

Efficient Secure Computation with an Honest Majority

Yuval Ishai
Technion

MPC with an Honest Majority

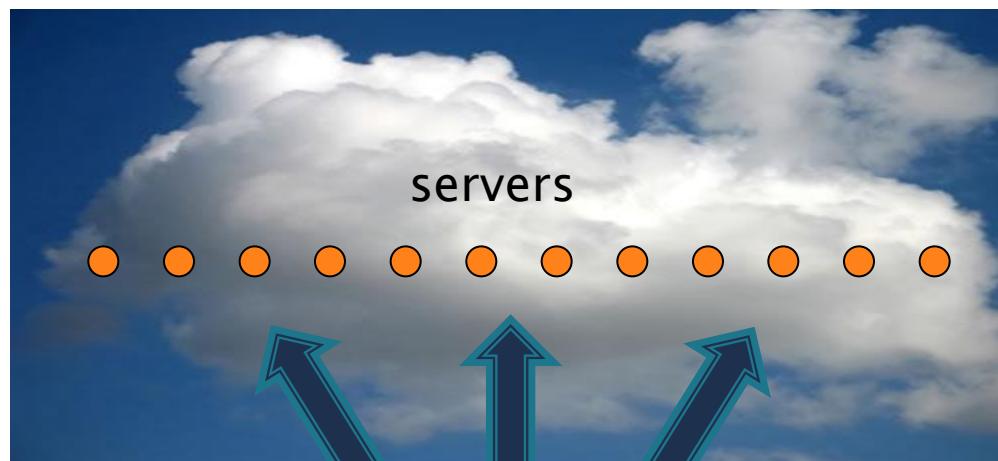
- ▶ **Several potential advantages**
 - Unconditional security
 - Guaranteed output and fairness
 - Universally composable security
 - This talk: **efficiency**
- ▶ **Main feasibility results**
 - Perfect security with $t < n/3$ [BGW88,CCD88]
 - Statistical security with $t < n/2$ (assuming broadcast) [RB89]
- ▶ **Goal: minimize complexity**
 - Communication
 - Computation

What can we hope for?

▶ Communication

- Match insecure communication complexity?
 - Possible (in theory, up to $\text{poly}(k)$ overhead) using FHE
 - Big open question in information-theoretic setting
- A more realistic goal
 - Allow communication for each gate
 - Minimize **amortized** cost as a function of n
 - Ignore additive terms that do not depend on circuit size
 - Ideally, $O(1)$ bits per gate

▶ Computation


- $O(1)$ computation per gate?

What can we get?

- ▶ **Essentially what we could hope for**
 - At most $\text{polylog}(n)$ overhead
 - Work per party decreases with number of parties!
 - Small price in resilience
 - $O(\text{depth})$ rounds
 - or $O(1)$ rounds with $\text{poly}(k)$ overhead and comp. security
- ▶ **This talk: several simplifying assumptions**
 - Inputs originate from a **constant** number of “clients”
 - Security with **abort**
 - **Statistical** security against **static** malicious adversary
 - Small fractional resilience
 - Broadcast
- ▶ **Assumptions can be removed**

The model

- ▶ **$m \geq 2$ clients, n servers**
 - Only clients have inputs and outputs
 - Assume $m=O(1)$ in most of this talk
 - Motivated by next talk

The model

Bar-Ilan University
Dept. of Computer Science

- ▶ Synchronous secure point-to-point channels + broadcast
 - Servers only talk to clients
- ▶ Malicious adversary corrupting:
 - at most cn servers for some constant $0 < c < 1/2$
 - any subset of the m clients
- ▶ Statistical security with abort

