

Conditional Disclosure of Secrets

Benny Applebaum
Tel Aviv University

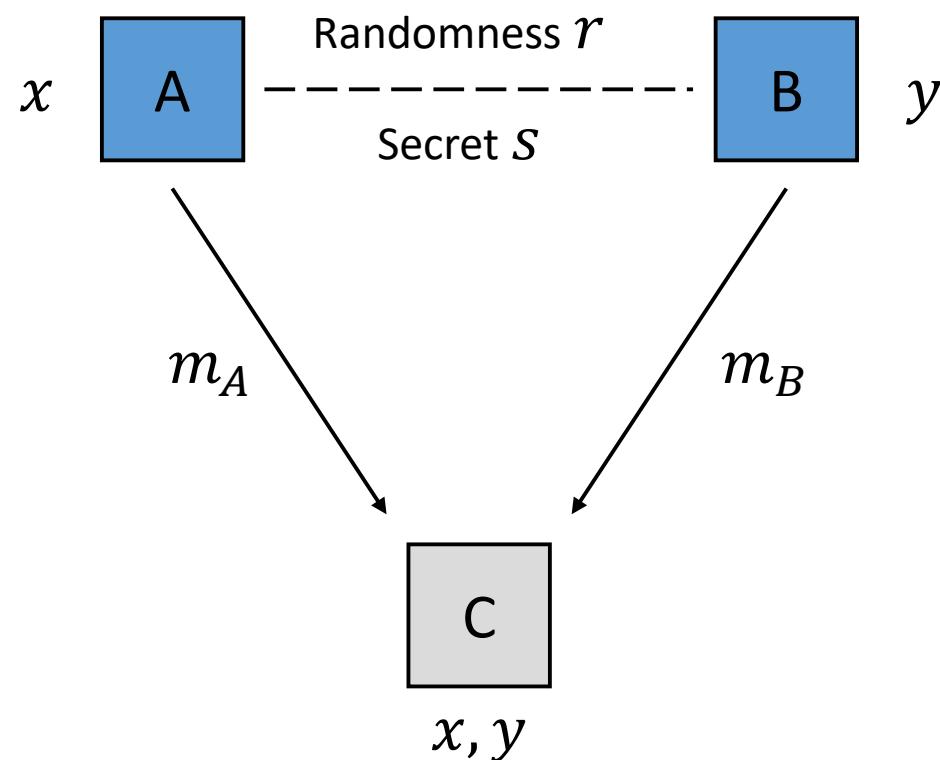
BIU Winter-School of Information-Theoretic Cryptography
February 2020

Plan

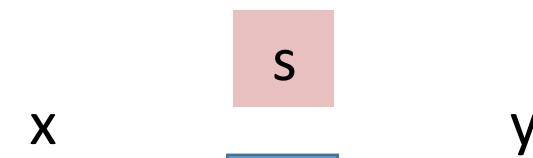
- Definition
- Applications
- General Constructions
 - Direct construction
 - PIR-based construction
 - Amortized CDS
- Few words about Lower-bounds

Conditional Disclosure of Secrets [GIKM00]

$$f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$$



f-channel



message

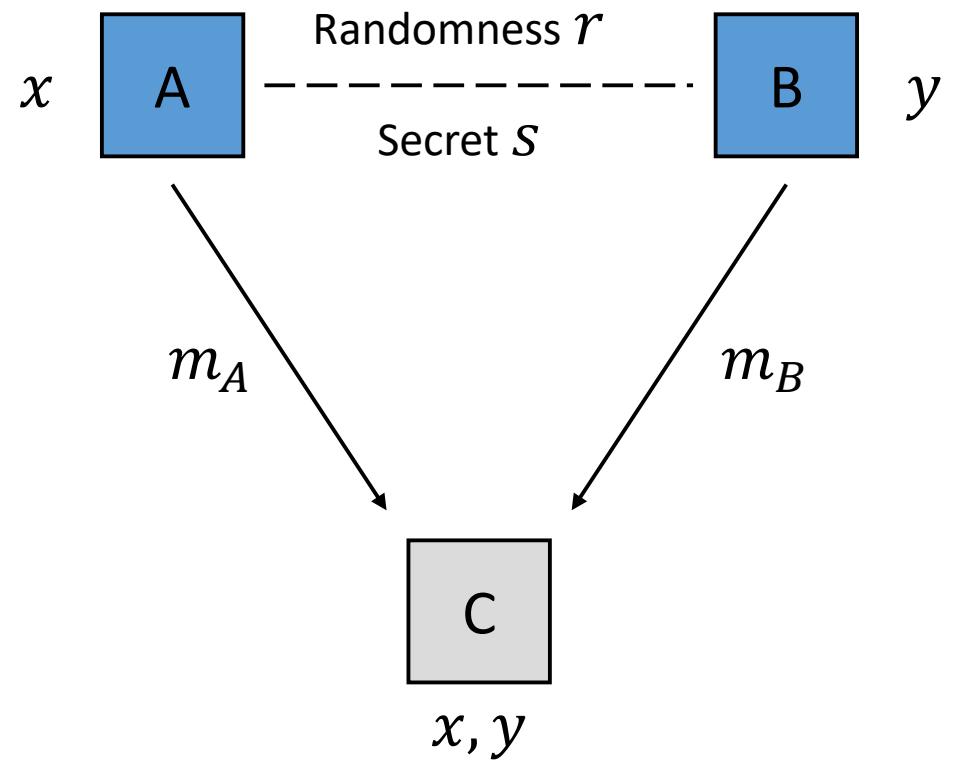
If $f(x,y)=1$

If $f(x,y)=0$

Goal: Charlie learns secret if and only if $f(x,y)=1$

Conditional Disclosure of Secrets [GIKM00]

$$f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$$



δ -Correctness:

If $f(x, y) = 1$, then for any s ,

$$\Pr[C(x, y, m_A, m_B) = s] \geq 1 - \delta$$

ϵ -Privacy:

If $f(x, y) = 0$, then for any s, x, y

$$\Delta(\text{Sim}(x, y) ; (m_A, m_B)) \leq \epsilon$$

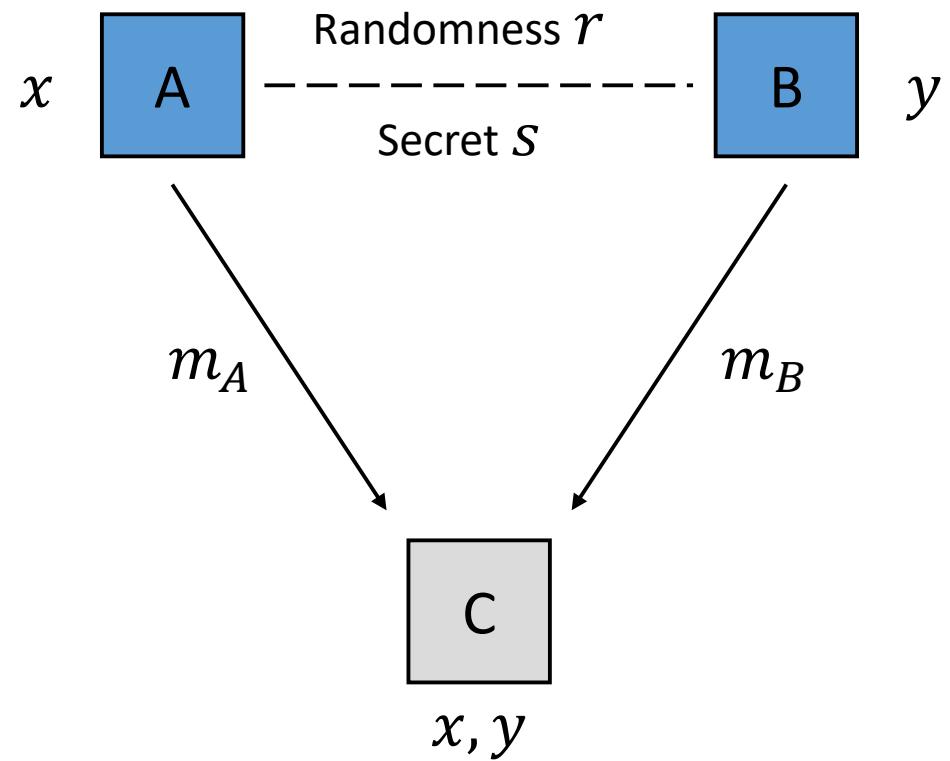
Communication: $|m_A| + |m_B|$

Randomness: $|r|$

Goal: Charlie learns secret if and only if $f(x,y)=1$

Conditional Disclosure of Secrets [GIKM00]

$$f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$$



δ -Correctness:

If $f(x, y) = 1$, then for any s ,

$$\Pr[C(x, y, m_A, m_B) = s] \geq 1$$

ϵ -Privacy:

