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Threshold Secret Sharing [shamir 79, Blakley 79 S

randomized
dealer

(t-out-of-n)-SS: Split a secret s to n shares such that:
e > t shares are enough to reconstruct the secret

e < tshares — parties learn nothing about the secret I I

Basic primitive in information theoretic cryptography

Huge number of applications YH * A’* L




Threshold Secret Sharing [shamir 79, Blakley 79 S

randomized

Example: 2-out-of-n secret sharing W

« s€{0,1}
* Samplea € {1,..,p — 1}

where p > n is prime (e.g., p = 7)
e Sets;=s+ax*li

Correctness: Any pair can recover s (via interpolation) } ! YH * 1‘\* L

Privacy: Any singleton learns nothing

Si A




Secret Sharing: Generalization [ittsaiNishg7] S

Access structure - A list A of authorized coalitions \
Formally: SS scheme for access structure A satisfies:
Correctness: If A € A is authorized then

3 algorithm Recover: (s;: Vi € A) output s
8wt




Secret Sharing: Formalization s

Access structure - A list A of authorized coalitions statistically ind. of s

Formally: SS scheme for access structure A satisfies:

Correctness: If A € A is authorized then
3 algorithm Recover: (s;: Vi € A) output s

{7 e 2 kA

Privacy: If A is unauthorized
the tuple (s;: Vi € A) is distributed independently of s



Access Structures ALL={1,...n}
/ \

\
< > n/2-subsets
\ /

\ /

\g/ Singletons
Empty set

Lattice of
subsets




Access Structures ALL={1,...n}

Monotone: A super-set of an authorized set is also authorized
n/2-subsets

Singletons

Empty set



Access Structures ALL={1,...n}

Monotone: A super-set of an authorized set is also authorized
n/2-subsets

Singletons

Empty set



Access Structures ALL={1,...n}

Monotone: A sub-set of an unauthorized set is also unauthorized

n/2-subsets

Singletons

Empty set



Access Structures ALL={1,...n}

Monotone: A sub-set of an unauthorized set is also unauthorized

n/2-subsets

Singletons

Empty set
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Access Structures

Monotone: The characteristic function of A is monotone
* fa:{0,1}" - {0,1}

Strings of weight n/2

Strings of weight 1
On
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Access Structures

Monotone: The characteristic function of A is monotone
* fa:{0,1}" - {0,1}

trings of weight n/2

Strings of weight 1
“Promise” access structure: For some sets “don’t care” o

A is given by a partial monotone function

Complexity(cA): Minimal total length of all share size among all schemes that realize A
 Complexity(n-out-of-n) = 1 bits
* Complexity(t-out-of-n) < log(n) bits (one field element per party)

Big open problem: Complexity of General Access Structures?
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Simple constructions: DNF

DNF: For every minimal authorized set A
share s via |A|-out-of-|A| sharing trings of weight n/2

* Complexity: #min-authorized sets Strings of weight 1

On
e Worse-case: 2"
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Simple constructions: CNF

CNF: Share s among all maximal un-authorized sets A, s = );; 54

give s, to all parties outside A trings of weight n/2

* Complexity: #max-unauthorized sets Strings of weight 1

On
e Worse-case: 2"
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Simple constructions: Monotone Formulas

Write f as a monotone formula and SS recursively
trings of weight n/2

* Easy to handle AND gates and OR gates

Strings of weight 1

 Complexity: Formula-size(f) o

* Worse-case: 2"

Ex: Prove that DNF/CNF can be described as a special case of Formula construction.

Q: Can we beat the 2™ upper-bound??