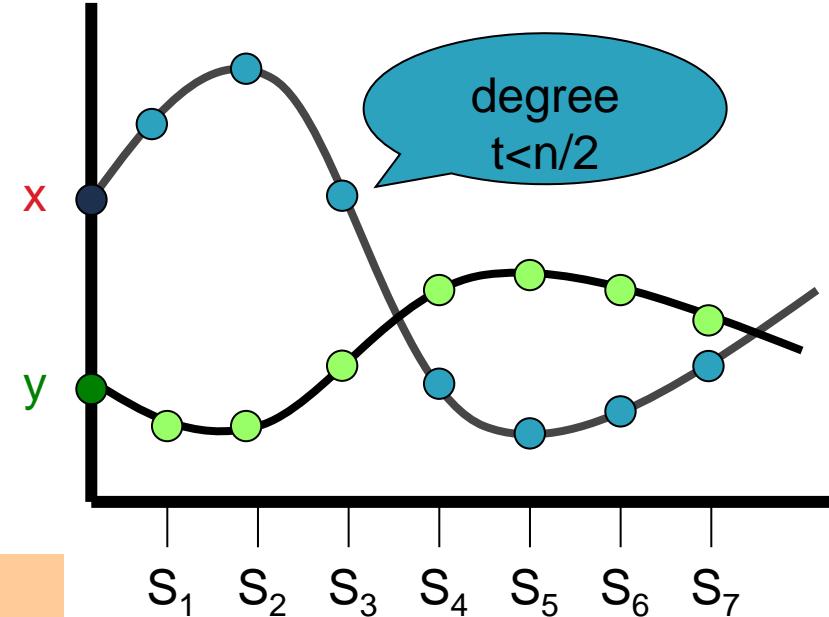
Efficiency in more detail

- ▶ **Functionality represented by a circuit C**
 - Arithmetic circuit over F (with $+$ and \times gates)
 - Assume $n \ll |C|$, $\text{depth}(C) \ll |C|$
 - Ignore low-order additive terms
- ▶ **Goal 1: Minimize communication**
 - Initial protocols [BGW88,CCD88]: $|C| \cdot \text{poly}(n)$
 - Best unconditional protocols (this talk): $|C| \cdot O(1)$
 - Using FHE: $|\text{input}| + \text{poly}(k) \cdot |\text{output}|$
- ▶ **Goal 2: Minimize computation**
 - Best one can hope for: $|C|$ field ops.
 - Best known (this talk): $|C| \cdot O(\log n)$
 - Assumes large F ($|F| > 2^k$)
 - Polylog(n) overhead possible for any F

Some historical credits

Bar-Ilan University
Dept. of Computer Science

- ▶ Franklin–Yung 92
 - Run several **parallel** instances of BGW roughly for price of one
 - Small penalty in security threshold
 - Reduces complexity of BGW for **some tasks**
- ▶ Hirt–Maurer 01, Cramer–Damgård–Nielsen 01,
Damgård–Nielsen 06
 - Improved overhead of MPC with optimal resilience
- ▶ Damgård–I 06, I–Prabhakaran–Sahai 09
 - Extend scope of Franklin–Yung technique to general tasks
 - Optimize computational complexity using technique from
Groth 09


Some historical credits

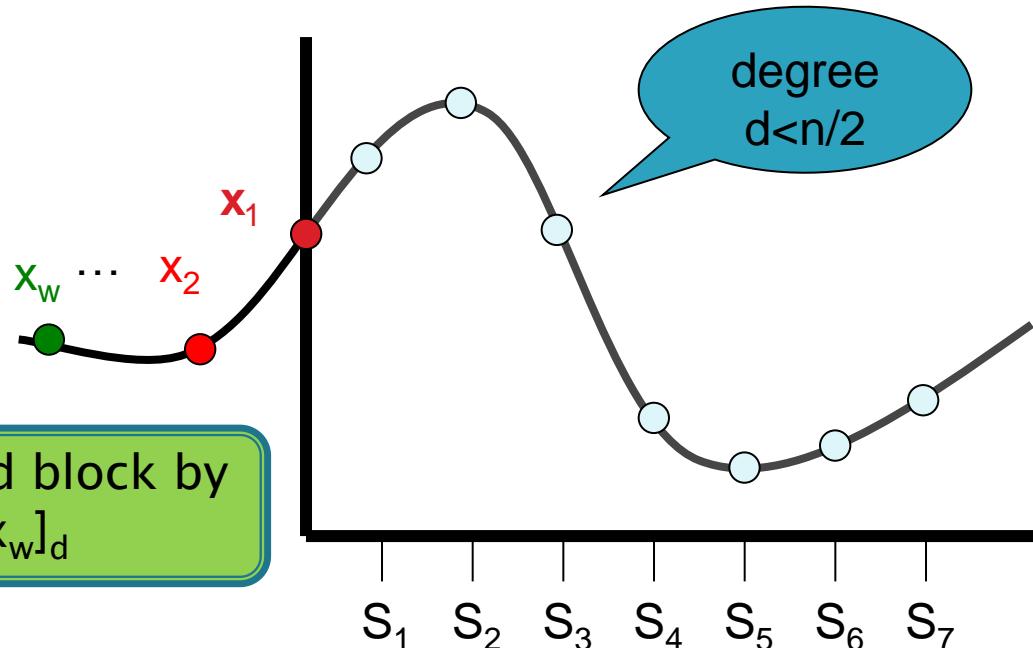
Bar-Ilan University
Dept. of Computer Science