If $f(x, y) = 0$, then for any s, x, y

$$\Delta(\text{Sim}(x, y) ; (m_A, m_B)) \leq 0$$

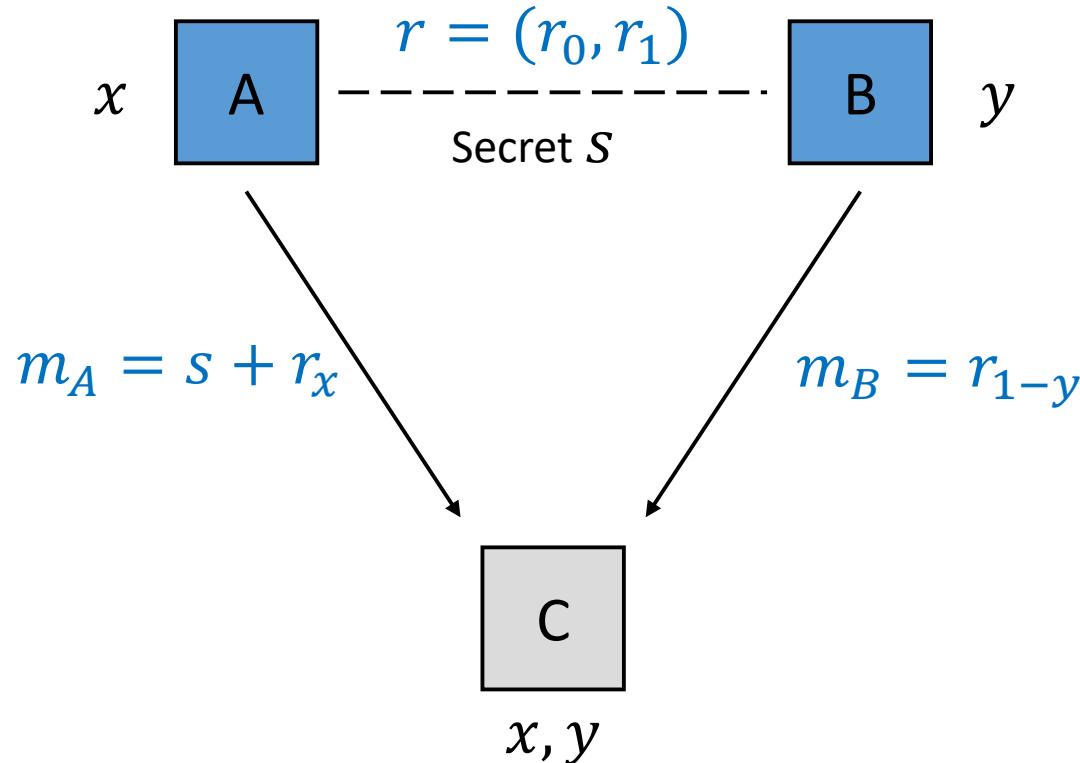
Communication: $|m_A| + |m_B|$

Randomness: $|r|$

Goal: Charlie learns secret if and only if $f(x, y) = 1$

Example: XOR

$$f: \{0,1\}^1 \times \{0,1\}^1 \rightarrow \{0,1\}$$



Perfect Correctness:

If $f(x, y) = 1$, then for any s ,

$$\Pr[m_A + m_B = s] = 1$$

Perfect Privacy:

If $f(x, y) = 0$, then for any s ,

$$(m_A, m_B) \equiv U_2$$

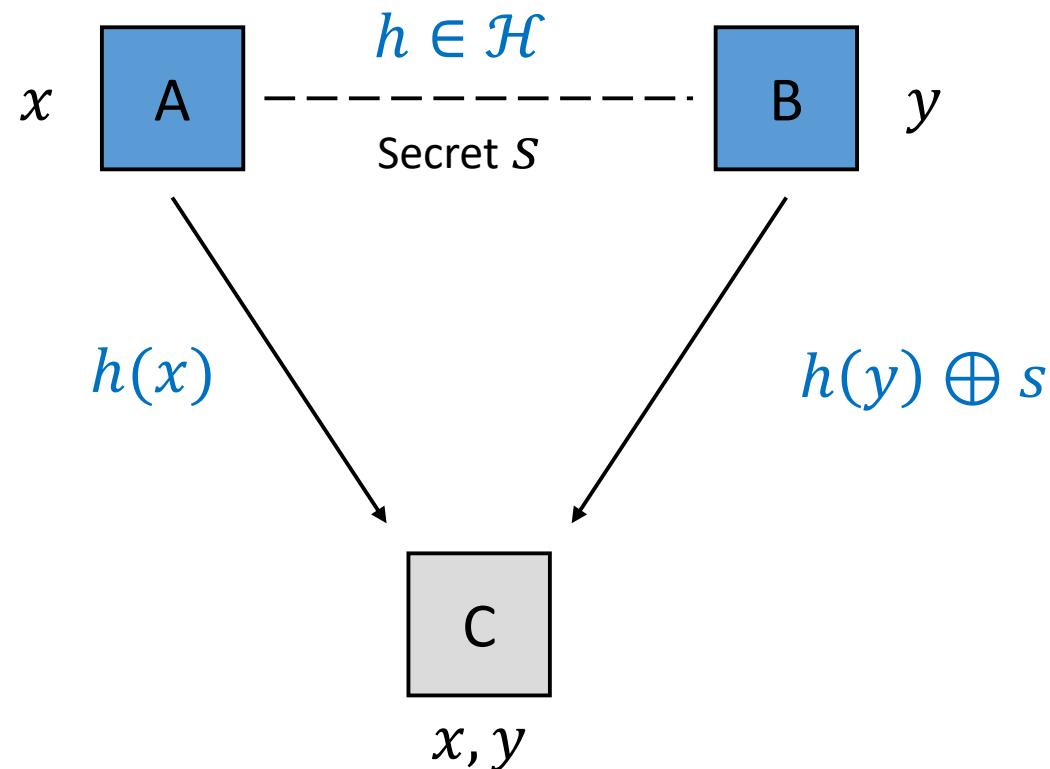
Communication & randomness: 2

Note: This CDS is [Linear](#)

Goal: Charlie learns secret if and only if $f(x,y)=1$

Example: Equality

$$f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$$



h is a hash function from a 2-wise independent family \mathcal{H}

Perfect Correctness:

If $x = y$, then for any s ,

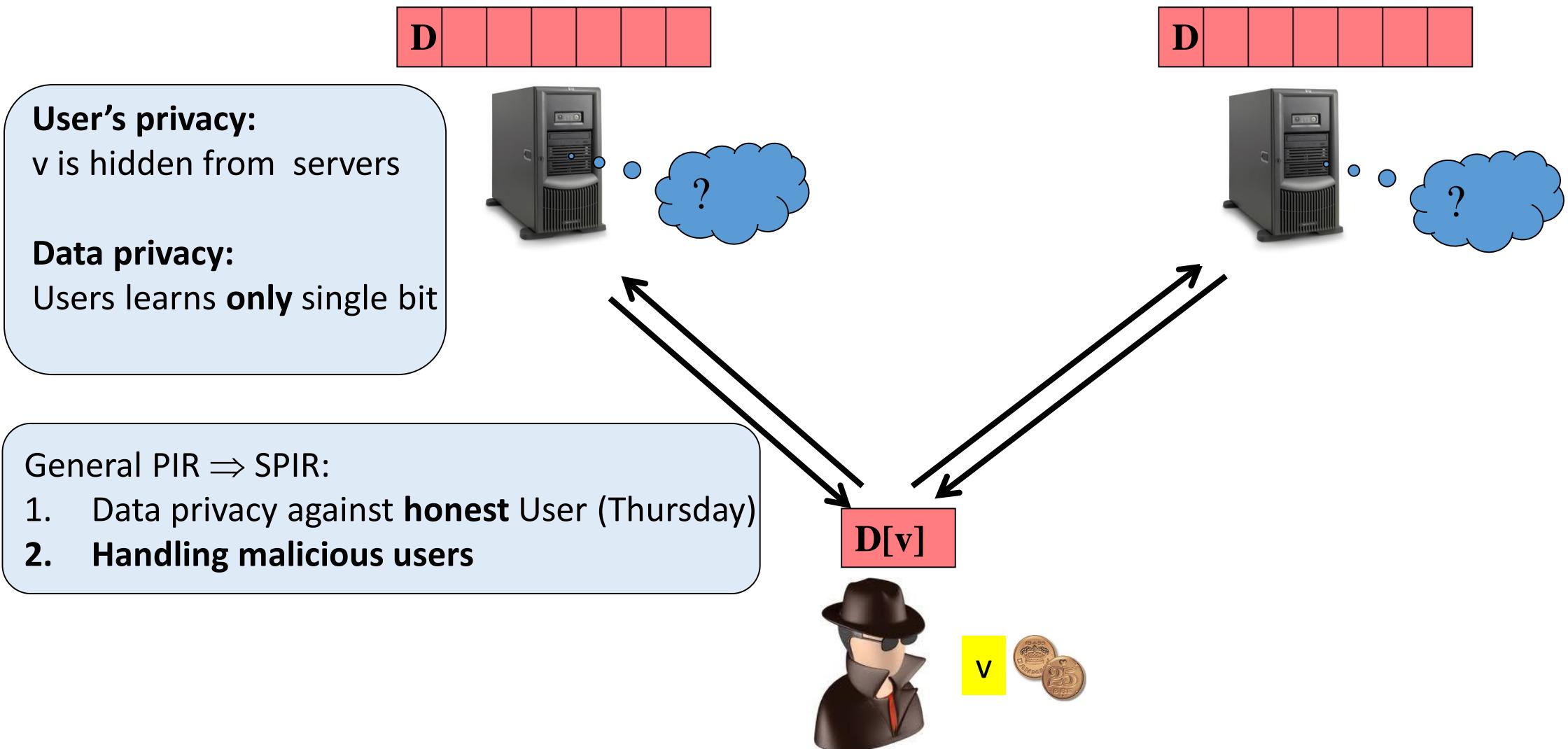
$$s = h(x) \oplus h(y) \oplus s$$

Perfect Privacy:

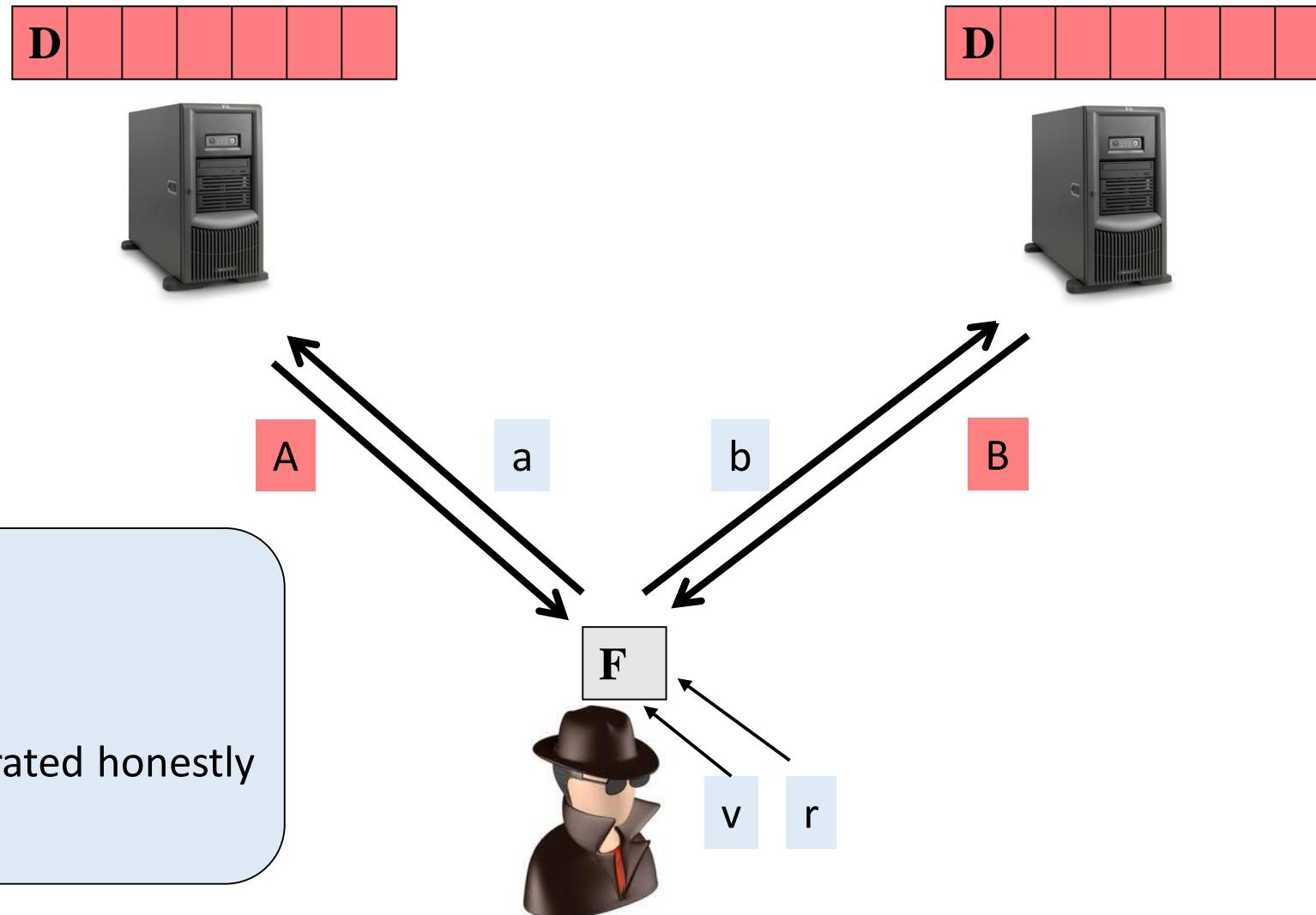
If $x \neq y$, $h(x)$ is a random element independent of $h(y)$

Q: Non-equality?

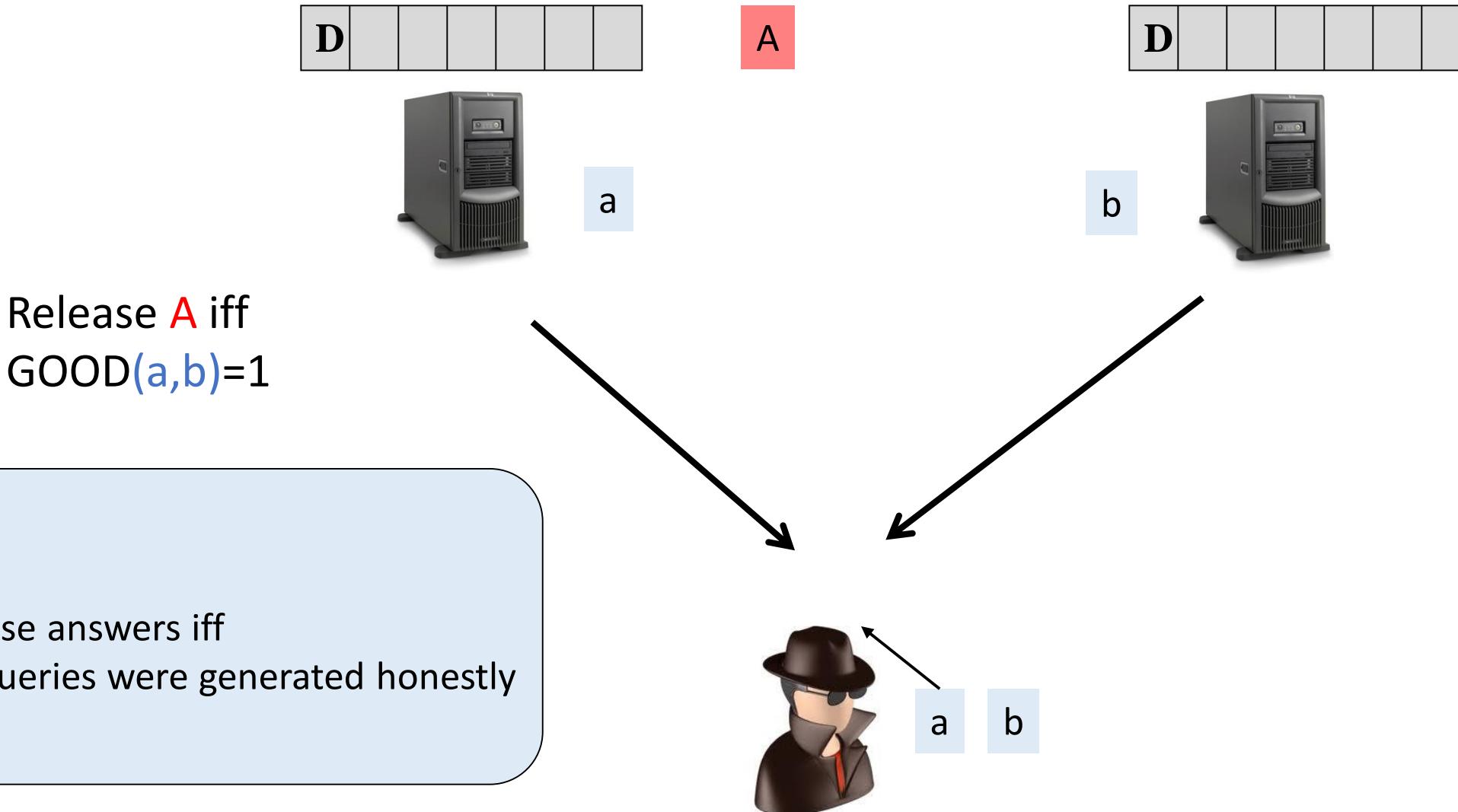
Application: PIR with Data Privacy (SPIR) [GIKM00]