Complexity of Secret Sharing

The share size for n-party general access structure

Upper Bounds:
4 2™ [IttSaiNish87]

209941 1) iuVai18]
208971 [ A_BieFarNirPet19]

20641 1A_BieNirPet20]

n
log(n)

Lower Bound: () ( ) [C97]
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The LV-decomposition

Extreme slices can be realized
with non-trivial exponent

f f-mid f-bottom f-top

AND




NS

Focus on mid-slice

Threshold access structures
(realized via Shamir)




What next? More partitions

A A A A




N|S

Focusing on a single slice

Care only about n/2-subsets

y \ 0000000000000 00000000000000000

n parties

f'-mid
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Realizing n/2-uniform access structure via CDS

f'-mid

£:{0,1}%2 x {0,1}"? - {0,1}

/

Randomness T

Secret S

\ /

Messages (ay, by) reveal s iff f(x,y) =1

Reminder:  Linear-CDS: 2™/4

Non-linear 2°(") even for k parties



Realizing n/2-uniform access structure via CDS

£:{0,1}%2 x {0,1}? - {0,1}
~ ™\

Randomness T

Secret S

A\ /

ONONONONONONORONONONONONONONO/ NN (CNONONORORONONONONONONONONONC)




Realizing n/2-uniform access structure via CDS

£:{0,1}%2 x {0,1}? - {0,1}

/

Randomness T

\

ax\
e

% shar
/

|

0000000000000 e

/by

x=100100010001001

ONONONONONONORORONONONONONONG,




Realizing n/2-uniform access structure via CDS

Good news:
Correctness holds

£:{0,1}%2 x {0,1}? - {0,1}

/

\

Randomness T

If (x,y) is authorized
—>can recover (ax, y)

=>can recove r/

ax

share share

0000000000000 e KOOOOOOOO0.000

x=100100010001001 111100000001 000=vy



Realizing n/2-uniform access structure via CDS

£:{0,1}%2 x {0,1}? - {0,1}

/

Privacy:
Suppose that f(x,y) = 0

Randomness T

\

—>Can recover (ax, y)

—doesn’t leak s
QED

| //Share

0000000000000 e

x=100100010001001

share

ﬁ:ifil‘l<)<)()()()<)<30<D<D<D

111100000001 000=vy



Realizing n/2-uniform access structure via CDS

£:{0,1}%2 x {0,1}? - {0,1}
~ ™\

Randomness T

X- parties know:

a1000...0

@0001...0
a b
00...1..0 x\ / 4
A000...01 share share
a10010./ /
Q0000000000000 0000000000O0OOe0OO0OO

x=100100010001001 111100000001 000=vy




Realizing n/2-uniform access structure via CDS

X- parties know:
a,, forevery x' € x

CDS doesn’t provide privacy in
this case!

CDS is not re- usa%

£:{0,1}%2 x {0,1}? - {0,1}

/

\

Randomness T

ax

share share

0000000000000 e KOOOOOOOO0.000

x=100100010001001 111100000001 000=vy



Possible Sol: Restrict to sets of fixed size (anti-chain)

£:{0,1}%2 x {0,1}? - {0,1}
~ ™\

Randomness T

N
N

0000000000000 e 00000000 0O0OG00O0
x=100100010001001 111100000001 000=vy

Avoid pairs (x,x")
for which x’' C x




Possible Sol: Restrict to sets of fixed size (anti-chain)

£:{0,1}%2 x {0,1}? - {0,1}
~ ™\

Randomness T

Apply only to (x, y) X
of weight exactly n/4 each

(x,y) is good
if balance wrt input partition
wt(x) = wt(y) =n/4

) / T

0000000000000 e 00000000 0O0OG00O0
x=100100010001001 111100000001 000=vy

ax
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Handle single layer via many partitions

v

f'-mid

?

{

A A
%

< )

vV

Inputs good Inputs good
for partition for partition

(X1, Y1) (X2, 1)

Inputs good
for partition

Xy Yin)



From single-layer to many layers?
Should treat inputs of different weights wt(x) € (0.5 + 48 )n

Solution 1 [LV’18]: More sophisticated decomposition
e Use k-multiparty CDS k=n/5

* Each block exactly half-occupied
» Special “overflow/underflow” block
 Exponential number of partitions

L JON JoN NEONON NoX AN N N NoNOAK NoX NoN NEON N N N BEON N N NOXON N N XNO)




N| S

From single-layer to many layers?
Should treat inputs of different weights wt(x) € (0.5 + 48 )n

Solution 2 [ABNP’20]: Robust CDS

Tolerates Limited re-usability
Use k-multiparty CDS k=+/n

Each block should be (% + 5) Vn occupied

Linear number of partitions
Easier gluing
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Approximately-Balanced Partitions

Polynomial overhead!