- ▶ Damgård–I–Kroigaard–Nielsen–Smith 08
efficiency with many clients, boosting resilience
using technique of Bracha 87
- ▶ Beerliova–Hirt 08, Damgård–I–Kroigaard 10
perfect security
- ▶ Beaver–Micali–Rogaway 90, Damgård–I 05
constant-round protocols
- ▶ Chen–Cramer 06
using constant-size fields

Starting point: BGW

- ▶ Secret-share inputs
- ▶ Evaluate C on shares
 - Non-interactive addition
 - Interactive multiplication
- ▶ Recover outputs

- Secure with $t < n/2$ (semi-honest) or $t < n/3$ (malicious)
- Complexity: $|C| \cdot O(n^2)$ (semi-honest)
 $|C| \cdot \text{poly}(n)$ (malicious)

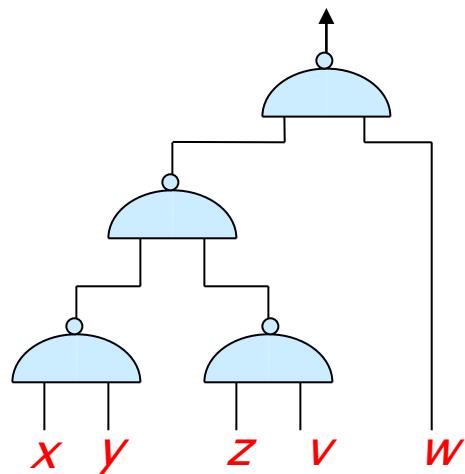
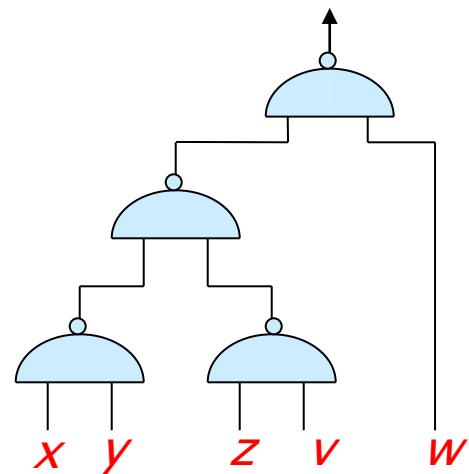


Sources of overhead

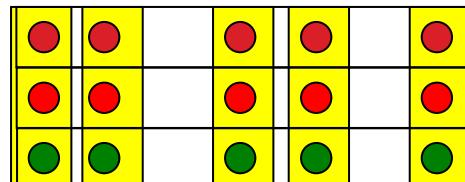
Bar-Ilan University
Dept. of Computer Science

- ▶ **Each wire value is split into n shares**
 - Use “packed secret sharing” to amortize cost
- ▶ **Multiplication involves communication between each pair of servers**
 - Reveal blinded product to a single client
- ▶ **Expensive consistency checks**
 - Efficient batch verification