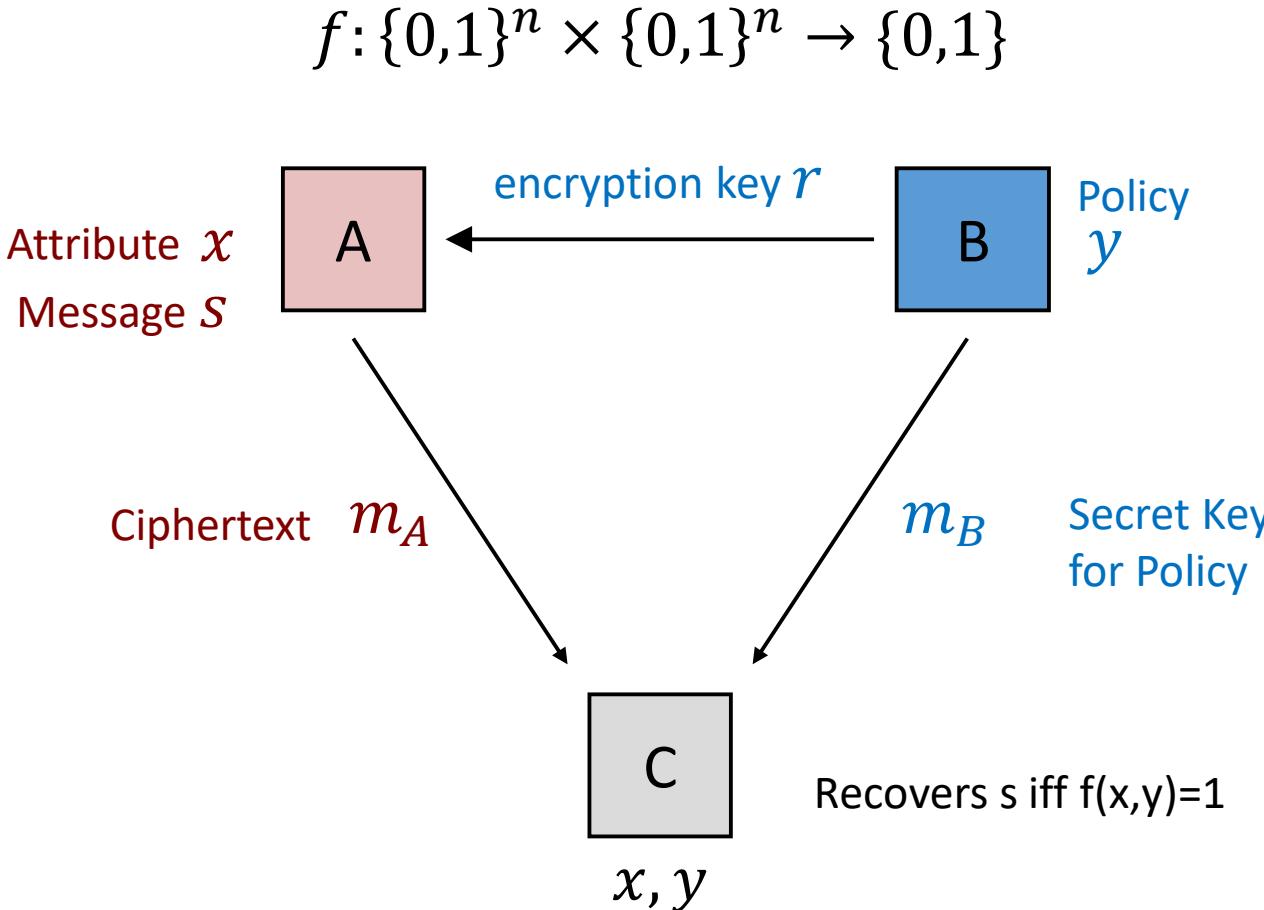
Honest-User SPIR \Rightarrow SPIR



Honest-User SPIR \Rightarrow SPIR



CDS as 1-time Symmetric Attribute Based Encryption



ABE:

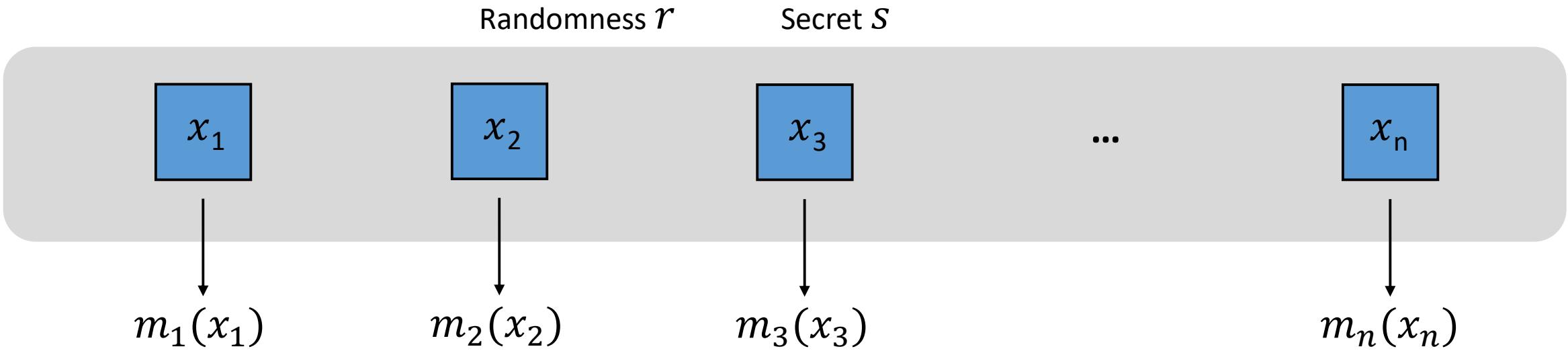
- For each **policy y** , generate secret-key $sk(y)$
- Encrypt message S under **attribute x**
- Decryption works iff $f(x, y) = 1$.

Thm: linear-CDS + bilinear groups \Rightarrow public-key (multi-use) ABE . [Att14,Wee14]

Multiparty (Fully-Decomposable) CDS

$$f: \{0,1\}^n \rightarrow \{0,1\}$$

n senders each holding a single bit



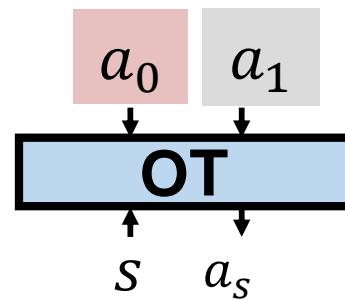
Given $x, m(x) = (m_1(x_1), \dots, m_n(x_n))$ can recover s iff $f(x) = 1$

Fully Decomposable CDS \Rightarrow Zero-Knowledge over OT

[JawKerOrl13, FredNieOrl15]

$$f: \{0,1\}^n \rightarrow \{0,1\}$$

Verifier



Prover: I know x such that $f(x) = 1$

Fully Decomposable CDS \Rightarrow Zero-Knowledge over OT

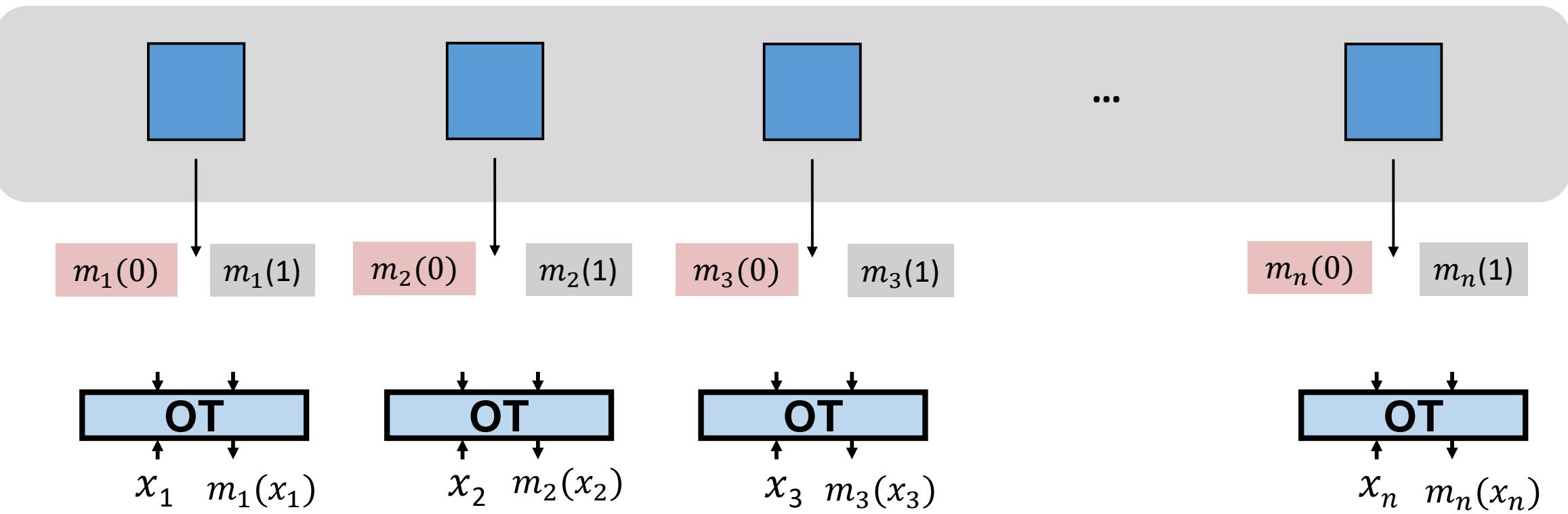
[JawKerOrl13, FredNieOrl15]

