

Secret Sharing for General Access Structures

Benny Applebaum
Tel Aviv University

BIU Winter-School of Information-Theoretic Cryptography
February 2020

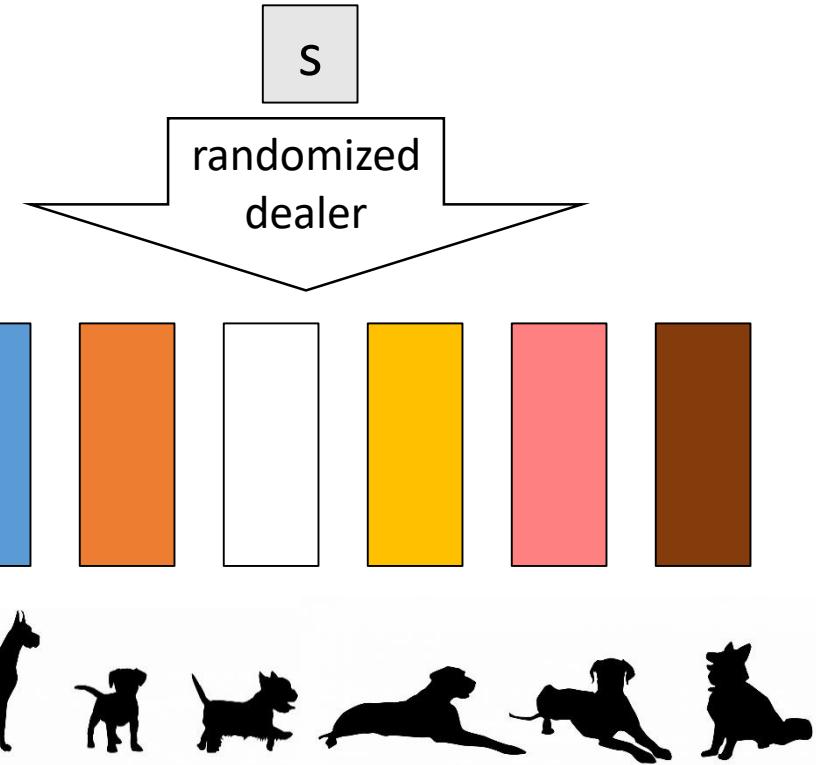
Threshold Secret Sharing [Shamir 79, Blakley 79']

(t-out-of-n)-SS: Split a secret s to n shares such that:

- $\geq t$ shares are enough to reconstruct the secret
- $< t$ shares – parties learn nothing about the secret

Basic primitive in information theoretic cryptography

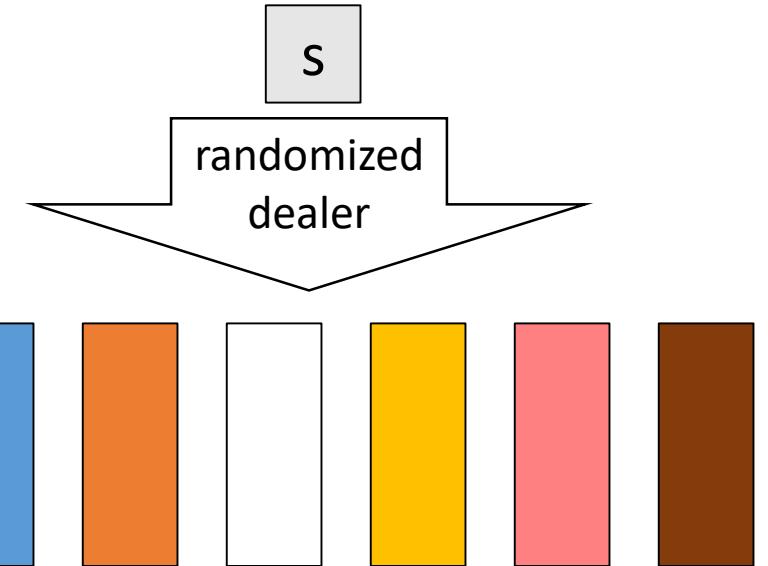
Huge number of applications



Threshold Secret Sharing [Shamir 79, Blakley 79']

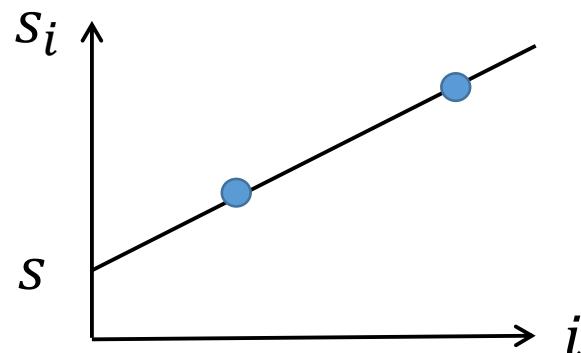
Example: 2-out-of-n secret sharing

- $s \in \{0,1\}$
- Sample $a \in \{1, \dots, p - 1\}$
where $p > n$ is prime (e.g., $p = 7$)
- Set $s_i = s + a * i$



Correctness: Any pair can recover s (via interpolation)

Privacy: Any singleton learns nothing

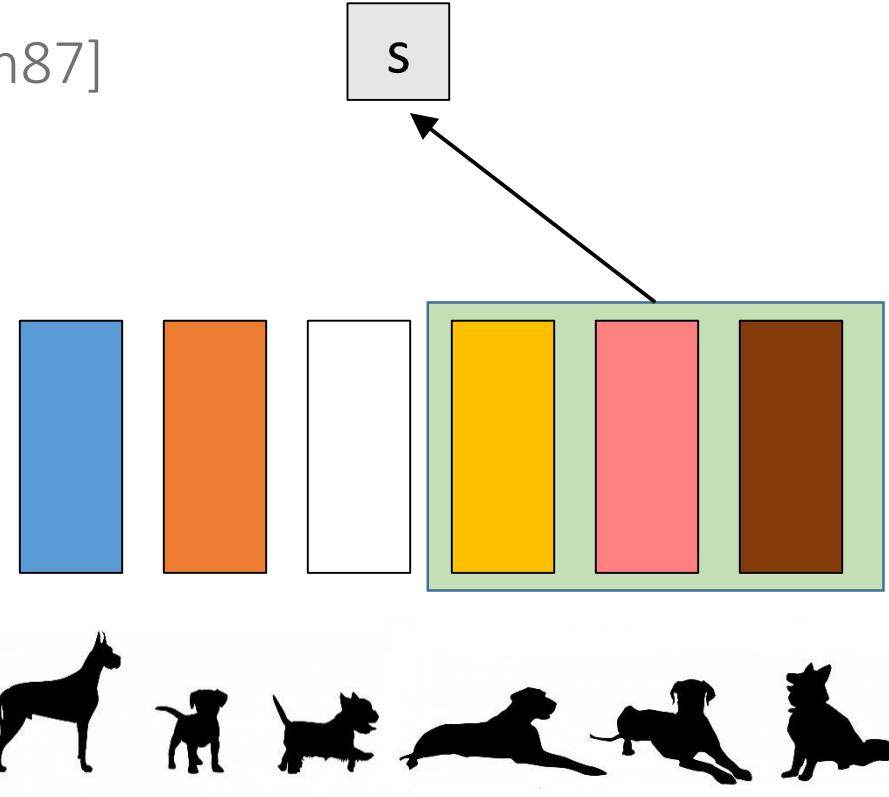


Secret Sharing: Generalization [IttSaiNish87]

Access structure - A list \mathcal{A} of authorized coalitions

Formally: SS scheme for access structure \mathcal{A} satisfies:

Correctness: If $A \in \mathcal{A}$ is **authorized** then
 \exists algorithm Recover: $(s_i: \forall i \in A)$ output s



Secret Sharing: Formalization

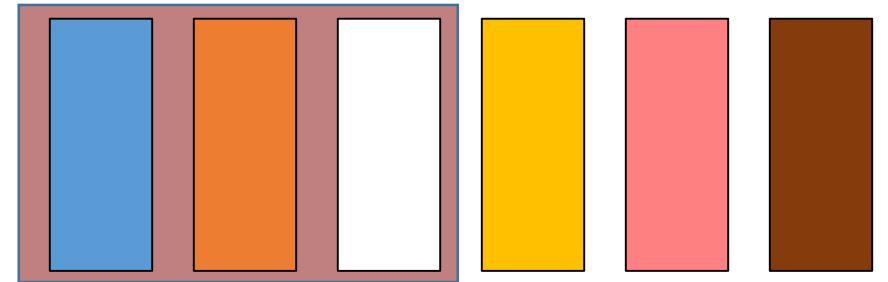
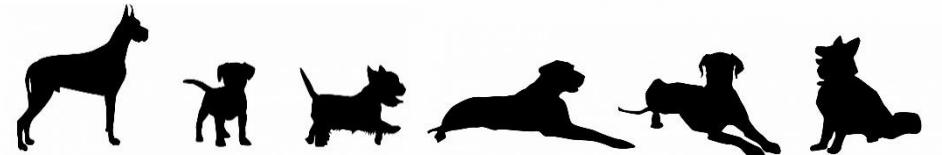
s

Access structure - A list \mathcal{A} of authorized coalitions

Formally: SS scheme for access structure \mathcal{A} satisfies:

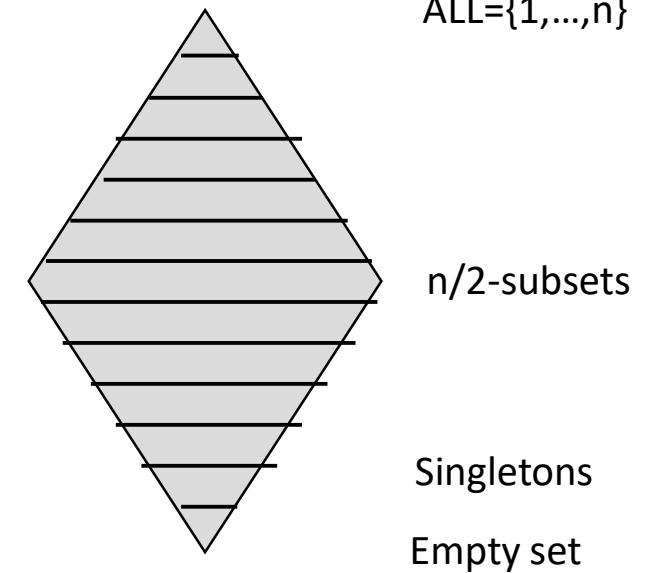
Correctness: If $A \in \mathcal{A}$ is **authorized** then
 \exists algorithm Recover: $(s_i: \forall i \in A)$ output s

statistically ind. of s



Privacy: If A is **unauthorized**
the tuple $(s_i: \forall i \in A)$ is distributed independently of s

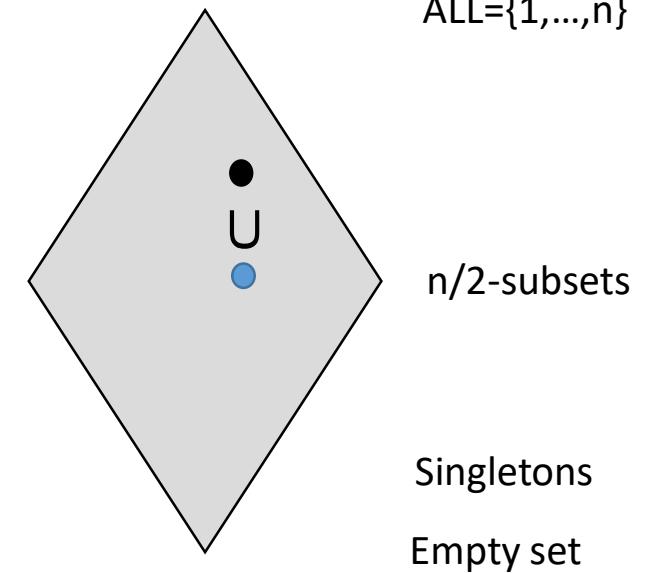
Access Structures



**Lattice of
subsets**

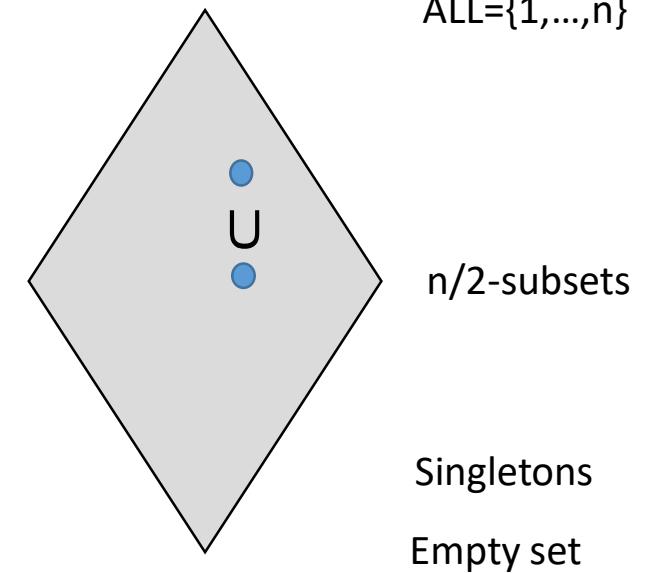
Access Structures

Monotone: A **super-set** of an **authorized** set is also **authorized**



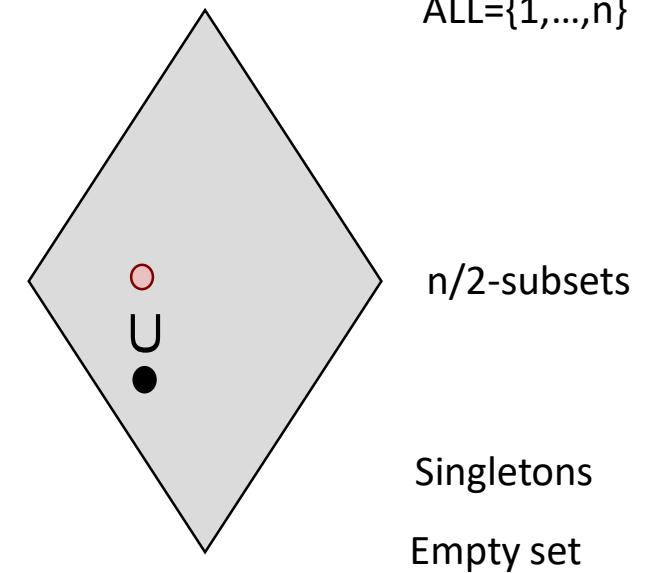
Access Structures

Monotone: A **super-set** of an **authorized** set is also **authorized**



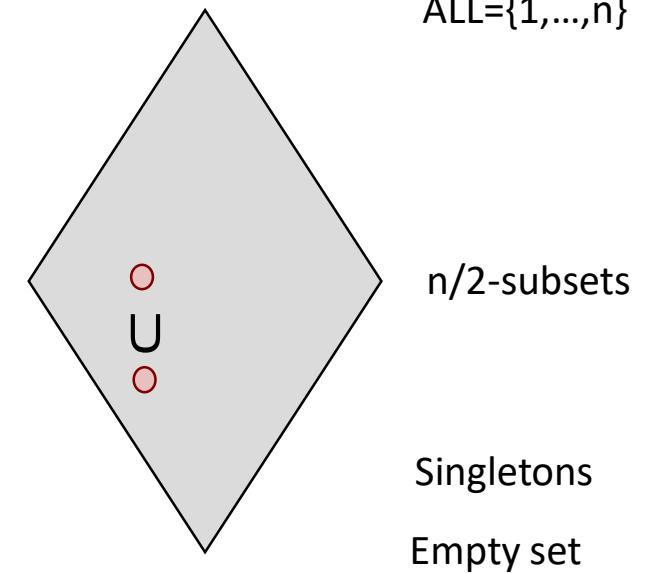
Access Structures

Monotone: A **sub-set** of an **unauthorized** set is also **unauthorized**



Access Structures

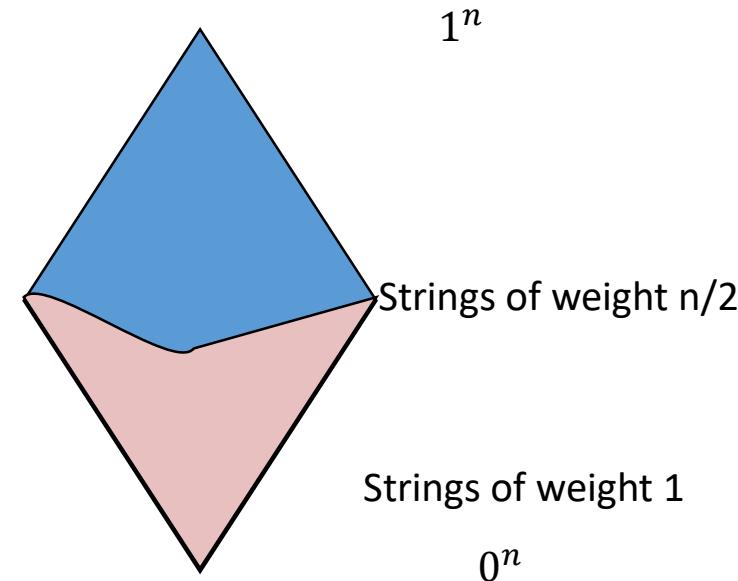
Monotone: A **sub-set** of an **unauthorized** set is also **unauthorized**