Share packing

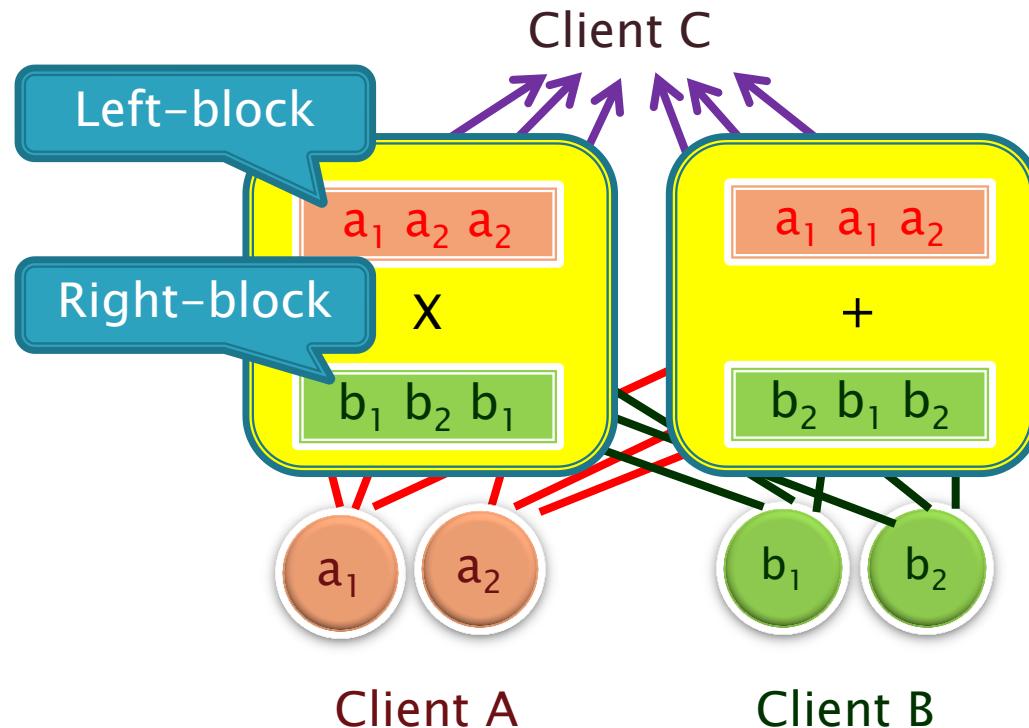



- Handle block of w secrets for price of one.
- Security threshold degrades from d to $d-w+1$
- $w=n/10 \rightarrow \Omega(n)$ savings for small security loss
- Compare with error correcting codes


BGW with share packing?

