

Information Theoretic Cryptography

Introduction

Benny Applebaum
Tel Aviv University

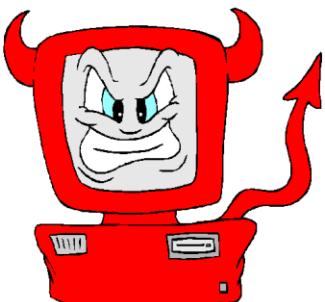
BIU Winter-School of Information-Theoretic Cryptography
February 2020

Cryptography

Communication and Computation
in the presence of adversary

Honest party

Honest party

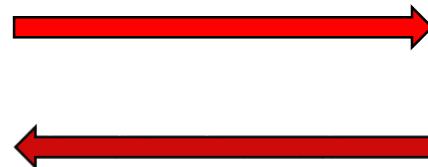


Adversary

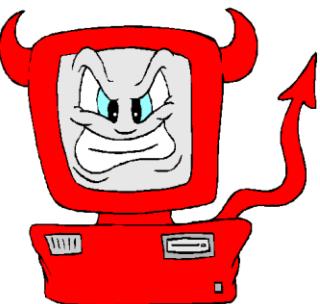
Cryptography

- Encryption
- Authentication

Honest party



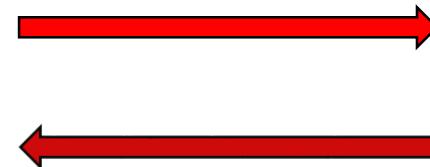
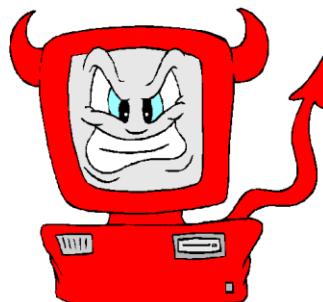
Honest party



Adversary

Cryptography

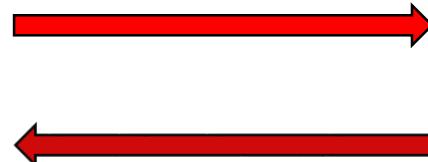
- Commitments
- Coin Tossing
- ZK-Proofs
- Secure Computation



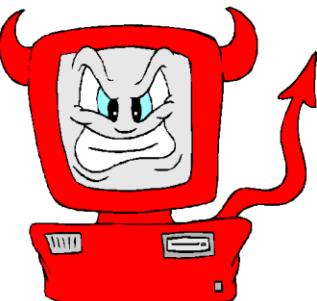
Computational Cryptography

Exploit **computational limitation** to achieve privacy/authenticity/...

Poly-bounded

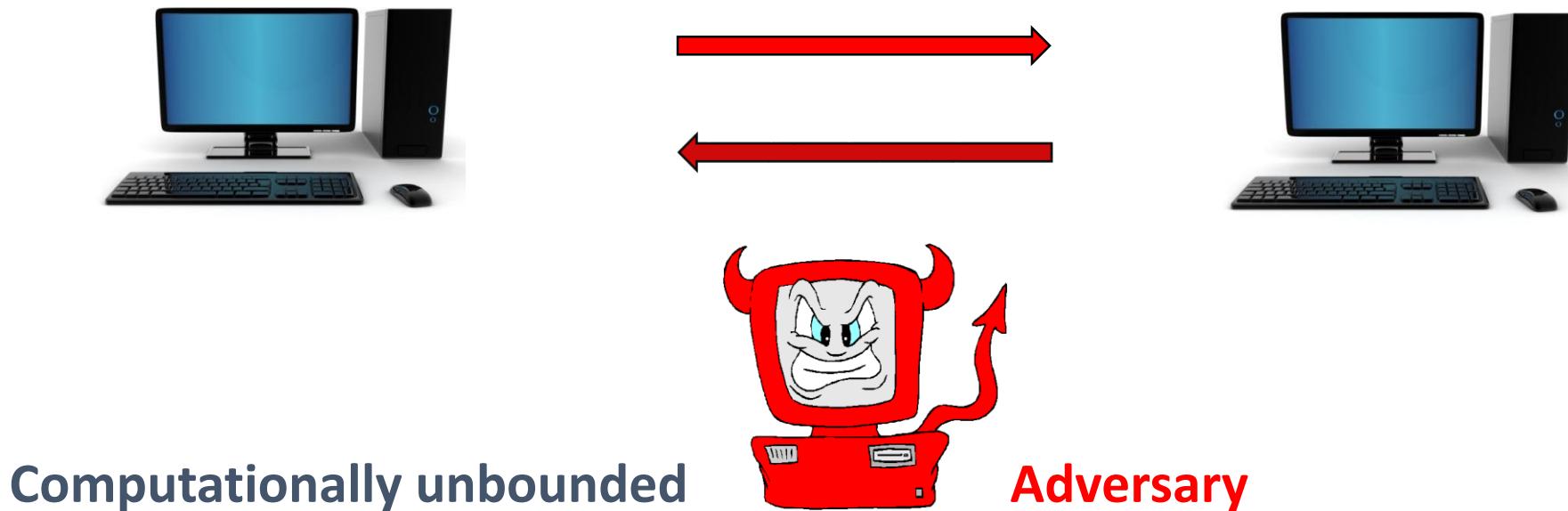


Adversary



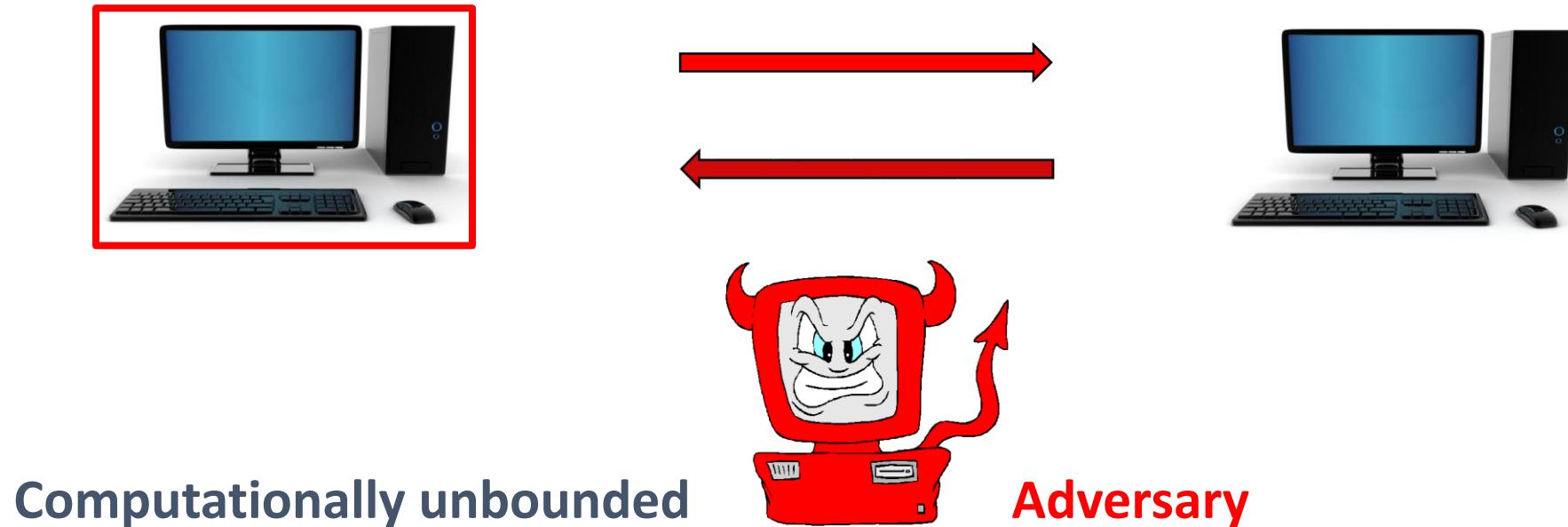
Information-Theoretic Cryptography

Exploit **information gaps** to achieve privacy/authenticity/...



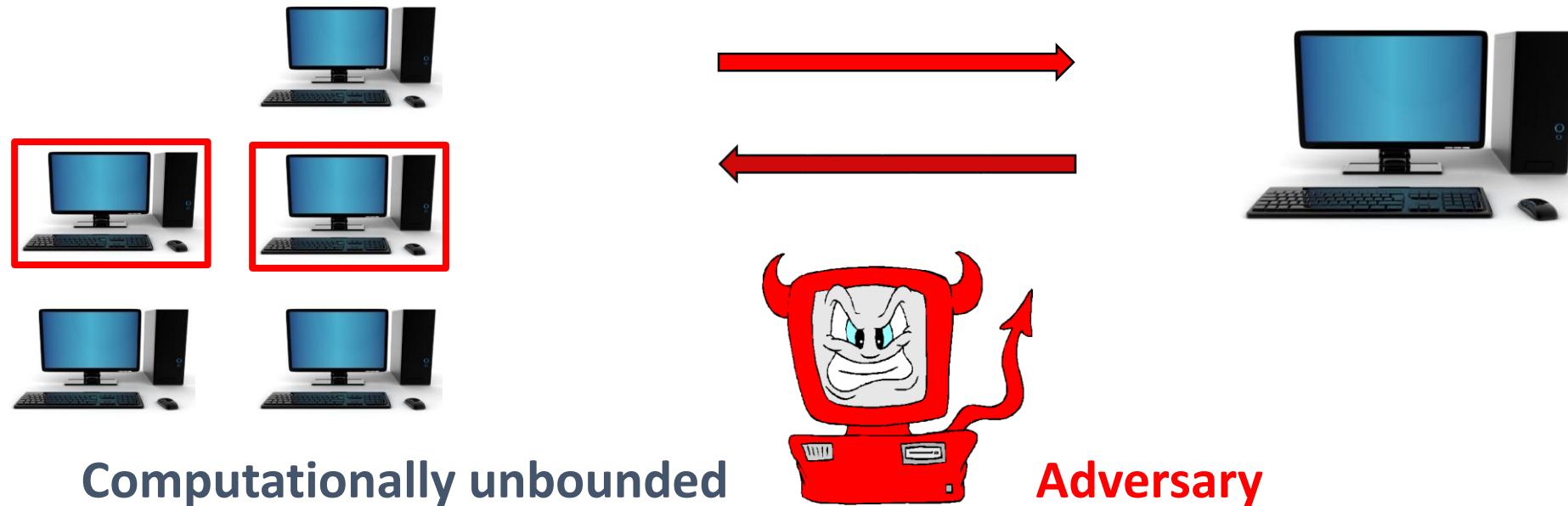
Information-Theoretic Cryptography

Exploit **information gaps** to achieve privacy/authenticity/...



Information-Theoretic Cryptography

Exploit **information gaps** to achieve privacy/authenticity/...



