

- eg.TLS_RSA WITH_AES_256_CBC_SHA256

. e.g.TLS_ECDHE_RSA_WITH_RC4_128_SHA

*  cipher suites are encoded as 2-byte values.
A common choice is RSA encryption.
*  Server sends RSA public key and certificate chain after ServerHello.

*  Client chooses pre_master_secret, encrypts using public RSA key of server, sends to server.

*  RSAencryption is based on PKCS#1 vi.5 padding method.



TLS Handshake Protocol — RSA-based Key

Establishment (Simplified)

Client Server

ClientHello (TLS_RSA WITH_AES 256 CBC_SHA256)

ServerHello, Cert, ServerHelloDone

~

1.Check ServerCert
2.Extract PubK from ServerCert
3.Select random pre_master_secret

4.Compute Encp «(pre_master_secret)

ClientkKeyExchange: Ency «(pre_master_secret)

N

Decrypt to find

pre_master_secret



TLS Handshake Protocol — Ephemeral DH-based Key

Establishment (Simplified)

Client

Server

ClientHello (TLS_DHE_RSA WITH_RC4_128 SHA)

7z

ServerHello, Cert, ServerKeyExchange, ServerHelloDone

<

1.Check Cert
2.Extract PubK from ServerCert
3.Use PubK to check server signature

4.Choose y, compute gy, (g*x)*y
ClientKeyExchange: g’y

7z

pre_master_secret:
(9”y)"x




TLS Handshake Protocol — Other Key

Establishment Options

Static Diffie-Hellman

* Server certificate contains DH parameters (group, generator g)
and static DH value g*.

* Client chooses y, computes ¢g” and sends to server.

pre_master_secret = g¥.

Anonymous Diffie-Hellman

* Each side sends Diffie-Hellman values in group chosen by
server, but no authentication of these values.

* Vulnerable to man-in-middle attacks.



FF-DH-based Cipher Suites for TLS

* Originally, only finite-field DH was available in TLS; ECC came later.
* Recall: server chooses and sends parameters (p, g,g%).

* Parameters are actually under-specified: it is hard for client to verify
that:

* pisprime.
* ghaslarge prime order dividing p-1.
* g~¥isindeed a power of g, and not in some other subgroup.

* Most implementations perform only rudimentary checks.

* Issues are meliorated to some extent by use of safe-primes (p = 2g+1
with g prime), but also the source of some attacks, e.g. Lim-Lee
small sub-group attacks.

* SeeValentaetal. NDSS 2017) for more details.



ECC-based Cipher Suites for TLS

* ECC-based cipher suites for TLS were first defined in RFC 4492
(Blake-Wilson et al., 2006).

* Negotiated via TLS extensions sent in ClientHello/ServerHello
messages.

» 25 different curves + 3 point formats defined in RFC 4492, along with
the ability to negotiate bespoke curve.

* Many curves taken from NIST and ANSI standards, e.g. NISTp256.

* Dozens of new cipher suites (56 with "ECDH(E)”, 24 with "ECDSA")
including "*SHOULD support” for:

e TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
* TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA

e TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA

e TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA



TLS Handshake Protocol — Key Establishment Notes

Typical ClientHello offers many different cipher suites,
choice of which to use is made by server.

ClientHello and ServerHello also contain 32-byte nonces
(28-byte random values + 4-byte time encoding).

These are signed by the server in DH-based cipher suites, and
involved in key derivation.

Important for security — informally, preventing session replay
attacks forcing reuse of session keys.



TLS Handshake Protocol — Key Establishment

Notes

» ClientHello also offers SSL/TLS version number; server replies
with its choice.

Semantics:  client: | support up to version x;

server: | will use versiony < x.

* Legacy servers do not implement this correctly, simply failing if they don’t
support version X.

* Typical client behaviour: try again with lower version in a fresh handshake, with
no memory of offers in previous handshakes carried over.

* Security consequence: an active MITM can force client/server to roll back to
lowest SSL/TLS version they are both willing to use!

* POODLE attack exploits this to roll back to SSL3 and then perform Moeller
attack on SSLv3 padding (see later).

* The problem has been reanimated with the coming of TLS 1.3.



TLS Handshake Protocol Version Negotiation

— |ldeal World

Client Server

ClientHello (TLS 1.2)

ServerHello (TLS 1.0), Cert, ServerKeyExchange, ServerHelloDone




TLS Handshake Protocol Version Negotiation

— Real World (Version Intolerance)

Client Server

ClientHello (TLS 1.2)
No

ClientHello (TLS 1.1)
No

N

ClientHello (TLS 1.0)
ServerHello (TLS 1.0), Cert, ServerKeyExchange, ServerHelloDone

™~




TLS Handshake Protocol Version Negotiation

— Real World Attack

Client b o) Server

ClientHello (1.2)
No

ClientHello (1.1)
No

\%

ClientHello (1.0) ClientHello (1.0)

ServerHello (1.0), Cert, ServerKeyExchange, ServerHelloDone

™~




TLS Handshake Protocol — Forward Security?