YES: evaluate a circuit on
multiple inputs in parallel

NO: evaluate a circuit on a
single input



3 inputs

5 blocks

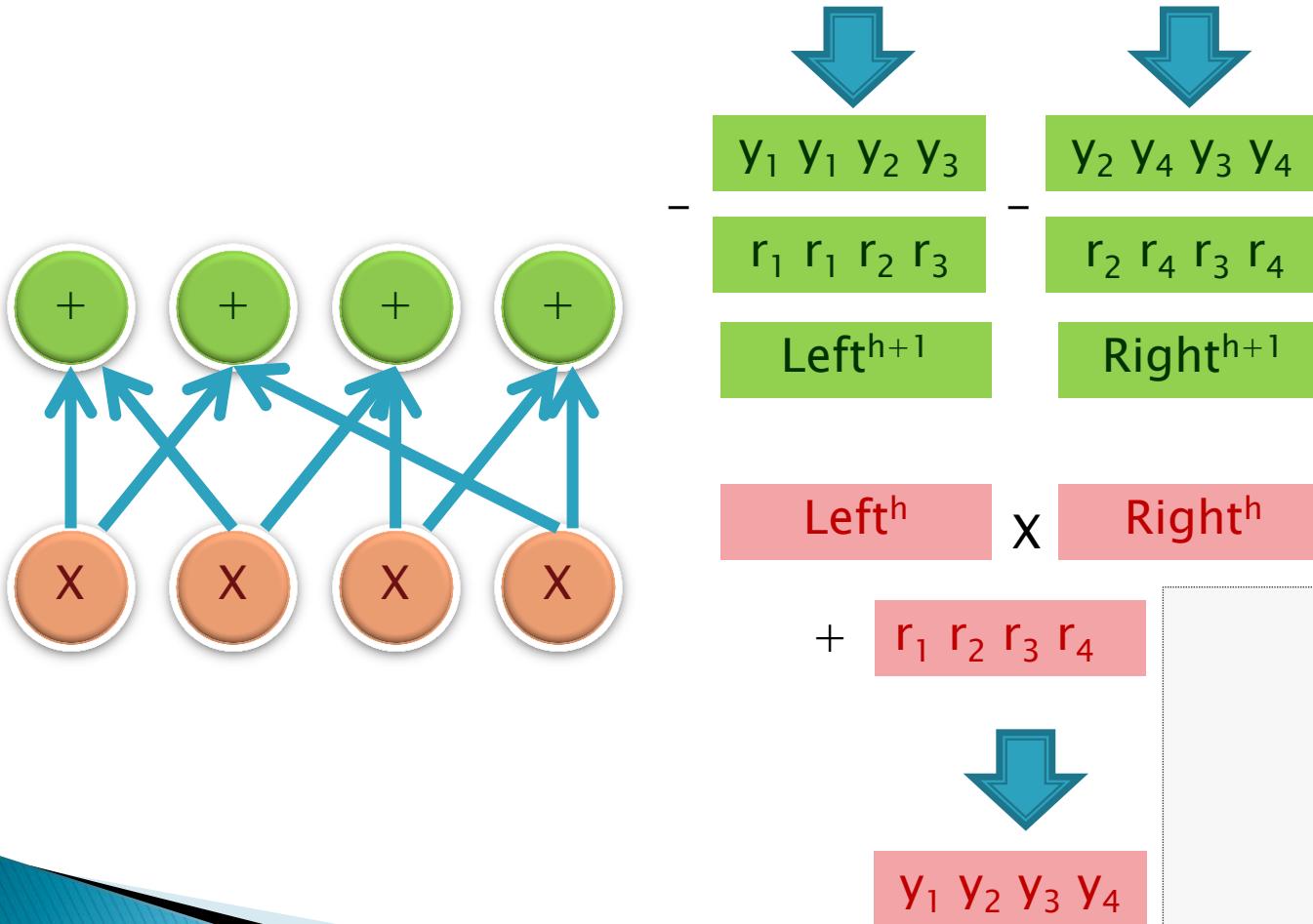
Warmup: Semi-honest, depth 1

$$\begin{aligned}
 A \rightarrow S: \quad & p_A = [a_1, a_2, a_2]_d \\
 & q_A = [a_1, a_1, a_2]_d \\
 & z_A = [0, 0, 0]_{2d}
 \end{aligned}$$

$$\begin{aligned}
 B \rightarrow S: \quad & p_B = [b_1, b_2, b_1]_d \\
 & q_B = [b_2, b_1, b_2]_d \\
 & z_B = [0, 0, 0]_{2d}
 \end{aligned}$$

$$\begin{aligned}
 S \rightarrow C: \quad & p_A p_B + z_A + z_B \\
 & q_A + q_B
 \end{aligned}$$

- Extends to constant-depth circuits
- Still 2 rounds, $t = \Omega(n)$


Semi-honest, any depth

- ▶ Assume circuit is composed of layers $1, \dots, H$.
- ▶ Clients share inputs into $[\text{left}^1]_d$ and $[\text{right}^1]_d$
- ▶ For $h=1$ to $H-1$:
 - Clients generate random blocks $[r]_{2d}$, $[\text{left}_r]_d$ and $[\text{right}_r]_d$ replicated according to structure of layer $h+1$
 - Servers send **masked** output shares of layer h to Client A:
 $[y]_{2d} = [\text{left}^h]_d * [\text{right}^h]_d + [r]_{2d}$ ($* \in \{x, +, -\}$)
 - A **decodes, rearranges** and **reshares** y into $[\text{left}_y]_d$, $[\text{right}_y]_d$
 - Servers let
 - $[\text{left}^{h+1}]_d = [\text{left}_y]_d - [\text{left}_r]_d$
 - $[\text{right}^{h+1}]_d = [\text{right}_y]_d - [\text{right}_r]_d$
- ▶ Servers reveal output shares
 $[\text{left}^H]_d * [\text{right}^H]_d + [0]_{2d}$

