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Cryptography

Communication and Computation
in the presence of adversary
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Cryptography

* Encryption
e Authentication
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Cryptography

e Commitments
* Coin Tossing

e /K-Proofs
* Secure Computation
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Computational Cryptography

Exploit computational limitation to achieve privacy/authenticity/...
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Information-Theoretic Cryptography

Exploit information gaps to achieve privacy/authenticity/...
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Information-Theoretic Cryptography

Exploit information gaps to achieve privacy/authenticity/...
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Information-Theoretic Cryptography

Exploit information gaps to achieve privacy/authenticity/...
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(Shallow) Comparison

Computational Cryptography IT Cryptography

Comp-limited adversary Comp-unbounded adversary

* Unproven assumptions Unconditional (no assumptions)

* Composability issues Good closure properties

Complicated def’s Easy to define and work with (concretely)

* Allows magic (PRG/PKC/OT/)
e Short keys

No magic (useless w/o information gaps)

Long keys/large communication

* May be comp. expensive Typically fast (for short messages)



The Crypto Tower
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The Crypto Tower
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The Crypto Tower: Realistic View
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The Crypto Tower: Realistic View
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The best of all worlds
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Two Case Studies:

Perfect Encryption & Error Correcting Codes

Image credits:
Photo: CC BY SA 4.0, by Dobrizheglov, https://commons.wikimedia.org/wiki/File:Claude_Shannon_1776.jpg
Ali Baba's cave: CC BY 2.5, by Dake, https://commons.wikimedia.org/wiki/File:Zkip_alibaba{1,2,3}.png



Case Study 1: Perfect Encryption [Shannon 48]

Message M € {0,1}"
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Case Study 1: Perfect Encryption [Shannon 48]

Secrecy: For every X,Y € {0,1}" Ex(X) = Ex(Y)
where K €, K

; Ciphertext EK(M)
M €{0,1} Decryption = M e {0,1}"

1

Private key K € K

Private key K e K




Perfect Secrecy

Secrecy: For every X,Y € {0,1}" { Ex(X) = Ex(Y) }
where K €, K

v C,PrEx(X) = C] = Pr[Ex(Y) = ]

E(X) Ec(Y)




Statistical Secrecy

Secrecy: For every X,Y € {0,1}" { Ex(X) = Ex(Y) }
where K €, K

V set of ciphertexts S, I;(r[EK(X) € S| =5 E{r[EK(Y) € S|

E(X) Ec(Y)




Statistical Secrecy

Secrecy: Forevery X,Y € {0,1}" { Ex(X) = Ex(Y) J
where K €, K

VY unbounded Adv, ‘P;(r[Adv(EK(X)) = 1] — Il’{r[Adv(EK(Y)) = 1]‘ <o

E(X) Ec(Y)




Computational Secrecy |[GM'82]

Secrecy: Forevery X,Y € {0,1}" { Ex(X) = Ex(Y) J
where K €, K

VY comp — bounded Adv, ‘I;(r[Adv(EK(X)) = 1] — l?{r[Adv(EK(Y)) = 1]‘ <0

E(X) Ei(Y)




One-Time Pad is Perfectly Secure

[ VXY,  Ex(X) = Ex(Y) }

Message EK(M) =K+ M

1

Private keyK €r G Privatekey K €, G




Proof

L VX,Y,  Ex(X) = Ex(Y) }

Claim: vVX,C, I;{r[EK(X) =C]=1/|G]

Pr{K +M = C] = Pr[K = C — M] = 1/G|

I
K

Put differently: For every X the mapping
K — Ex(X)

is a bijection from randomness space to ciphertext space

In fact, non-degenerate linear mapping



Efficiency Measures

Communication, Randomness, Round complexity

e OTP: Optimal !
Message M € {0,1}" Ex(M) =K + M Dr(C)=C — K
I—
Z=BS0E <
Alice Bob

Private key K € {0,1}"



Riddle: Broadcast Encryption [Fiat-Naor94]

key K
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Message M € {0,1} Ex(M,S)
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Riddle: Broadcast Encryption [riat-Naoro4]

Communication? key K4

Randomness (length of each key)? !!
Best tradeoffs? Bob1

Message M € {0,1} Ex(M,S)
Subset S Subset S Can decrypt iff
—— i€ES

Alice

Keys K1, ..., Ky

Bob N




Case Study 2: Error Correction/Detection
[Hamming47, Shannon48]

Shannon: Solutions with optimal communication overhead
* Random linear mapping is optimal [Varshamov]
* Later efficient constructions

e =

Can tamper (erase/corrupt)

Codeword
= (Cl, ., Cy)

Decode = M e {0,1}"

or 1L

up to d-fraction of symbols




Unified view: Distributed Storage

Coding setting: !J

Adv. actively corrupts/erase servers -
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Unified view: Distributed Storage
|

Secrecy setting:
Adversary passively corrupts servers
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Unified view: Distributed Storage

Secrecy setting: !' K
Adversary passively corrupts servers =——

Message M € {0,1}%
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Unified view: Distributed Storage

Secrecy setting:
Adversary passively corrupts servers

Message M € {0,1}%
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Can we achieve privacy & resiliency?
. |

Secrecy setting:
Adversary passively corrupts servers

Message M € {0,1}%
Encoding

K
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Decoding
meeeeesssm—) |/ € {O,l}k



Secret-Sharing (Gilad’s talk)
L

Threshold setting:
Corruption bounds
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Secret-Sharing (Gilad’s talk)
L

Threshold setting:
Corruption bounds

Tactive» Terasure»

passive
Message M € {0,1}%
Encoding
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General Secret-Sharing (Benny’s talk)
. |

General corruption patterns:
* Related to Broadcast encryption problem
* Huge gaps between LBs and UBs
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Private Information Retrieval (vuval+klim)
] |

Message M € {0,1}%
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Private Information Retrieval (vuval+klim)
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Private Information Retrieval (vuval+klim)
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Private Information Retrieval (vuval+klim)

!!j Hide access pattern i

* Power of non-linearity
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Computation: Beyond Storage
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Consensus (lttai’s talk)

Achieving Agreement at the presence of failures/corruptions/delays
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Genera

Secure Computation (Yuval’s talk)
Compute joint function of the parties inputs

e Sl g,

X3

Passive adversaries

* Privacy

Active adversaries

* Correctness & Privacy
General Functions




Secure Computation (Yuval’s talk)

oute joint function of the parties inputs

Challenge:

Design 1-private
protocol for sum over G




Proofs in Non-Interactive Setting (Niv’s Talk)
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Randomized Encoding & Constant-Round MPC
(Benny’s Talk)
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Summary: Information Theoretic Cryptography

* Cool questions

e Exciting connections with

* Coding, Information-theory, Communication Complexity,
Computational complexity, Theory of Computation

* Relevant to computational crypto as well
* Many open problems

* New conference: ITC 2020, June 17-19, 2020 in Boston
* PC: Daniel Wichs, General Chairs: Adam Smith & Yael Kalai

Have a Good Time!