* An attacker who learns the RSA private key can decrypt old sessions and
passively eavesdrop on all future RSA-based sessions!

* Awell-known issue (lack of forward security), but given prominence by the
Snowden revelations.

* This and performance benefits has driven an increased usage of forward-
secure, Diffie-Hellman-based cipher suites over the last few years.

= Not supported

8,587 5.3
-0.2%

= Mot supported

87,982

\

. ‘k\\

= Some FS suites enabled

34,961 25:5%
Some FS suites enabled -05%

N = Used with modern browsers
68,1 95 41,896 20.9%
+0.1%

= Used with most browsers

® Used with modern browsers 50,274 37.0%
+0.6%
5,916
® Used with most browsers
937

SSL pulse, Oct. 2013 SSL pulse, January 2018



TLS Handshake Protocol — Reliance on

Randomness

*  An attacker who can predict a client’s choice of pms or client/server DH
private value can passively eavesdrop on all sessions!

* And nonces in Hello messages may already leak information about state of client or
server PRNG.

* Hence backdoored PRNGs present a serious risk to TLS security: they may allow
recovery of future PRNG output from observed output(s).

* See Checkoway et al. (USENIX Security 2014) for extended analysis of exploitability
of Dual ECPRNG in the TLS context.

* Relatedly, many server implementations default to using a “repeated
ephemeral” value.

e cf. CVE-2016-0701:

OpenSSL provides the option SSL._ OP_SINGLE_DH_USE for ephemeral
DH (DHE) in TLS. It is not on by default.

* Hence one-time server compromise would undermine the security of many
client sessions.



TLS Key Derivation

pre_master_secret

L

TLS 1.2
PRF

Nonces master_secret
|

\/
TLS 1.2
PRF

key block




TLS Key Derivation

Keys used by MAC and encryption algorithms in the Record Protocol
are derived from pre_master_secret (pms):

* Derive ms from pms using TLS Pseudo-Random Function (PRF).

* Default PRF for TLS1.2 is built by iterating HMAC-SHA256 in a specified
way; earlier versions use ad hoc MD5/SHA-1 combination.

« Derive key_block from ms and client/server nonces exchanged during
Handshake Protocol.

* Againusingthe TLS PRF in TLS1.2.

* Split up key_block into MAC keys, encryption keys and IVs for use in
Record Protocol as needed.

* NBa: neither client nor server identity is involved in key derivation, nor any
cipher suite context.

* NB2: splitting up of key_block into components depends on cipher suite.



TLS Handshake Protocol — RSA-based Authentication?

Client Server

ClientHello (TLS_RSA WITH_AES 256 CBC_SHA256)

ServerHello, Cert, ServerHelloDone

1.Check ServerCert

2.Extract PubK from ServerCert
3.Select random pms
4.Compute Encp < (pms)

ClientkKeyExchange: Encp . «(pms)

N

Decrypt to find pms




TLS Handshake Protocol — RSA-based Authentication

Client Server

ClientHello (TLS_RSA WITH_AES 256 CBC_SHA256)

ServerHello, Cert, ServerHelloDone

ClientKeyExchange: Encp «(pms)

> | 1. Decrypt to find pms
2. Derive ms
Compute ServerFinished

ServerFinished = PRF(ms,transcript)

N

1. Derive ms

2. Compute ServerFinished’ =
PRF(ms,transcript)

3. Compare to received version

- -




TLS Handshake Protocol — Authentication for

Ephemeral DH-based Key Establishment

Client Server

ClientHello (TLS_DHE_RSA WITH_RC4_128_SHA)

7z

ServerHello, Cert, ServerKeyExchange, ServerHelloDone

<

1.Check Cert

2.Extract PubK from ServerCert

3.Use PubK to check server signature
4.Choose y, compute g”y, (g”x)"'y

ClientKeyE

ster_secret:

Se (ghy)x

N



TLS Handshake Protocol — Authentication

TLS supports several different entity authentication
mechanisms for clients and servers.

Method used is negotiated along with key exchange method
during the Handshake Protocol itself.

RSA: Ability of server to decrypt pms using its private key,
derive ms from pms and then generate correct PRF value in
ServerFinished message.

DHE/ECDHE: Ability of server to sign ClientNonce using its
private key.



