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Lecture overview

• Aim to provide a reasonably detailed picture of a complex, 
widely‐deployed protocol.

• Illustrating how the different cryptographic concepts we’ve 
been learning about  are combined in a real protocol.

• Understand some of the additional protocol features that 
real‐world requirements lead to.

• Study some high‐profile attacks on TLS, and see how the 
protocol’s deployment has evolved over time.

• Look at TLS 1.3 – the future of TLS.
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TLS Overview

• SSL = Secure Sockets Layer.

• Developed by Netscape in mid 1990s.

• SSLv1 broken at birth.

• SSLv2 flawed in several ways, now IETF‐deprecated (RFC 6176).

• SSLv3 now considered broken (POODLE + RC4 attacks), but still widely supported.

• TLS = Transport Layer Security.

• IETF‐standardised version of SSL.

• TLS 1.0 in RFC 2246 (1999).

• TLS 1.1 in RFC 4346 (2006).

• TLS 1.2 in RFC 5246 (2008).

• TLS 1.3 currently in development in IETF.
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Importance of TLS

• Originally designed for secure e‐commerce, now used much more widely.

• Retail customer access to online banking facilities.

• Access to gmail, facebook, Yahoo, etc.

• Mobile applications, including banking apps.

• Payment infrastructures.

• TLS has become a de facto secure protocol of choice.

• Used by hundreds of millions (billions?) of people and devices every day. 

• So we should analyse it, in order to find and remove flaws.

• Maybe we’ll also find new requirements not well‐reflected in the current key 
exchange literature?
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Highly Simplified View of TLS

Client Server
Handshake Protocol

Record Protocol

Used by client and server to 
1.Negotiate cipher suite
2.Authenticate 
3.Establish keys used in the Record Protocol

Used by client and server to 
1.Negotiate cipher suite
2.Authenticate 
3.Establish keys used in the Record Protocol

Provides confidentiality and integrity/authenticity of 
application layer data using keys from Handshake 
Protocol

Provides confidentiality and integrity/authenticity of 
application layer data using keys from Handshake 
Protocol
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TLS Protocol Architecture

TCP

Record Protocol

Handshake 
Protocol

Alert 
Protocol

HTTP,    
other apps

Change 
Cipher 
Spec 

Protocol
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The TLS Ecosystem (1/3)

• Servers
• Including managed service providers (CloudFlare, Akamai)

• Clients
• Of all shapes and sizes

• Web browsers to embedded devices

• Certification Authorities (CAs)
• Of all shapes , sizes and levels of security 

• Typically 300 root CA keys in browser.

• Software vendors
• From Google (BoringSSL) down to one‐man open‐source operations

• OpenSSL somewhere in‐between, once used by approx 90% of web 
servers.

• Hardware vendors
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The TLS Ecosystem (2/3)

• TLS versions: 
• SSL 3.0, TLS 1.0, TLS 1.1, TLS 1.2, TLS 1.3 nearly complete

• Some servers even still support SSL 2.0

• 200+ cipher suites 
• https://www.thesprawl.org/research/tls‐and‐ssl‐cipher suites

• Some very common, e.g.

TLS_RSA_WITH_AES_128_CBC_SHA256

• Some highly esoteric, e.g.

TLS_KRB5_WITH_3DES_EDE_CBC_MD5

• Some offering no security:

TLS_NULL_WITH_NULL_NULL !

• TLS extensions
• Too numerous to mention.

• DTLS
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The TLS Ecosystem (3/3)

• IETF TLS Working Group
• Also IETF UTA Working Group (UTA = Using TLS in Applications)

• And CFRG (Crypto Forum Research Group)

• Growing community of researchers
• Finding attacks and building security proofs

• Analysis of TLS 1.3

• TRON workshop and follow‐ups, including CWTLS1.3 co‐located with 
CRYPTO 2018.

• The TLS ecosystem has become very complex and vibrant.
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TLS Record Protocol



Redacted
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TLS Handshake Protocol



TLS Protocol Architecture

TCP

Record Protocol

Handshake 
Protocol

Alert 
Protocol

HTTP,    
other apps

Change 
Cipher 
Spec 

Protocol
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Establishes keys (and IVs) needed by the Record Protocol.
Via establishment of the TLS master_secret and subsequent key derivation.

Provides authentication of server (usually) and client (rarely)
Using public key cryptography supported by digital certificates.

Or pre‐shared key (less commonly).

Protects negotiation of all cryptographic parameters.
SSL/TLS version number.

Encryption and hash algorithms.

Authentication and key establishment methods.

To prevent version rollback and cipher suite downgrade attacks.

TLS Handshake Protocol –Goals 
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TLS supports several key establishment mechanisms.

Method used is negotiated during the Handshake Protocol itself.

• Client sends list of cipher suites it supports in ClientHello; server selects one and tells client in 
ServerHello.

• e.g. TLS_RSA_WITH_AES_256_CBC_SHA256

• e.g. TLS_ECDHE_RSA_WITH_RC4_128_SHA

• cipher suites are encoded as 2‐byte values.

A common choice is RSA encryption.

• Server sends RSA public key and certificate chain after ServerHello.

• Client chooses pre_master_secret, encrypts using public RSA key of server, sends to server.

• RSA encryption is based on PKCS#1 v1.5 padding method.