Access Structures

Monotone: The characteristic function of \mathcal{A} is **monotone**

- $f_A: \{0,1\}^n \rightarrow \{0,1\}$



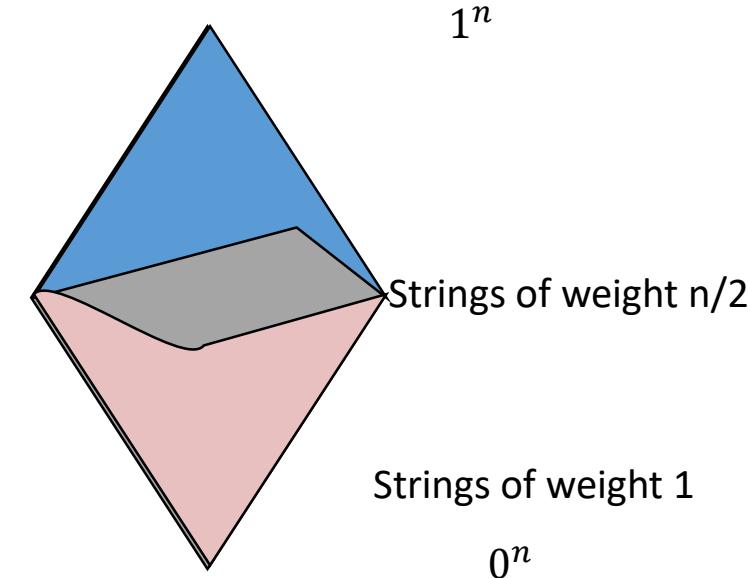
Access Structures

Monotone: The characteristic function of \mathcal{A} is **monotone**

- $f_A: \{0,1\}^n \rightarrow \{0,1\}$

“Promise” access structure: For some sets “don’t care”

- \mathcal{A} is given by a **partial monotone** function



Complexity(\mathcal{A}): Minimal total length of all share size among all schemes that realize \mathcal{A}

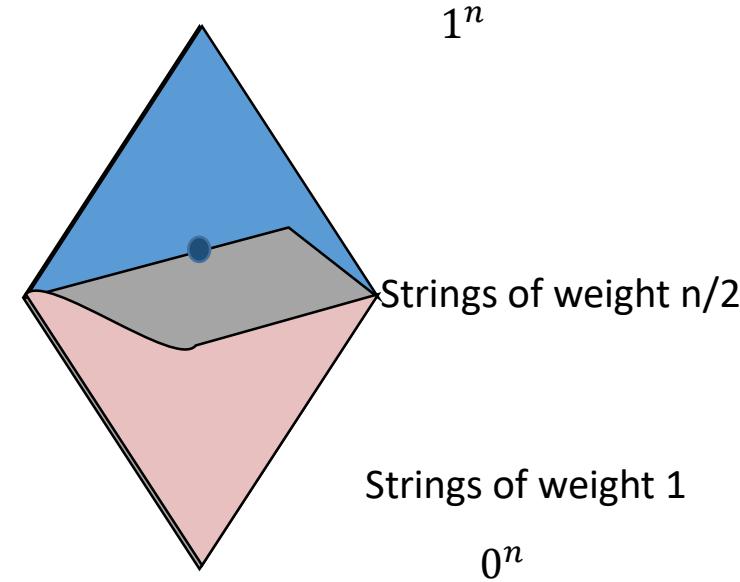
- Complexity(n-out-of-n) = 1 bits
- Complexity(t-out-of-n) $\leq \log(n)$ bits (one field element per party)

Big open problem: Complexity of General Access Structures?

Simple constructions: DNF

DNF: For every **minimal authorized** set A
share s via $|A|$ -out-of- $|A|$ sharing

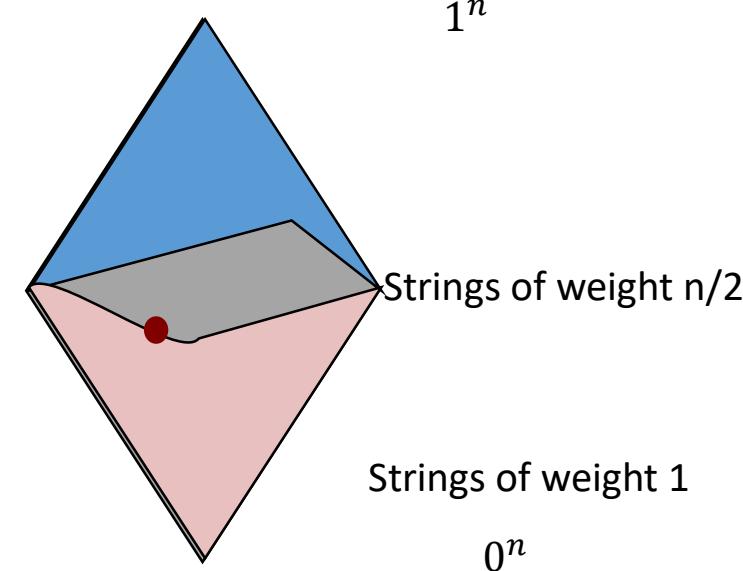
- Complexity: #min-authorized sets
- Worse-case: 2^n



Simple constructions: CNF

CNF: Share s among all maximal un-authorized sets A , $s = \sum_i s_A$
give s_A to all parties outside A

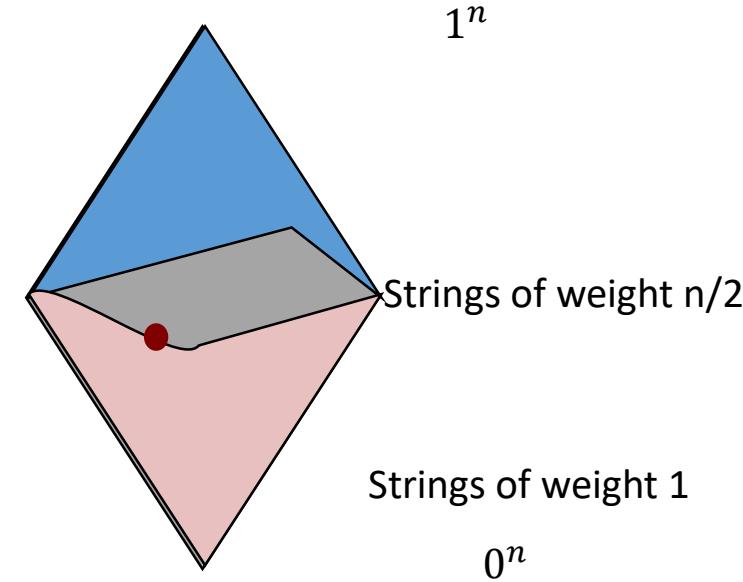
- Complexity: #max-unauthorized sets
- Worse-case: 2^n



Simple constructions: Monotone Formulas

Write f as a monotone formula and SS recursively

- Easy to handle AND gates and OR gates
- Complexity: $\text{Formula-size}(f)$
- Worse-case: 2^n



Ex: Prove that DNF/CNF can be described as a special case of Formula construction.

Q: Can we beat the 2^n upper-bound??

Complexity of Secret Sharing

The share size for n-party **general** access structure

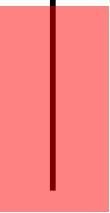
Upper Bounds:

2^n [IttSaiNish87]

$2^{0.994n}$ [LiuVai18]

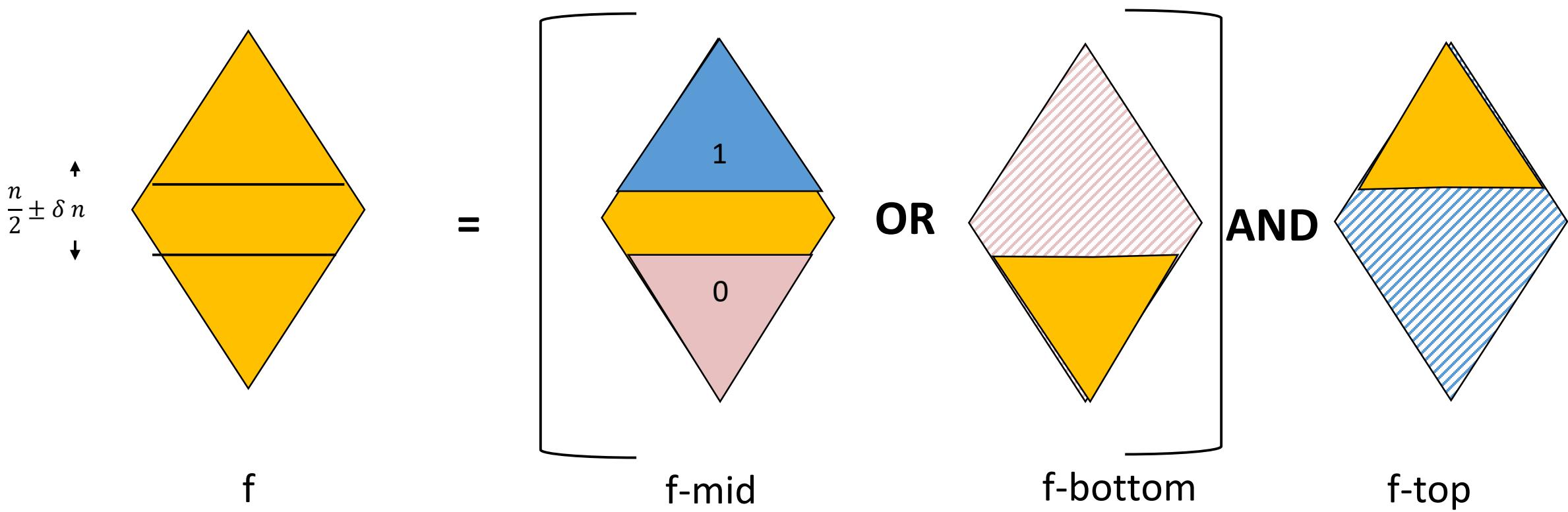
$2^{0.897n}$ [A-BieFarNirPet19]

$2^{0.64n}$ [A-BieNirPet20]

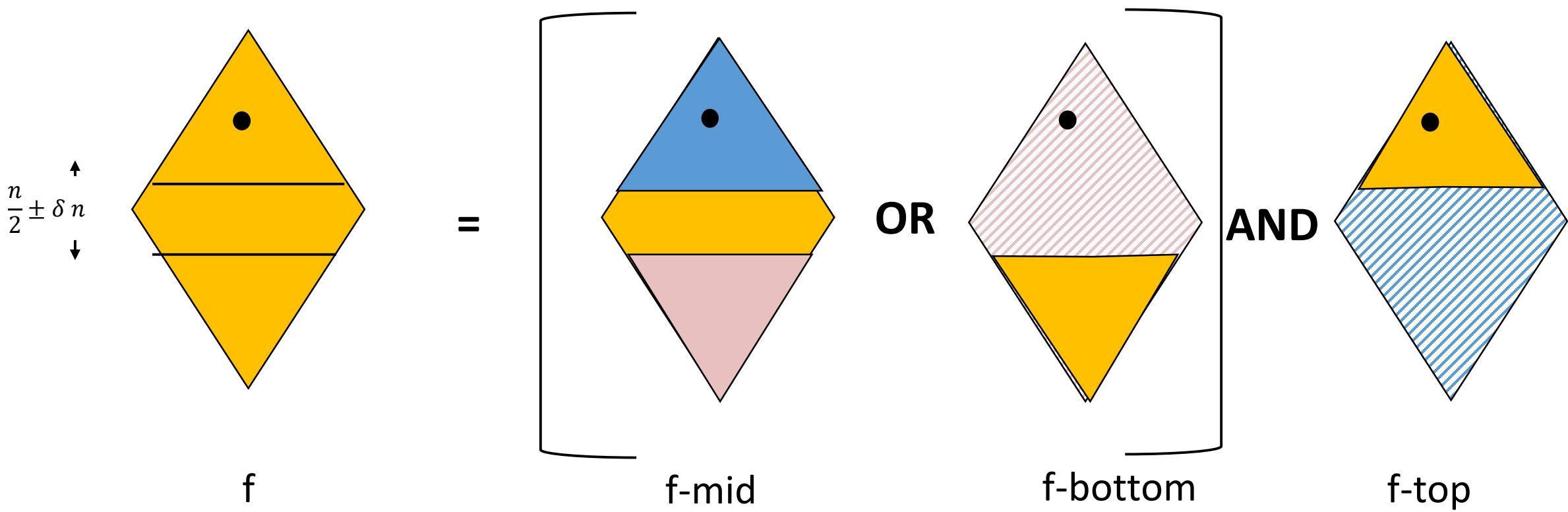


Lower Bound: $\Omega\left(\frac{n}{\log(n)}\right)$ [C97]