TLS Handshake Protocol — ClientFinished

Client Server

ClientHello

ServerHello, Cert, [ServerKeyExchange,] ServerHelloDone

. Derive ms
2. Compute ClientFinished
= PRF(ms,transcript)

ClientKeyExchange , ClientFinished

1. Derive ms

2. Compute ClientFinished’ =
PRF(ms,transcript)

3. Compare to received version

ServerFinished

N




TLS Handshake Protocol — Finished Messages

* TLS Finished messages enable each side to check that both
views of the Handshake Protocol are the same.

* Computed as PRF(ms,transcript) where transcript = sender’s
view of all protocol messages sent and received up to this
point.

* Compared by recipient to expected value; protocol aborts if
mismatch is observed.

* Designed to prevent version rollback and cipher suite
downgrade attacks.

* Attacker attempts to manipulate client/server view of cipher suite(s)
accpeted/offered, or of version offered/accepted.

* Ineffective if attacker can compute ms during protocol run.



TLS Handshake Protocol - ChangeCipherSpec

Client Server

ClientHello

ServerHello, Cert, [ServerKeyExchange,] ServerHelloDone

&

ClientKeyExchange, (LS




TLS Handshake Protocol - CCS Messages

» ChangeCipherSpec messages enable parties to inform each
other that they are switching to the recently agreed keys in
the Record Protocol.

* Here, this means that all subsequent messages are protected

using the agreed cipher suite (e.g.
AES 256 CBC_SHAZ256).

* Not part of the Handshake Protocol, so not included in
transcripts when computing Finished messages.



TLS Handshake Protocol — Client Authentication

Client Server

ClientHello

ServerHello, Cert, [ServerKeyExchange, CertificateRequest,] ServerHeIIoDon¢

~

[Cert,] |ClientKeyExchange, [Certifﬁ ateVerify,] CCS, Cééem?éﬁ]ished

N



TLS Handshake Protocol — Client Authentication

* Client authentication is optional and rarely used in the web
setting.

* Serverrequests client’s certificate in its Hello message.

* Client responds with:
» Cert: client’s certificate (chain).

» CertificateVerify: signature on protocol transcript up to this point.

* Notice the misnomers!



TLS Handshake Protocol — Renegotiation

* Renegotiation allows re-keying and change of cipher suite
during a session.

* Forexample, to force strong client-side authentication before access to a
particular resource on the server is allowed.

* Orto publicly negotiate a weak cipher suite and then upgrade to a stronger
one over an encrypted channel.

* Initiated by client sending ClientHello or server sending
ServerHelloRequest.

* Followed by full run of Handshake Protocol.

* Protocolis run over the existing Record Protocol, so receives its protection.



TLS Handshake Protocol — Session Resumption

* Session resumption allows authentication and shared secrets
to be reused across multiple, parallel connections in a single
session.

* E.g., allows fetching multiple resources from same website
without re-doing full, expensive Handshake Protocol.

* Client and Server quote existing SessionID and exchange
fresh nonces.

* Also enabled by use of session ticket mechanism, RFC 5077.

* UsesaTLS extension to signal/transmit a cryptographic “blob” from
server to client, carrying session state.



TLS Handshake Protocol — Session Resumption

Client Server

ClientHello (SessionlID)

N¢» Ng ms
=
PRF

key block

ServerHello (SessionID), CCS, S¢

N¢ > Ng ms
=
PRF

key block

\




TLS Sessions and Connections

Session concept:
* Sessions are created by the Handshake Protocol.

* Session state defined by session ID and set of cryptographic parameters (encryption
and hash algorithm, master secret, certificates) negotiated in Handshake Protocol.

* Each session can carry multiple parallel connections.

Connection concept:

* Keys for multiple connections are derived from a single ms created during one run of
the full Handshake Protocol.

* Session resumption Handshake Protocol runs exchange new nonces.

* These nonces are combined with existing ms to derive keys for each new
connection.

* Avoids repeated use of expensive Handshake Protocol.

* EachTLS connection corresponds to a different TCP connection.



TLS Key Derivation and Sessions/Connections

pre_master_secret

nonces

L

TLS 1.2
PRF

master_secret

\
TLS 1.2

PRF

key block

)\

_ Done once
per session

Done once

per connection
~ foragiven
session with

fresh nonces.



7N/

* e * «

<3

“’“’4» :

S ﬁo 0
L 2NV fo A\ “
508 “’“’4»

1) w’i f
W 1 N Y A

IR R R R

ﬁeeﬁe&eﬁeﬁee‘e ,.36“9




TLS Protocol Architecture

Record Protocol

TCP




OtherTLS Protocols

Alert protocol.

* Management of SSL/TLS connections and sessions, error messages.
* Fatal errors and warnings.