Example

Bar-Ilan University
Dept. of Computer Science

Malicious model

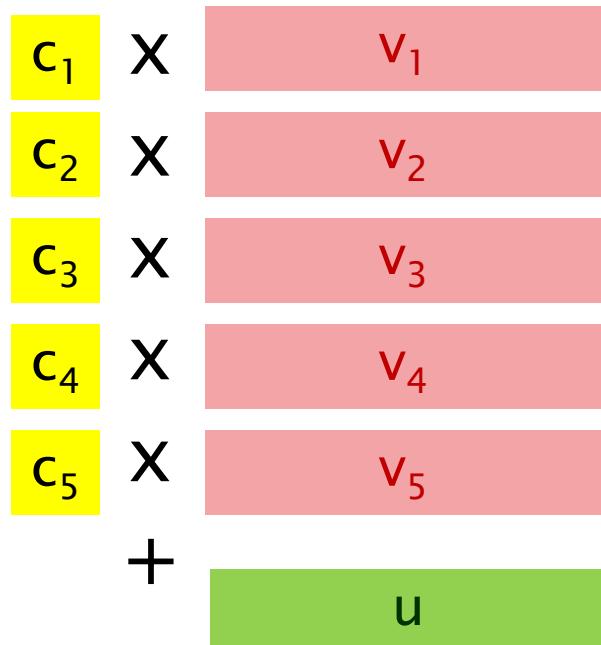
Bar-Ilan University
Dept. of Computer Science

- ▶ Need to protect against $t=\Omega(n)$ malicious servers and $t' < m$ malicious clients.
- ▶ Malicious servers handled via error correction
 - Valid shares form a good error-correcting code
 - Error **detection** sufficient for security with abort
- ▶ Malicious clients handled via efficient VSS procedures (coming up)

Efficient statistical VSS

Bar-Ilan University
Dept. of Computer Science

- ▶ Recall: only shoot for security with abort
- ▶ Two types of verification procedures
 - Verify that shares lie in a linear space
 - E.g., degree- d polynomials
 - Verify that shared blocks satisfy a given replication pattern
 - E.g., $[r_1, r_1, r_2, r_1] [r_2, r_3, r_1, r_2]$
- ▶ Cost is amortized over multiple instances


Verifying membership in a linear space

- ▶ Suppose Client A distributed a vector v between servers.
 - S_i holds the i -th entry of v
 - Can be generalized to an arbitrary partition of entries
- ▶ Goal: Prove in zero-knowledge to Client B that v is in some (publicly known) linear space L .
- ▶ Protocol:
 - A distributes a random $u \in_r L$
 - B picks and broadcasts $c \in_r F$
 - Servers jointly send $w = cv + u$ to B
 - B checks that $w \in L$
- ▶ ZK: w is a random vector in L
- ▶ Soundness (static corruption):
 - consider messages from honest servers
 - $cv + u, c'v + u \in L \rightarrow (c - c')v \in L \rightarrow v \in L$
 - soundness error $\leq 1/|F|$

Amortizing cost

- Can be jointly generated by clients
- Can be pseudorandom (ε -biased)

$w \in L ?$

Verifying replication pattern

secret	a b c d	e f g h
inner product		
public	r₁ r₂ s₁ s₂	r₃ s₃ r₄ r₅
	r₂ r₃ s₂ s₃	r₄ s₁ r₅ r₁

$$\begin{array}{c}
 \boxed{a \ b \ c \ d} \quad + \quad \boxed{e \ f \ g \ h} \quad - \quad \boxed{a \ b \ c \ d} \quad - \quad \boxed{e \ f \ g \ h} \\
 \times \qquad \qquad \qquad \times \qquad \qquad \qquad \times \qquad \qquad \qquad \times \\
 \boxed{r_1 \ r_2 \ s_1 \ s_2} \quad \quad \quad \boxed{r_3 \ s_3 \ r_4 \ r_5} \quad \quad \quad \boxed{r_2 \ r_3 \ s_2 \ s_3} \quad \quad \quad \boxed{r_4 \ s_1 \ r_5 \ r_1} \\
 \\ \\
 + \quad \boxed{z_1 \ z_2 \ z_3 \ z_4}
 \end{array}$$