(Shallow) Comparison

Computational Cryptography

- Comp-limited adversary
- Unproven assumptions
- Composability issues
- Complicated def's
- Allows magic (PRG/PKC/OT/)
- Short keys
- May be comp. expensive

IT Cryptography

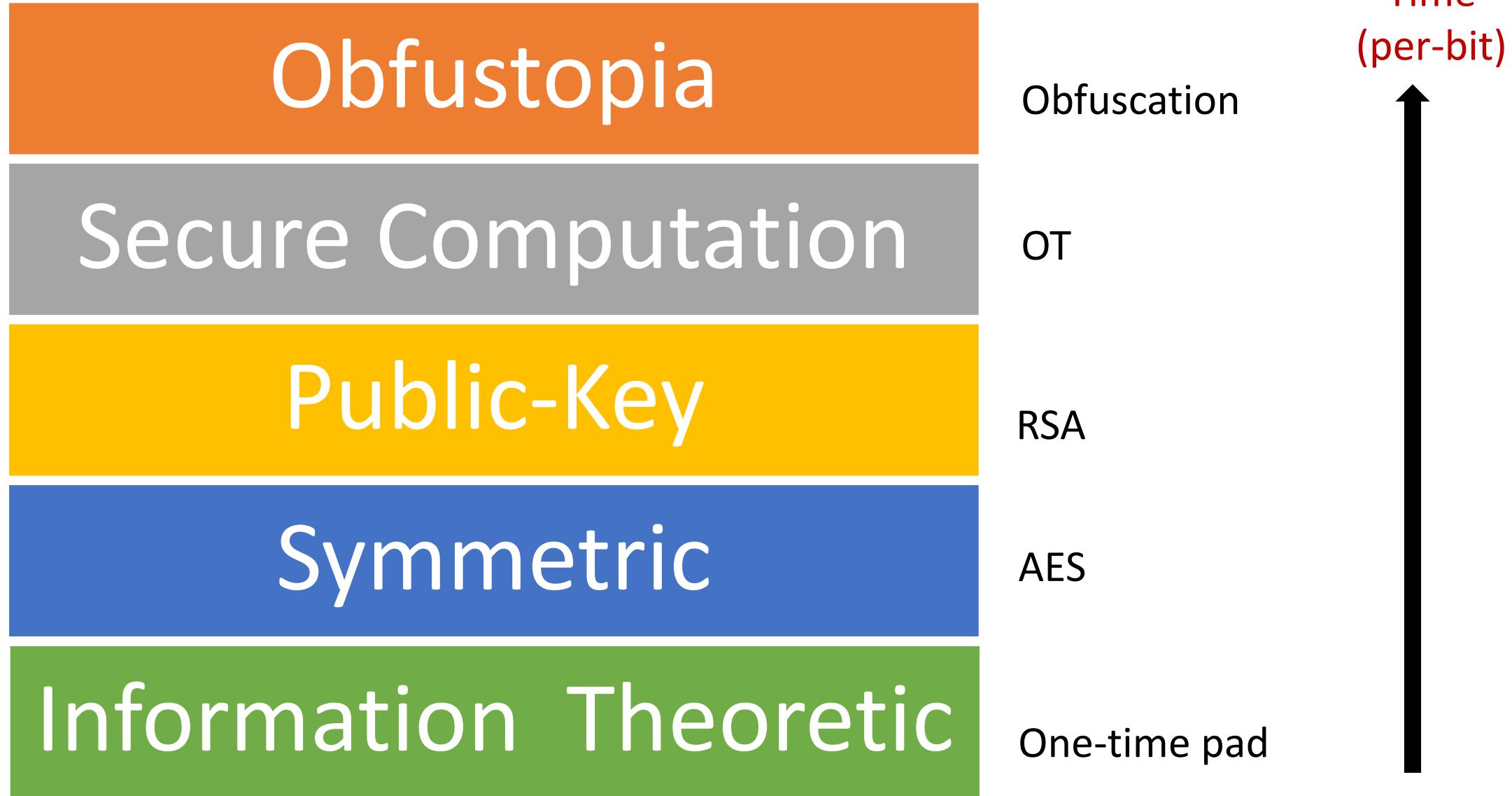
- Comp-unbounded adversary
- Unconditional (no assumptions)
- Good closure properties
- Easy to define and work with (concretely)
- No magic (useless w/o information gaps)
- Long keys/large communication
- Typically fast (for short messages)