» Defined actions to ensure clean session termination by both client and server.

Change cipher spec protocol.
* Technically not part of Handshake Protocol.

* Usedtoindicate that entity is changing to recently agreed cipher suite.

Both protocols run over Record Protocol (so are peers of
Handshake Protocol).



TLS Extensions

Many extensions to TLS exist.

Allows extended capabilities and security features.

Examples:
* Renegotiation Indicator Extension (RIE), RFC 5746.
* Application layer protocol negotiation (ALPN), RFC 7301.
e Authorization Extension, RFC 5878.

* Server Name Indication, Maximum Fragment Length Negotiation,
Truncated HMAC, etc, RFC 6066.



TLS Complexity

* Recall simplistic view of TLS:

Handshake Protocol followed by Record Protocol.

* Reality is much more complex:

Initial Handshake Protocol over Record Protocol with no keys.
Change Cipher Spec. Protocol message, switch on new keys.

Completion of Handshake via exchange of Finished messages, now running over
keyed Record Protocol.

Followed by arbitrary sequences of Session Resumption and Renegotiation runs.

Most of this activity is hidden from applications.

* This complexity has turned out to have negative security consequences.



€

** «

4»
»# ﬁ‘¢¢¢ %
SRR

IR R R R

ﬁeeﬁe&eﬁeﬁee‘e ,.36“9




Some TLS Handshake Protocol Security Issues

* Bleichenbacher attack (1998) on PKCS#1 vi.5 padding used for RSA
encryption in Handshake protocol.

* Patched by making it hard to distinguish error messages, but attack rebooted in various
ways over the years.

* Including DROWN attack in 2016, exploiting public key reuse between SSLv2 and other
versions of SSL/TLS, and extensive legacy support for SSLv2 in servers.

* Attacks exploiting continued support for weak “export-grade” cipher
suites: FREAK and LOGJAM (2015).

* Attacks exploiting renegotiation and resumption: renegotiation attack
(2009), triple handshake attack (2014).

* Implementation flaws of various kinds.



Bleichenbacher’s Attack

* We begin with Bleichenbacher’s attack on RSA encryption
used in TLS (C'g8).

* This attack exploits the fact that RSA encryption scheme used
INnTLS (PKCS#1 va.5) is not CCA secure.

* ltrecoverstheTLS pre_master_secret (pms) for a target
session using roughly 22° interactions with server.



PKCS#1 vi.5, block type 2

00| 02 Padding block 00 48-byte pms

c=memod N

* Plaintext must begin with “oo 02" bytes.
* Padding block consists of at least 8 non-zero bytes.
* Should be terminated by “"00” byte.

* Last 48 bytes are used as pms.

Additional complication: most significant two bytes are set to client TLS version.



PKCS#1 vi.5, block type 2

00| 02 Padding block 00 48-byte pms

c=memod N

Think about sanity checking m after applying RSA decryption operation:
* Check for o0 02"?

* Check for at least 8 non-zero padding bytes or just some non-zero bytes?

* Check for a oo-byte? Or just extract last 48 bytes?

* Demand oo-byte to be in exactly the right position?

* Check forTLS version number?



Bleichenbacher’s Attack

* Exact decryption processing for RSA is not specified in the
RFCs.

* Different implementations exhibit different behaviours.

* To simplify matters: suppose that we have an oracle that on
input c outputs whether x := ¢ mod N begins with byte pattern
“00 02"

* If oracle output is “yes”, then we have an inequality:
2B <xmod N < 3B

where B = 282 and k is the number of bytes in modulus N.



Bleichenbacher’s Attack

* Suppose attacker records c*, the RSA ciphertext encrypting
the unknown pms for a target session.

* Attacker calls the 00 02" oracle on many, carefully selected
inputs of the form séc* mod N.

* Each “yes” output gives an inequality of the form:
2B <sxmod N < 3B
where s is known and x encodes pms.

* By analysing many responses from the oracle, the attacker can
eventually reconstruct x and thence pms.

* Roughly 2?°oracle queries are needed.



Bleichenbacher’s Attack

In the TLS context:

The required “00 02" oracle was obtained using error messages
arising from server processing of attacker-generated
ClientKeyExchange messages.

Countermeasures?

* Switch to using CCA-secure variant of RSA encryption, e.qg.
RSA-OAEP (cannot create “related” ciphertexts that are

valid).

* Add protocol-specific countermeasures.



Bleichenbacher and TLS1.0 (1999)

TLS 1.0 was published in RFC 2246, Jan 1999, shortly after
adoption of RSA-OAEP into PKCS#av2.0.