TLS Handshake Protocol – Key Establishment
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Client Server
ClientHello (TLS_RSA_WITH_AES_256_CBC_SHA256)

ClientKeyExchange: EncPubK(pre_master_secret)

ServerHello, Cert, ServerHelloDone

1.Check ServerCert
2.Extract PubK from ServerCert
3.Select random pre_master_secret
4.Compute EncPubK(pre_master_secret)

Decrypt to find 
pre_master_secret

TLS Handshake Protocol – RSA‐based Key 
Establishment (Simplified)
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Client Server

ClientHello (TLS_DHE_RSA_WITH_RC4_128_SHA)

ClientKeyExchange: g^y

ServerHello, Cert, ServerKeyExchange, ServerHelloDone

1.Check Cert
2.Extract PubK from ServerCert
3.Use PubK to check server signature 
4.Choose y, compute g^y, (g^x)^y

pre_master_secret: 
(g^y)^x

TLS Handshake Protocol – Ephemeral DH‐based Key 
Establishment (Simplified)

p, g, g^x, 
RSAsig(nonces, params) 
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Static Diffie‐Hellman

• Server certificate contains DH parameters (group, generator g) 
and static DH value gx.

• Client chooses y, computes gy and sends to server.

pre_master_secret = gxy.

Anonymous Diffie‐Hellman

• Each side sends Diffie‐Hellman values in group chosen by 
server, but no authentication of these values.

• Vulnerable to man‐in‐middle attacks.

TLS Handshake Protocol –Other Key 
Establishment Options
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• Originally, only finite‐field DH was available in TLS; ECC came later.

• Recall: server chooses and sends parameters (p,g,gx).

• Parameters are actually under‐specified: it is hard for client to verify 
that:
• p is prime.

• g has large prime order dividing p‐1.

• gx is indeed a power of g, and not in some other subgroup.

• Most implementations perform only rudimentary checks.

• Issues are meliorated to some extent by use of safe‐primes (p = 2q+1 
with q prime), but also the source of some attacks, e.g. Lim‐Lee 
small sub‐group attacks.

• See Valenta et al. (NDSS 2017) for more details.

FF‐DH‐based Cipher Suites for TLS
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• ECC‐based cipher suites for TLS were first defined in RFC 4492 
(Blake‐Wilson et al., 2006).

• Negotiated via TLS extensions sent in ClientHello/ServerHello
messages.

• 25 different curves + 3 point formats defined in RFC 4492, along with 
the ability to negotiate bespoke curve.

• Many curves taken from NIST and ANSI standards, e.g. NISTp256.

• Dozens of new cipher suites (56 with “ECDH(E)”, 24 with “ECDSA”) 
including “SHOULD support” for:
• TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA

• TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA

• TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA

• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

ECC‐based Cipher Suites for TLS
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• Typical ClientHello offers many different cipher suites, 
choice of which to use is made by server.

• ClientHello and ServerHello also contain 32‐byte nonces
(28‐byte random values + 4‐byte time encoding).

• These are signed by the server in DH‐based cipher suites, and 
involved in key derivation.

• Important for security – informally, preventing session replay 
attacks forcing reuse of session keys.

TLS Handshake Protocol – Key Establishment Notes
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• ClientHello also offers SSL/TLS version number; server replies 
with its choice.

Semantics:  client: I support up to version x; 

server: I will use version y ≤ x.

• Legacy servers do not implement this correctly, simply failing if they don’t 
support version x.

• Typical client behaviour: try again with lower version in a fresh handshake, with 
no memory of offers in previous handshakes carried over.

• Security consequence: an active MITM can force client/server to roll back to 
lowest SSL/TLS version they are both willing to use!

• POODLE attack exploits this to roll back to SSL3 and then perform Moeller 
attack on SSLv3 padding (see later).

• The problem has been reanimated with the coming of TLS 1.3.

TLS Handshake Protocol – Key Establishment 
Notes
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Client Server

ClientHello (TLS 1.2)

ServerHello (TLS 1.0), Cert, ServerKeyExchange, ServerHelloDone

TLS Handshake Protocol Version Negotiation 
– Ideal World
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Client Server

ClientHello (TLS 1.2)

ServerHello (TLS 1.0), Cert, ServerKeyExchange, ServerHelloDone

TLS Handshake Protocol Version Negotiation 
– Real World (Version Intolerance)
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Client Server
ClientHello (1.2)

ServerHello (1.0), Cert, ServerKeyExchange, ServerHelloDone

TLS Handshake Protocol Version Negotiation 
– Real World Attack
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• An attacker who learns the RSA private key can decrypt old sessions and 
passively eavesdrop on all future RSA‐based sessions!

• A well‐known issue (lack of forward security), but given prominence by the 
Snowden revelations.

• This and performance benefits has driven an increased usage of forward‐
secure, Diffie‐Hellman‐based cipher suites over the last few years.

TLS Handshake Protocol – Forward Security?

27 SSL pulse, Oct. 2013  SSL pulse, January 2018



• An attacker who can predict a client’s choice of pms or client/server DH 
private value can passively eavesdrop on all sessions!

• And nonces in Hello messages may already leak information about state of client or 
server PRNG.

• Hence backdoored PRNGs present a serious risk to TLS security: they may allow 
recovery of future PRNG output from observed output(s).

• See Checkoway et al. (USENIX Security 2014) for extended analysis of exploitability 
of Dual EC PRNG in the TLS context.