The Crypto Tower

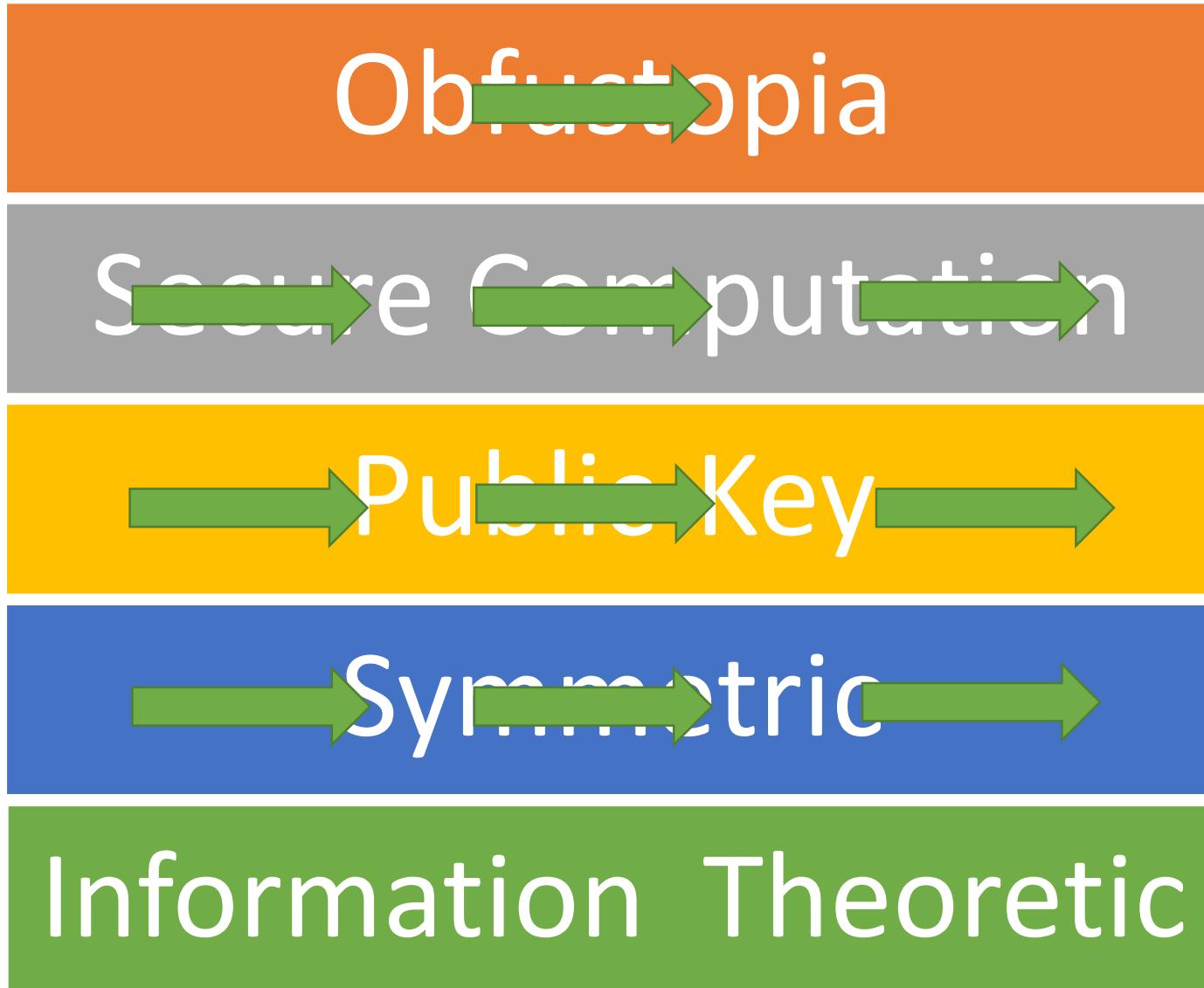


Assumption

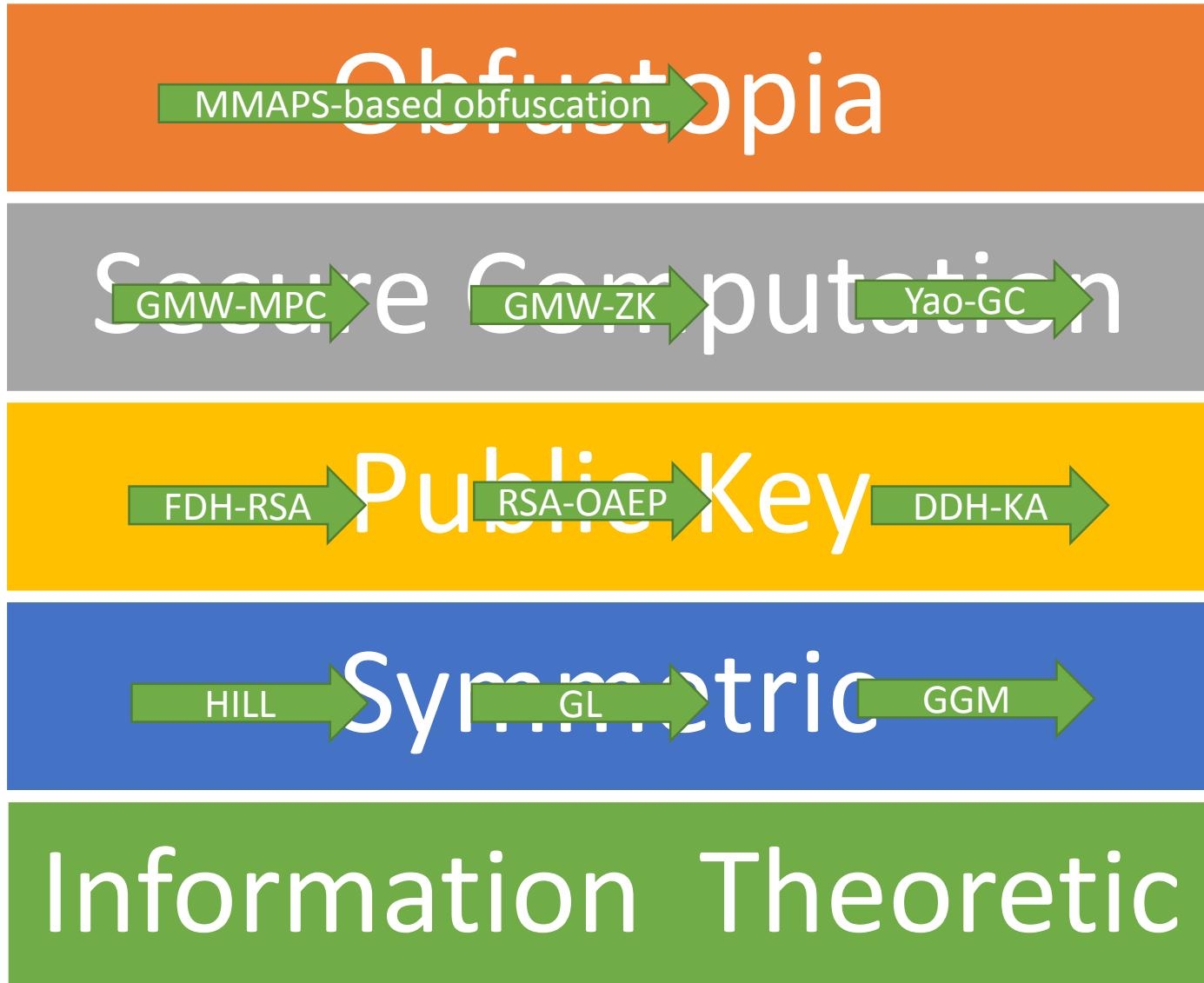
The Crypto Tower



The Crypto Tower: Realistic View



The Crypto Tower: Realistic View



The best of all worlds

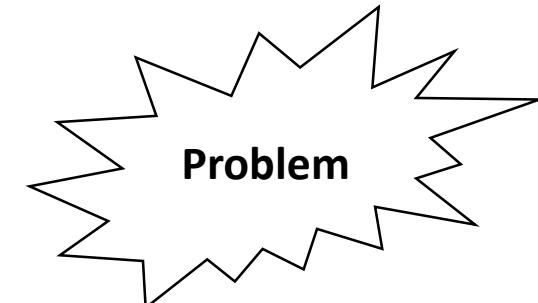
Obfustopia

Secure Computation

Public-Key

Symmetric

Information Theoretic



The best of all worlds

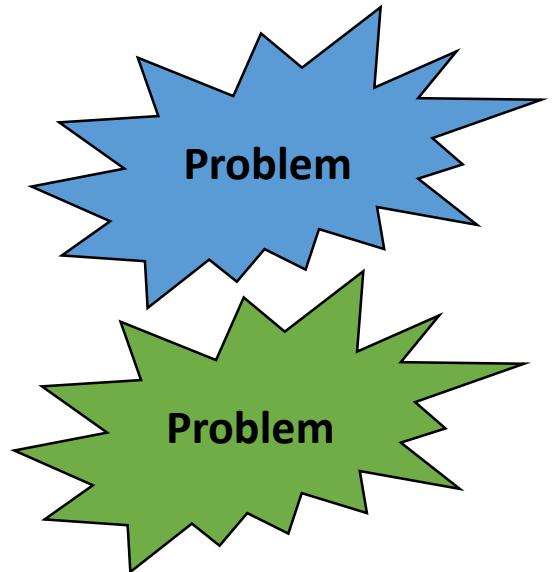
Obfustopia

Secure Computation

Public-Key

Symmetric

Information Theoretic



Two Case Studies:

Perfect Encryption & Error Correcting Codes

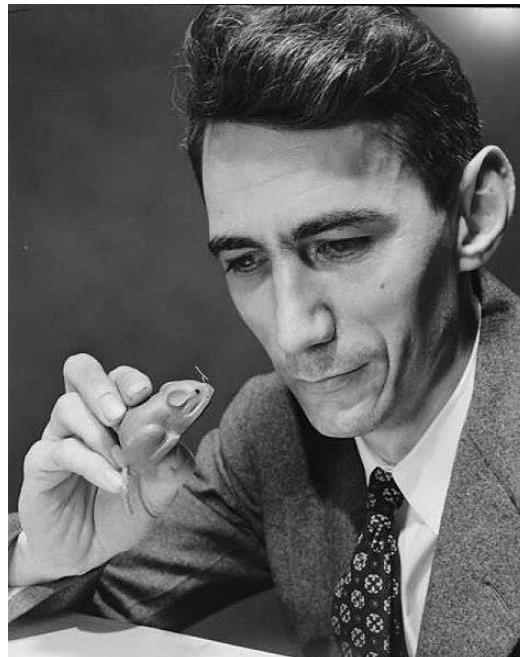


Image credits:

Photo: CC BY SA 4.0, by DobriZheglov, https://commons.wikimedia.org/wiki/File:Claude_Shannon_1776.jpg

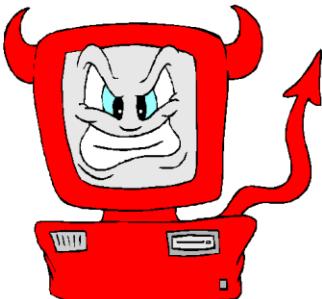
Ali Baba's cave: CC BY 2.5, by Dake, https://commons.wikimedia.org/wiki/File:Zkip_alibaba{1,2,3}.png

Case Study 1: Perfect Encryption [Shannon 48]

Message $M \in \{0,1\}^n$

Alice

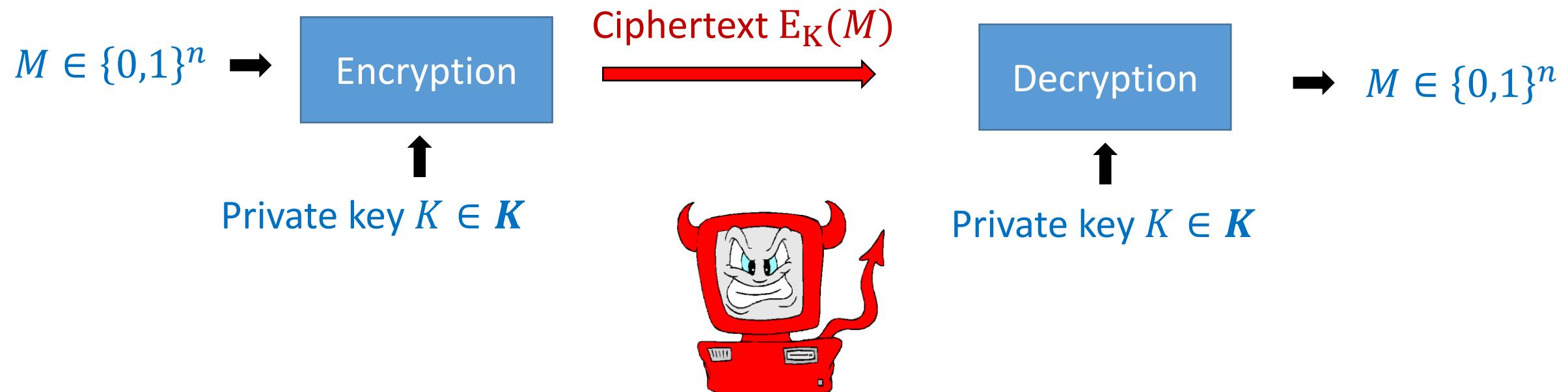
Bob



Case Study 1: Perfect Encryption [Shannon 48]

Secrecy: For every $X, Y \in \{0,1\}^n$
where $K \in_R K$

$$E_K(X) \equiv E_K(Y)$$

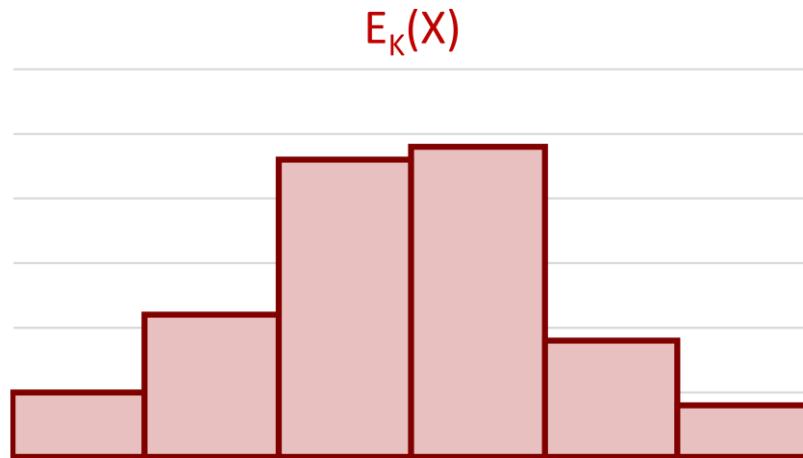
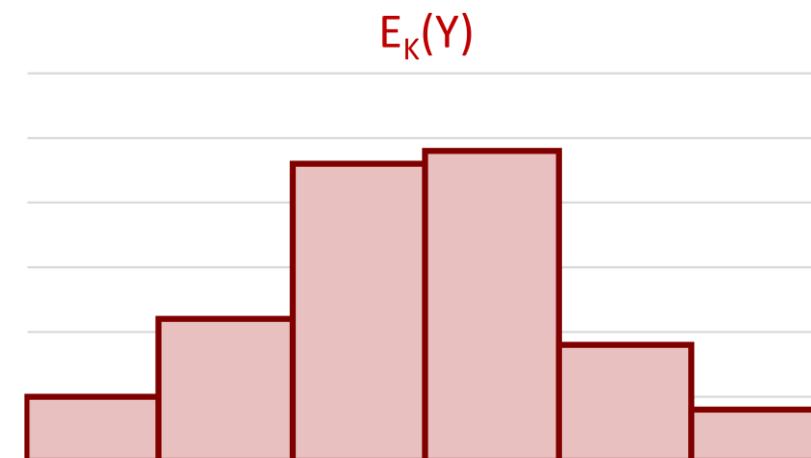


Perfect Secrecy

Secrecy: For every $X, Y \in \{0,1\}^n$
where $K \in_R K$

$$E_K(X) \equiv E_K(Y)$$

$$\forall C, \Pr_K[E_K(X) = C] = \Pr_K[E_K(Y) = C]$$

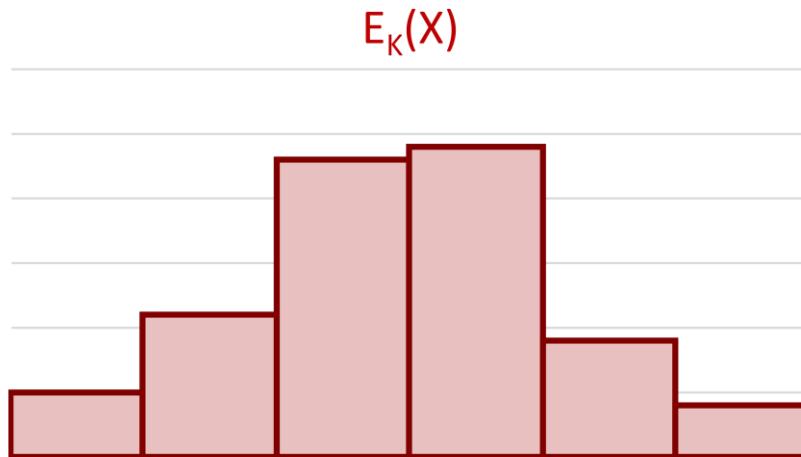
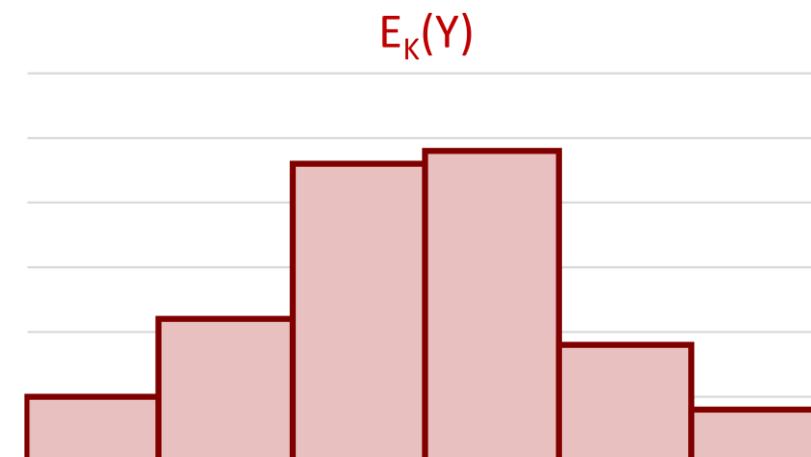