\ %

v

f'-mid

MAJ

</{\>
%

Inputs good
for partition 1

Inputs good
for partition 2

\ %

v

Inputs good
for partition n




Last missing component: Robust CDS

General Transformation:

e CDS =>robust-CDS

* Exponential overhead

* Leads to best-known exponent




Robust-CDS

Randomness T

Secret S

N A

Messages (ay, by) reveal s iff f(x,y) =1




Robust-CDS

Params:
* k= #simultaneous inputs
L= #possible input vectors X

Robustness: If f(x{,y) = -=- = f(x,y) = 0 secret remains hidden

* Need it for all parties simultaneously



The Channel Immunization Problem

g g

s SRR s SRR
Sender Receiver

N channels



The Channel Immunization Problem

t-Time Secure

Sender Receiver

N channels



The Channel Immunization Problem

One-Time Secure

m One-Time Secure m

=T <, One-Time Secure =N <
Receiver

Sender

N channels



The Channel Immunization Problem

L

BTl <
Sender

One-Time Secure

One-Time Secure

3_

3

3\
AZ

One-Time Secure

!

N channels

L

s SRR
Receiver



The Channel Immunization Problem

One-Time Secure

One-Time Secure

One-Time Secure s TR
Receiver

Sender

N channels



The Channel Immunization Problem

* tonline messages
 Sender has no memory

 Messages are publicly tagged

m;, Xi e X
m One-Time Secure m
a—n a—n
Sender Receiver

N channels



The Channel Immunization Problem

How many channels N are needed to deliver t-vectors with tag domain X ?
Clearly, t< N < |X]

One-Time Secure

m;, Xi
m One-Time Secure m
=T <, One-Time Secure =N <
Sender Receiver

N channels



The Channel Immunization Problem

Thm. N < t polylog(|X|%)

* Actually N < t polylog(L) where L is the number of possible t-tuples

One-Time Secure

One-Time Secure

Ty
e v e

One-Time Secure s SRR
Receiver

Sender

N channels



General strategy: Select & Share

One-Time Secure

One-Time Secure
/
m;, X

l

Q
I
I

s SRR One-Time Secure
Sender

One-Time Secure

Q
I
I

s SRR
Receiver

(R 11

N channels



General strategy: Select & Share

One-Time Secure

\/\/l\/

mi,xi
s R s R
Sender Receiver

N channels



General strategy: Select & Share

One-Time Secure

s R
Receiver

|

Sender

N channels



General strategy: Select & Share

Security for an input tuple (a, x), (b, y), ...
if collision channels form unauthorized set

o
a
b by
| bz a, > |
Q Q
ST , > ST
a .
Sender 3 U3 Receiver

N channels



General strategy: Select & Share
Thm. N < t polylog(|X|})
* Two level solution:
e 1-time security to log(t)-security (quadratic overhead)

* log(t)-security to t-security (quasilinear overhead)

* Two instantiations inspired [ChorFiatNaorPinkas-00,GurVaiWee15]

— —

Sender Receiver

N channels



Robust CDS

Immunize each party separately
o t=#(0.5—6)n —subsets of fixed (0.5 + &)n set




Final optimizations: Recursively implementing the extreme slices

Based on combinatorial designs [ABFNP19]

gia% < ) - 4 > OR /\AND

vV ViV

f-mid f-bottom f-top




Conclusion

Upper Bounds:
4 2™ [IttSaiNish87]

209941 1) iuVai18]
208971 [ A_BieFarNirPet19]

20-641 1A _BieNirPet20]

n
log(n)

Lower Bound: () ( ) [C97]

OPEN:

* Sub-exponential general SS?
e Better Robust-CDS?

Optimal Linear SS 29-°17?

Super-linear lower-bounds?

Better Amortized SS?

Better SS for circuits/monotone circuits?

Thank You |