• Relatedly, many server implementations default to using a “repeated 
ephemeral” value.

• cf. CVE‐2016‐0701:
OpenSSL provides the option SSL_OP_SINGLE_DH_USE for ephemeral 

DH (DHE) in TLS. It is not on by default.

• Hence one‐time server compromise would undermine the security of many 
client sessions.

TLS Handshake Protocol – Reliance on 
Randomness
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TLS Key Derivation

pre_master_secret

master_secret

key_block

TLS 1.2 
PRF

TLS 1.2 
PRF

Nonces
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TLS Key Derivation

Keys used by MAC and encryption algorithms in the Record Protocol 
are derived from pre_master_secret (pms): 

• Derive ms from pms using TLS Pseudo‐Random Function (PRF).

• Default PRF for TLS1.2 is built by iterating HMAC‐SHA256 in a specified 
way; earlier versions use ad hocMD5/SHA‐1 combination.

• Derive key_block from  ms and client/server nonces exchanged during 
Handshake Protocol.

• Again using the TLS PRF in TLS1.2.

• Split up key_block into MAC keys, encryption keys and IVs for use in 
Record Protocol as needed.

• NB1: neither client nor server identity is involved in key derivation, nor any 
cipher suite context.

• NB2: splitting up of key_block into components depends on cipher suite.
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ClientHello (TLS_RSA_WITH_AES_256_CBC_SHA256)

ServerHello, Cert, ServerHelloDone

Client Server

ClientKeyExchange: EncPubK(pms)

1.Check ServerCert
2.Extract PubK from ServerCert
3.Select random pms
4.Compute EncPubK(pms)

Decrypt to find pms

TLS Handshake Protocol – RSA‐based Authentication?
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ClientHello (TLS_RSA_WITH_AES_256_CBC_SHA256)

ServerHello, Cert, ServerHelloDone

Client Server

1. Decrypt to find pms
2. Derive ms
3. Compute ServerFinished

= PRF(ms,transcript)

TLS Handshake Protocol – RSA‐based Authentication

ServerFinished

Server authenticated to 
Client by proving its ability 
to decrypt using Server’s 

private key

1. Derive ms
2. Compute ServerFinished’ = 

PRF(ms,transcript)
3. Compare to received version

ClientKeyExchange: EncPubK(pms)



ServerHello, Cert, ServerKeyExchange, ServerHelloDone

Client Server

ClientHello (TLS_DHE_RSA_WITH_RC4_128_SHA)

ClientKeyExchange: g^y

1.Check Cert
2.Extract PubK from ServerCert
3.Use PubK to check server signature 
4.Choose y, compute g^y, (g^x)^y

pre_master_secret:
(g^y)^x

TLS Handshake Protocol –Authentication for 
Ephemeral DH‐based Key Establishment 

p, g, g^x, 
RSAsig(nonces, params) 
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ServerFinished

Server authenticated to client 
by showing its ability to sign 
client nonce using the Server’s 

private key



TLS supports several different entity authentication 
mechanisms for clients and servers.

Method used is negotiated along with key exchange method 
during the Handshake Protocol itself.

RSA: Ability of server to decrypt pms using its private key, 
derive ms from pms and then generate correct PRF value in 
ServerFinished message.

DHE/ECDHE: Ability of server to sign ClientNonce using its 
private key.

TLS Handshake Protocol –Authentication
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ClientHello

ServerHello, Cert, [ServerKeyExchange,] ServerHelloDone

Client Server

TLS Handshake Protocol – ClientFinished

ServerFinished

ClientKeyExchange , ClientFinished

1. Derive ms
2. Compute ClientFinished’ = 

PRF(ms,transcript)
3. Compare to received version
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1. Derive ms
2. Compute ClientFinished

= PRF(ms,transcript)



• TLS Finished messages enable each side to check that both 
views of the Handshake Protocol are the same.

• Computed as PRF(ms,transcript) where transcript = sender’s 
view of all protocol messages sent and received up to this
point.

• Compared by recipient to expected value; protocol aborts if 
mismatch is observed.

• Designed to prevent version rollback and cipher suite 
downgrade attacks. 

• Attacker attempts to manipulate client/server view of cipher suite(s) 
accpeted/offered, or of version offered/accepted.

• Ineffective if attacker can compute ms during protocol run.

TLS Handshake Protocol – Finished Messages
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ClientKeyExchange,

ClientHello

ServerHello, Cert, [ServerKeyExchange,] ServerHelloDone

Client Server

TLS Handshake Protocol – ChangeCipherSpec

ServerFinished

ClientFinished
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• ChangeCipherSpec messages enable parties to inform each 
other that they are switching to the recently agreed keys in 
the Record Protocol.

• Here, this means that all subsequent messages are protected 
using the agreed cipher suite (e.g. 
AES_256_CBC_SHA256).

• Not part of the Handshake Protocol, so not included in 
transcripts when computing Finished messages.

TLS Handshake Protocol – CCS Messages
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ClientHello

ServerHello, Cert, [ServerKeyExchange, CertificateRequest,] ServerHelloDone

Client Server

[Cert,] ClientKeyExchange, [CertificateVerify,] CCS, ClientFinished

TLS Handshake Protocol –Client Authentication

ServerFinished
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• Client authentication is optional and rarely used in the web 
setting. 

• Server requests client’s certificate in its Hello message.