Statistical Secrecy

Secrecy: For every $X, Y \in \{0,1\}^n$
where $K \in_R K$

$$E_K(X) \approx E_K(Y)$$

\forall set of ciphertexts S , $\Pr_K[E_K(X) \in S] \approx_{\delta} \Pr_K[E_K(Y) \in S]$

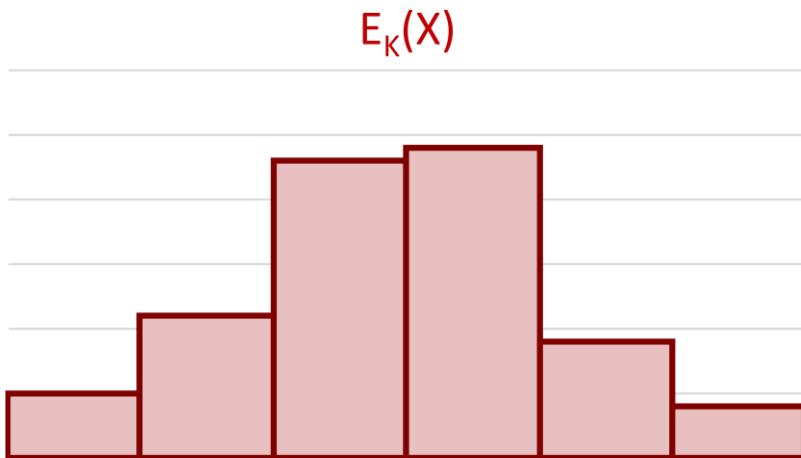
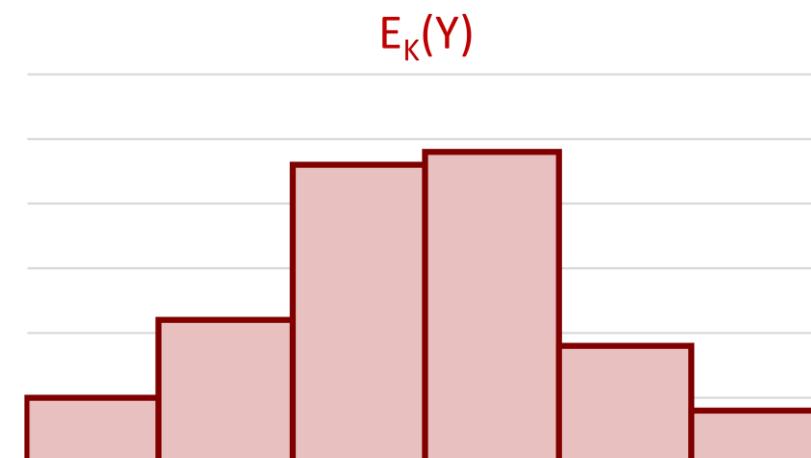


Statistical Secrecy

Secrecy: For every $X, Y \in \{0,1\}^n$
where $K \in_R K$

$$E_K(X) \approx E_K(Y)$$

$$\forall \text{ unbounded } Adv, \left| \Pr_K[Adv(E_K(X)) = 1] - \Pr_K[Adv(E_K(Y)) = 1] \right| \leq \delta$$

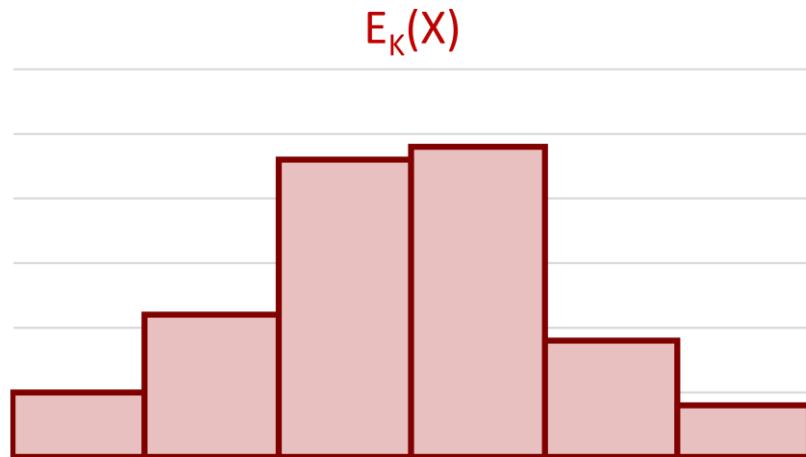
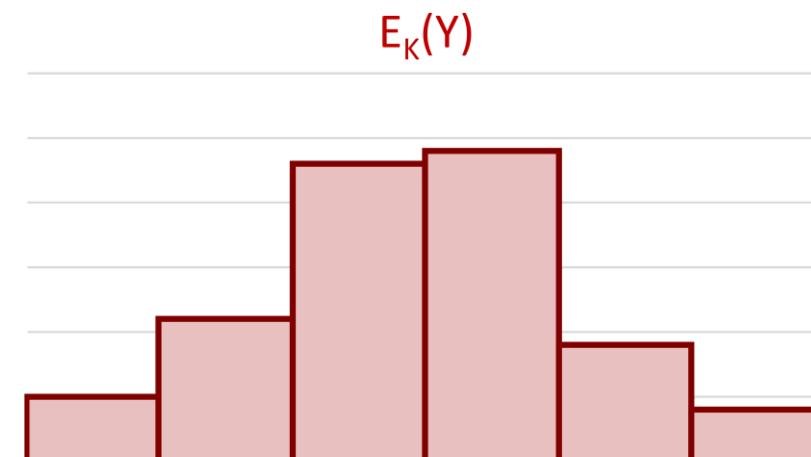


Computational Secrecy [GM'82]

Secrecy: For every $X, Y \in \{0,1\}^n$
where $K \in_R K$

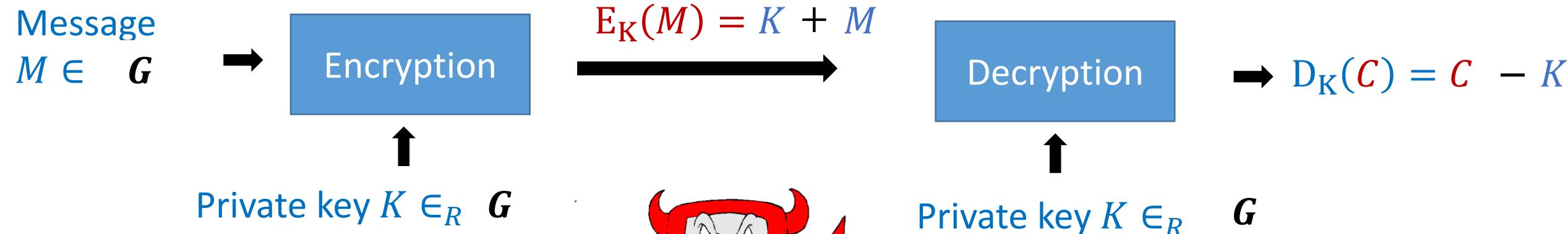
$$E_K(X) \approx E_K(Y)$$

$$\forall \text{ comp - bounded } Adv, \left| \Pr_K[Adv(E_K(X)) = 1] - \Pr_K[Adv(E_K(Y)) = 1] \right| \leq \delta$$



One-Time Pad is Perfectly Secure

$$\forall X, Y, \quad E_K(X) \equiv E_K(Y)$$



Proof

$$\forall X, Y, \quad E_K(X) \equiv E_K(Y)$$

Claim: $\forall X, C, \Pr_{\mathcal{K}}[E_{\mathcal{K}}(X) = C] = 1/|G|$

$$\Pr_{\mathcal{K}}[\mathcal{K} + M = C] = \Pr_{\mathcal{K}}[\mathcal{K} = C - M] = 1/|G|$$

Put differently: For every X the mapping
 $\mathcal{K} \mapsto E_{\mathcal{K}}(X)$

is a bijection from randomness space to ciphertext space

In fact, **non-degenerate linear mapping**

Efficiency Measures

Communication, Randomness, Round complexity

- OTP: Optimal !

Message $M \in \{0,1\}^n$

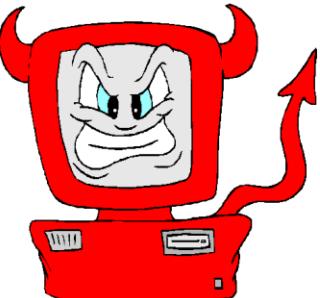
Alice

Private key $K \in_R \{0,1\}^n$

$$E_K(M) = K + M$$

$$D_K(C) = C - K$$

Bob



Private key $K \in \{0,1\}^n$

Riddle: Broadcast Encryption [Fiat-Naor94]

Message $M \in \{0,1\}$
Subset S

Alice

Keys K_1, \dots, K_N

$E_K(M, S)$
Subset S

key K_1

Bob 1

...

key K_i

Bob i

Can decrypt iff
 $i \in S$

...

key K_N

Bob N

Riddle: Broadcast Encryption [Fiat-Naor94]

Communication?

Randomness (length of each key)?

Best tradeoffs?

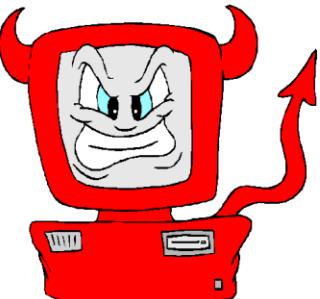
Message $M \in \{0,1\}$

Subset S

Alice

Keys K_1, \dots, K_N

$E_K(M, S)$
Subset S



key K_1

Bob 1

...

key K_i

Bob i

Can decrypt iff
 $i \in S$

key K_N

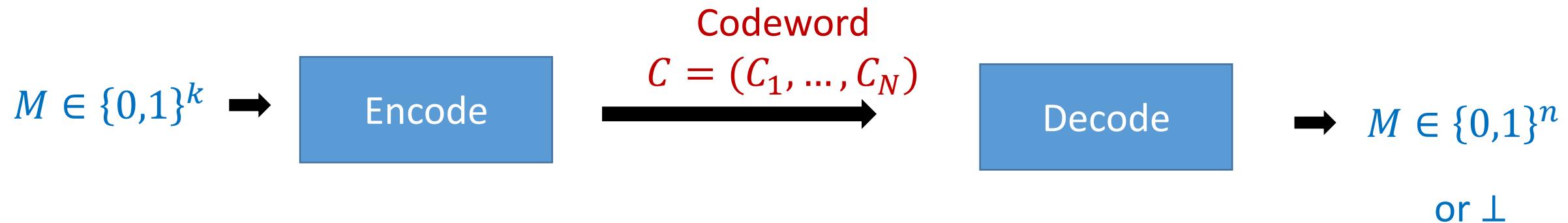
Bob N

Case Study 2: Error Correction/Detection

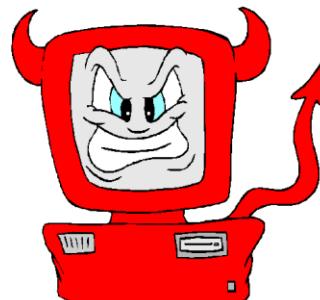
[Hamming47, Shannon48]