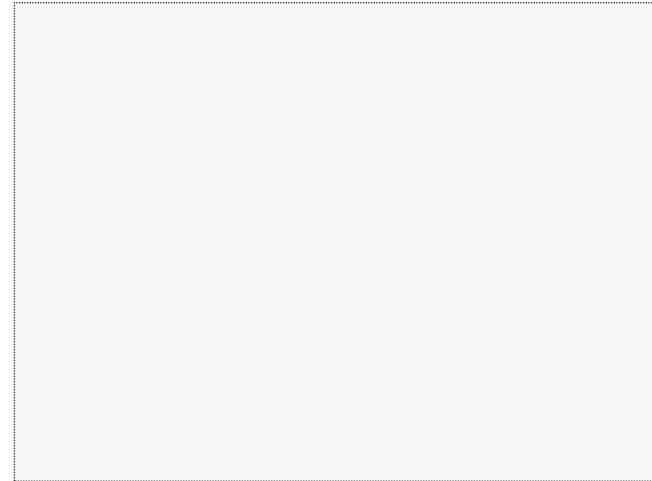
Asymptotic efficiency

▶ Communication

- $O(|C|)$ field elements ($|F| > n$) + “low order terms”
- Low order terms include:
 - Additive term of $O(\text{depth} \cdot n)$ for layered circuits
 - depth → # “communicating layer pairs” for general circuits
 - Multiply by $k/\log|F|$ for small fields
(k = statistical security parameter)

▶ Computation

- Communication $\times O(\log n)$
 - Uses FFT for polynomial operations
- Multiply by $k/\log|F|$ for small fields


Boosting security threshold

- ▶ **Goal: small fractional resilience \rightarrow nearly optimal resilience**
 - without increasing asymptotic complexity!
- ▶ **Solution: server virtualization**
 - Example: $0.01n$ -secure $\Pi \rightarrow 0.33n$ -secure Π'
 - Pick n committees of servers such that
 - Each committee is of size $s=O(1)$
 - If $0.33n$ servers are corrupted, then $> 99\%$ of the committees have $< s/3$ corrupted members
 - Choose committees at random, or use explicit constructions
- ▶ **Π' uses s -party BGW to simulate each server in Π by a committee**
 - Overhead $\text{poly}(s)=O(1)$

Using constant-size fields

- ▶ Consider a **boolean** circuit C with $|C| \gg \text{depth}$
- ▶ Previous protocol requires $|F| > n$
 - $O(|C| \log n)$ bits of communication
- ▶ Can we get rid of the $\log n$ term?
- ▶ Yes, using **algebraic-geometric** codes
 - Field size independent of n
 - Small fractional loss of resilience
 - Asymptotically optimal protocols for natural classes of circuits

Other extensions

▶ Many clients

- Previous protocol required generating secret blocks
- Easy to implement by summing blocks generated by all clients
- Overhead can be amortized if only a constant fraction of clients are corrupted
 - Requires converting circuit into a “repetitive” form
- Gives protocols with $\text{polylog}(n)$ overhead in standard n -party setting with $t=\Omega(n)$.

▶ Perfect security

- Use efficient variant of BGW VSS with share packing

Constant-round protocols

Bar-Ilan University
Dept. of Computer Science

- ▶ **BMR90: Constant-round version of BGW**
 - Uses garbled circuit technique
 - Black-box use of PRG in semi-honest model (Benny's talk)
 - Non-black-box use of PRG in malicious model
 - Required for zero-knowledge proofs involving “cryptographic relations”
 - In BMR paper: distributed ZK proofs of consistency of seed with PRG output
- ▶ **DI05: Black-box use of PRG in malicious model**
 - Uses threshold symmetric encryption

Conclusions

- ▶ **An honest majority can be useful**
 - Unconditional, composable security
 - Fairness
 - **Efficiency**
- ▶ **Open efficiency questions**
 - Break circuit size communication barrier for unconditional security
 - Constant computational overhead
 - Improve additive terms
 - Better constant-round protocols
 - $O(1)$ PRG invocations per gate?
 - Practical efficiency