• Client responds with:

• Cert: client’s certificate (chain).

• CertificateVerify: signature on protocol transcript up to this point.

• Notice the misnomers!

TLS Handshake Protocol –Client Authentication
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TLS Handshake Protocol – Renegotiation

• Renegotiation allows re‐keying and change of cipher suite 
during a session.

• For example, to force strong client‐side authentication before access to a 
particular resource on the server is allowed.

• Or to publicly negotiate a weak cipher suite and then upgrade to a stronger 
one over an encrypted channel.

• Initiated by client sending ClientHello or server sending 
ServerHelloRequest.
• Followed by full run of Handshake Protocol.

• Protocol is run over the existing Record Protocol, so receives its protection.
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TLS Handshake Protocol – Session Resumption

• Session resumption allows authentication and shared secrets 
to be reused across multiple, parallel connections in a single 
session.

• E.g., allows fetching multiple resources from same website 
without re‐doing full, expensive Handshake Protocol.

• Client and Server quote existing SessionID and exchange 
fresh nonces.

• Also enabled by use of session ticket mechanism, RFC 5077.
• Uses a TLS extension to signal/transmit a cryptographic “blob” from 

server to client, carrying session state.
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Client Server

ClientHello (SessionID)

TLS Handshake Protocol – Session Resumption
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ServerHello (SessionID), CCS, ServerFinished

CCS, ClientFinished

ms

key_block

PRF

NC,NS

ms

key_block

PRF

NC,NS



TLS Sessions and Connections

Session concept:

• Sessions are created by the Handshake Protocol.

• Session state defined by session ID and set of cryptographic parameters (encryption 
and hash algorithm, master secret, certificates) negotiated in Handshake Protocol.

• Each session can carry multiple parallel connections.

Connection concept:

• Keys for multiple connections are derived from a single ms created during one run of 
the full Handshake Protocol.

• Session resumption Handshake Protocol runs exchange new nonces.

• These nonces are combined with existing ms to derive keys for each new 
connection.

• Avoids repeated use of expensive Handshake Protocol.

• Each TLS connection corresponds to a different TCP connection.
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TLS Key Derivation and Sessions/Connections

pre_master_secret

master_secret

key_block

TLS 1.2 
PRF

TLS 1.2 
PRF

nonces
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Done once 
per session

Done once 
per connection
for a given 
session with 
fresh nonces.



Other TLS Protocols



TLS Protocol Architecture

TCP

Record Protocol

Handshake 
Protocol

Alert 
Protocol

HTTP,    
other apps

Change 
Cipher 
Spec 

Protocol
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Other TLS Protocols

Alert protocol.
• Management of SSL/TLS connections and sessions, error messages.

• Fatal errors and warnings.

• Defined actions to ensure clean session termination by both client and server.

Change cipher spec protocol.
• Technically not part of Handshake Protocol.

• Used to indicate that entity is changing to recently agreed cipher suite.

Both protocols run over Record Protocol (so are peers of 
Handshake Protocol). 
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TLS Extensions

Many extensions to TLS exist.

Allows extended capabilities and security features.

Examples:

• Renegotiation Indicator Extension (RIE), RFC 5746.

• Application layer protocol negotiation (ALPN), RFC 7301.

• Authorization Extension, RFC 5878.

• Server Name Indication, Maximum Fragment Length Negotiation, 
Truncated HMAC, etc, RFC 6066.
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TLS Complexity

• Recall simplistic view of TLS:

• Handshake Protocol followed by Record Protocol.

• Reality is much more complex:

• Initial Handshake Protocol over Record Protocol with no keys.

• Change Cipher Spec. Protocol message, switch on new keys.

• Completion of Handshake via exchange of Finishedmessages, now running over 
keyed Record Protocol.

• Followed by arbitrary sequences of Session Resumption and Renegotiation runs.

• Most of this activity is hidden from applications.

• This complexity has turned out to have negative security consequences.
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TLS Handshake Protocol Security Issues



Some TLS Handshake Protocol Security Issues

• Bleichenbacher attack (1998) on PKCS#1 v1.5 padding used for RSA 
encryption in Handshake protocol.

• Patched by making it hard to distinguish error messages, but attack rebooted in various 
ways over the years.

• Including DROWN attack in 2016, exploiting public key reuse between SSLv2 and other 
versions of SSL/TLS, and extensive legacy support for SSLv2 in servers.

• Attacks exploiting continued support for weak “export‐grade” cipher 
suites:  FREAK and LOGJAM (2015).

• Attacks exploiting renegotiation and resumption: renegotiation attack 
(2009), triple handshake attack (2014).

• Implementation flaws of various kinds.
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Bleichenbacher’s Attack 

• We begin with Bleichenbacher’s attack on RSA encryption 
used in TLS (C’98).

• This attack exploits the fact that RSA encryption scheme used 
in TLS (PKCS#1 v1.5) is notCCA secure.

• It recovers the TLS pre_master_secret (pms) for a target 
session using roughly 220 interactions with server.
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PKCS#1 v1.5, block type 2

Padding block 48-byte pms000200

c = me mod N

• Plaintext must begin with “00 02” bytes. 

• Padding block consists of at least 8 non‐zero bytes.

• Should be terminated by “00” byte.