TLS 1.0 still uses PKCS#1va.5, despite Bleichenbacher’s attack:

The best way to avoid vulnerability to this attack is to treat

incorrectly formatted messages in a manner
indistinguishable from correctly formatted RSA blocks. Thus,
when it receives an incorrectly formatted RSA block, a
server should generate a random 48-byte value and
proceed using it as the premaster secret. Thus, the server
will act identically whether the received RSA block is

correctly encoded or not.



TLS 1.2, RFC 4346 (2006)

[PKCS1B] defines a newer version of PKCS#1 encoding that is more
secure against the Bleichenbacher attack. However, for maximal
compatibility with TLS 1.0, TLS 1.1 retains the original encoding.
No variants of the Bleichenbacher attack are known to exist
provided that the above recommendations are followed.

Over-optimistic: several implementations still get it wrong, and
there’s now a long literature of Bleichenbacher-style attacks
against RSA implementations (not just in TLS):

* Bardou et al. (Crypto 2012), Jager et al. (Esorics 2012), DROWN
(Aviram et al., USENIX 2016), ROBOT (Bock et al., 2017).



DROWN Attack (Aviram et al., USENIX'16)

Attack scenario:

* Server supports SSLv2 and uses the same RSA key for SSLv2
and later versions of SSL/TLS

* Surprisingly large number of servers: circa 8% of Alexa top 150k servers
in July 2016 (SSL pulse)

* Most servers don't provide a facility to provide different key for
different SSL/TLS versions anyway.

* Client has absolutely no intention to use SSLv2.



DROWN Attack (Aviram et al., USENIX'16)

f ClientHello(TLS 1.2, TLS_RSA...)
» ServerHello, Cert, ServerHelloDone
<€
ClientKeyExchange, CCS, ClientFinished

>

ClientHello(SSL2_RC4 128 EXPORT40 WITH_MD5)

ServerHello, Cert, ServerHelloDone
<€

ClientKeyExchange: sec*
>

ServerFinished
<€




DROWN Attack (Aviram et al., USENIX'16)

* Standard Bleichenbacher countermeasure: if RSA decryption of c* fails,
then choose a random master secret K and carry on with the protocol.

* Send séc* twice in two consecutive SSLv2 handshakes:
« Ifsec*isinvalid, we get two ServerVerify messages encrypted under two different keys.

« Ifsec*isvalid, then we get two ServerVerify messages encrypted under the same key.

* Butthe encryption key is “only” 40-bits in size, and the plaintext is partly
known.

* Perform two 40-bit key searches and compare keys to find out if sec* was
valid or invalid.

* This provides an expensive oracle for carrying out Bleichenbacher’s attack.



DROWN Attack (Aviram et al., USENIX'16)

* Roughly 10,000 SSLv2 handshakes are needed for the attack,

and the attack works for (roughly) 1 in every 1000 TLS
handshakes.

* Support for legacy 40-bit algorithms in SSLv2 + bugs in
OpenSSL implementation make it feasible to extract plaintext
underlying c*.

* Costis 25 trial decryptions (without OpenSSL bugs), but under
a minute for “special DROWN" (with OpenSSL bugs).

* This is a cross-version (or cross-cipher suite) attack, made
possible because of support for old versions/algorithms and
key re-use across versions.



More Recent TLS Handshake Protocol Attacks

Up until 2009, the TLS Handshake Protocol survived relatively
unscathed.

Notable exception: Bleichenbacher’s attack on RSA encryption
used in TLS as discussed above.



Renegotiation Attack (Ray and Dispensa, Rex, 2009)

| U
?‘ ClientHello & o)

1 g <
|
\\::# I e
1 : =
I :‘ "'ﬂ‘lﬂ 1 12217
C|ient_server : m:EE‘ server |n|t|a|
initial | 3 Ein handshake
handshake with |
client : ~ .
authentication e e e e e em e
( _______ <
>-—---=-=2
C———— ——— € attacker-server
renegotiation
Client Data handshake

Client view: single handshake, sends ClientData.

Server view: two handshakes, receives AttackerData||ClientData from authenticated
client.

Overall effect: attacker injects AttackerData as if from trusted source.



Renegotiation

* Renegotiation attack due to Ray and Dispensa, also Rex (2009).

* Server treats data as coming from either side of client
authentication as being a single unit from an authenticated source.

* TLS specification does not really say how to handle this situation.
* Flush buffer of received fragments upon renegotiation?
* Signal to application that authentication status has changed?
 Highlights lack of API specification for TLS.
* Attack addressed via Renegotiation Indication Extension (RIE), RFC
5746.

* Include and verify information about previous handshakes in any
renegotiation.

* Could also disable renegotiation on server.



Triple Handshake Attack (Bhargavan et al, IEEE S&P'14)

* Triple Handshake attack: renegotiation attack rebooted.