$$f: \{0,1\}^n \rightarrow \{0,1\}$$

Verifier

Randomness r

Secret $s \in \{0,1\}^k$



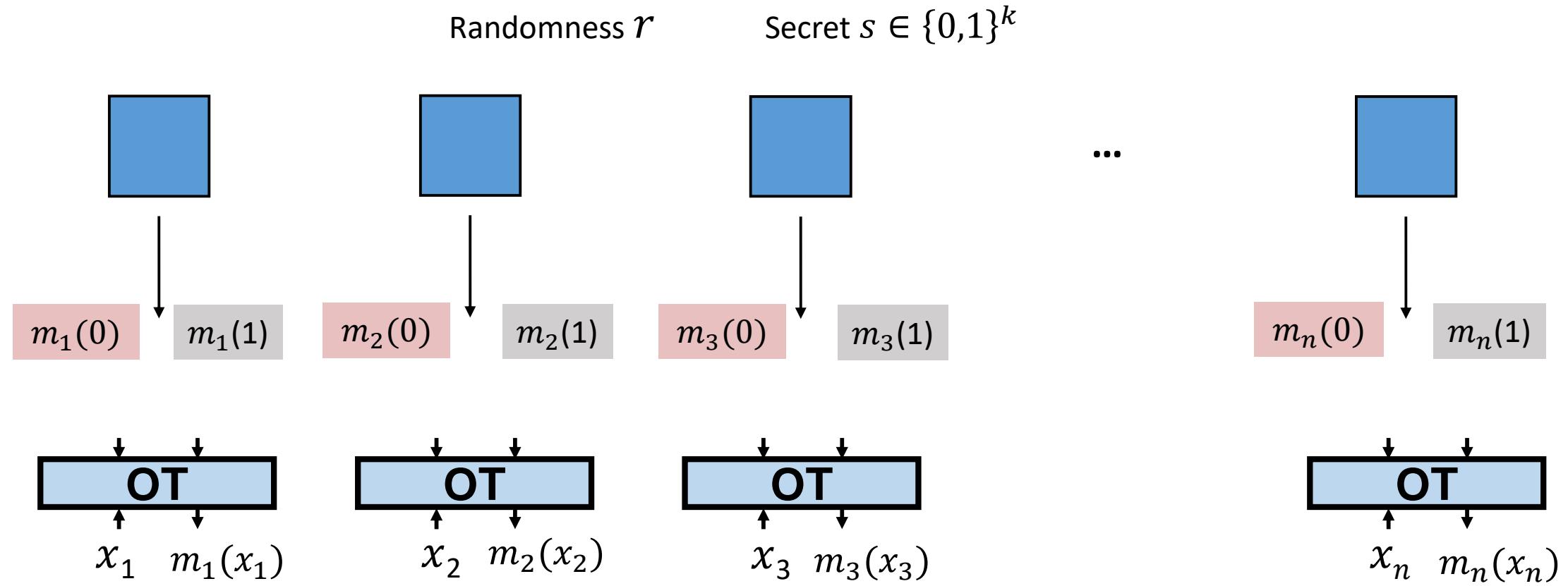
Prover: I know x such that $f(x) = 1$

Sends s as a certificate

Fully Decomposable CDS \Rightarrow Zero-Knowledge over OT

[JawKerOrl13, FredNieOrl15]

IT privacy-free garbled circuit



Remark: ZK against **honest** verifier (can be upgraded to malicious verifier via commitment)

The Crypto Tower

Obfustopia

Witness Encryption
[GGSW 2013]

Secure Computation

Public-Key

Attribute-Based Encryption
[SW04, GPSW06]

Symmetric

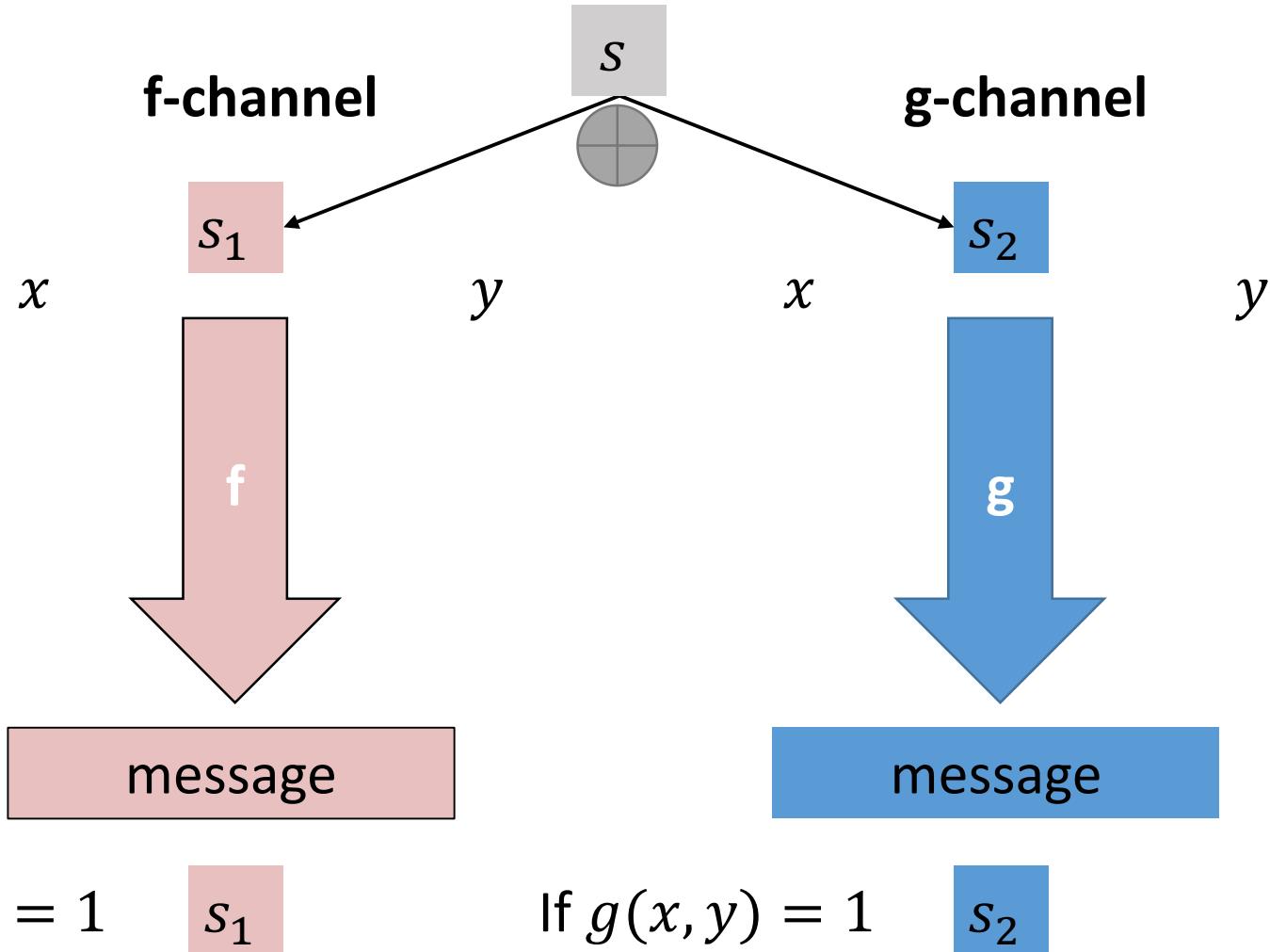
Privacy-free Garbled Circuit
[BHR12]

Information Theoretic

CDS
[GIKM00]