• Last 48 bytes are used as pms.
• Additional complication: most significant two bytes are set to client TLS version.
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PKCS#1 v1.5, block type 2

Padding block 48-byte pms000200

c = me mod N

Think about sanity checking m after applying RSA decryption operation:

• Check for “00 02”?

• Check for at least 8 non‐zero padding bytes or just some non‐zero bytes?

• Check for a 00‐byte? Or just extract last 48 bytes?

• Demand 00‐byte to be in exactly the right position?

• Check for TLS version number?
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• Exact decryption processing for RSA is not specified in the 
RFCs.

• Different implementations exhibit different behaviours.

• To simplify matters: suppose that we have an oracle that on 
input c outputs whether x := cd mod N begins with byte pattern
“00 02”.

• If oracle output is “yes”, then we have an inequality:

2B ≤ x mod N < 3B

where B = 28(k‐2) and k is the number of bytes in modulus N.

Bleichenbacher’s Attack
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Bleichenbacher’s Attack

• Suppose attacker records c*, the RSA ciphertext encrypting 
the unknown pms for a target session.

• Attacker calls the “00 02” oracle on many, carefully selected 
inputs of the form sec* mod N.

• Each “yes” output gives an inequality of the form:

2B ≤ sx mod N < 3B

where s is known and x encodes pms.
• By analysing many responses from the oracle, the attacker can 

eventually reconstruct x and thence pms.
• Roughly 220 oracle queries are needed.
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In the TLS context: 

The required “00 02” oracle was obtained using error messages 
arising from server processing of attacker‐generated 
ClientKeyExchange messages.

Countermeasures?

• Switch to using CCA‐secure variant of RSA encryption, e.g. 
RSA‐OAEP (cannot create “related” ciphertexts that are 
valid).

• Add protocol‐specific countermeasures.

Bleichenbacher’s Attack
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Bleichenbacher and TLS1.0 (1999)

TLS 1.0 was published in RFC 2246, Jan 1999, shortly after 
adoption of RSA‐OAEP into PKCS#1v2.0.

TLS 1.0 still uses PKCS#1v1.5, despite Bleichenbacher’s attack:

The best way to avoid vulnerability to this attack is to treat 
incorrectly formatted messages in a manner 
indistinguishable from correctly formatted RSA blocks. Thus, 
when it receives an incorrectly formatted RSA block, a 
server should generate a random 48‐byte value and 
proceed using it as the premaster secret. Thus, the server 
will act identically whether the received RSA block is 
correctly encoded or not.
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TLS 1.1, RFC 4346 (2006)

[PKCS1B] defines a newer version of PKCS#1 encoding that is more 
secure against the Bleichenbacher attack.  However, for maximal 
compatibility with TLS 1.0, TLS 1.1 retains the original encoding.  
No variants of the Bleichenbacher attack are known to exist 
provided that the above recommendations are followed.

Over‐optimistic: several implementations still get it wrong, and 
there’s now a long literature of Bleichenbacher‐style attacks 
against RSA implementations (not just in TLS):

• Bardou et al. (Crypto 2012), Jager et al. (Esorics 2012), DROWN 
(Aviram et al., USENIX 2016), ROBOT (Böck et al., 2017).
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DROWN Attack (Aviram et al., USENIX’16)

Attack scenario:

• Server supports SSLv2 and uses the same RSA key for SSLv2 
and later versions of SSL/TLS 

• Surprisingly large number of servers: circa 8% of Alexa top 150k servers 
in July 2016 (SSL pulse)

• Most servers don’t provide a facility to provide different key for 
different SSL/TLS versions anyway.

• Client has absolutely no intention to use SSLv2.



DROWN Attack (Aviram et al., USENIX’16)

6262

ClientHello(TLS 1.2, TLS_RSA… )

ServerHello, Cert, ServerHelloDone

RSA ciphertext c*

ClientKeyExchange, CCS, ClientFinished

ClientHello(SSL2_RC4_128_EXPORT40_WITH_MD5)

ServerHello, Cert, ServerHelloDone

ClientKeyExchange: sec*

ServerFinished

Encrypted under 
40‐bit key!
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DROWN Attack (Aviram et al., USENIX’16)

• Standard Bleichenbacher countermeasure: if RSA decryption of c* fails, 
then choose a random master secret K and carry on with the protocol.

• Send sec* twice in two consecutive SSLv2 handshakes:

• If sec* is invalid, we get two ServerVerify messages encrypted under two different keys.

• If sec* is valid, then we get two ServerVerify messages encrypted under the same key.

• But the encryption key is “only” 40‐bits in size, and the plaintext is partly 
known.

• Perform two 40‐bit key searches and compare keys to find out if sec* was 
valid or invalid.

• This provides an expensive oracle for carrying out Bleichenbacher’s attack.
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DROWN Attack (Aviram et al., USENIX’16)

• Roughly 10,000 SSLv2 handshakes are needed for the attack, 
and the attack works for (roughly) 1 in every 1000 TLS 
handshakes.

• Support for legacy 40‐bit algorithms in SSLv2 + bugs in 
OpenSSL implementation make it feasible to extract plaintext 
underlying c*.

• Cost is 250  trial decryptions (without OpenSSL bugs), but under 
a minute for “special DROWN” (with OpenSSL bugs).

• This is a cross‐version (or cross‐cipher suite) attack, made 
possible because of support for old versions/algorithms and 
key re‐use across versions.