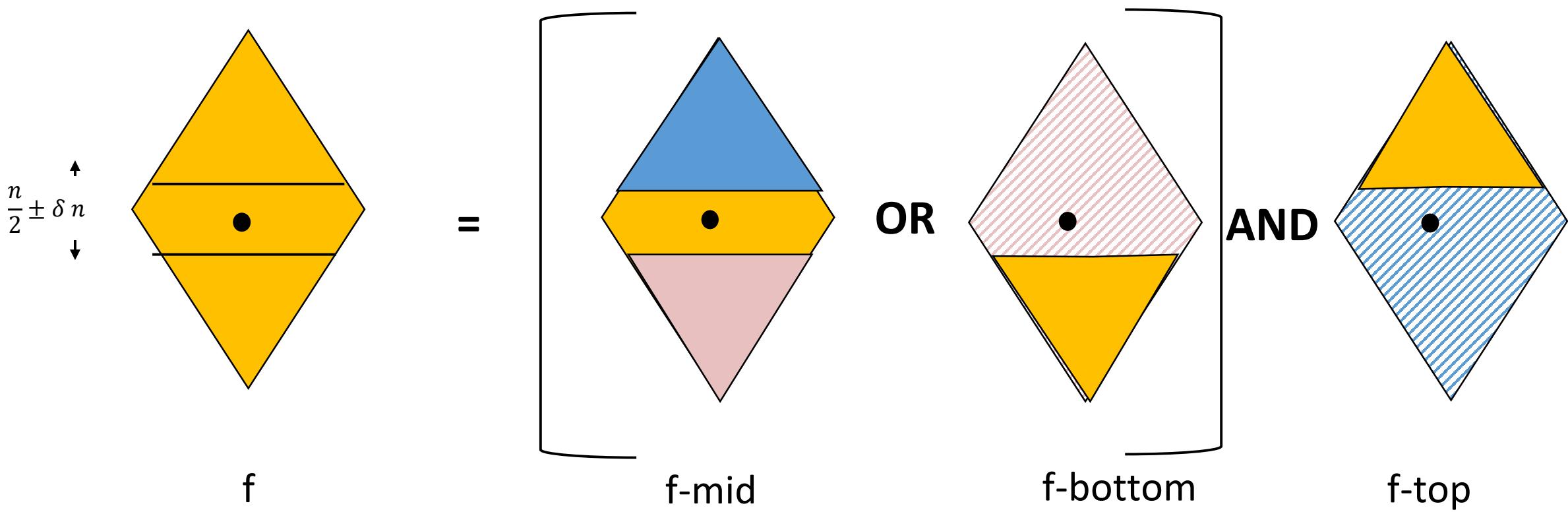
The LV-decomposition



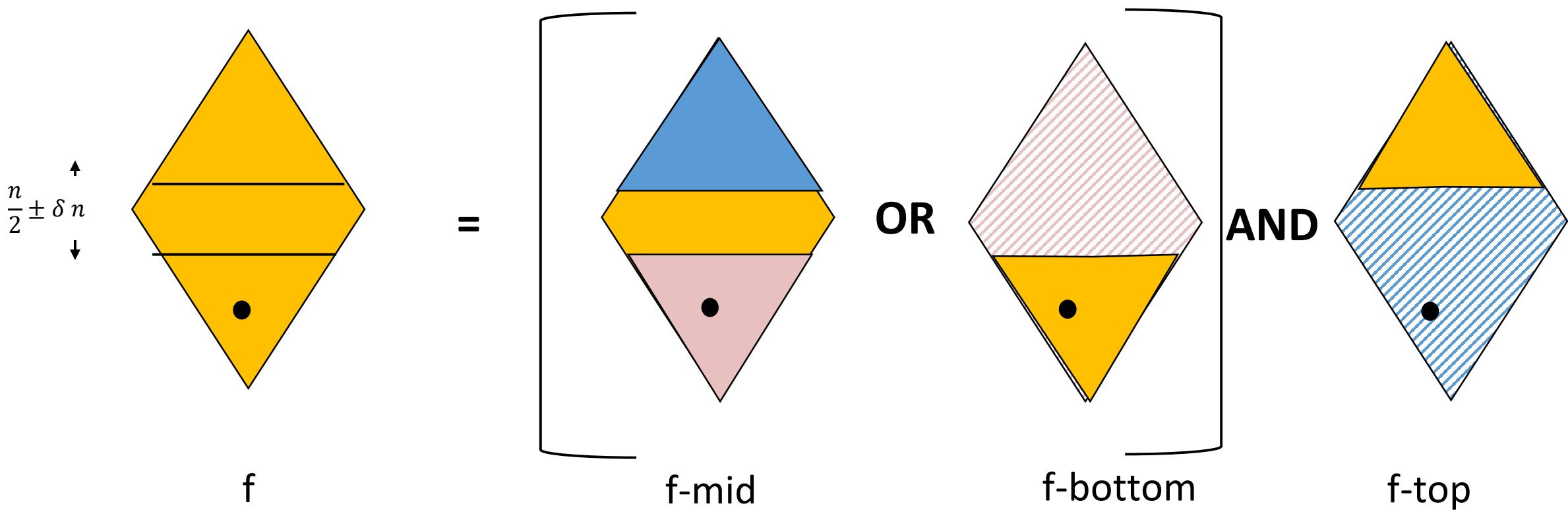
The LV-decomposition



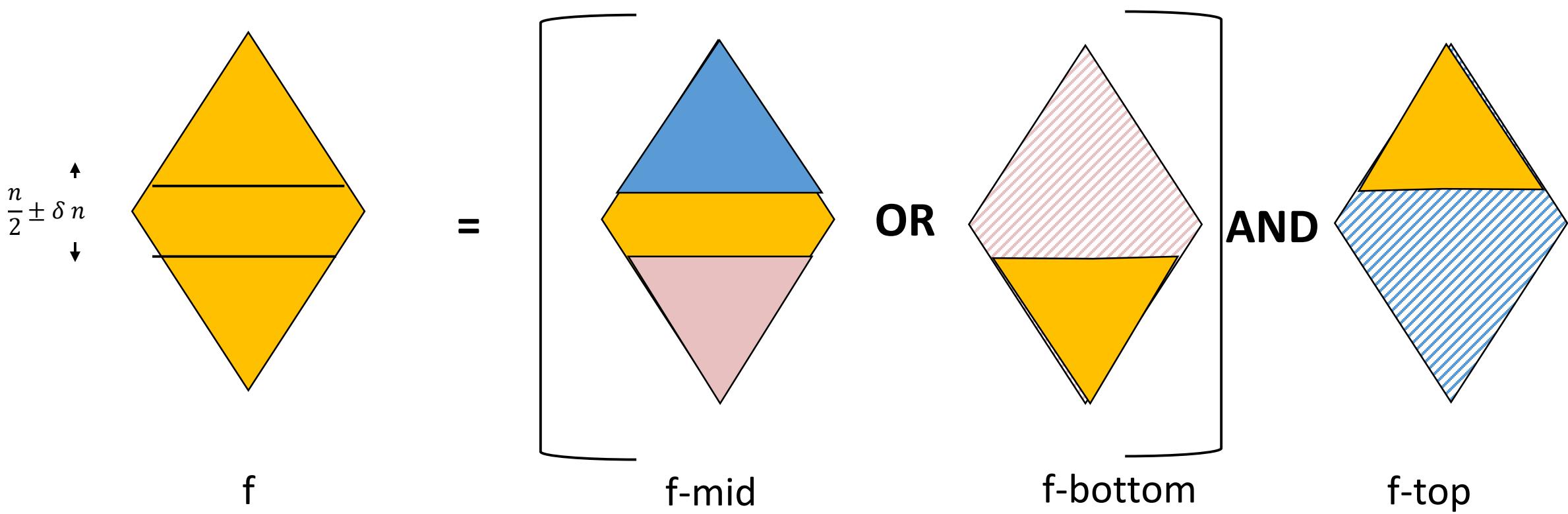
The LV-decomposition



The LV-decomposition

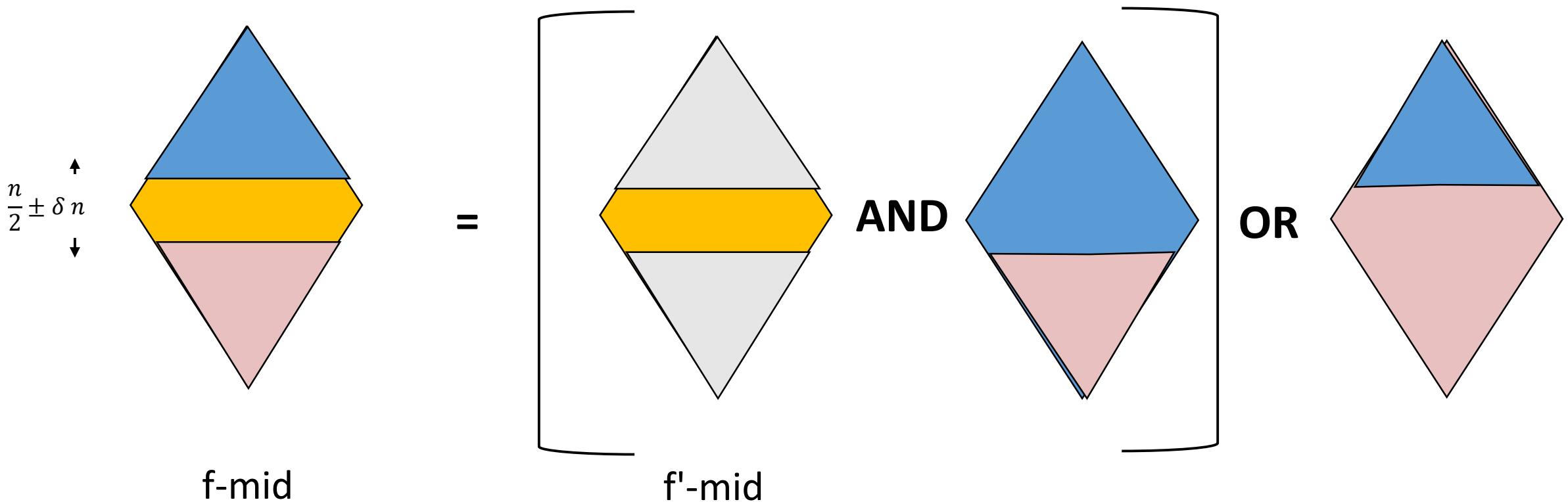


The LV-decomposition

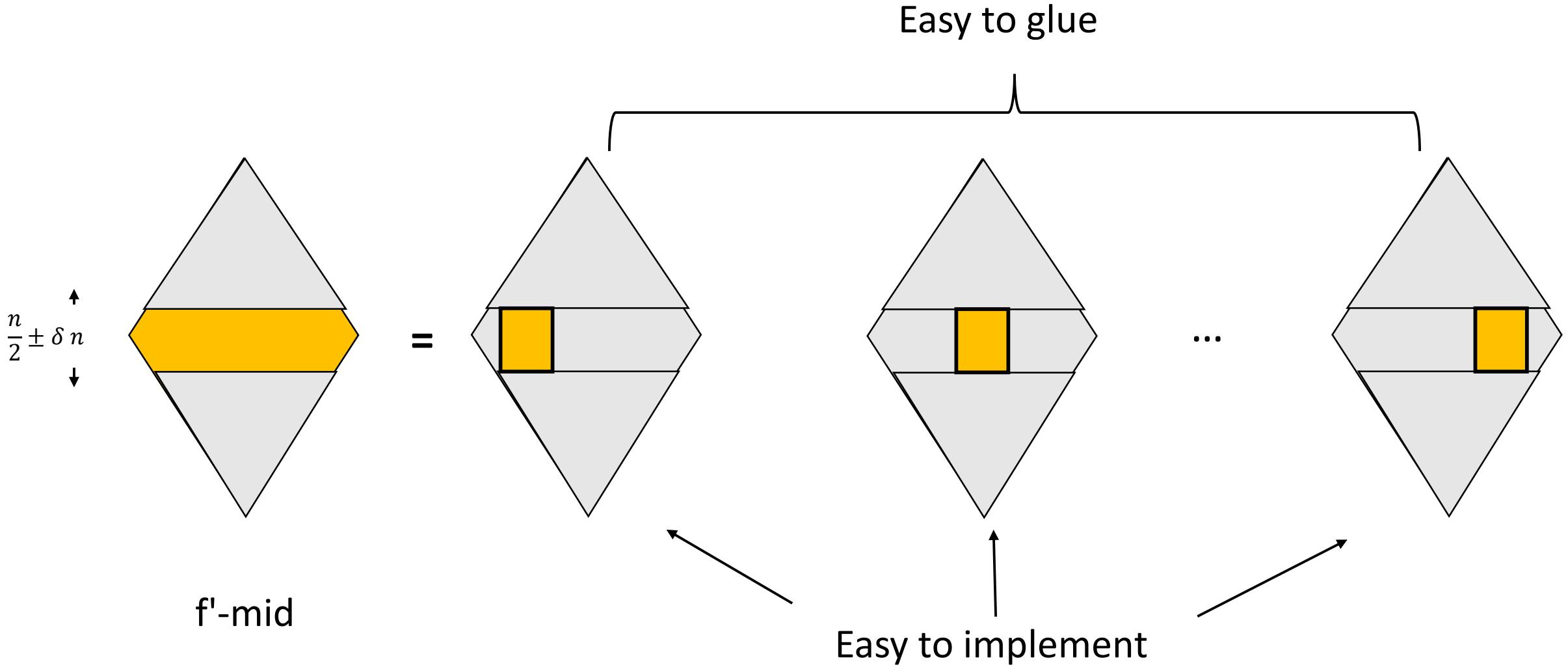


Focus on mid-slice

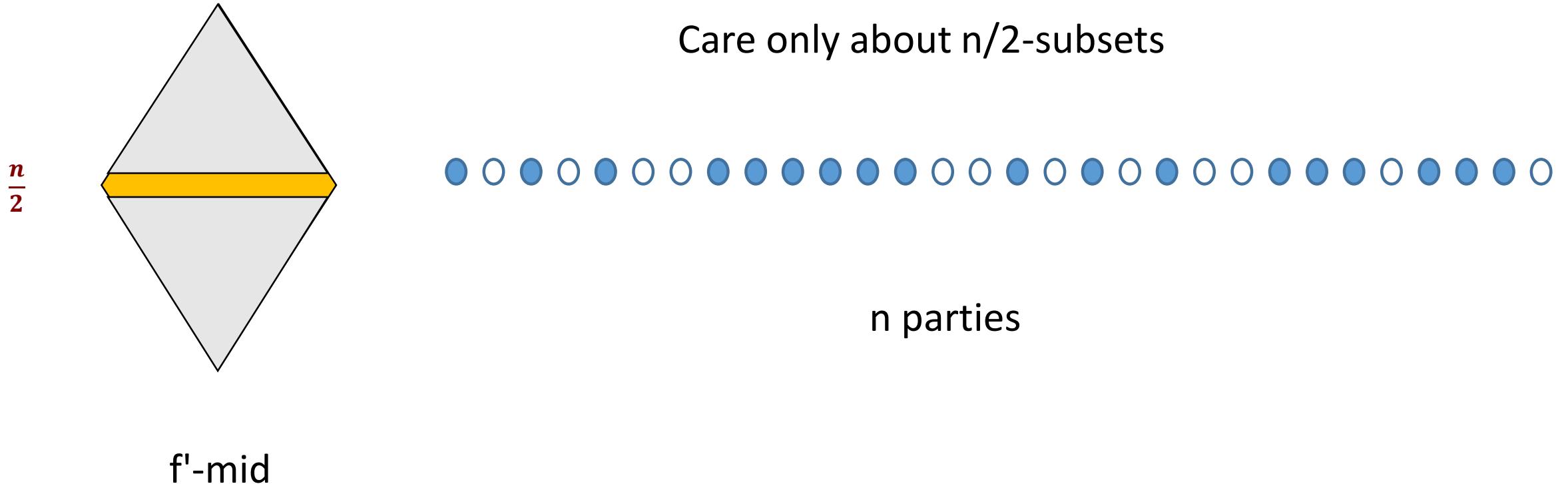
Threshold access structures
(realized via Shamir)



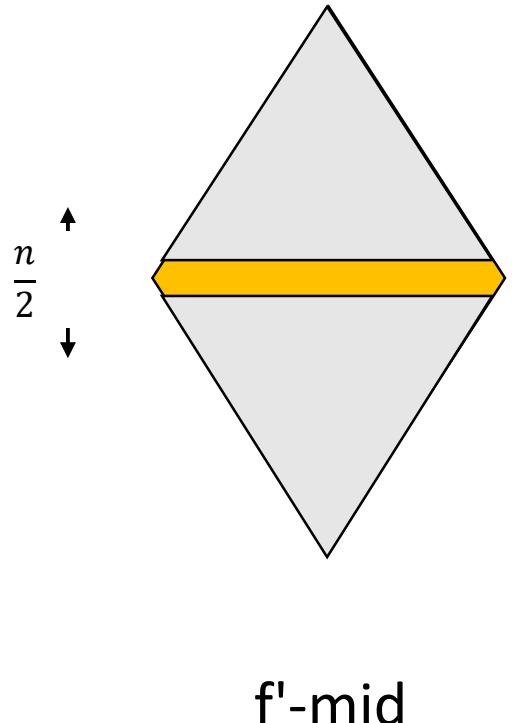
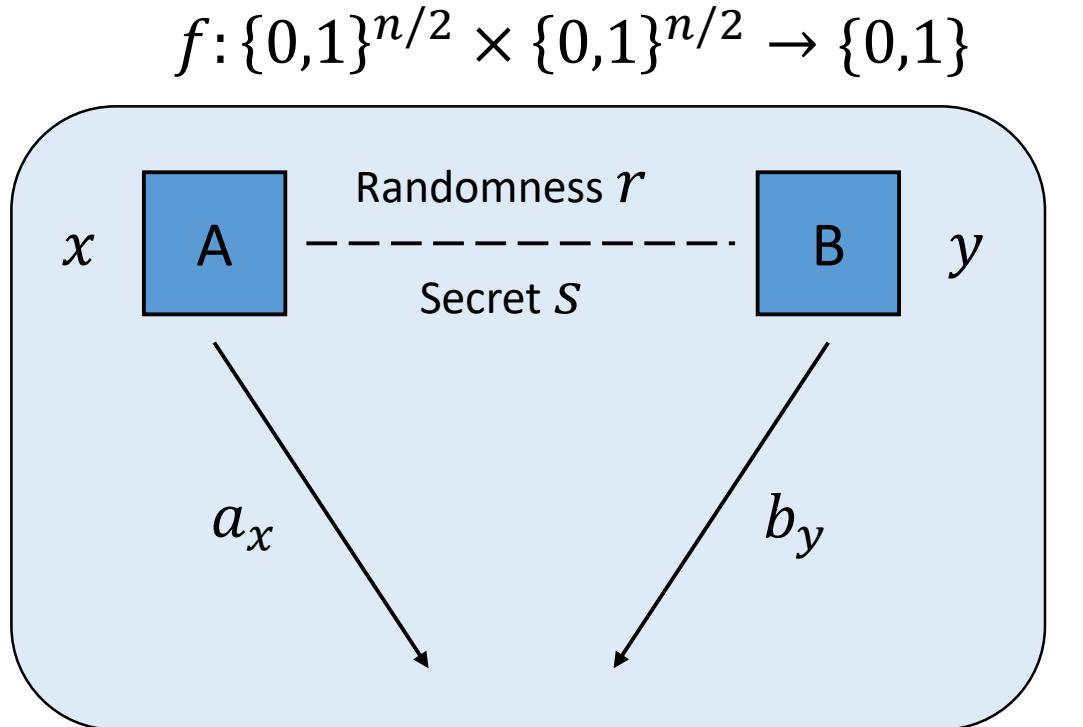
What next? More partitions