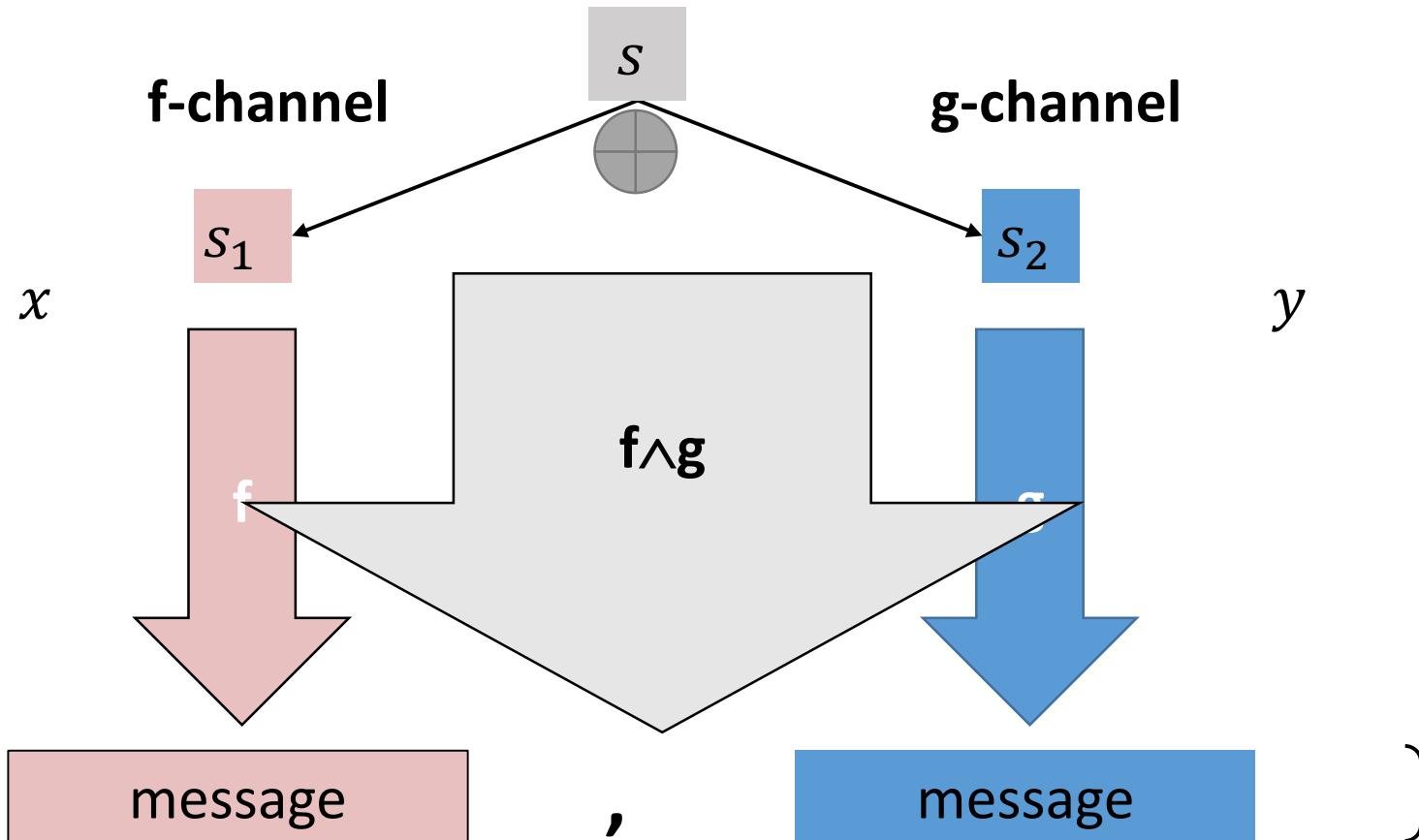
Simple Closure Properties

Closure under AND



Closure under AND

$$\text{CDS}(f \wedge g) \leq \text{CDS}(f) + \text{CDS}(g)$$



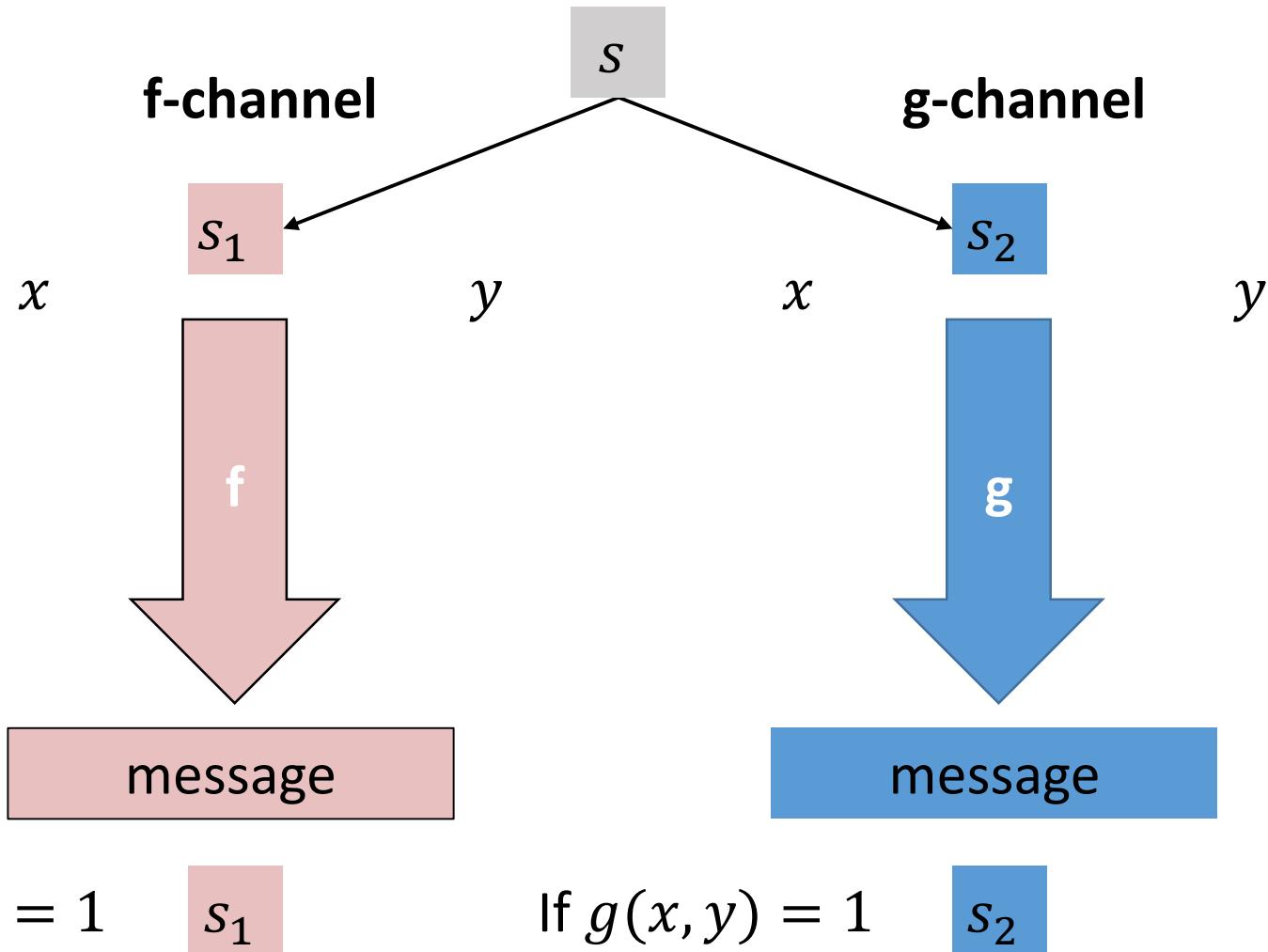
If $f(x, y) = 1$ s_1

If $g(x, y) = 1$ s_2

If $(f \wedge g)(x, y) = 1$

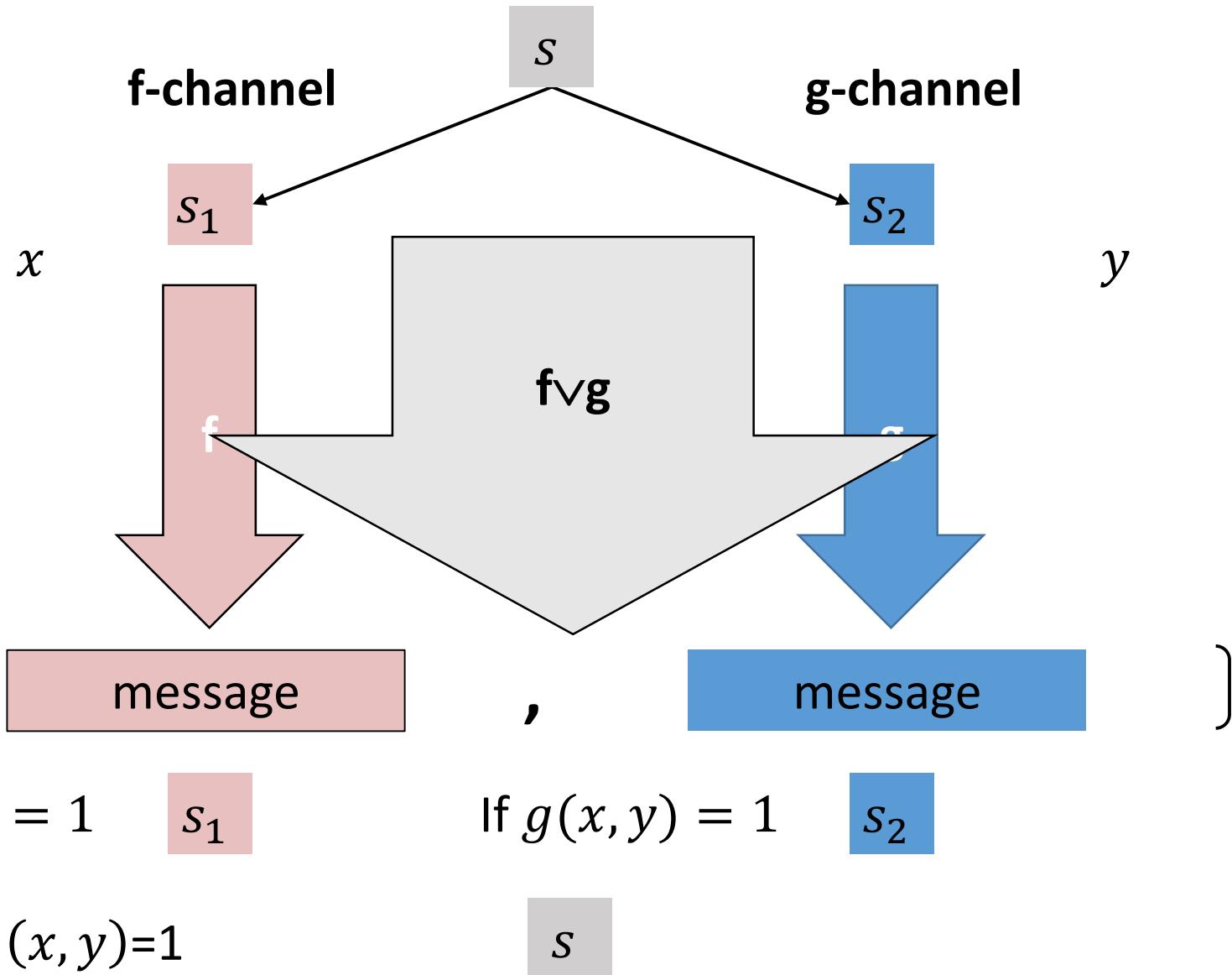
 s

Closure under OR

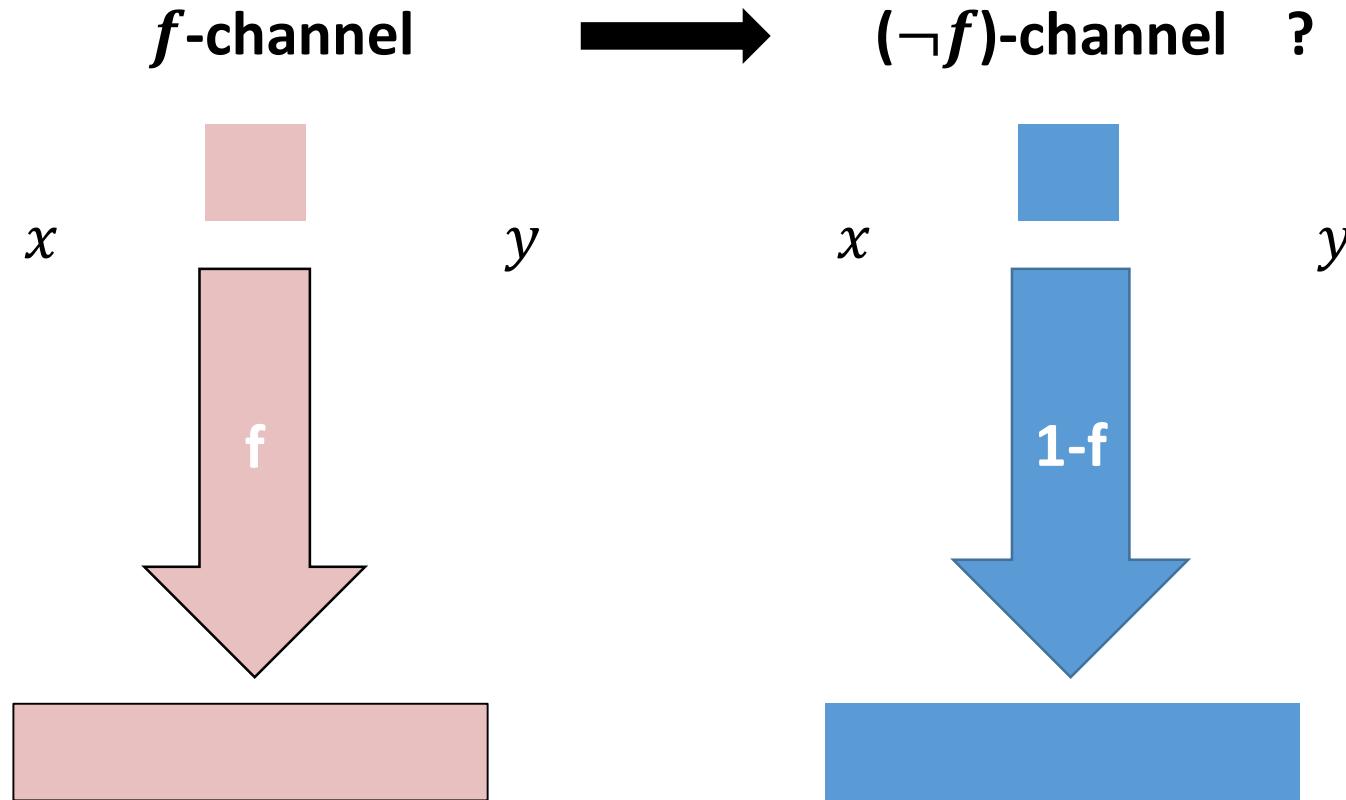