Shannon: Solutions with optimal communication overhead

- Random linear mapping is optimal [Varshamov]
- Later efficient constructions



Can tamper (erase/corrupt)
up to δ -fraction of symbols



Unified view: Distributed Storage

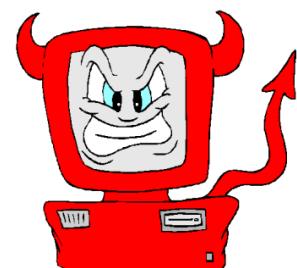
Coding setting:

Adv. actively corrupts/erase servers

Message $M \in \{0,1\}^k$

Alice

Encoding



Bob N

C_1

C_i

C_N

Decoding

$M \in \{0,1\}^k$

Unified view: Distributed Storage

Secrecy setting:

Adversary passively corrupts servers

Message $M \in \{0,1\}^k$

Alice

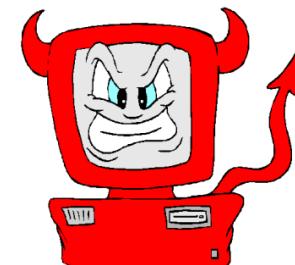
Encoding

C_1

C_i

Decoding

$M \in \{0,1\}^k$



C_N

Bob N

Unified view: Distributed Storage

Secrecy setting:

Adversary passively corrupts servers

K

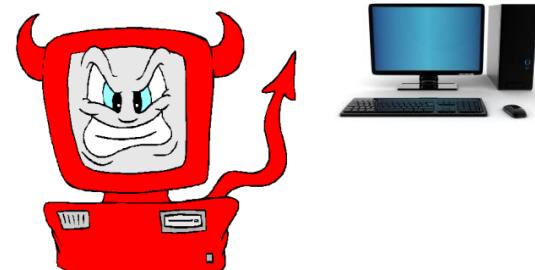
Message $M \in \{0,1\}^k$

Alice

Encoding

Decoding

$M \in \{0,1\}^k$



$$E_K(M) = K + M$$

Unified view: Distributed Storage

Secrecy setting:

Adversary passively corrupts servers

Message $M \in \{0,1\}^k$

Alice

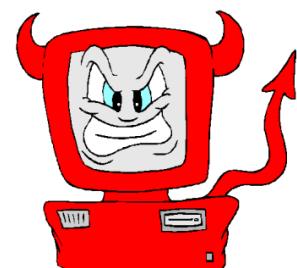
Encoding

K_1

K_i

Decoding

$M \in \{0,1\}^k$



Bob N

$M + K_1 + \dots + K_N$

Can we achieve privacy & resiliency?

Secrecy setting:

Adversary passively corrupts servers

Message $M \in \{0,1\}^k$

Alice

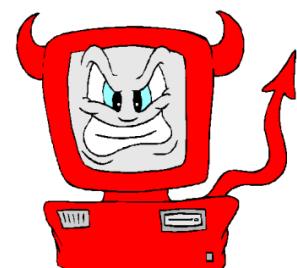
Encoding

K_1

K_i

Decoding

$M \in \{0,1\}^k$



Bob N

$M + K_1 + \dots + K_N$

Secret-Sharing (Gilad's talk)

Threshold setting:

Corruption bounds

$T_{active}, T_{erasure}, T_{passive}$

Message $M \in \{0,1\}^k$

Alice

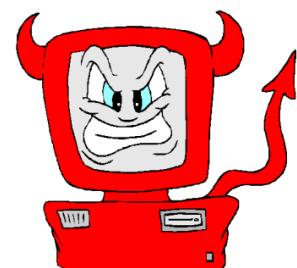
Encoding

c_1

c_i

Decoding

$M \in \{0,1\}^k$



Bob N

Secret-Sharing (Gilad's talk)

Threshold setting:

Corruption bounds

$T_{active}, T_{erasure}, T_{passive}$

Message $M \in \{0,1\}^k$

Alice

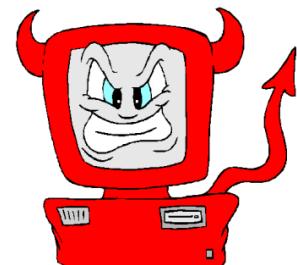
Encoding

C_1

C_i

Decoding

$M \in \{0,1\}^k$



Bob N

General Secret-Sharing (Benny's talk)

General corruption patterns:

- Related to Broadcast encryption problem
- Huge gaps between LBs and UBs

Message $M \in \{0,1\}^k$

Alice

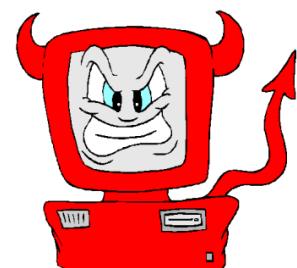
Encoding

c_1

c_i

Decoding

c_N



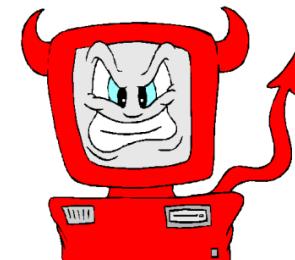
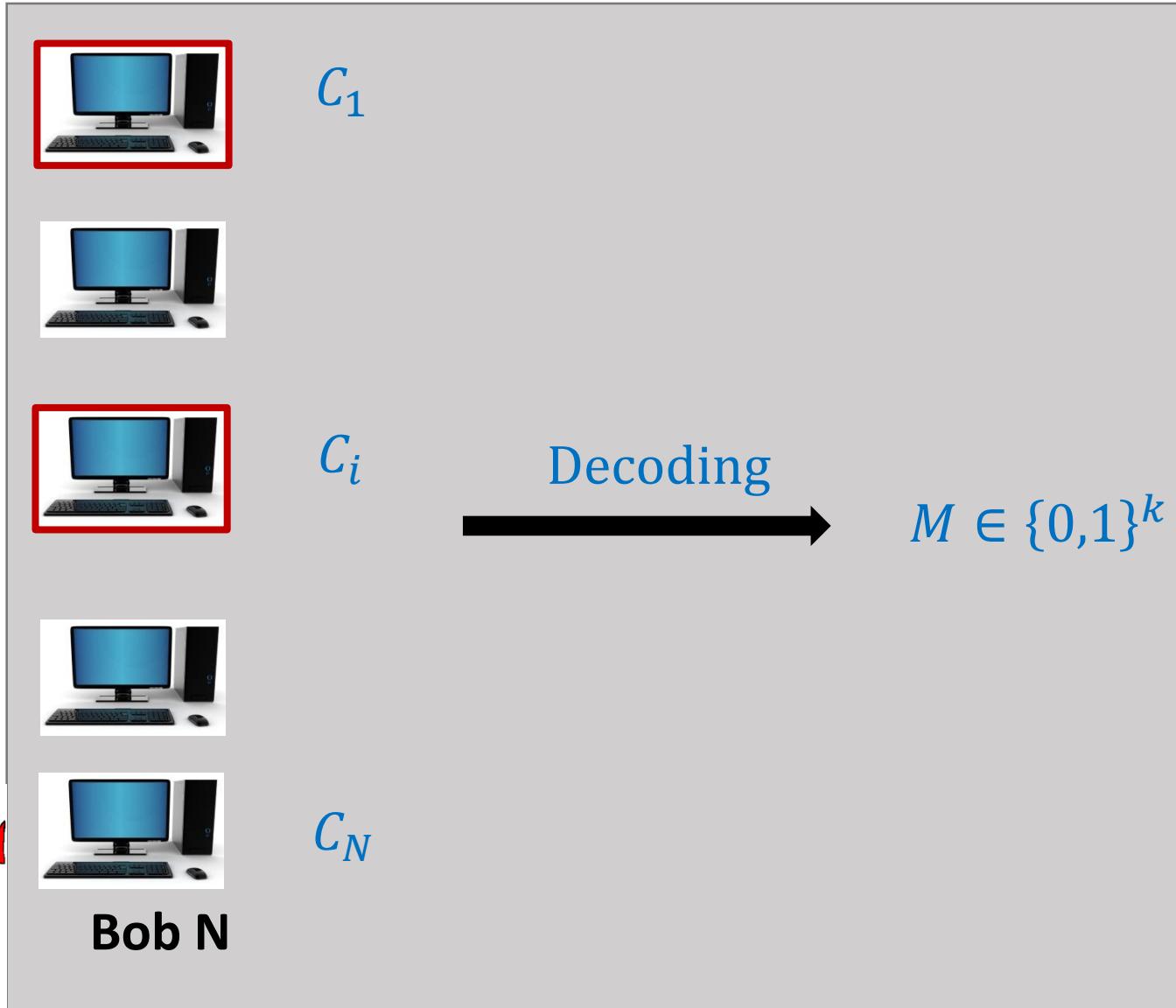
Bob N

Private Information Retrieval (Yuval+Klim)