Focusing on a single slice



Realizing $n/2$ -uniform access structure via CDS

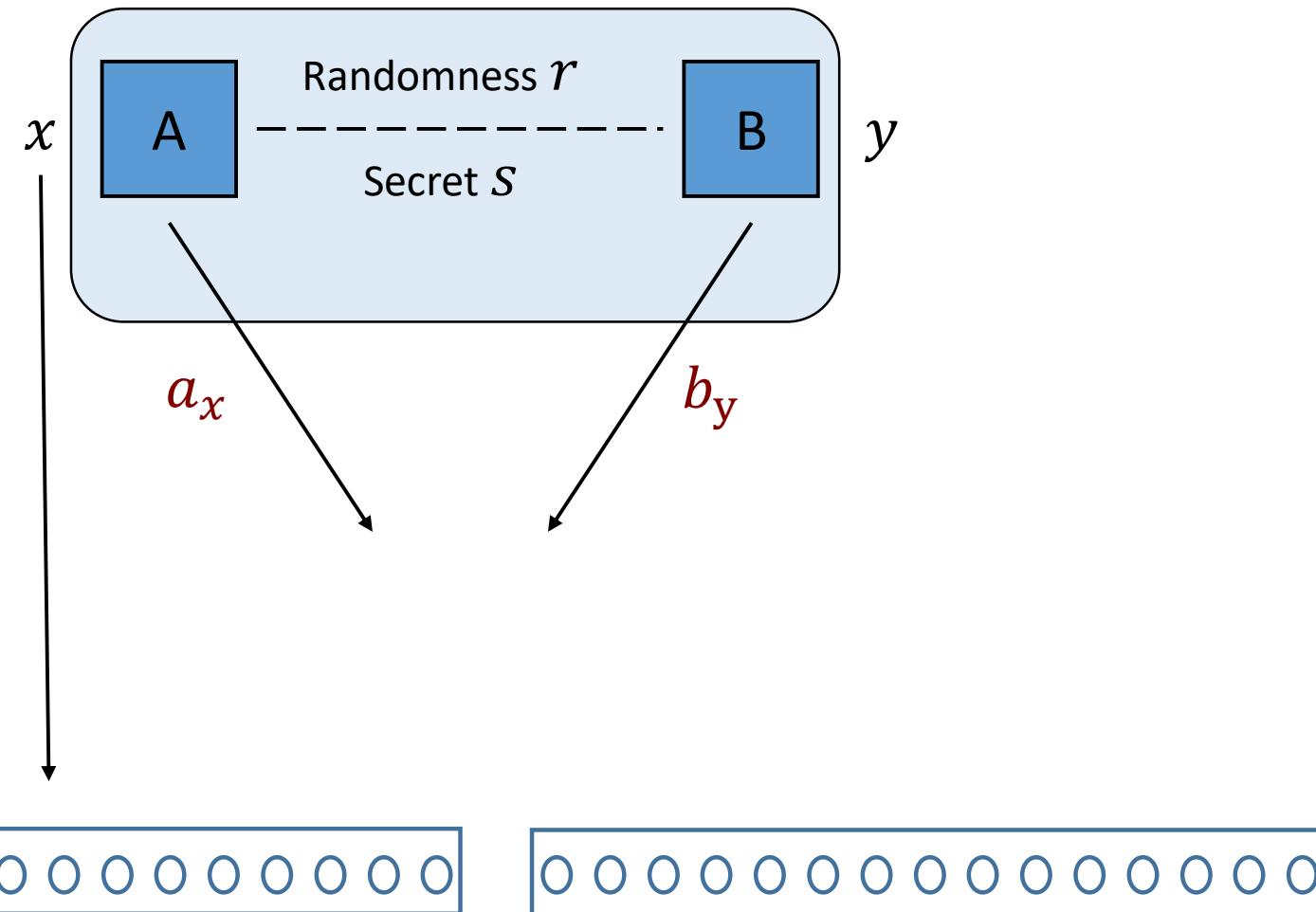


Messages (a_x, b_y) reveal s iff $f(x, y) = 1$

Reminder: Linear-CDS: $2^{n/4}$
Non-linear $2^{o(n)}$ even for k parties

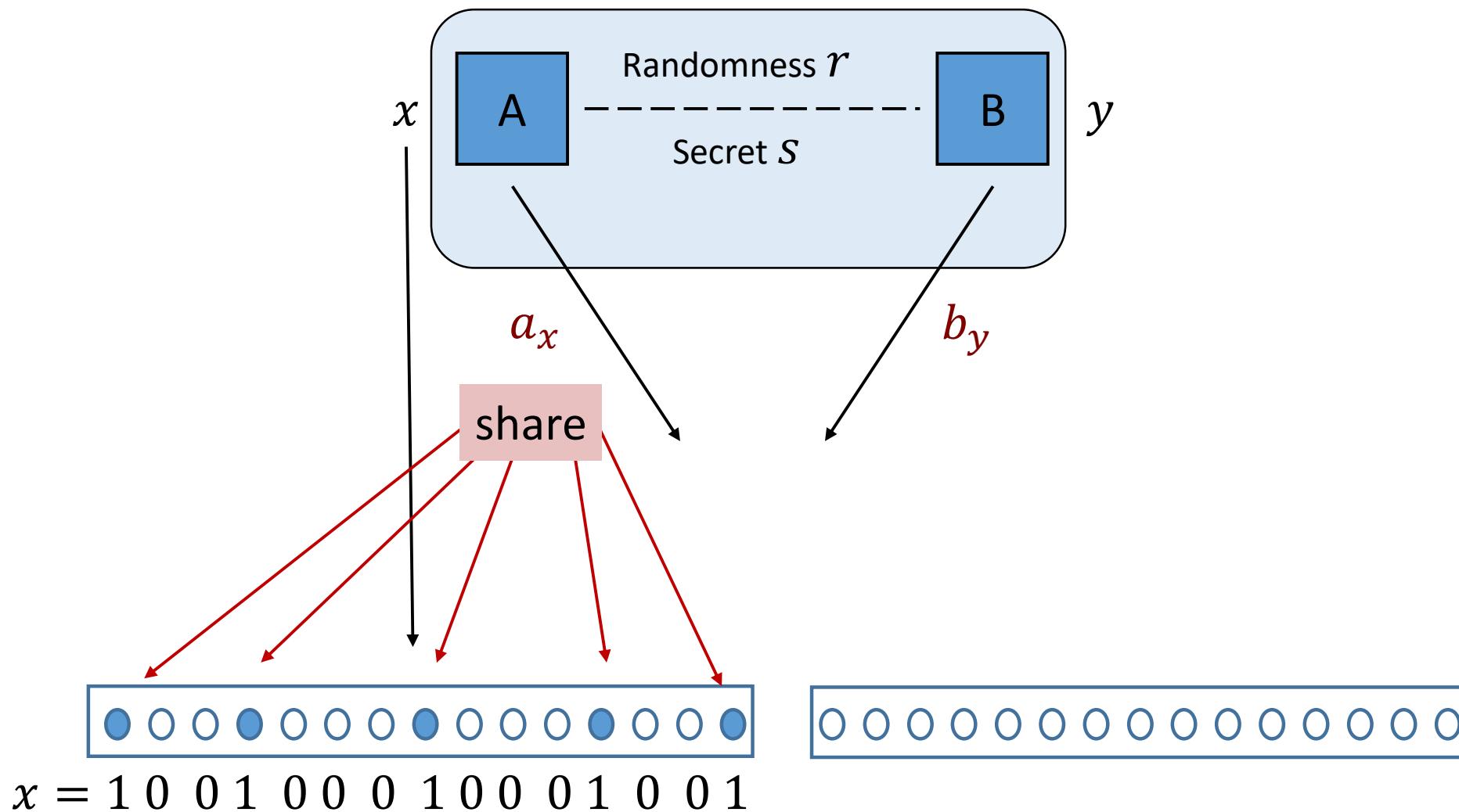
Realizing $n/2$ -uniform access structure via CDS

$$f: \{0,1\}^{n/2} \times \{0,1\}^{n/2} \rightarrow \{0,1\}$$



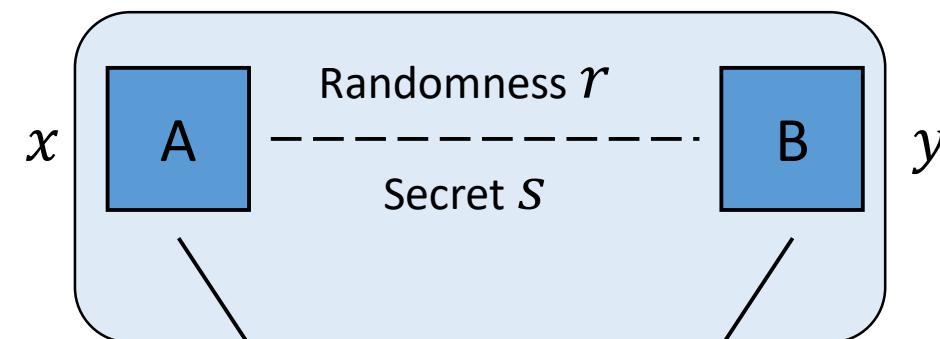
Realizing $n/2$ -uniform access structure via CDS

$$f: \{0,1\}^{n/2} \times \{0,1\}^{n/2} \rightarrow \{0,1\}$$



Realizing $n/2$ -uniform access structure via CDS

$$f: \{0,1\}^{n/2} \times \{0,1\}^{n/2} \rightarrow \{0,1\}$$



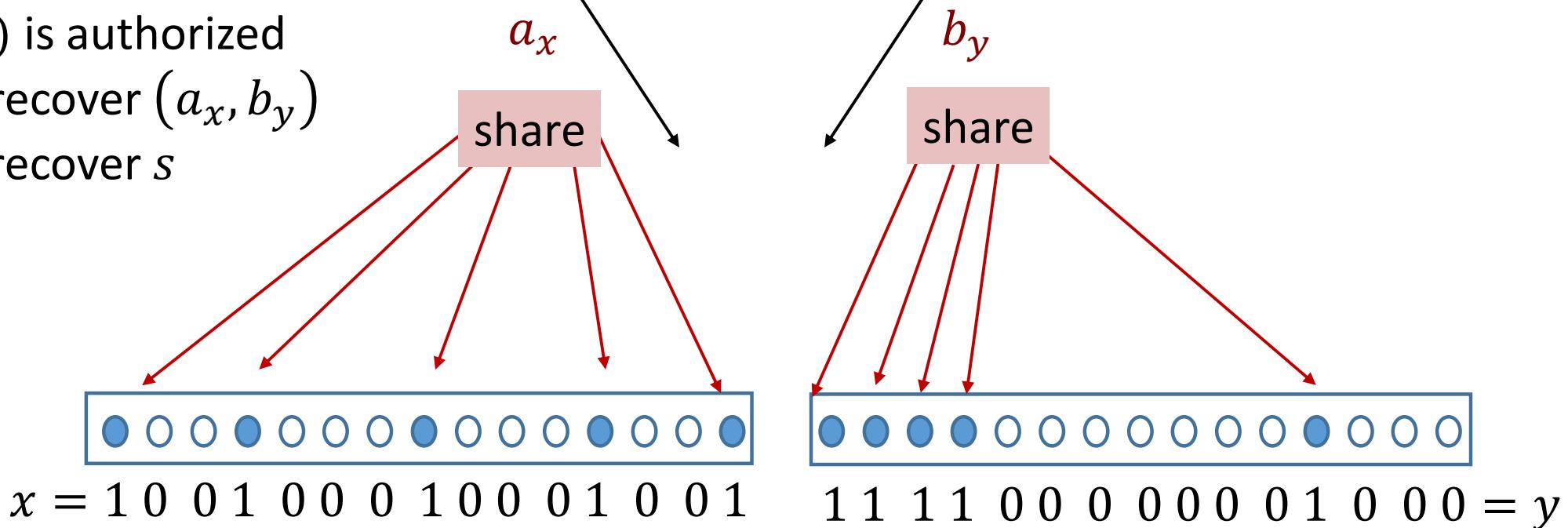
Good news:

Correctness holds

If (x, y) is authorized

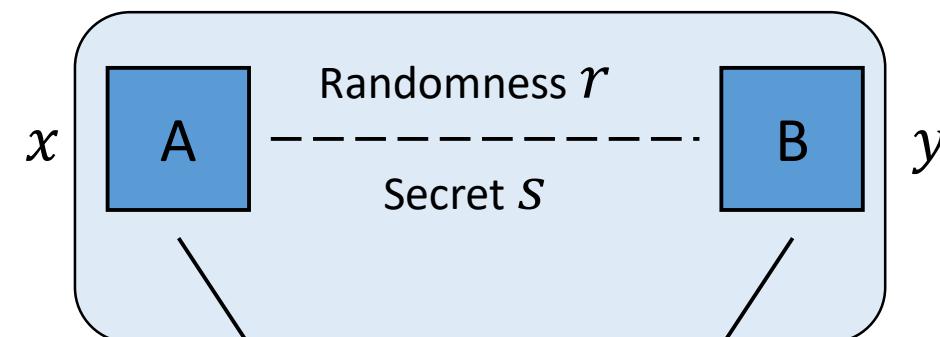
⇒ can recover (a_x, b_y)

⇒ can recover s



Realizing $n/2$ -uniform access structure via CDS

$$f: \{0,1\}^{n/2} \times \{0,1\}^{n/2} \rightarrow \{0,1\}$$



Privacy:

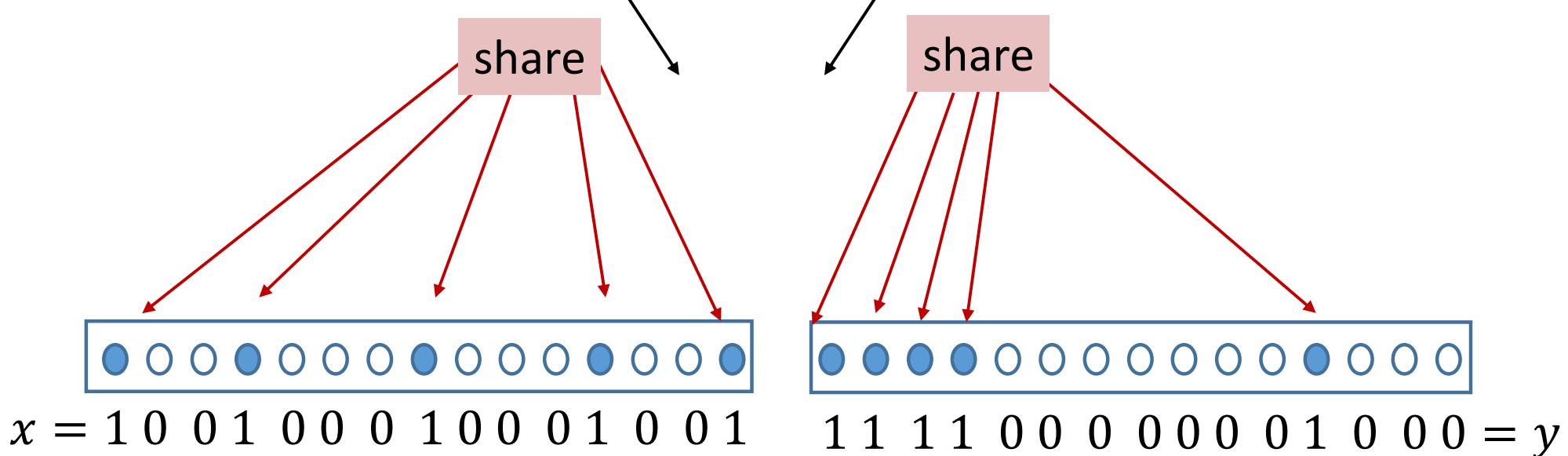
Suppose that $f(x, y) = 0$

⇒ can recover (a_x, b_y)

⇒ doesn't leak s

QED

?

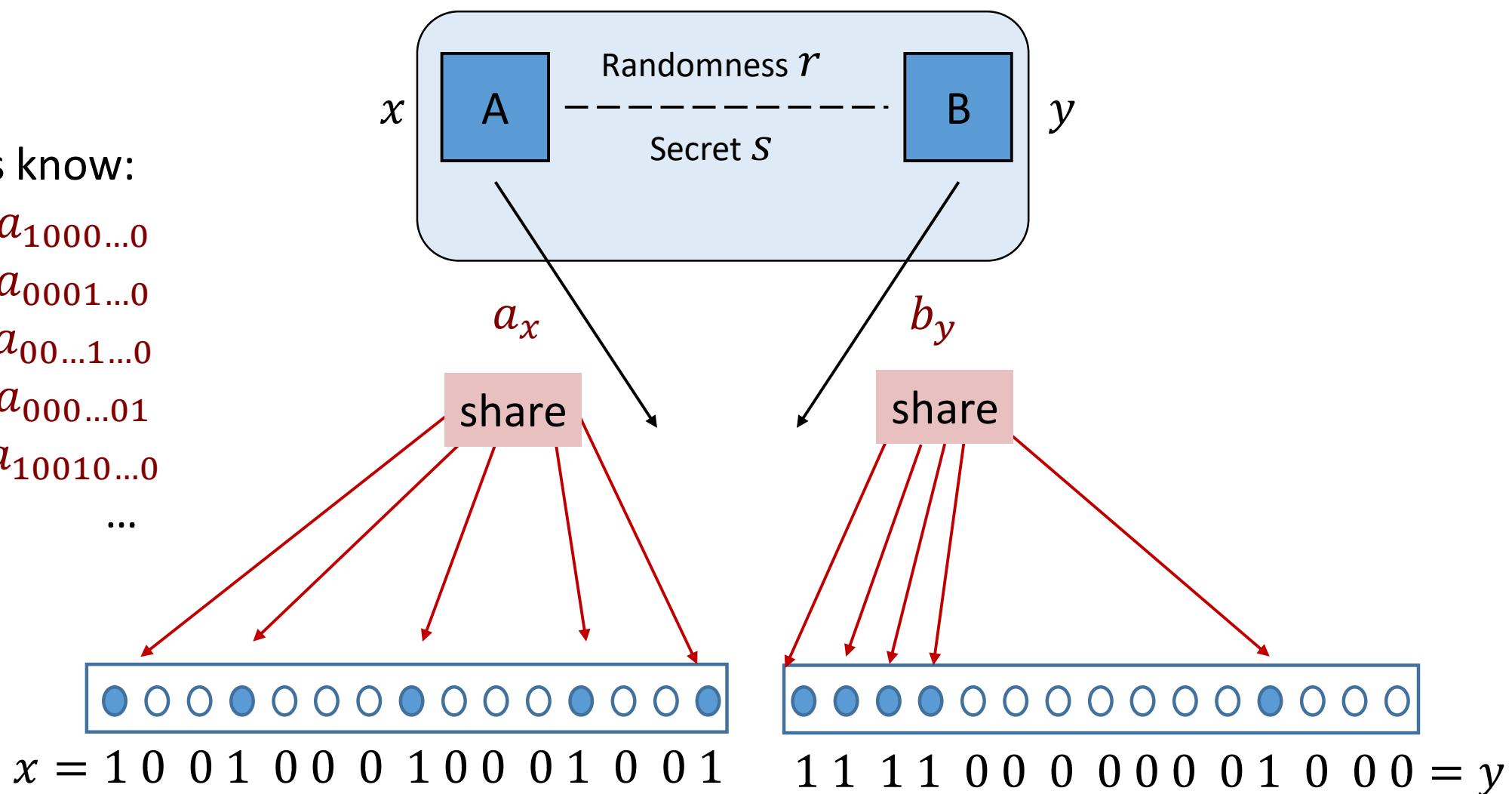


Realizing $n/2$ -uniform access structure via CDS

$$f: \{0,1\}^{n/2} \times \{0,1\}^{n/2} \rightarrow \{0,1\}$$

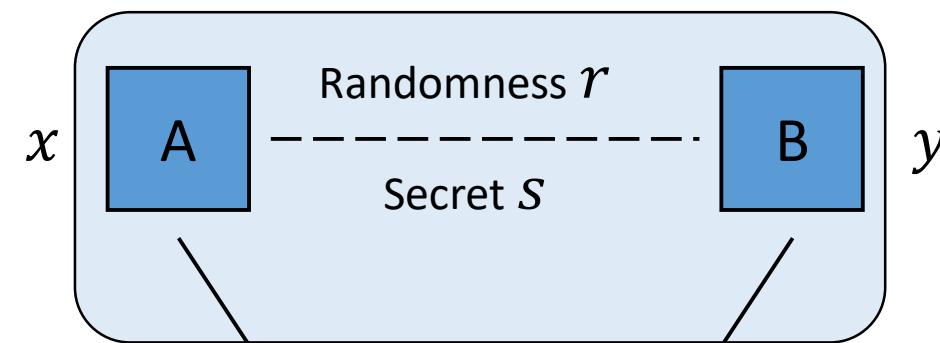
x - parties know:

$a_{1000\dots 0}$
 $a_{0001\dots 0}$
 $a_{00\dots 1\dots 0}$
 $a_{000\dots 01}$
 $a_{10010\dots 0}$
 \dots



Realizing $n/2$ -uniform access structure via CDS

$$f: \{0,1\}^{n/2} \times \{0,1\}^{n/2} \rightarrow \{0,1\}$$

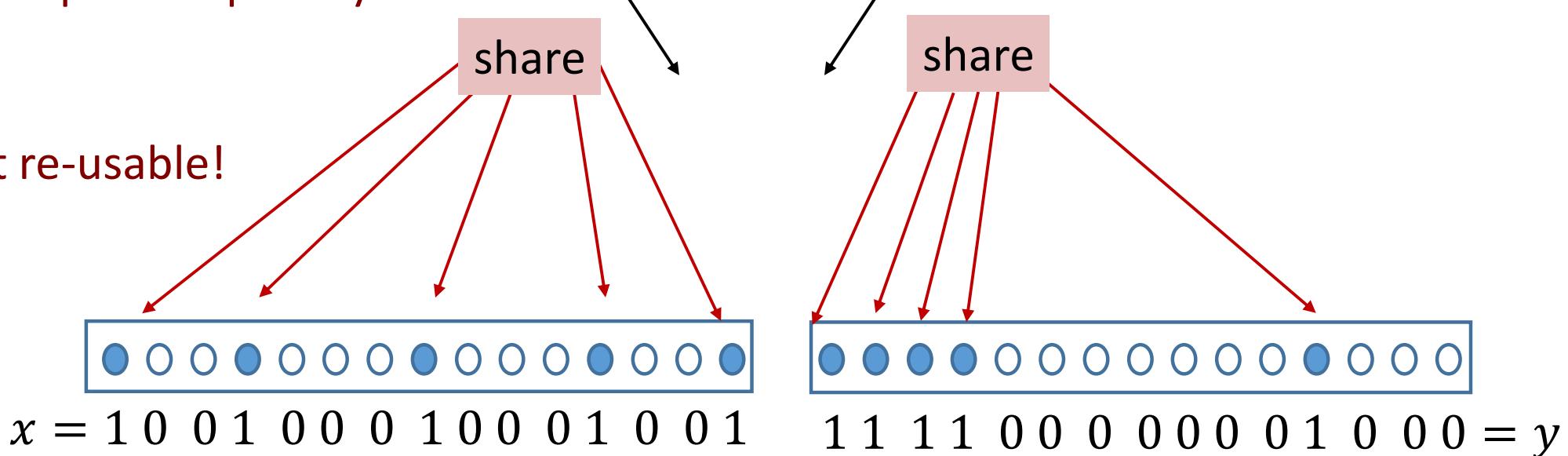


x - parties know:

a_x , for every $x' \subseteq x$

CDS doesn't provide privacy in
this case!

CDS is not re-usable!

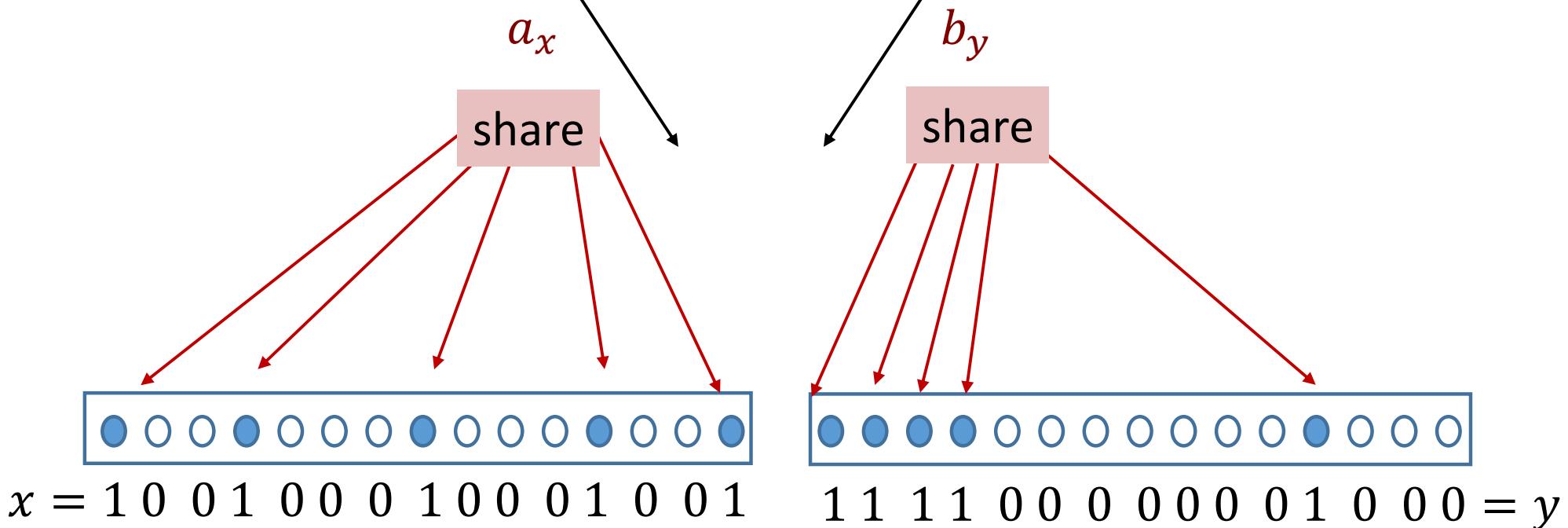


Possible Sol: Restrict to sets of fixed size (anti-chain)

$$f: \{0,1\}^{n/2} \times \{0,1\}^{n/2} \rightarrow \{0,1\}$$



Avoid pairs (x, x')
for which $x' \subseteq x$

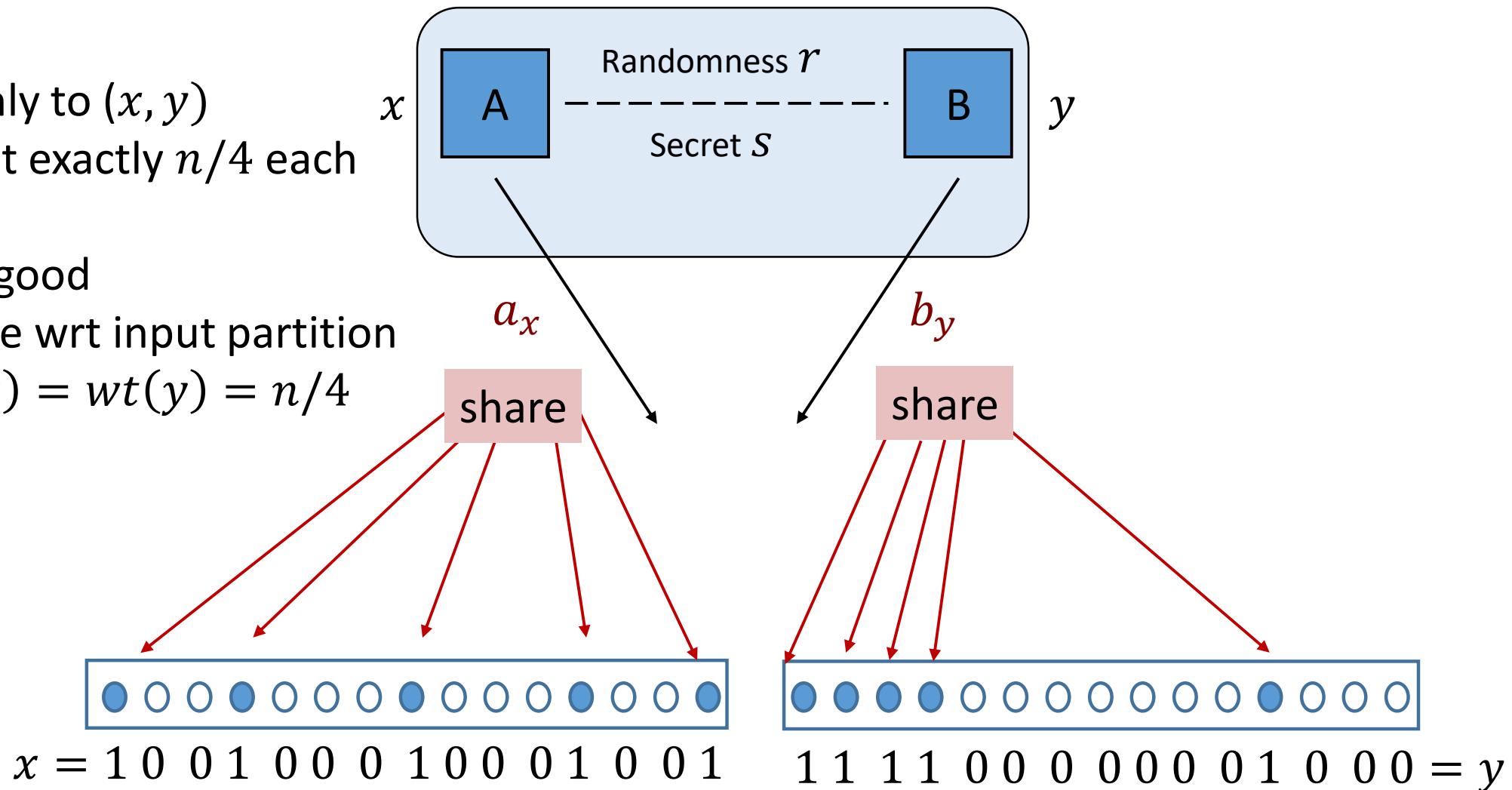


Possible Sol: Restrict to sets of fixed size (anti-chain)

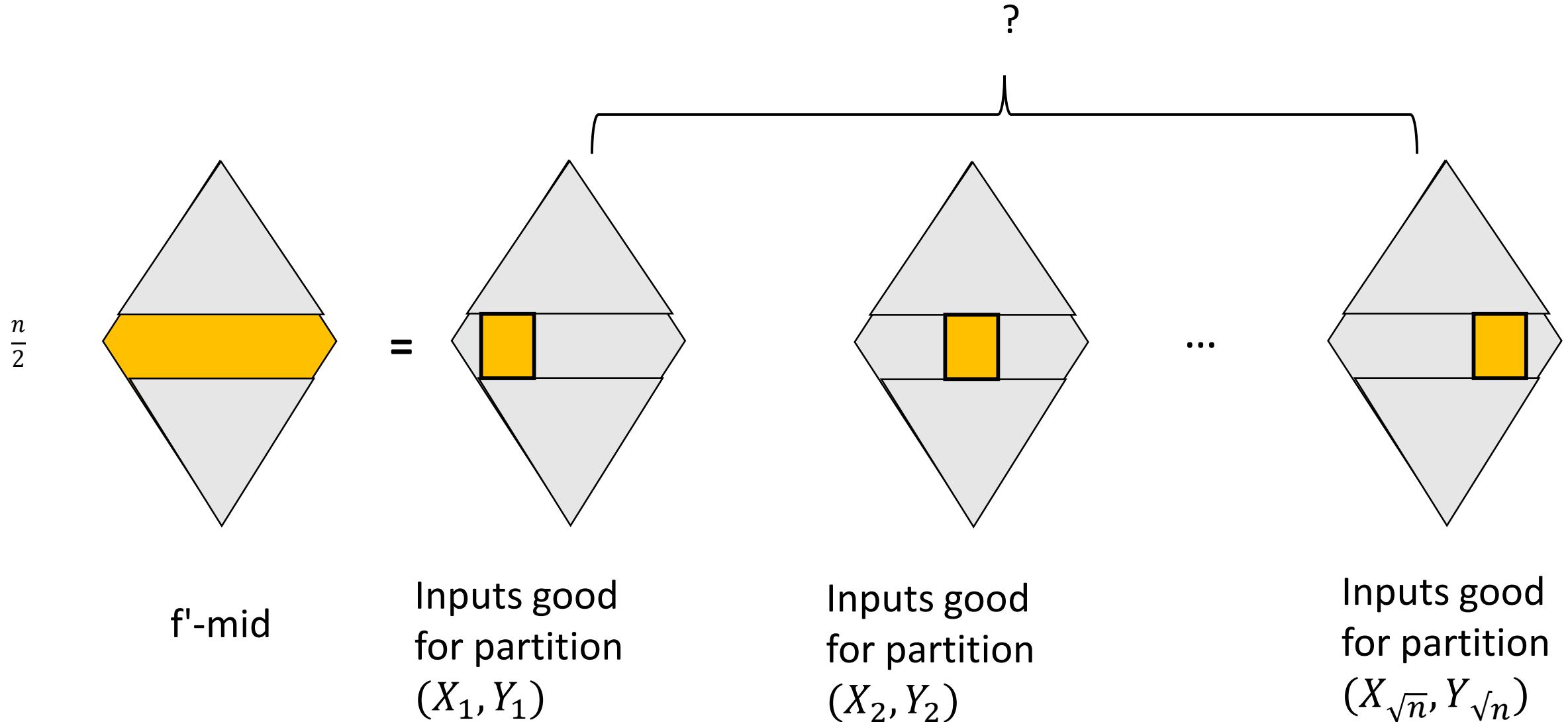
$$f: \{0,1\}^{n/2} \times \{0,1\}^{n/2} \rightarrow \{0,1\}$$

Apply only to (x, y)
of weight exactly $n/4$ each

(x, y) is good
if balance wrt input partition
 $wt(x) = wt(y) = n/4$



Handle single layer via many partitions

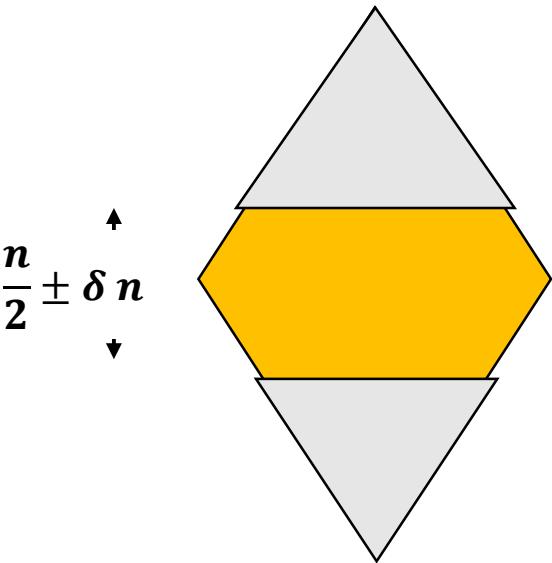


From single-layer to many layers?

Should treat inputs of different weights $\text{wt}(x) \in (0.5 \pm \delta)n$

Solution 1 [LV'18]: More sophisticated decomposition

- Use k-multiparty CDS $k = n/5$
- Each block **exactly half**-occupied
- Special “overflow/underflow” block
- Exponential number of partitions

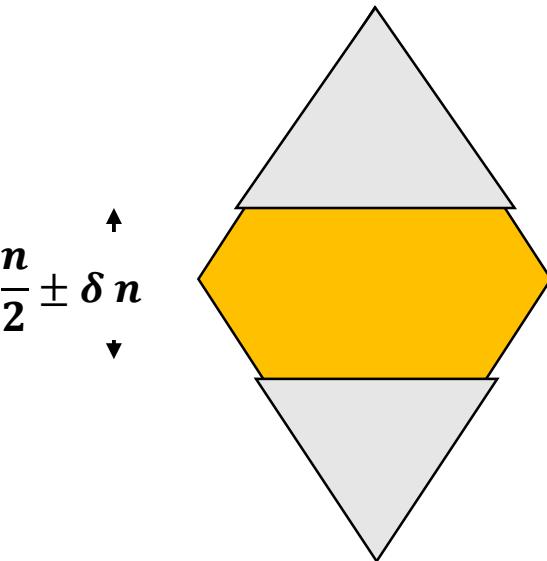
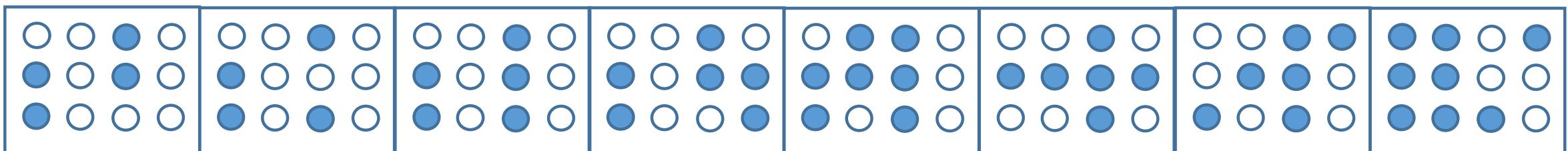


From single-layer to many layers?