More Recent TLS Handshake Protocol Attacks

Up until 2009, the TLS Handshake Protocol survived relatively 
unscathed.

Notable exception: Bleichenbacher’s attack on RSA encryption 
used in TLS as discussed above.
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Renegotiation Attack (Ray and Dispensa, Rex, 2009)

Attacker Data
ServerHelloReq

ClientHello

ClientHello

attacker‐
server initial 
handshake

client‐server
initial 

handshake with 
client 

authentication

attacker‐server 
renegotiation 
handshakeClient Data

Client view: single handshake, sends ClientData.
Server view: two handshakes, receives AttackerData||ClientData from authenticated 
client.

Overall effect: attacker injects AttackerData as if from trusted source.
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Renegotiation

• Renegotiation attack due to Ray and Dispensa, also Rex (2009).

• Server treats data as coming from either side of client 
authentication as being a single unit from an authenticated source.

• TLS specification does not really say how to handle this situation.

• Flush buffer of received fragments upon renegotiation?

• Signal to application that authentication status has changed?

• Highlights lack of API specification for TLS.

• Attack addressed via Renegotiation Indication Extension (RIE), RFC 
5746.

• Include and verify information about previous handshakes in any 
renegotiation. 

• Could also disable renegotiation on server.
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Triple Handshake Attack (Bhargavan et al, IEEE S&P’14)

• Triple Handshake attack: renegotiation attack rebooted.

• Complex attack leveraging lack of identities in key derivation + 
resumption + renegotiation.

• Even first step in the attack (UKS attack) breaks certain 
authentication protocols relying on TLS. 

• Attack highlights that RIE fix for renegotiation attack is not 
robust in the context of the full TLS Handshake Protocol.

• Renegotiation status gets lost across resumptions.



Cross‐cipher Suite Attacks

• Recall server signature format in ServerKeyExchange:
sig(nonces, params)

• Format of params depends on type of key exchange: mod p
DH parameters or ECDH parameters.

• But type of parameters is not itself signed.

• Instead, it’s inferred by client from the cipher suite, for which 
agreement is only verified later, via Finished messages.

• Leads to a theoretical attack due to Mavrogiannopoulos et al. 
(CCS’12).

• Attacker switches cipher suite – ECDH for FFDH, or vice‐versa.
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Cross Cipher Suite Attack (Mavrogiannopoulos
et al., CCS’12)

70

ClientHello

TLS_DHE_RSA…

ClientHello’

TLS_ECDHE_RSA…

ServerHello, Cert, 
ServerKeyExchange

Server accepts 
TLS_ECDHE_RSA…

Contains server’s ECDHE 
parameters and RSA 

signature on nonces and 
parameters*

ServerHello’, Cert, 
ServerKeyExchange

Changed by 
MITM back 

to 
TLS_DHE_

RSA…

ECDHE  params are 
interpreted as being DHE 
params; RSA signature is 

valid!
With probability 2‐40, DHE 

params are parsed as 
having g = 0, 1 or ‐1! 

*server needs to support 
“explicit prime curve” 
option, RFC 4492.



Cross Cipher Suite Attack (Mavrogiannopoulos
et al, CCS 2012)

• Attack requires server to support “explicit prime curve” option 
(RFC 4492).

• Attack requires client to accept weak DH parameters (g = 0, 1 
or ‐1).

• Enabling MITM to compute pms and correct ServerFinished
message to complete the handshake.

• Success rate can be boosted by repeatedly sending 
ClientHello message within TLS timeout on client (tens of 
seconds).

• Attack possible because server signature does not cover type 
of cipher suite, nor TLS extensions specifying use of ECC.
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FREAK and LOGJAM Attacks

EXPORT cipher suites:

0x000003 TLS_RSA_EXPORT_WITH_RC4_40_MD5
0x000006 TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5
0x000008 TLS_RSA_EXPORT_WITH_DES40_CBC_SHA
0x00000B TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA
0x00000E TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA
0x000011 TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
0x000014 TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
(and more)

• Introduced in the 90s in the era of export control.

• Maximum 512‐bit RSA keys and 512‐bit primes for DH/DHE.

• Repurpose ServerKeyExchange message to transport “ephemeral” 
RSA/DH/DHE keys.

• Until recently, still supported by around 25% of servers…
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FREAK Attack (Beurdouche et al., IEEE S&P’15)

7373

ClientHello

TLS_RSA…

ClientHello’

TLS_RSA_EXPORT…

ServerHello, Cert, 
ServerKeyExchange

Server accepts 
TLS_RSA_EXPORT…

Contains server’s 512‐bit 
RSA public key and RSA 
signature on nonces and 

parameters

ServerHello’, Cert, 
ServerKeyExchange

Buggy client processes 
this and accepts 512‐bit 

RSA key for pms transport

Changed by 
MITM back 

to 
TLS_RSA

…



FREAK Attack (Beurdouche et al., IEEE S&P’15)

7474

ClientHello

TLS_RSA…

ClientHello’

TLS_RSA_EXPORT…

ServerHello, Cert, 
ServerKeyExchange

ServerHello’, Cert, 
ServerKeyExchange

Attacker pre‐factors 512‐
bit RSA key, and can now 

decrypt to get pms.
ClientKeyExchange, 
CCS, ClientFinished

CCS,
ServerFinished

Attacker succeeds in 
impersonating server.