* Complex attack leveraging lack of identities in key derivation +
resumption + renegotiation.

* Even first step in the attack (UKS attack) breaks certain
authentication protocols relying on TLS.

» Attack highlights that RIE fix for renegotiation attack is not
robust in the context of the full TLS Handshake Protocol.

* Renegotiation status gets lost across resumptions.



Cross-cipher Suite Attacks

* Recall server signature format in ServerKeyExchange:
sig(nonces, params)

* Format of params depends on type of key exchange: mod p
DH parameters or ECDH parameters.

* But type of parameters is not itself signed.

* Instead, it's inferred by client from the cipher suite, for which
agreement is only verified later, via Finished messages.

* Leadsto atheoretical attack due to Mavrogiannopoulos et al.
(CCS'12).

*  Attacker switches cipher suite — ECDH for FFDH, or vice-versa.



Cross Cipher Suite Attack (Mavrogiannopoulos

et al., CCS'12)

ClientHello ClientHello’

> >
, TLS_DHE_RSA... TLS_ECDHE_RSA...

ServerKeyExchange

€ <€
erverHello’, Cert,

ServerKeyExchange

*server needs to support
“explicit prime curve”
option, RFC 4492.



Cross Cipher Suite Attack (Mavrogiannopoulos
et al, CCS 2012)

* Attack requires server to support “explicit prime curve” option
(RFC 4492).

* Attack requires client to accept weak DH parameters (g =0, 1
or -1).

* Enabling MITM to compute pms and correct ServerFinished
message to complete the handshake.

* Success rate can be boosted by repeatedly sending
ClientHello message within TLS timeout on client (tens of
seconds).

* Attack possible because server signature does not cover type
of cipher suite, nor TLS extensions specifying use of ECC.



FREAK and LOGJAM Attacks

EXPORT cipher suites:

0x000003 TLS_RSA_EXPORT WITH_RC4 40 MD5

0x000006 TLS_ RSA_EXPORT WITH_RC2_CBC_40 MD5
0x000008 TLS_RSA_EXPORT WITH_DES40_CBC_SHA
0x00000B  TLS_DH_DSS EXPORT WITH DES40 CBC_SHA
0x00000E  TLS_DH_RSA_EXPORT WITH_DES40_CBC_SHA
0x000011 TLS DHE_DSS_EXPORT WITH _DES40 CBC_SHA
0x000014 TLS_ DHE_RSA_EXPORT WITH_DES40_CBC_SHA

(and more)

* Introduced in the gos in the era of export control.
* Maximum 512-bit RSA keys and 512-bit primes for DH/DHE.

* Repurpose ServerKeyExchange message to transport “ephemeral”
RSA/DH/DHE keys.

* Until recently, still supported by around 25% of servers...



FREAK Attack (Beurdouche et al., IEEE S&P’15)

\
é ClientHello © ClientHello’
\ e & > “ Y

TLS_RSA... TLS_RSA_EXPORT...

ServerKeyExchange

€ <€
erverHello’, Cert,

ServerKeyExchange




FREAK Attack (Beurdouche et al., IEEE S&P’15)

fn ClientHello S ClientHello’
NGO TLS RSA... \ TLS RSA EXPORT...
ServerHello, Cert,
ServerKeyExchange
<€ <€
ServerHello’, Cert,
ServerKeyExchange

>
ClientKeyExchange,
CCS, ClientFinished

Al

CCS,

. —



FREAK Attack (Beurdouche et al., IEEE S&P'15)

* Attackrelies on buggy clients accepting ServerKeyExchange
containing 512-bit RSA key when no such message was
expected.

* Many clients were vulnerable (https://www.smacktls.com/).

* Export RSA keys are meant to be ephemeral, but hard to
generate RSA moduli in practice, so they were made long-
lived.

* Cost of factoring 512-bit modulus: $50 on Amazon EC2.

* Attack arises because of common code pathsin
implementations, coupled with state machine failures.

* Exploredin-depthin Berdouche et al. paper.



LOGJAM Attack (Adrian et al., CCS'15)

<@

ClientHello & o) ClientHello’

> >
TLS_DHE_RSA... \ TLS_DHE_RSA_EXPOR

ServerHello, Cert,

ServerKeyExchange
Attacker
uses x and <€ , <€
At ServerHello’, Cert,
a7 ServerKeyExchange
compute
pms

— S >
ClientKeyExchange (g”y),
CCS, ClientFinished

<€
CCS,

. —

Attacker solves DLP for g,
g”x to compute server’s
private value x.




LOGJAM Attack (Adrian et al., CCS'15)

* LOGJAM =Cross-cipher suite + FREAK.