Should treat inputs of different weights $\text{wt}(\mathbf{x}) \in (0.5 \pm \delta)n$

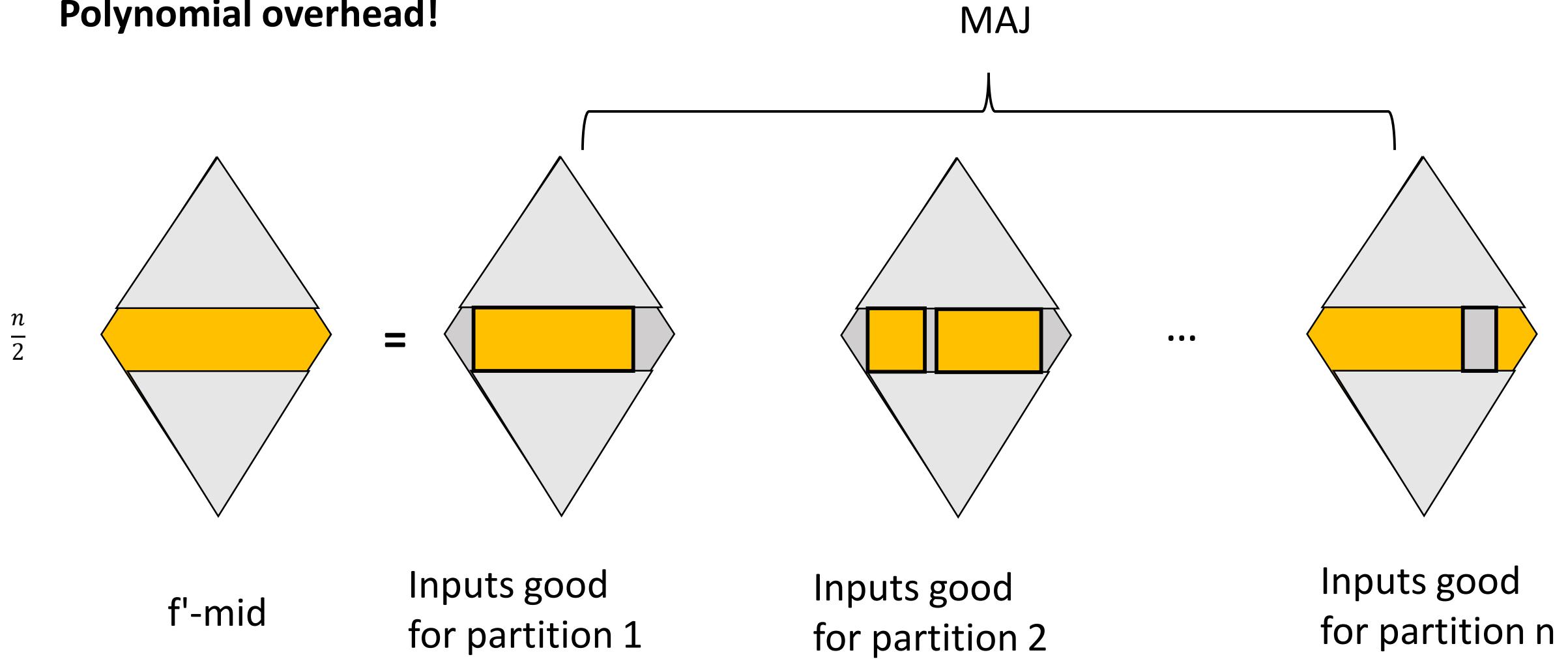
Solution 2 [ABNP'20]: Robust CDS

- Tolerates Limited re-usability
- Use k -multiparty CDS $k = \sqrt{n}$
- Each block should be $\left(\frac{1}{2} \pm \delta\right)\sqrt{n}$ occupied
- Linear number of partitions
- Easier gluing



Approximately-Balanced Partitions

Polynomial overhead!

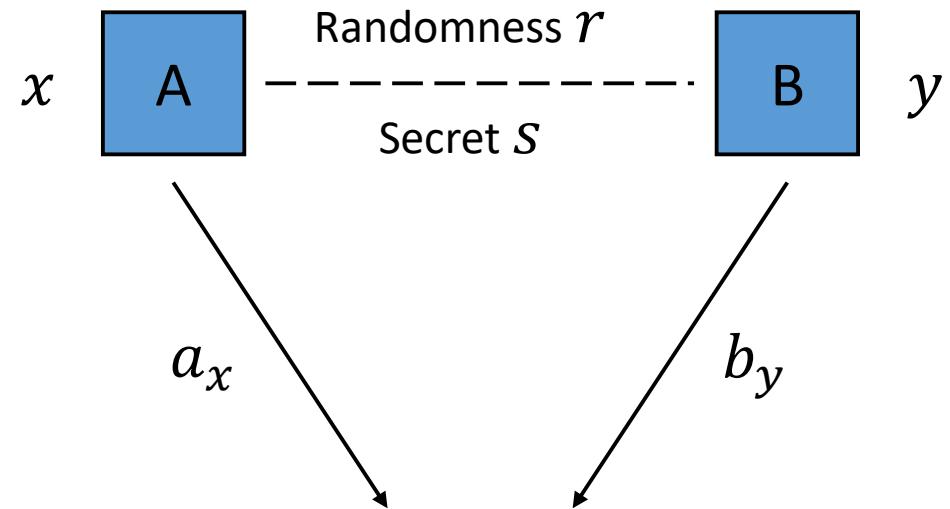


Last missing component: Robust CDS

General Transformation:

- CDS => robust-CDS
- Exponential overhead
- Leads to best-known exponent

Robust-CDS

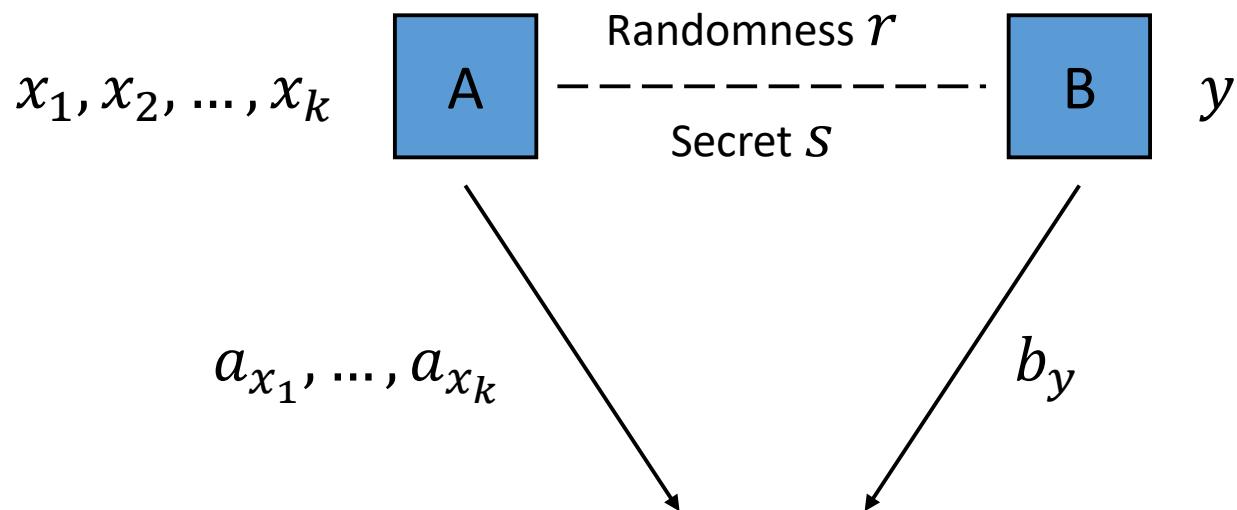


Messages (a_x, b_y) reveal s iff $f(x, y) = 1$

Robust-CDS

Params:

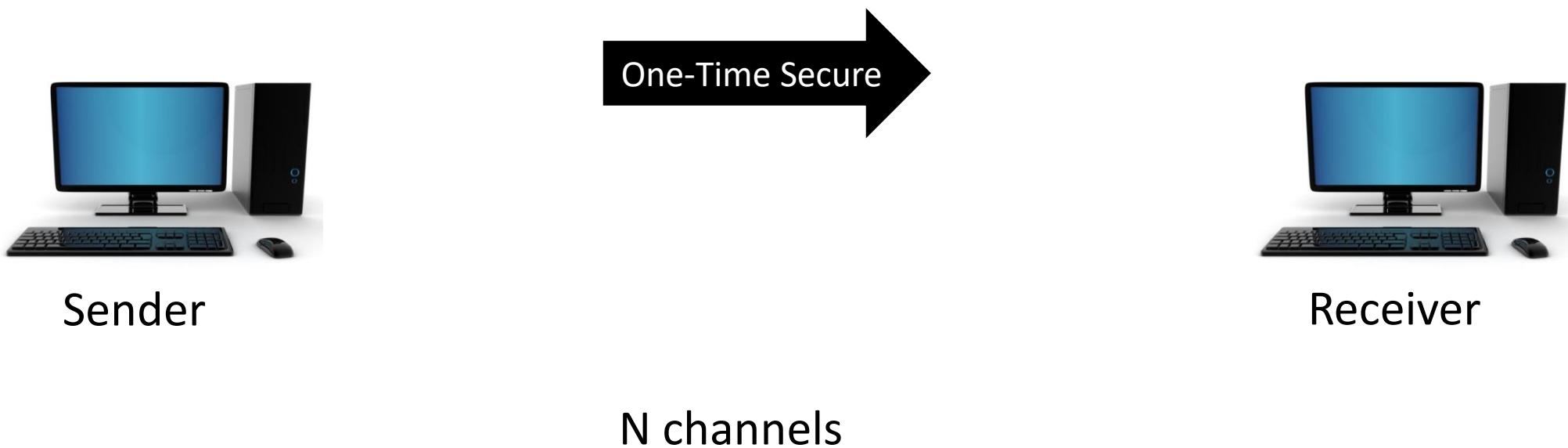
- k = #simultaneous inputs
- L = #possible input vectors \vec{x}



Robustness: If $f(x_1, y) = \dots = f(x_k, y) = 0$ secret remains hidden

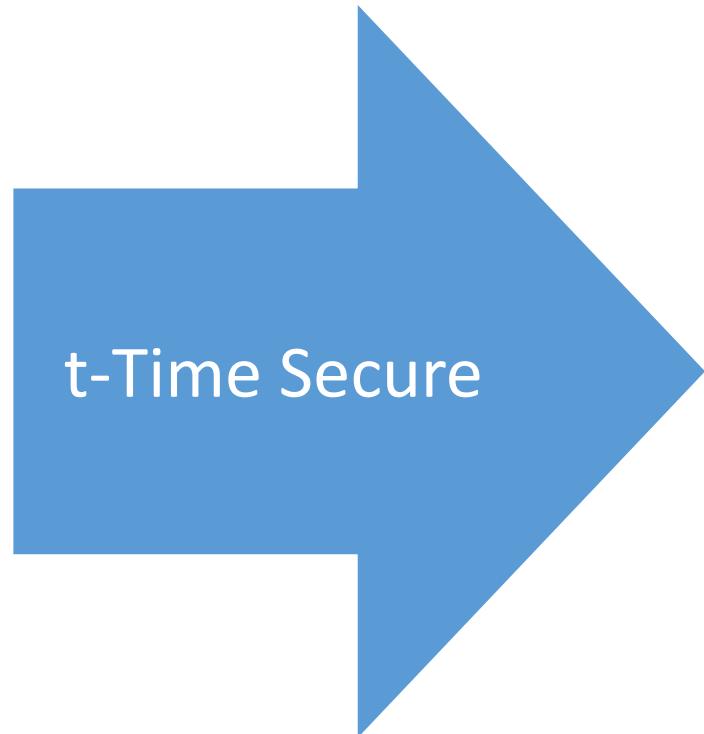
- Need it for all parties simultaneously