FREAK Attack (Beurdouche et al., IEEE S&P’15)

• Attack relies on buggy clients accepting ServerKeyExchange
containing 512‐bit RSA key when no such message was 
expected.

• Many clients were vulnerable (https://www.smacktls.com/).

• Export RSA keys are meant to be ephemeral, but hard to 
generate RSA moduli in practice, so they were made long‐
lived.

• Cost of factoring 512‐bit modulus: $50 on Amazon EC2.

• Attack arises because of common code paths in 
implementations, coupled with state machine failures.

• Explored in‐depth in Berdouche et al. paper.
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Contains server’s 512‐bit 
DHE parameters and RSA 
signature on nonces and 

parameters

LOGJAM Attack (Adrian et al., CCS’15)

7676

ClientHello

TLS_DHE_RSA…

ClientHello’

TLS_DHE_RSA_EXPORT…

ServerHello, Cert, 
ServerKeyExchange

ServerHello’, Cert, 
ServerKeyExchange

Attacker  solves DLP for g, 
g^x to compute server’s 

private value x .

ClientKeyExchange (g^y), 
CCS, ClientFinished

CCS,
ServerFinished

Attacker 
succeeds in 

impersonating 
server.

Attacker  
uses x and 
g^y to 

compute 
pms



LOGJAM Attack (Adrian et al., CCS’15)

• LOGJAM = Cross‐cipher suite + FREAK.
• Active attacker changes TLS_DHE_RSA… to 

TLS_DHE_RSA_EXPORT…
• Server responds with weak DH parameters signed under its RSA 

key.

• Client accepts these (signature does not include cipher suite 
details).

• Attacker solves 512‐bit DLP before client times out.

• Attacker can then create correct ServerFinished message to 
impersonate server.

• Difficult to perform in practice, but not impossible for three‐
letter agency.

• Servers use small numer of common primes p.

• Precomputation allows each 512‐bit DLP to be solved in around 
90s.
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Implementation Vulnerabilities



Heartbleed

• Buffer over‐read vulnerability in OpenSSL
implementation of DTLS Heartbeat 
protocol.

• High severity: remote recovery of chunks 
of server memory, including server private 
keys, private user data, etc.

• 85%+ of SSL/TLS servers rely on OpenSSL.

• Practical demonstrations of threat (e.g. 
Mumsnet).

• Messy disclosure in early April 2014.

• A good logo!
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Certificate Processing Bugs

Many problems have been discovered in code for certificate 
processing.

• Fahl et al. (CCS 2012)

• Georgiev et al. (CCS 2012)

• GnuTLS bug (CVE‐2014‐0092)

• Apple goto fail (CVE‐2014‐1266)

• Affecting Apple iOS 6.x before 6.1.6 and 7.x before 7.0.6, Apple TV 6.x 
before 6.0.2, and Apple OS X 10.9.x before 10.9.2.
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Apple goto fail
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer signedParams,

uint8_t *signature, UInt16 signatureLen)

{

OSStatus err;

...

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;

goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

goto fail;

…

fail:

SSLFreeBuffer(&signedHashes);

SSLFreeBuffer(&hashCtx);

return err;

}
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Causes all server signature 
processing on client to be 

bypassed!

Meaning that MITM 
attacker can trivially 
impersonate any TLS 

server!



CCS Mishandling Bug (CVE 2014‐0224) 

• OpenSSL implementation of TLS will accept 
ChangeCipherSpec message at any point in the 
TLS Handshake.

• So MITM attacker can inject it at point of his 
choosing.

• Result is that TLS key derivation is carried out 
with a zero‐length master secret.

• Leading to predictable session keys.
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Invalid Curve Attacks

• Implementations fail to check that received EC point is actually on specified 
curve.

• Leads to invalid curve attack on implementations reusing ephemeral values 
and/or ECDH cipher suites.

• Attacker (client) sends as its DH values points Pi = (xi,yi) in EC groups of 
small, co‐prime orders qi.

• Server responds by computing sP, where s is long‐term secret: relies on x‐
coordinate‐only computation depending only on b in Weierstrass form.

• premastersecret is then just sP, one of qi possible values.

• Attacker can learn s mod qi by guessing value for ClientFinished and testing 
if server accepts.

• Attacker can reconstruct s using CRT.

• Original ideas in Biehl et al. (CRYPTO 2000) and Antipa et al. (PKC 2003).

• Shown to work in practice for TLS implementations by Jager et al. (ESORICS 
2015).
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Side Channel Attacks

• Use of public key primitives opens up many opportunities for side‐
channel attacks on implementations.

• Timing attacks on naïve (and not so naïve!) implementations of RSA, 
EC‐DSA, DH, ECDH.

• A current focus is on “Flush+Reload” Lowest Level Cache (LLC) 
timing attacks.

• OpenSSL is by now quite well protected, but new attacks are still 
being discovered.

• Recent example: PereidaGarcía and Brumley, USENIX 2017: 

• LLC attack on modular inversion code used in OpenSSL ECDSA, finding 
MSBs of ECDSA nonces, and thence ECDSA signing key via lattice attack.

• Other libraries are (probably) less‐well protected.
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TLS 1.3



TLS 1.3

• The TLS 1.3 specification is being developed in TLS Working 
Group of IETF.

• Major redesign compared to previous versions.

• Specification is now nearing completion, currently at draft 23.