* Active attacker changes TLS_DHE_RSA... to
TLS DHE RSA EXPORT...

* Server responds with weak DH parameters signed under its RSA
key.

* Client accepts these (signature does not include cipher suite
details).

« Attacker solves 512-bit DLP before client times out.

* Attacker can then create correct ServerFinished message to
impersonate server.

* Difficult to perform in practice, but not impossible for three-
letter agency.

* Servers use small numer of common primes p.

* Precomputation allows each 512-bit DLP to be solved in around

90s.



€

**Q

° * Z

e

4»4»
.4>:¢ &

IR R R R

ﬁeeﬁe&eﬁeﬁee‘e ,.36“9




Heartbleed

* Buffer over-read vulnerability in OpenSSL
implementation of DTLS Heartbeat
protocol.

* High severity: remote recovery of chunks
of server memory, including server private
keys, private user data, etc.

* 85%+ of SSL/TLS servers rely on OpenSSL.

* Practical demonstrations of threat (e.qg.
Mumsnet).

* Messy disclosure in early April 2014.

* Agood logo!



Certificate Processing Bugs

Many problems have been discovered in code for certificate
processing.

 Fahletal. (CCS 2012)

* Georgiev et al. (CCS 2012)

* GnuTLS bug (CVE-2014-0092)

* Apple goto fail (CVE-2014-1266)

» Affecting Apple iOS 6.x before 6.1.6 and 7.x before 7.0.6, Apple TV 6.x
before 6.0.2, and Apple OS X 10.9.x before 10.9.2.



Apple goto fail

SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer signedParams,

uint8_t *signature, UInta6 signaturelLen)

OSStatus  err;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) !=0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) !=

if ((err = SSLHashSHAa1.final(
goto fail;

fail:
SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);

return err;



CCS Mishandling Bug (CVE 2014-0224)

* OpenSSL implementation of TLS will accept
ChangeCipherSpec message at any point in the
TLS Handshake.

* So MITM attacker can inject it at point of his
choosing.

* ResultisthatTLS key derivation is carried out
with a zero-length master secret.

* Leadingto predictable session keys.



Invalid Curve Attacks

* Implementations fail to check that received EC point is actually on specified
curve.

* Leadstoinvalid curve attack on implementations reusing ephemeral values
and/or ECDH cipher suites.

* Attacker (client) sends as its DH values points P, = (x,y,) in EC groups of
small, co-prime orders q..

* Serverresponds by computing sP, where s is long-term secret: relies on x-
coordinate-only computation depending only on b in Weierstrass form.

* premastersecretis then just sP, one of g, possible values.

* Attacker can learn s mod g, by guessing value for ClientFinished and testing
if server accepts.

e Attacker can reconstruct s using CRT.

* Original ideas in Biehl et al. (CRYPTO 2000) and Antipa et al. (PKC 2003).

* Shown to work in practice for TLS implementations by Jager et al. (ESORICS
2015).



Side Channel Attacks

* Use of public key primitives opens up many opportunities for side-
channel attacks on implementations.

* Timing attacks on naive (and not so naive!) implementations of RSA,
EC-DSA, DH, ECDH.

* A current focusis on “Flush+Reload” Lowest Level Cache (LLC)
timing attacks.

* OpenSSL is by now quite well protected, but new attacks are still
being discovered.

* Recent example: Pereida Garcia and Brumley, USENIX 2017:

* LLCattack on modularinversion code used in OpenSSL ECDSA, finding
MSBs of ECDSA nonces, and thence ECDSA signing key via lattice attack.

* Otherlibraries are (probably) less-well protected.



oo
.%....
S

o BRI

IR R R R

ﬁeeﬁe&eﬁeﬁee‘e ,.36“9




TLS 1.3

* TheTLS 1.3 specification is being developed in TLS Working
Group of IETF.

* Major redesign compared to previous versions.
* Specification is now nearing completion, currently at draft 23.

* Several implementations underway, tracking changes to
specification, working on inter-op.



TLS 1.3

* Main objectives forTLS 1.3:

Reduce latency of initial secure data communication (2-RTT and o-RTT
for resumed sessions).

Improve security and privacy.

Protocol simplification (reducing options and removing broken cipher
suites).

No compression, RC4, MAC-then-Encrypt, RSA key transport, custom DH and
ECDH groups, renegotiation.

Unifying session resumption and PSK mechanismes.

But continuity for most important use cases (e.g. post handshake client
authentication).



TLS 1.3

* Significant involvement of academic community during the
design process.

* Security analysis of early drafts of the protocol by several teams, using
provable security and symbolic analysis.

* Some significant errors uncovered during development.

* Analysis on-going: draft spec keeps changing!