The Channel Immunization Problem



The Channel Immunization Problem

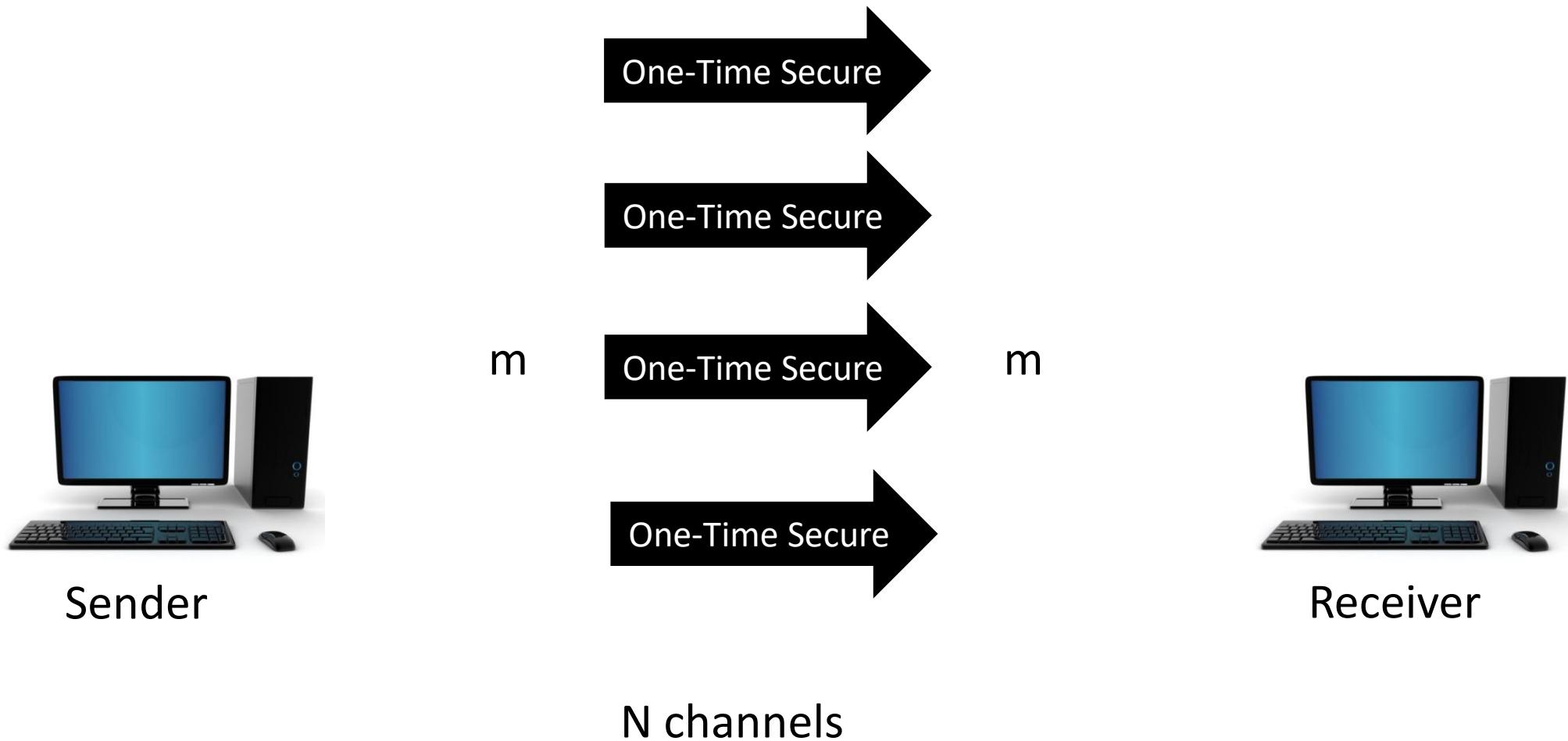
Sender



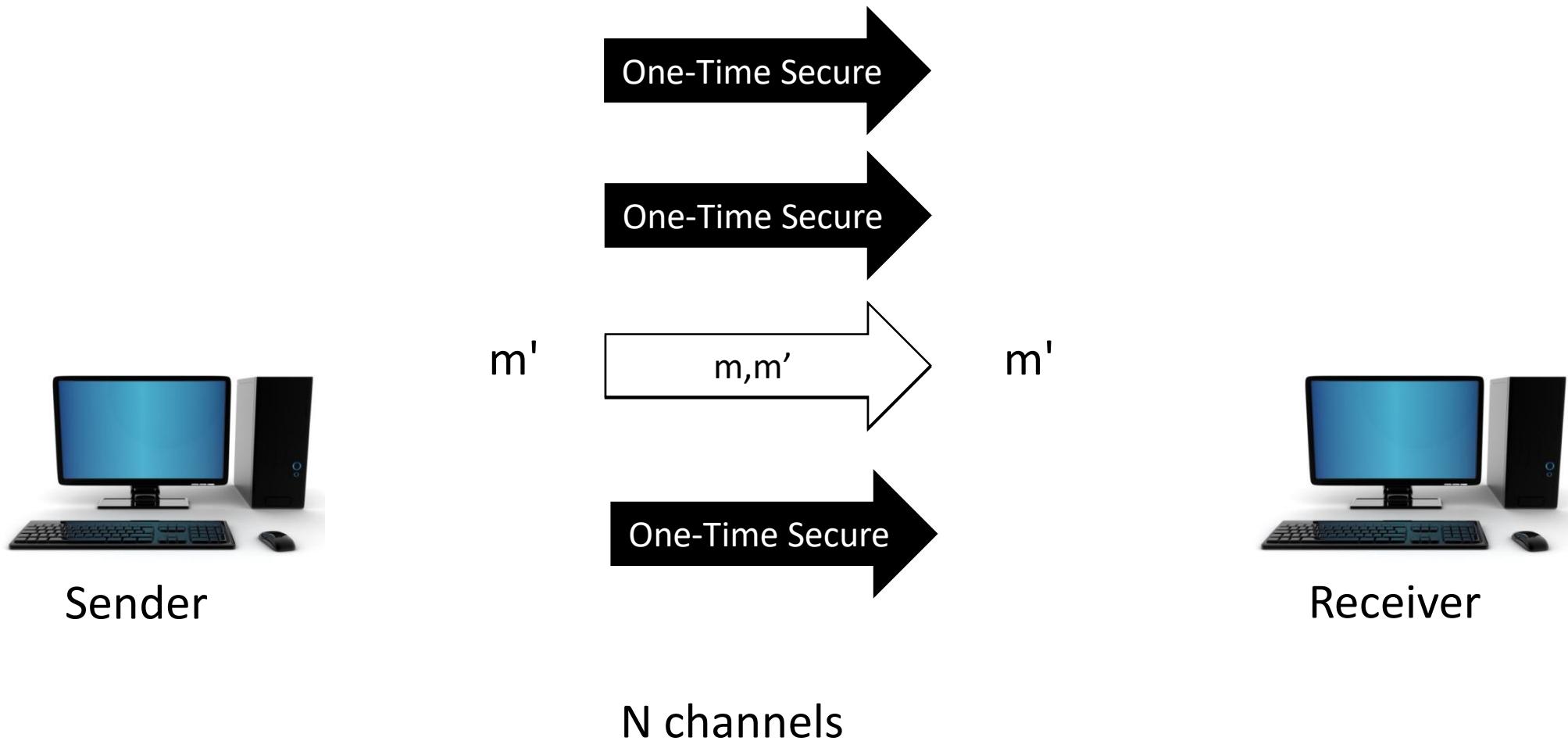
N channels

Receiver

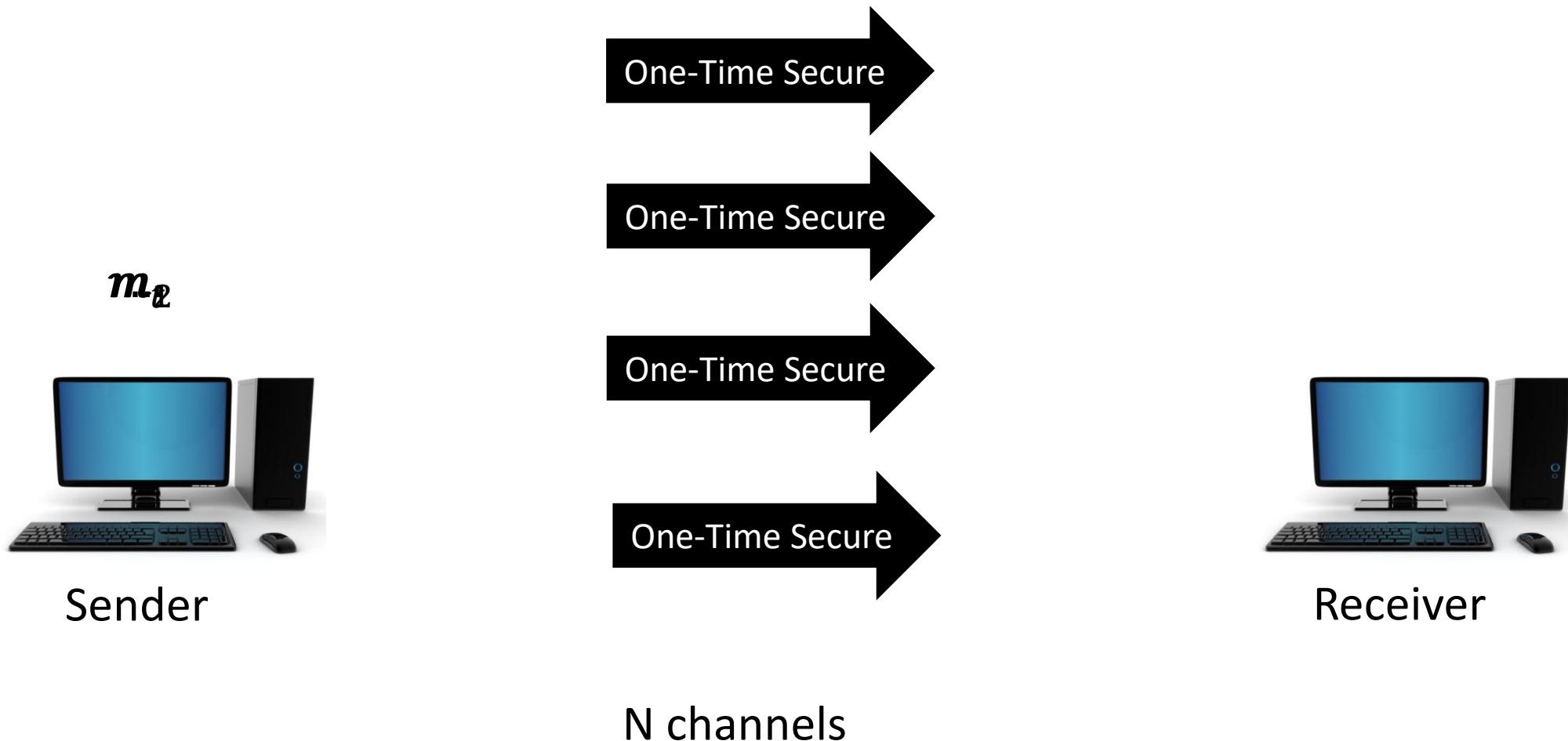
The Channel Immunization Problem



The Channel Immunization Problem



The Channel Immunization Problem

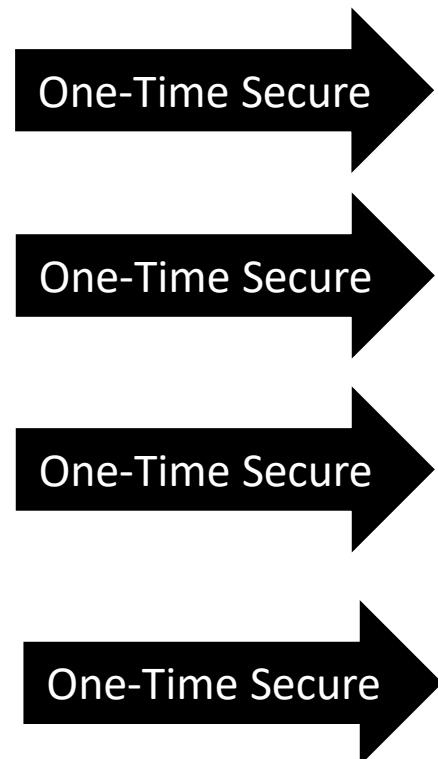


The Channel Immunization Problem

- t online messages
- Sender has no memory
- Messages are publicly tagged

$$m_i, x_i \in X$$

Sender



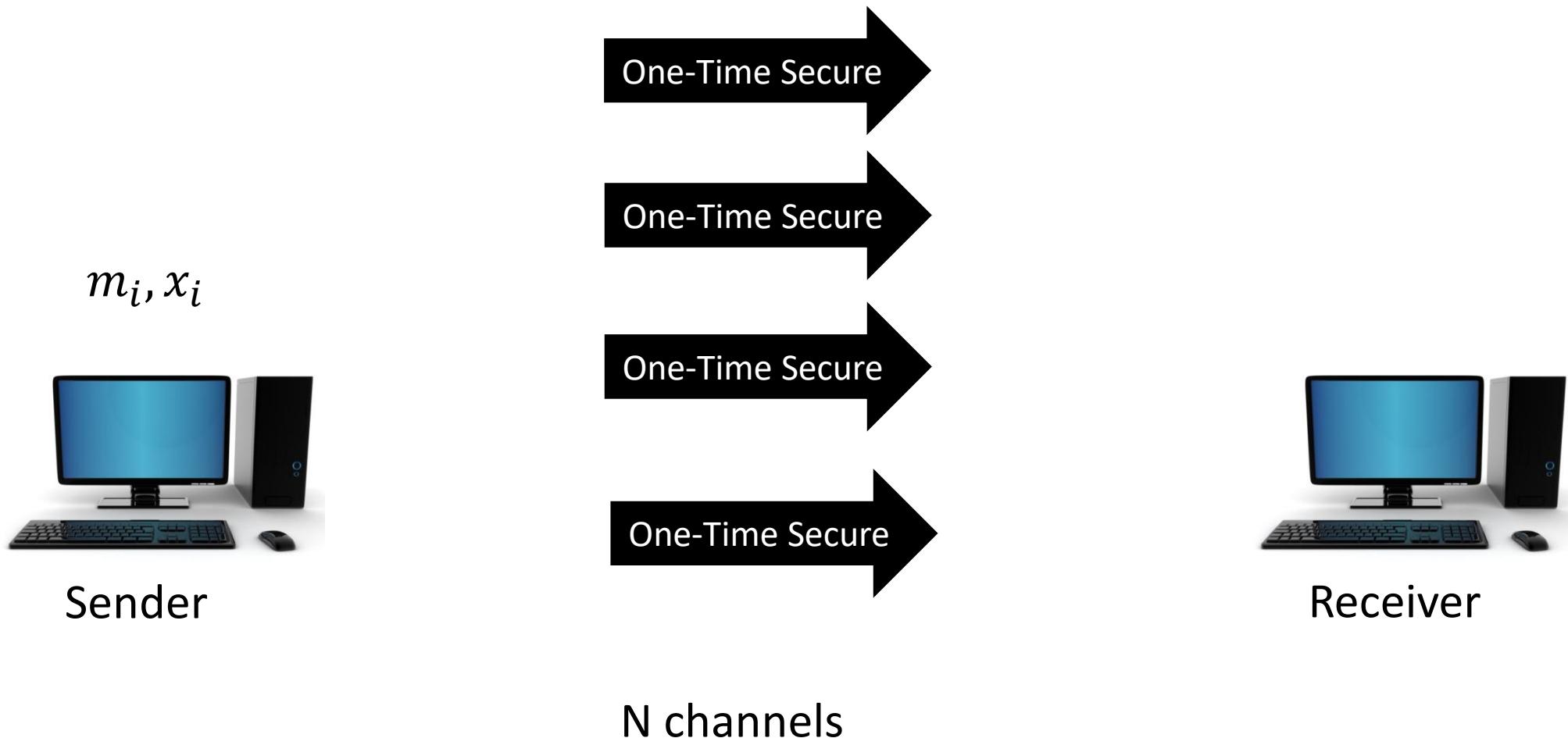
N channels

Receiver

The Channel Immunization Problem

How many channels N are needed to deliver t -vectors with tag domain X ?