Closure under OR

$$\text{CDS}(f \vee g) \leq \text{CDS}(f) + \text{CDS}(g)$$



Test your intuition: Closure under negation?



YES but with error [A-ArkRayVas17]

Ex: Prove for linear-CDS

Formulas

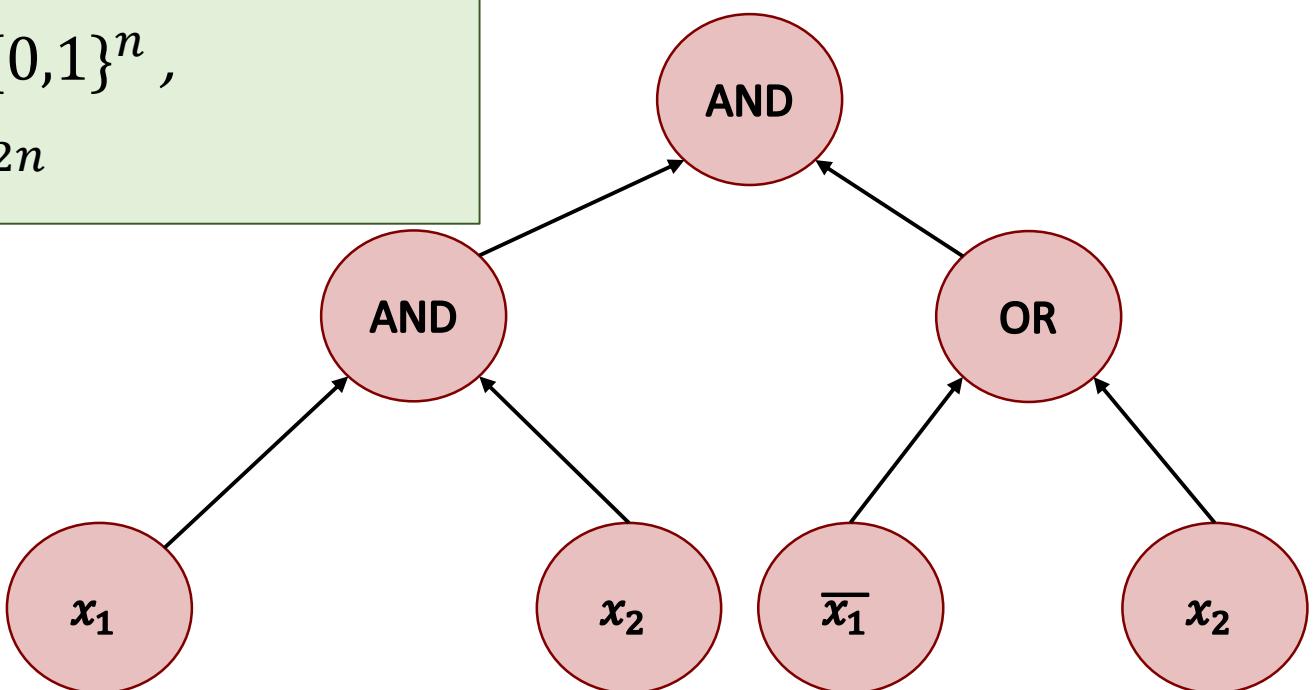
Thm. [GIKRM00] $\text{Lin} - \text{CDS}(f) \leq O(\text{Formula-size}(f))$

Extensions to branching programs/span programs. [GIKM00, IW14, AR16]