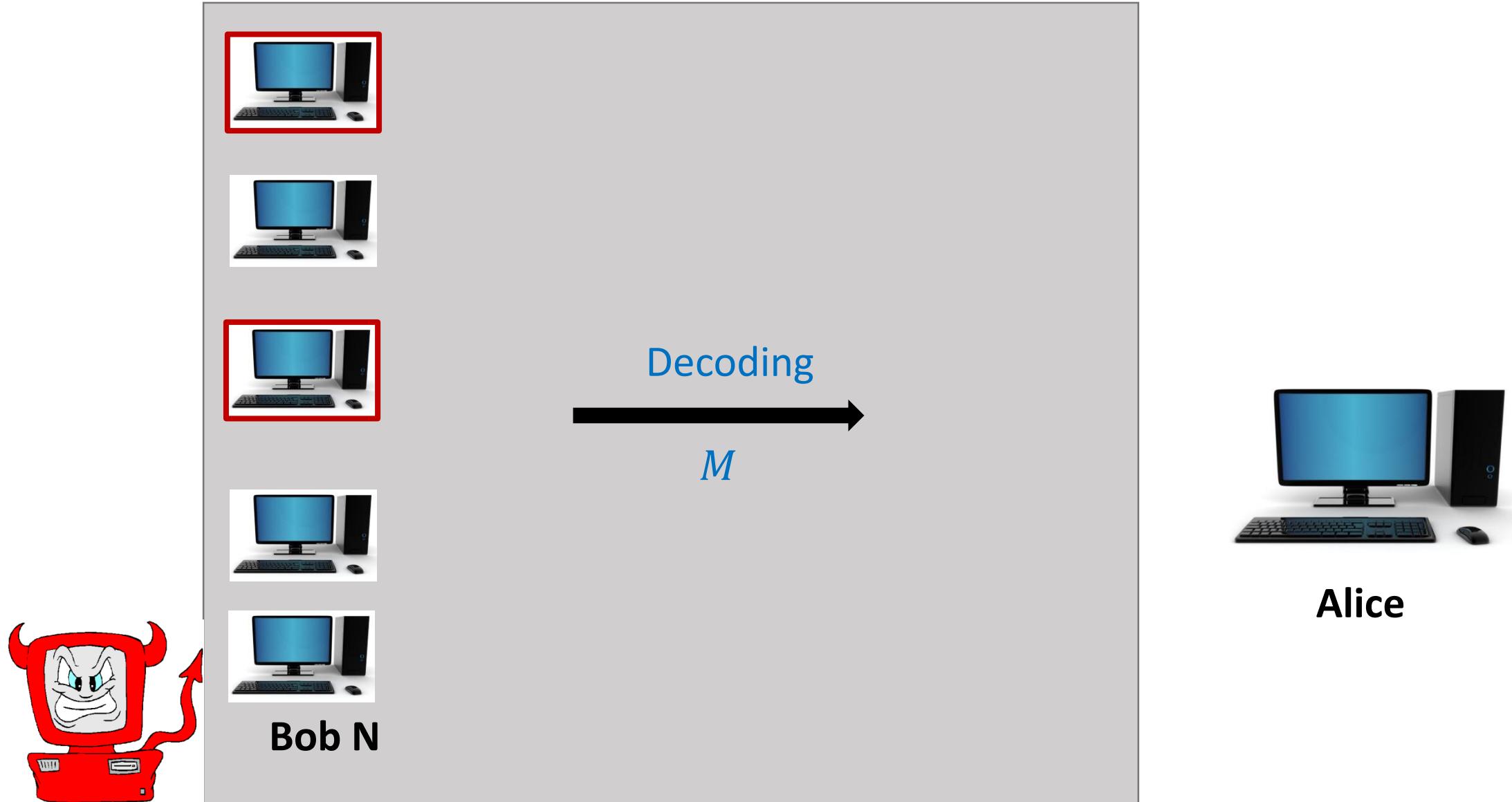
Message $M \in \{0,1\}^k$

Alice

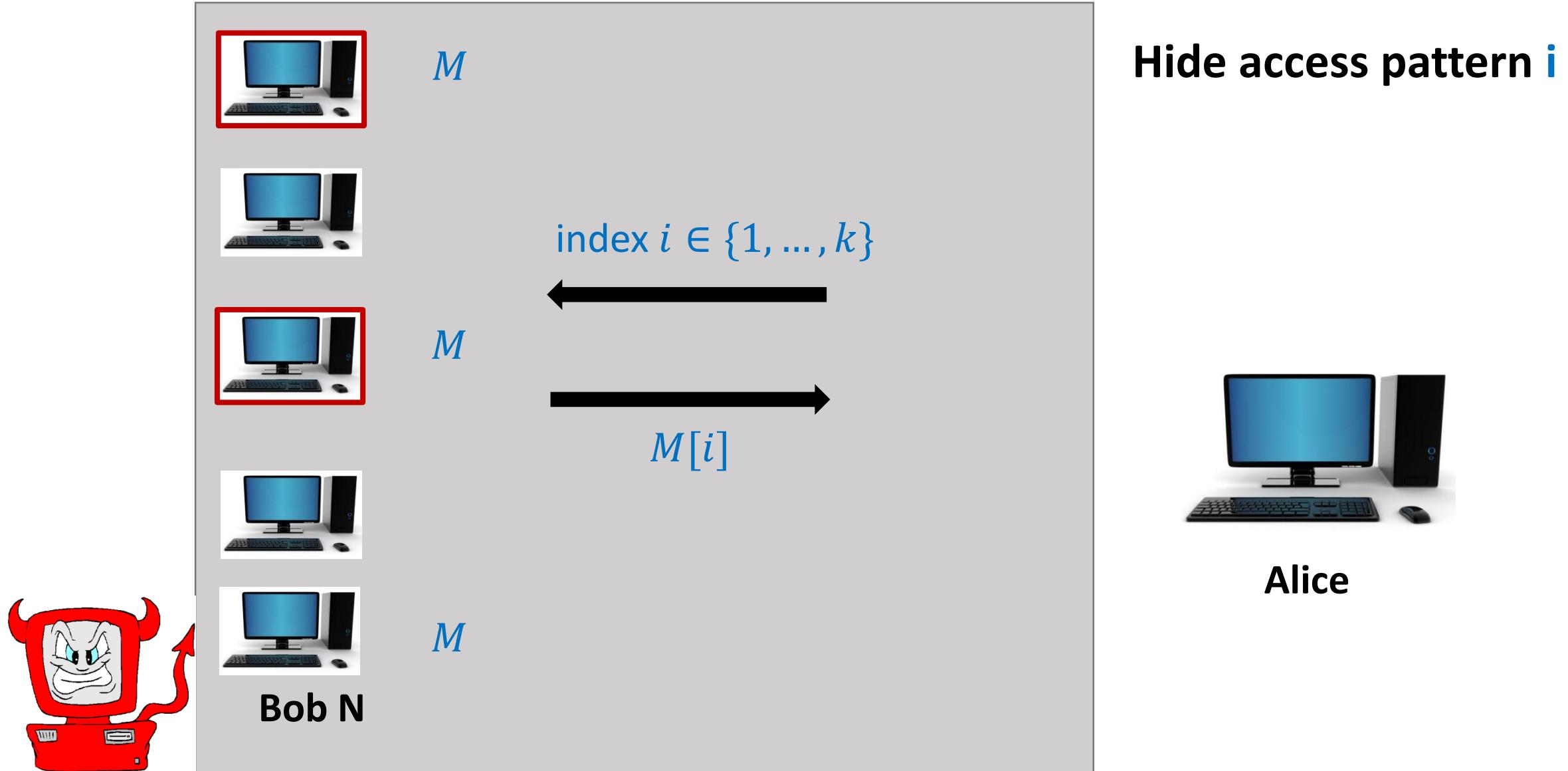
Encoding



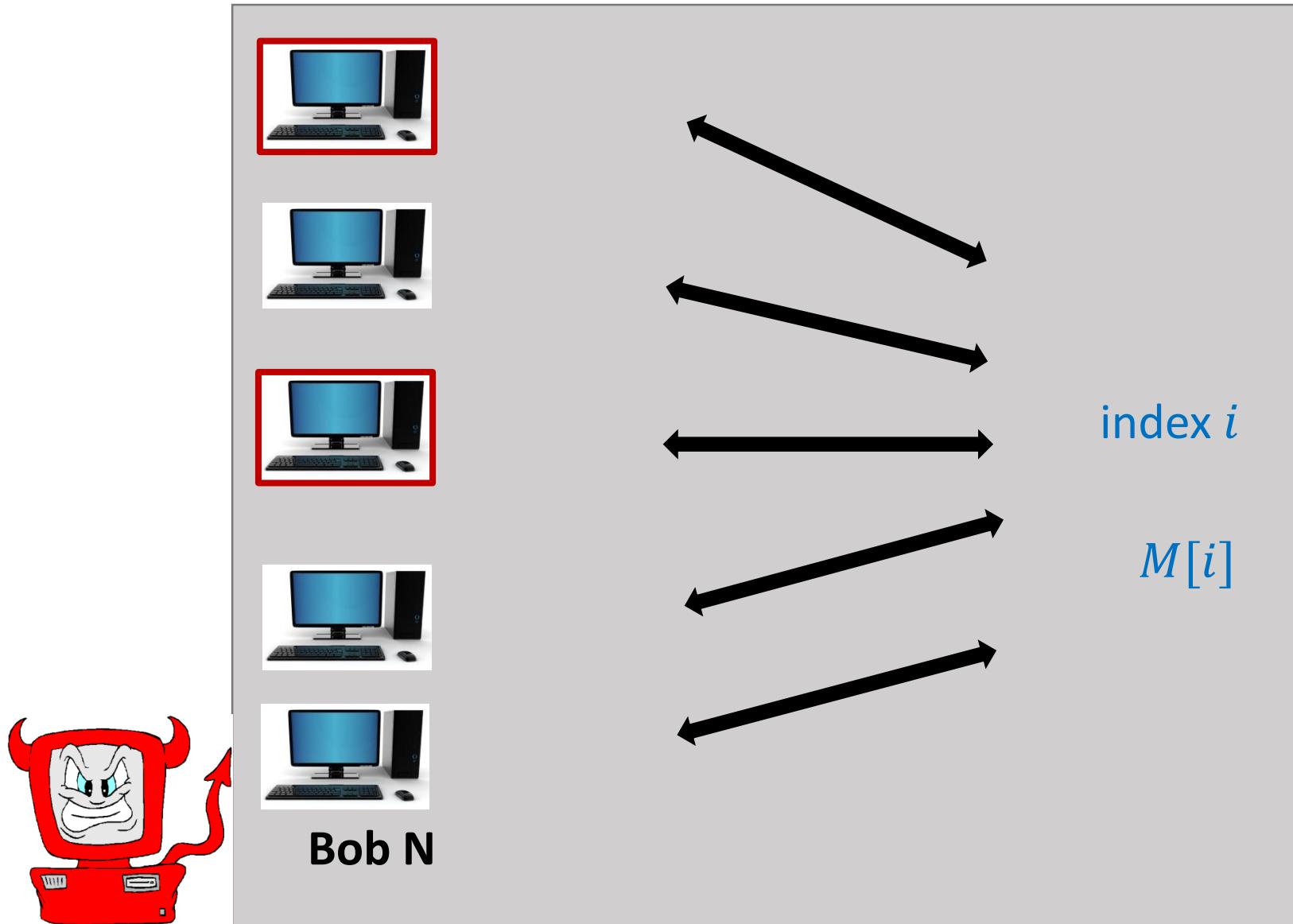
Private Information Retrieval (Yuval+Klim)



Private Information Retrieval (Yuval+Klim)