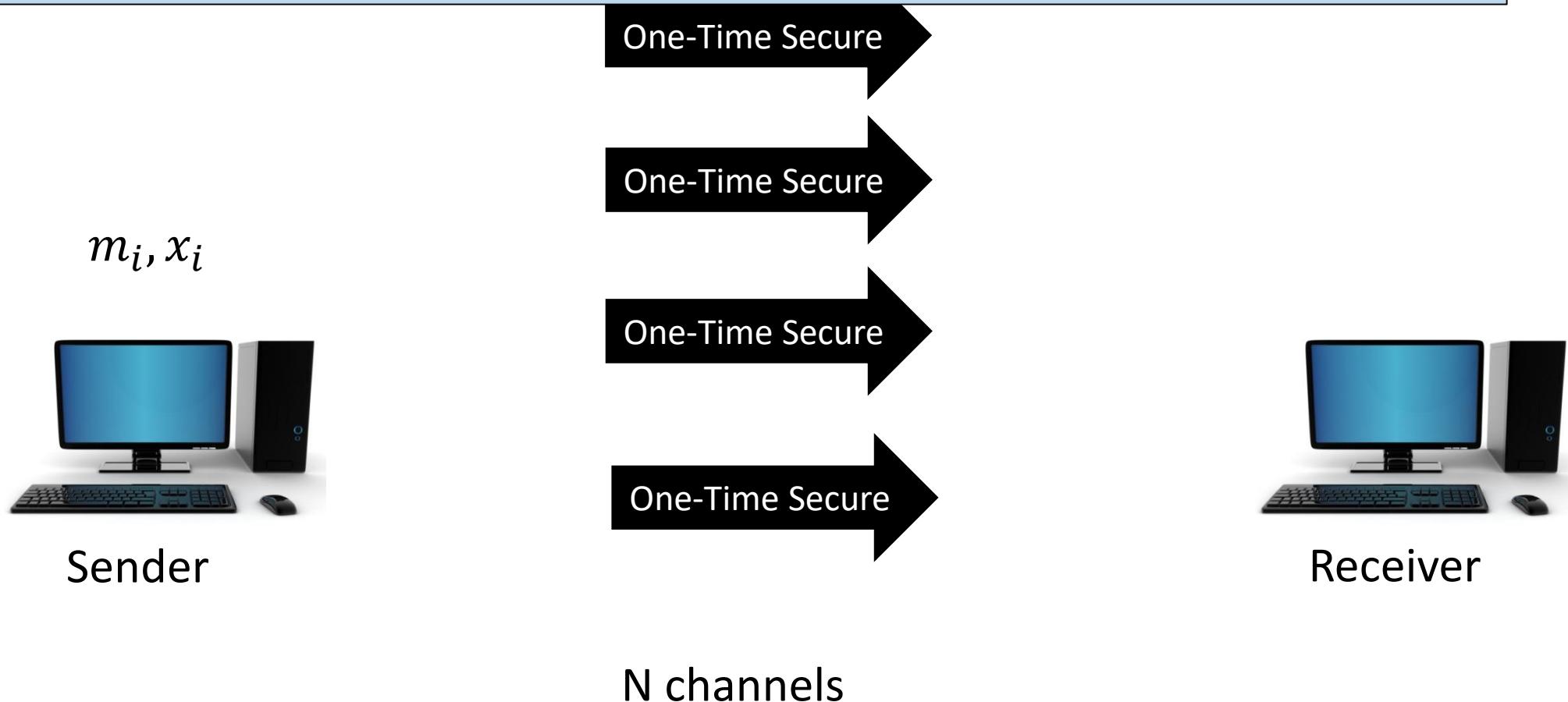
Clearly, $t \leq N \leq |X|$



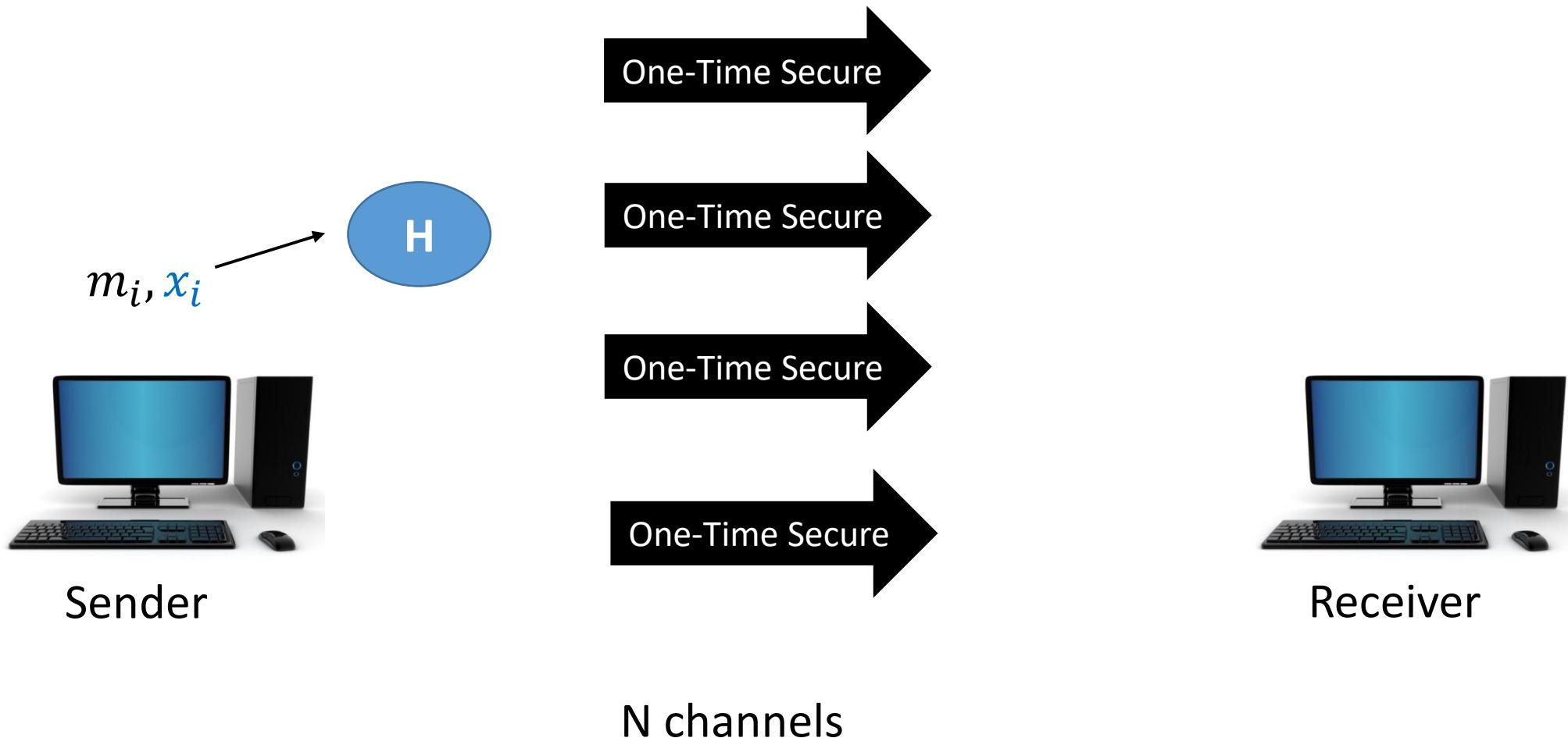
The Channel Immunization Problem

Thm. $N \leq t \text{ polylog}(|X|^t)$

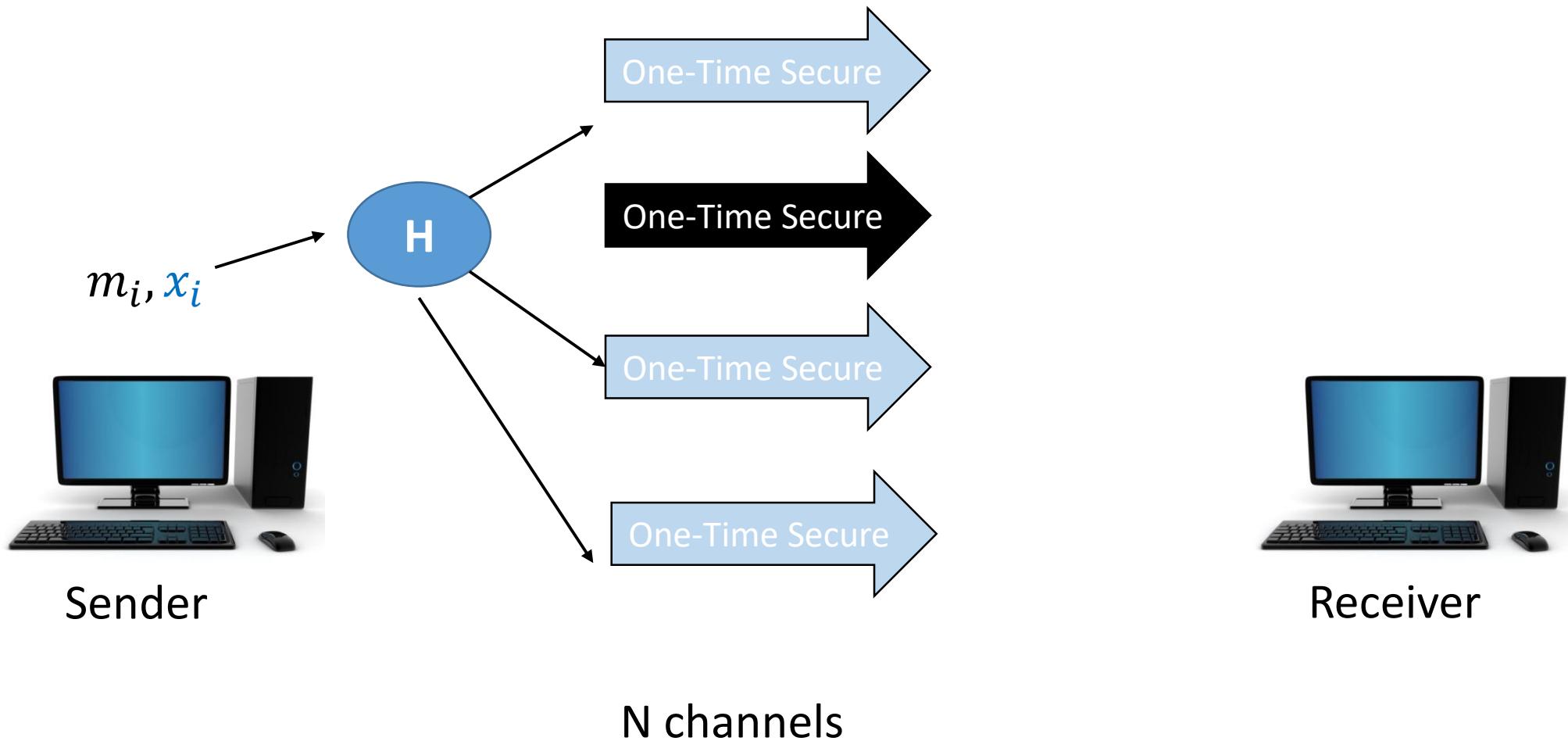
- Actually $N \leq t \text{ polylog}(L)$ where L is the number of possible t -tuples



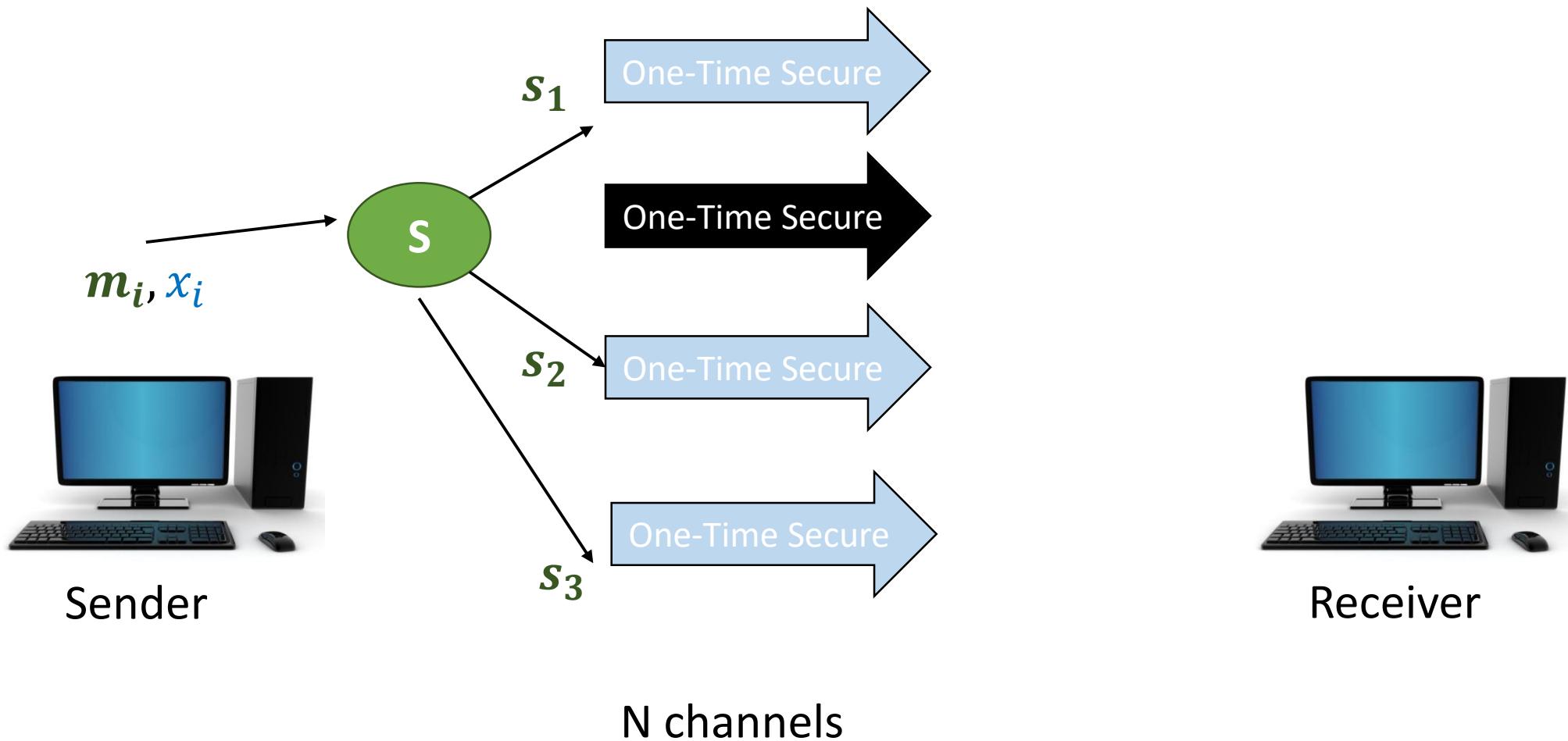
General strategy: **Select & Share**



General strategy: Select & Share



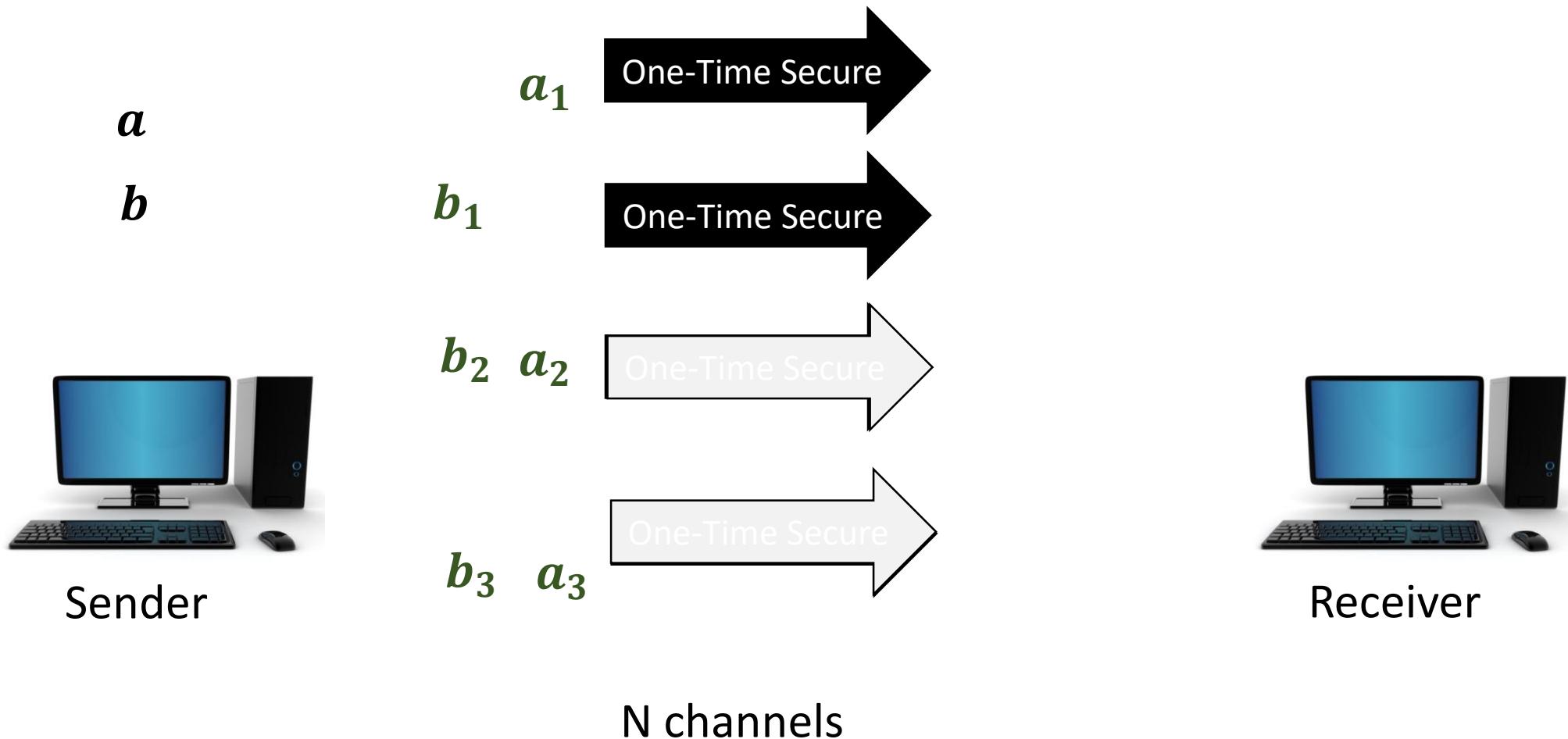
General strategy: Select & Share



General strategy: **Select & Share**

Security for an input tuple $(a, x), (b, y), \dots$

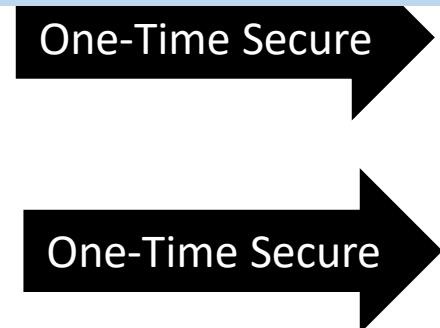
if collision channels form unauthorized set



General strategy: **Select & Share**

Thm. $N \leq t \text{ polylog}(|X|^t)$

- Two level solution:
 - 1-time security to $\log(t)$ -security (quadratic overhead)
 - $\log(t)$ -security to t -security (quasilinear overhead)
- Two instantiations inspired [ChorFiatNaorPinkas-00,GurVaiWee15]

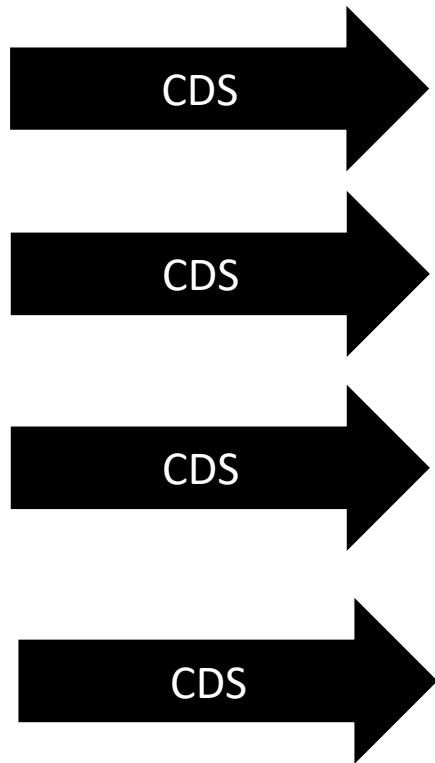


N channels

Robust CDS

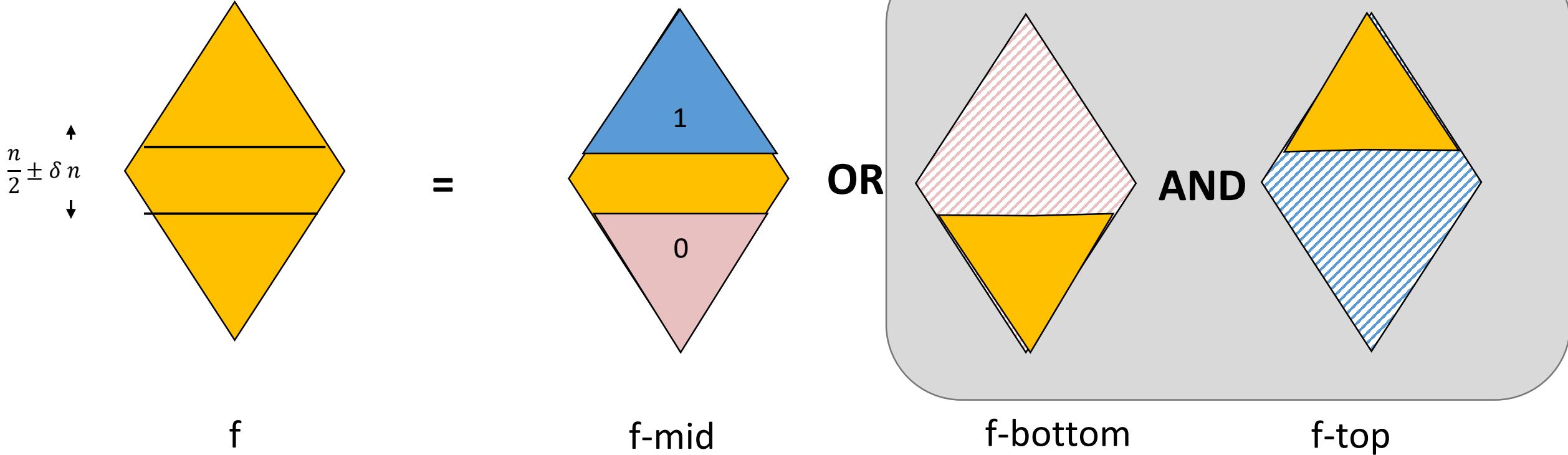
Immunize each party separately

- $t = \# (0.5 - \delta)n$ –subsets of fixed $(0.5 + \delta)n$ set



Final optimizations: Recursively implementing the extreme slices

Based on combinatorial designs [ABFNP19]



Conclusion

Upper Bounds:

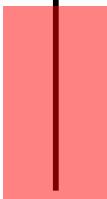
2^n [IttSaiNish87]

$2^{0.994n}$ [LiuVai18]

$2^{0.897n}$ [A-BieFarNirPet19]

$2^{0.64n}$ [A-BieNirPet20]

Lower Bound: $\Omega\left(\frac{n}{\log(n)}\right)$ [C97]



OPEN:

- Sub-exponential general SS?
 - Better Robust-CDS?
- Optimal Linear SS $2^{0.5n}$?
- Super-linear lower-bounds?
- Better Amortized SS?
- Better SS for circuits/monotone circuits?

Thank You !