TLS 1.3 Handshake —1-RTT

Client Server

ClientHello [Random, g°]

-
ServerHello [Random, g°]
-
Certificate, Sign(Ks, Handshake), Finished
pplication data
{
Finished
.
Application data
< >

* Servercansend secure datain its first message.

* Client can send secure data in its second message.



TLS 1.3 Handshake —1-RTT

* Clientincludes DH share(s) in its first message, along with
ClientHello, anticipating group that server will prefer.

* Server responds with single DH share in its ServerHello
response.

* If this works, a forward-secure key is established after 1 round
trip (2-RTT).

* Clients can cache groups preferred by popular servers.

* If server does not like DH groups used by client, it sends a
HelloRetryRequest and a group back to client.

* Inthisinstance, the handshake requires two round trips (2-
RTT).



TLS 1.3 Handshake — DH and ECDH groups

* Limited set of DH and ECDH groups will be supported in TLS
1.3.
* Reduces likelihood of fall-back to 2-RTT.

* Removes problem of client not being able to validate groups
that was inherentin TLS 1.2 and earlier.

* Removes complexity from implementations.



TLS 1.3 Handshake — DH and ECDH groups

* DH groups:
* Specified in RFC 7919
* |p| =2048, 3072, 4096,6144, 8192.
e Allparesuchthat g=(p-1)/2is prime.

* Removes several avenues of attack: backdoored primes, small
subgroup attacks, etc (cf. recent work by Fried et al., Valenta et al.)

 ECDH groups:

* Some existing curves from RFC 4492 and 2 new curves in RFC
7743.

* NIST P256, P384, P521; Curve255ig, Curve448.



TLS 1.3 Handshake — o-RTT

* Priorversions of TLS: session resumption feature.

Lightweight handshake protocol, exchange of nonces and new
key derivation.

No public key crypto, but still 1-RTT.

* Under pressure from QUIC design, TLS WG decided to add a o-
RTT optionto TLS 1.3.

Enables client to send encrypted data in its first message.

Not fully forward secure, since it uses either an old key or a new
DH value from client but old DH value from server.

After a lot of analysis, it was realised that providing anti-replay
for such messages was hard-to-impossible in distributed server
environments.



TLS 1.3 Handshake — o-RTT

* Elegant theoretical solution: achieve forward secure o-RTT using HIBE +
puncturable encryption techniques (e.g., Gunther et al., EC'17).

* Actual solution: forget about protecting against replay attacks and use the
feature only for certain types of data where replay is not an issue.

* Now o-RTT handshakes are bootstrapped using keys from previous
protocol runs.

* Problem: how to explain security of 0-RRT data to developers?
* Solution: maintain a separate APl for o-RTT data.

* Residual problem: performance gain is too tempting for developers to
heed warnings about its dangers.

* |t was also realised that o-RTT and PSK flows could be unified.

PSKis an important use case for, e.g. loT applications.



TLS 1.3 —Other features

* Post-handshake client authentication: previously done using
renegotiation, now done with special handshake messages.

» Server sends CertificateRequest message; client responds with
Certificate, CertificateVerify, Finished.

» Key update mechanism: based on data limits for AES-GCM
and ChaCha2oPolyi1305, derived from security proofs.

* Record Protocol: features AEAD only, traffic padding, single
plaintext type field and encrypted type, use of masked nonces.

* Key schedule: derivations using HKDF and labels; much more
complex key schedule; hash for HKDF negotiated in
handshake; proper key separation of all keys allowing easier
analysis.



a X
“'
: a

<3

*‘ <

IR R R R

ﬁeeﬁe&eﬁeﬁee‘e ,.36“9




Concluding Remarks

* TheTLS Handshake Protocol uses mostly “boring”
cryptography yet is extraordinarily complex.

* Much more so than typical key exchange protocols appearing in the
scientific literature.

* Making the protocol resistant to analysis efforts.

* Some protocol design errors were made, but not too many.

* Legacy support for EXPORT cipher suites and long tail of old
versions has opened up serious vulnerabilities.

* Lack of formal state-machine description, lack of API
specification, and sheer complexity of specifications have led
to many serious implementation errors.

* Some, but not all of this, is being fixed in TLS 1.3.



Concluding Remarks

* Public key cryptography has evolved significantly in TLS.

* The largest shift has been from RSA key transport to elliptic
curve Diffie-Hellman.

* A second shift now underway is to move to using newer elliptic
curves like Curve2rg1g, allowing greater speed and better
implementation security.

* Athird shift is the move away from SHA-1 in certs.

* A future shift may (will?) be needed to incorporate post-
quantum algorithms.

* Butimplementation vulnerabilities are bound to continue to
be discovered.