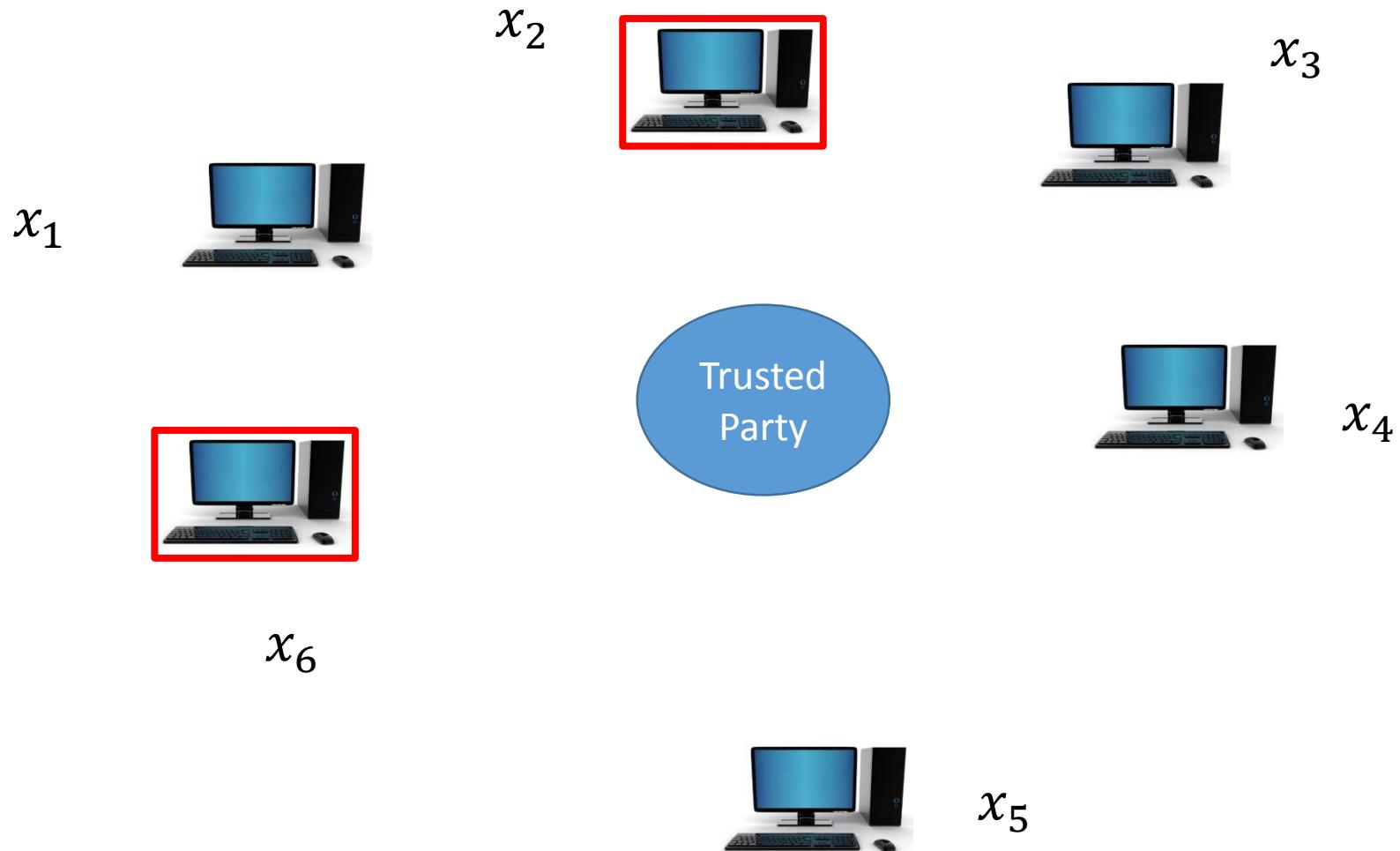
Private Information Retrieval (Yuval+Klim)



Hide access pattern i

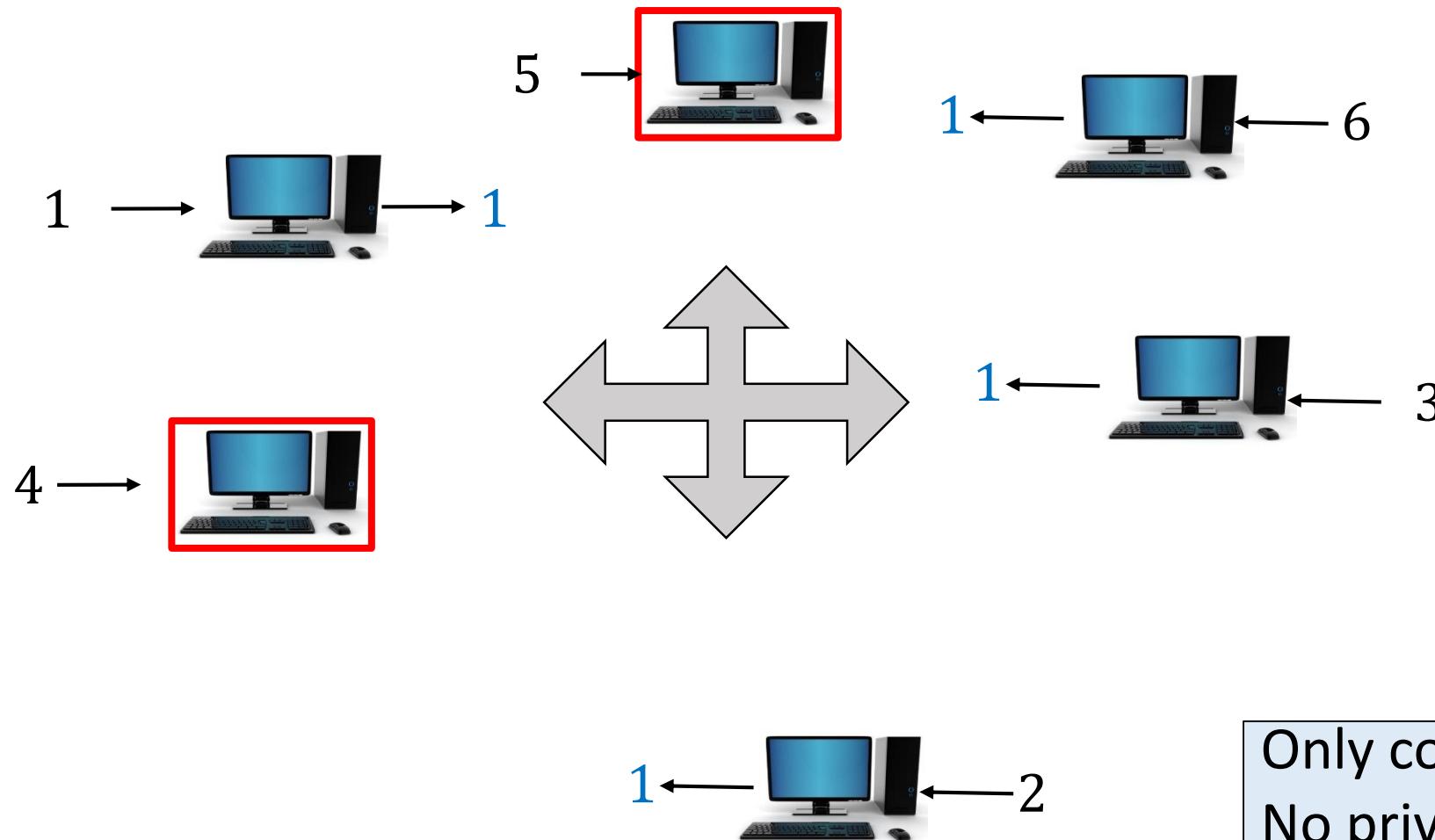
- Power of non-linearity
- Huge gaps between LBs and UPs

Computation: Beyond Storage



Consensus (Ittai's talk)

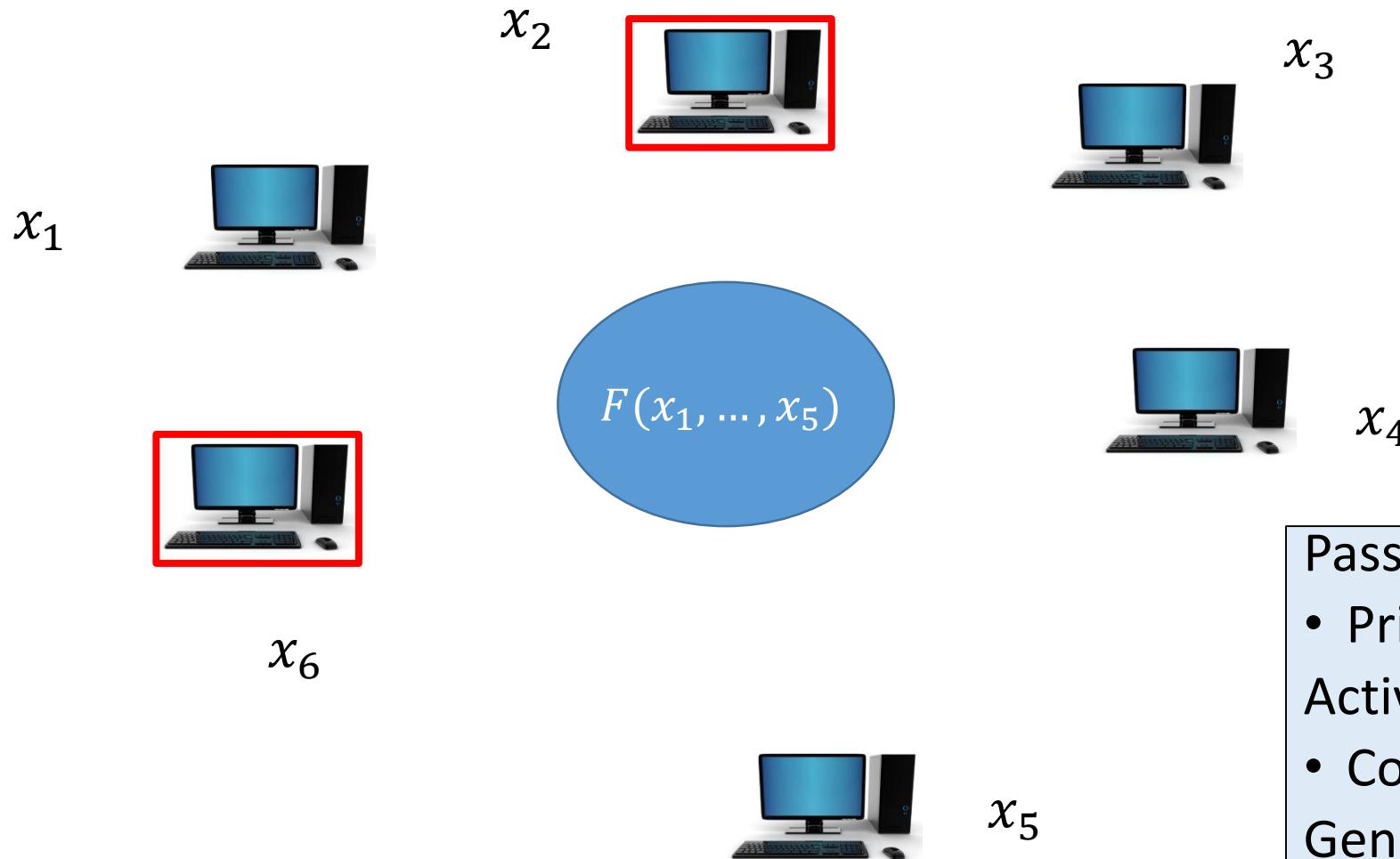
Achieving Agreement at the presence of failures/corruptions/delays



Only correctness requirement
No privacy requirements

General Secure Computation (Yuval's talk)