• Several implementations underway, tracking changes to 
specification, working on inter‐op.
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TLS 1.3

• Main objectives for TLS 1.3:

• Reduce latency of initial secure data communication (1‐RTT and 0‐RTT 
for resumed sessions).

• Improve security and privacy.

• Protocol simplification (reducing options and removing broken cipher 
suites).

• No compression, RC4, MAC‐then‐Encrypt, RSA key transport, custom DH and 
ECDH groups, renegotiation.

• Unifying session resumption and PSK mechanisms.

• But continuity for most important use cases (e.g. post handshake client 
authentication).
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TLS 1.3

• Significant involvement of academic community during the 
design process.

• Security analysis of early drafts of the protocol by several teams, using 
provable security and symbolic analysis.

• Some significant errors uncovered during development.

• Analysis on‐going: draft spec keeps changing!
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TLS 1.3 Handshake – 1‐RTT

89

• Server can send secure data in its  first message.

• Client can send secure data in its second message.



TLS 1.3 Handshake – 1‐RTT

• Client includes DH share(s) in its first message, along with 
ClientHello, anticipating group that server will prefer.

• Server responds with single DH share in its ServerHello
response.

• If this works, a forward‐secure key is established after 1 round 
trip (1‐RTT).

• Clients can cache groups preferred by popular servers.

• If server does not like DH groups used by client, it sends a 
HelloRetryRequest and a group back to client.

• In this instance, the handshake requires two round trips (2‐
RTT).
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TLS 1.3 Handshake – DH and ECDH groups

• Limited set of DH and ECDH groups will be supported in TLS 
1.3.

• Reduces likelihood of fall‐back to 2‐RTT.

• Removes problem of client not being able to validate groups 
that was inherent in TLS 1.2 and earlier.

• Removes complexity from implementations.
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TLS 1.3 Handshake – DH and ECDH groups

• DH groups: 

• Specified in RFC 7919

• |p| = 2048, 3072, 4096,6144, 8192.

• All p are such that q = (p‐1)/2 is prime.

• Removes several avenues of attack: backdoored primes, small 
subgroup attacks, etc (cf. recent work by Fried et al., Valenta et al.)

• ECDH groups:

• Some existing curves from RFC 4492 and 2 new curves in RFC 
7748.

• NIST P256, P384, P521; Curve25519, Curve448.

92



TLS 1.3 Handshake – 0‐RTT

• Prior versions of TLS: session resumption feature.

• Lightweight handshake protocol, exchange of nonces and new 
key derivation.

• No public key crypto, but still 1‐RTT.

• Under pressure from QUIC design, TLS WG decided to add a 0‐
RTT option to TLS 1.3.

• Enables client to send encrypted data in its first message.

• Not fully forward secure, since it uses either an old key or a new 
DH value from client but old DH value from server.

• After a lot of analysis, it was realised that providing anti‐replay 
for such messages was hard‐to‐impossible in distributed server 
environments.
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TLS 1.3 Handshake – 0‐RTT

• Elegant theoretical solution: achieve forward secure 0‐RTT using HIBE + 
puncturable encryption techniques (e.g., Günther et al., EC’17).

• Actual solution: forget about protecting against replay attacks and use the 
feature only for certain types of data where replay is not an issue. 

• Now 0‐RTT handshakes are bootstrapped using keys from previous 
protocol runs.

• Problem: how to explain security of 0‐RRT data to developers?

• Solution: maintain a separate API for 0‐RTT data.

• Residual problem: performance gain is too tempting for developers to 
heed warnings about its dangers.

• It was also realised that 0‐RTT and PSK flows could be unified.

• PSK is an important use case for, e.g. IoT applications.

94



TLS 1.3 –Other features

• Post‐handshake client authentication: previously done using 
renegotiation, now done with special handshake messages.

• Server sends CertificateRequest message; client responds with 
Certificate, CertificateVerify, Finished.

• Key update mechanism: based on data limits for AES‐GCM 
and ChaCha20Poly1305, derived from security proofs.

• Record Protocol: features AEAD only, traffic padding, single 
plaintext type field and encrypted type, use of masked nonces.

• Key schedule: derivations using HKDF and labels; much more 
complex key schedule; hash for HKDF negotiated in 
handshake; proper key separation of all keys allowing easier 
analysis.

95



Concluding Remarks



Concluding Remarks

• The TLS Handshake Protocol uses mostly “boring” 
cryptography yet is extraordinarily complex.
• Much more so than typical key exchange protocols appearing in the 

scientific literature.

• Making the protocol resistant to analysis efforts.

• Some protocol design errors were made, but not too many.

• Legacy support for EXPORT cipher suites and long tail of old 
versions has opened up serious vulnerabilities.

• Lack of formal state‐machine description, lack of API 
specification, and sheer complexity of specifications have led 
to many serious implementation errors.

• Some, but not all of this, is being fixed in TLS 1.3.
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Concluding Remarks

• Public key cryptography has evolved significantly in TLS.

• The largest shift has been from RSA key transport to elliptic 
curve Diffie‐Hellman.

• A second shift now underway is to move to using newer elliptic 
curves like Curve25519, allowing greater speed and better 
implementation security.

• A third shift is the move away from SHA‐1 in certs.

• A future shift may (will?) be needed to incorporate post‐
quantum algorithms.

• But implementation vulnerabilities are bound to continue to 
be discovered.
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Fin
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