Compute joint function of the parties inputs



Passive adversaries

- Privacy

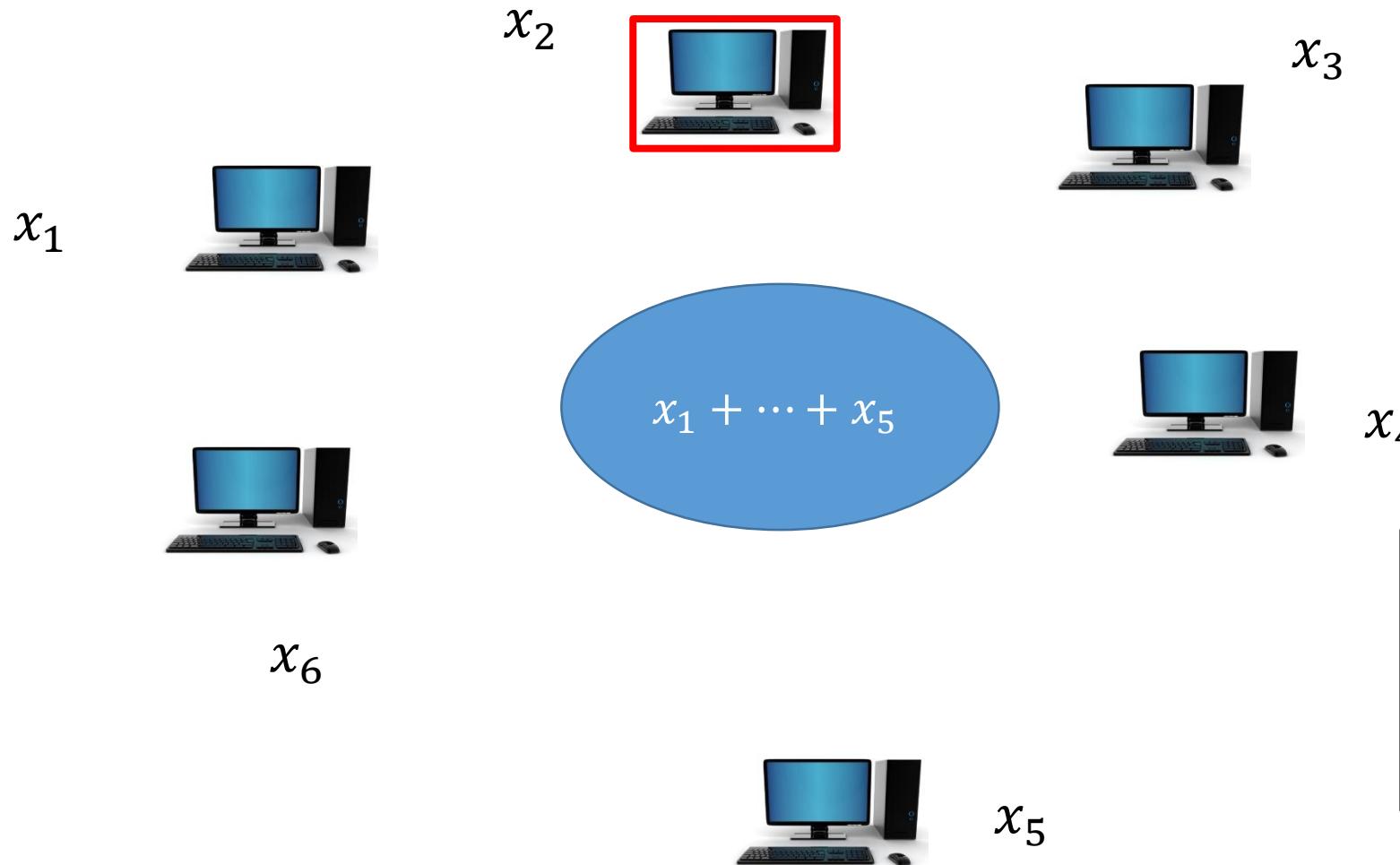
Active adversaries

- Correctness & Privacy

General Functions

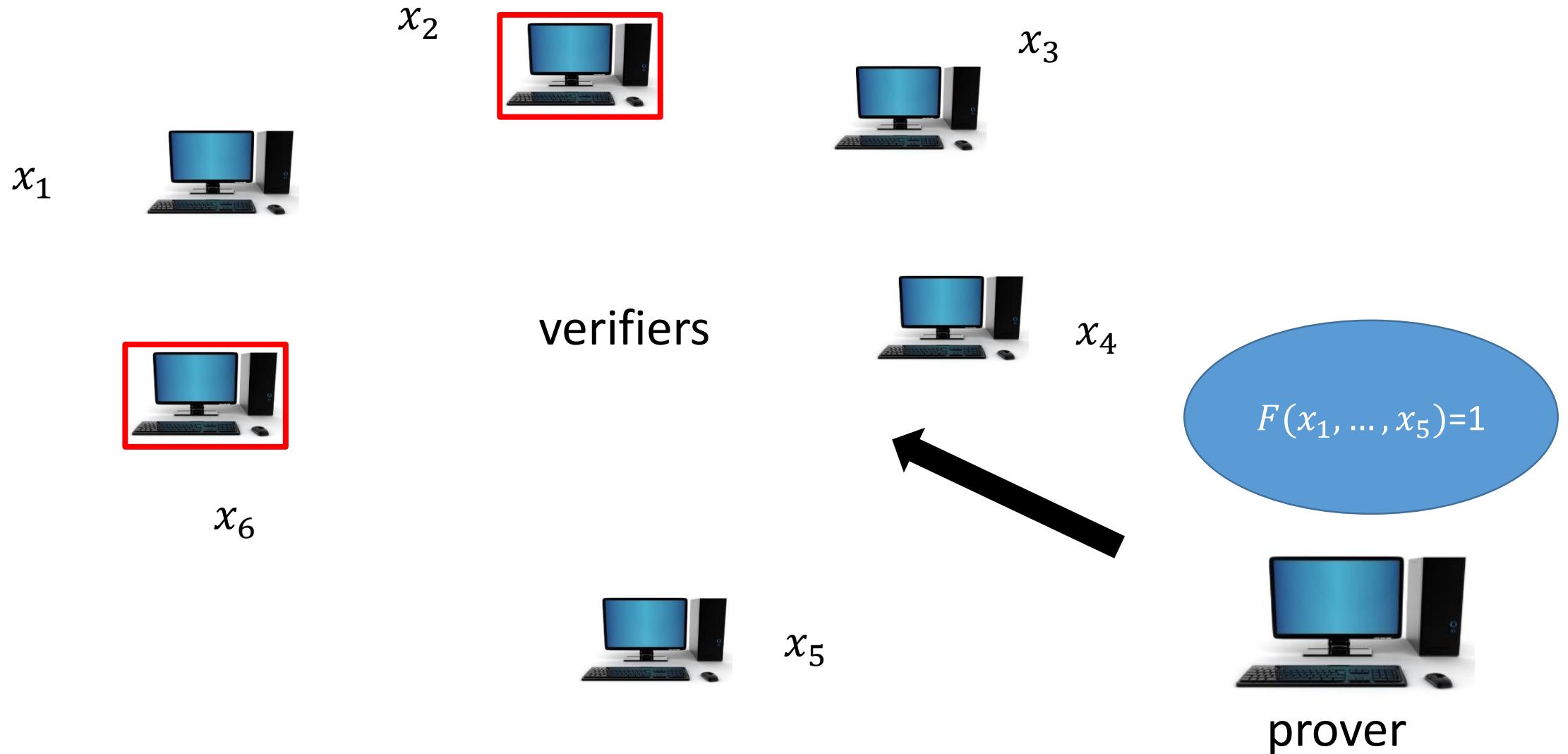
General Secure Computation (Yuval's talk)

Compute joint function of the parties inputs



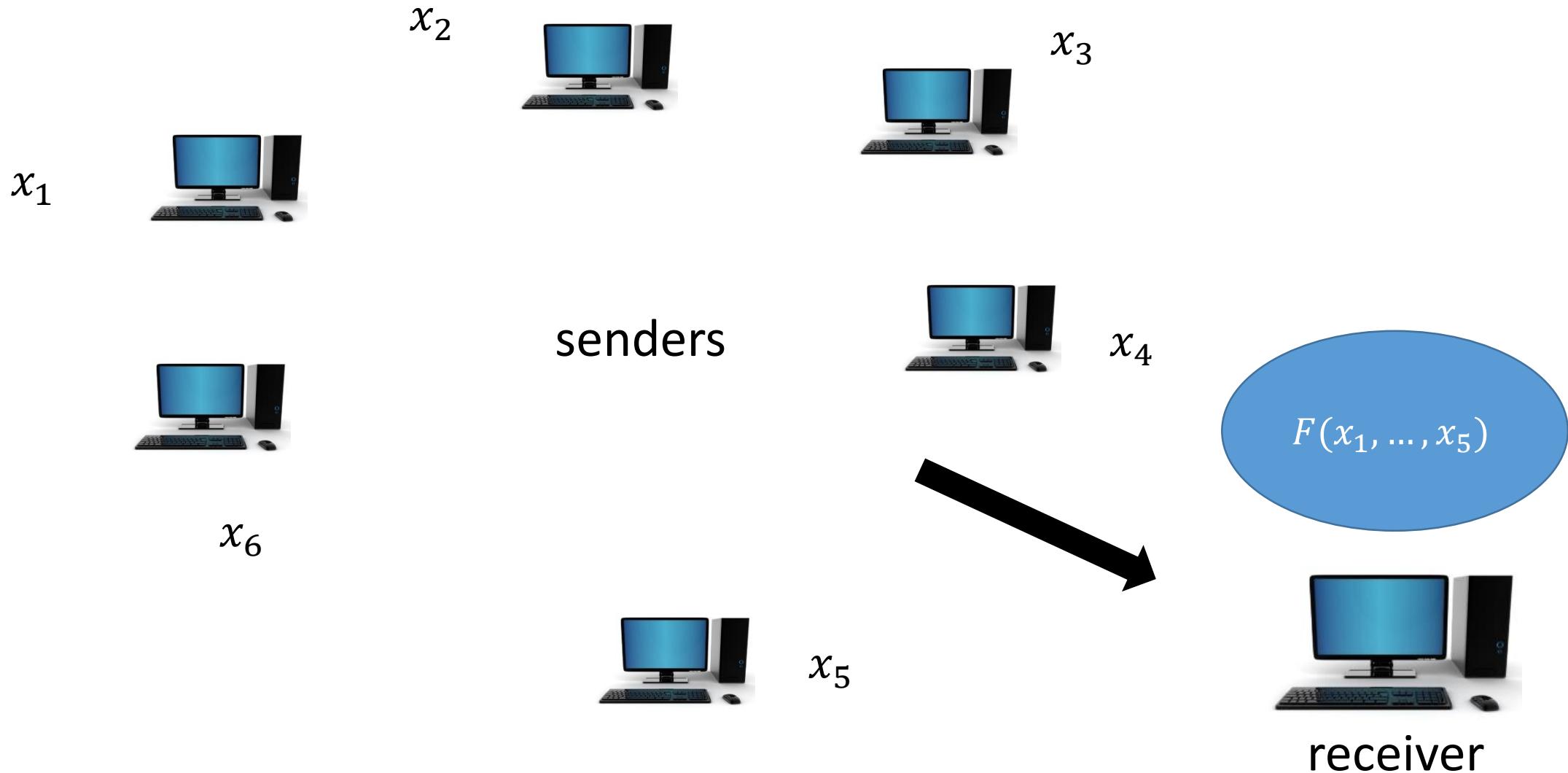
Challenge:
Design 1-private
protocol for sum over **G**

Proofs in Non-Interactive Setting (Niv's Talk)



Randomized Encoding & Constant-Round MPC

(Benny's Talk)



Summary: Information Theoretic Cryptography

- Cool questions
- Exciting connections with
 - Coding, Information-theory, Communication Complexity, Computational complexity, Theory of Computation
- Relevant to computational crypto as well
- Many open problems
- **New conference: ITC 2020, June 17-19, 2020 in Boston**
 - PC: Daniel Wichs, General Chairs: Adam Smith & Yael Kalai

Have a Good Time!