Cor. For every $f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$,

$$\text{Lin} - \text{CDS}(f) \leq 2^{2n}$$

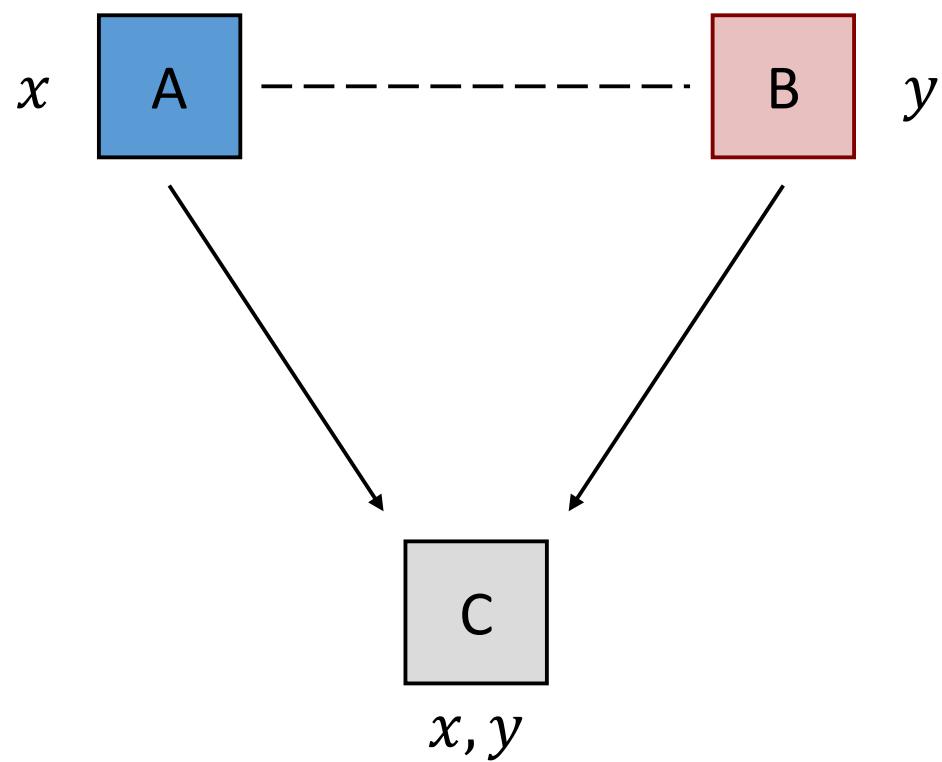
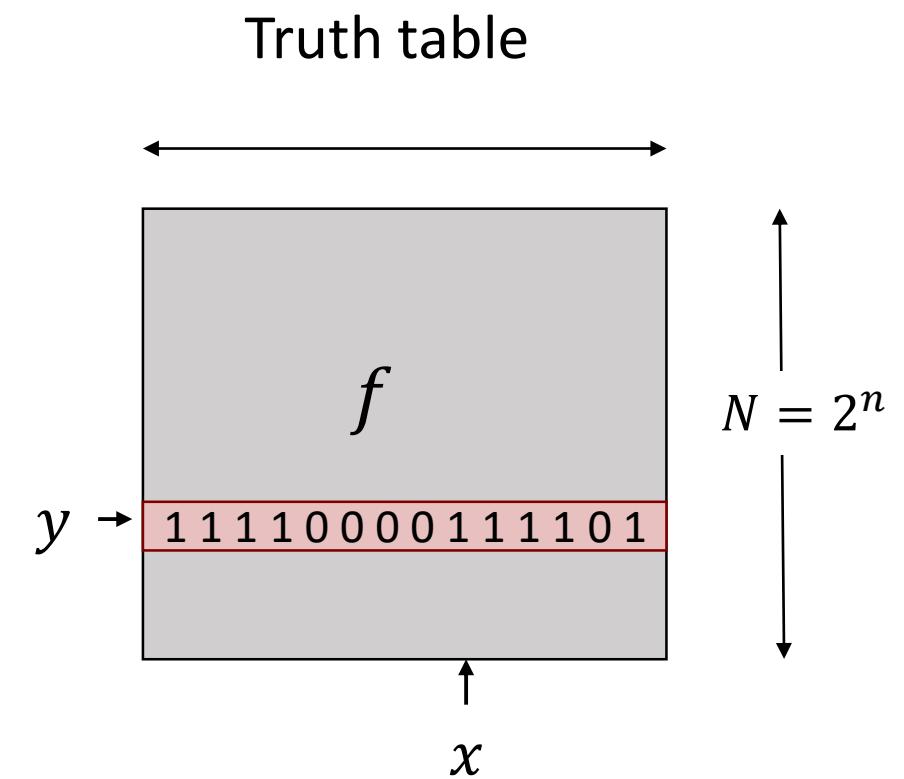
Q: Can we do better?



General Functions: Optimal Linear-CDS

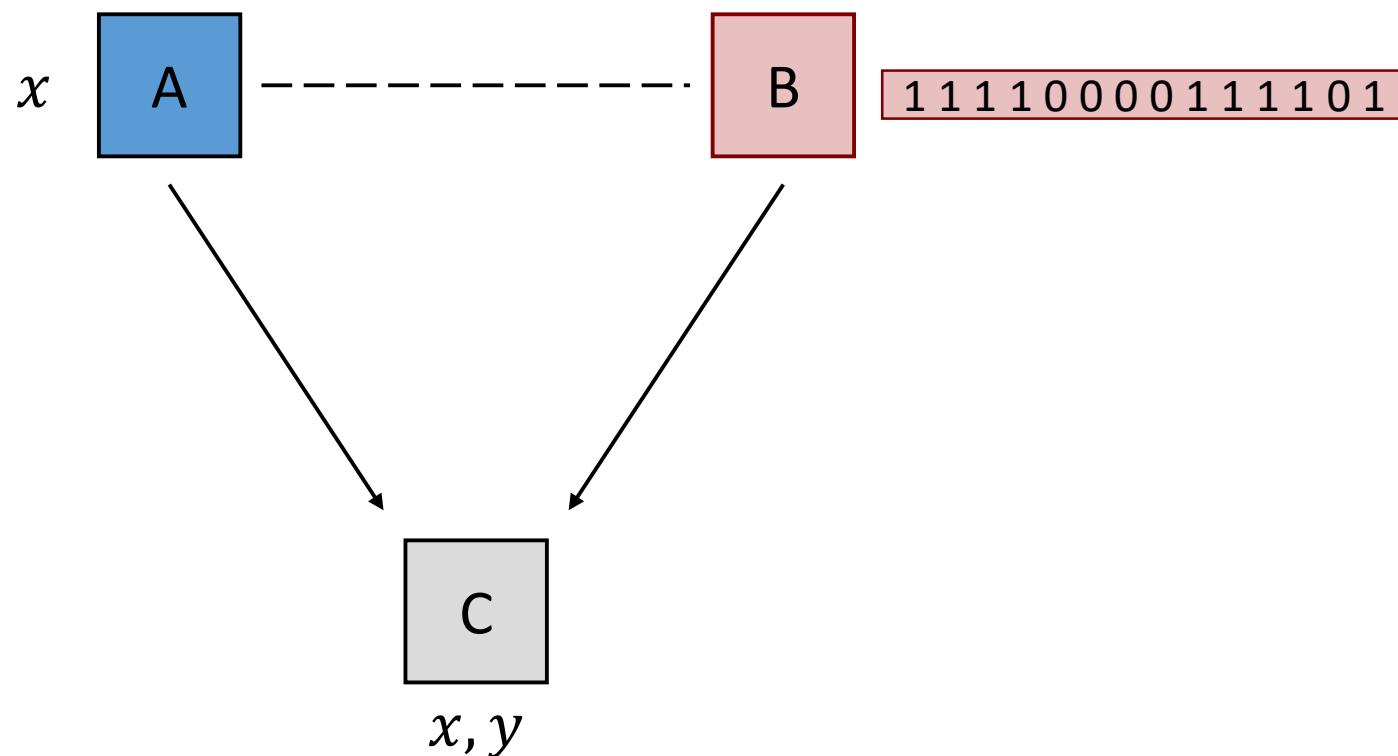
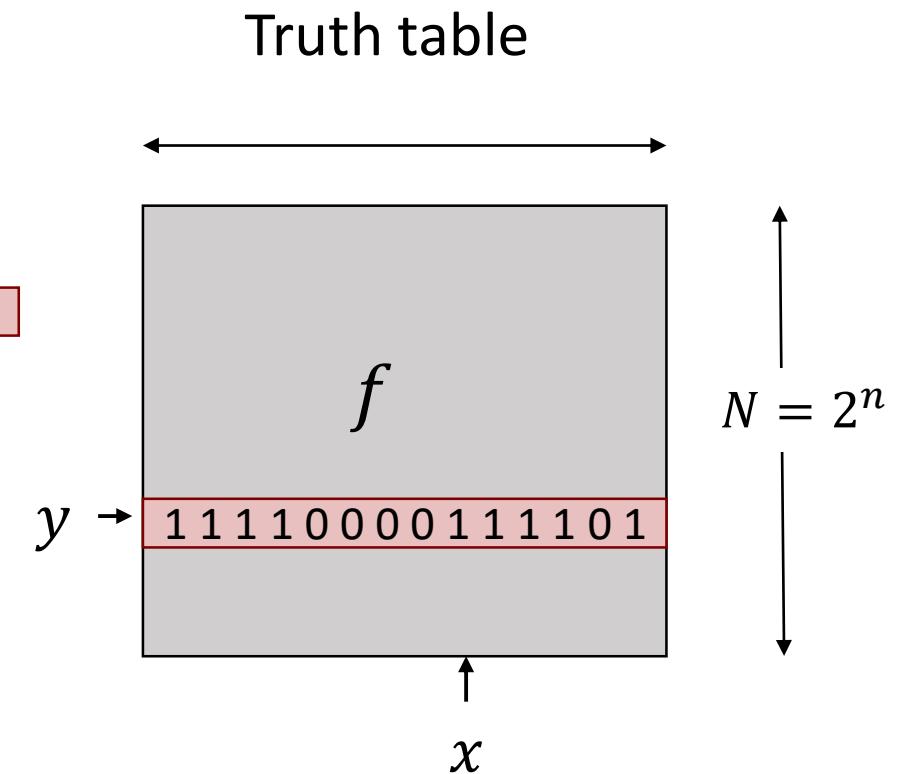
CDS for general predicates

$$f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$$



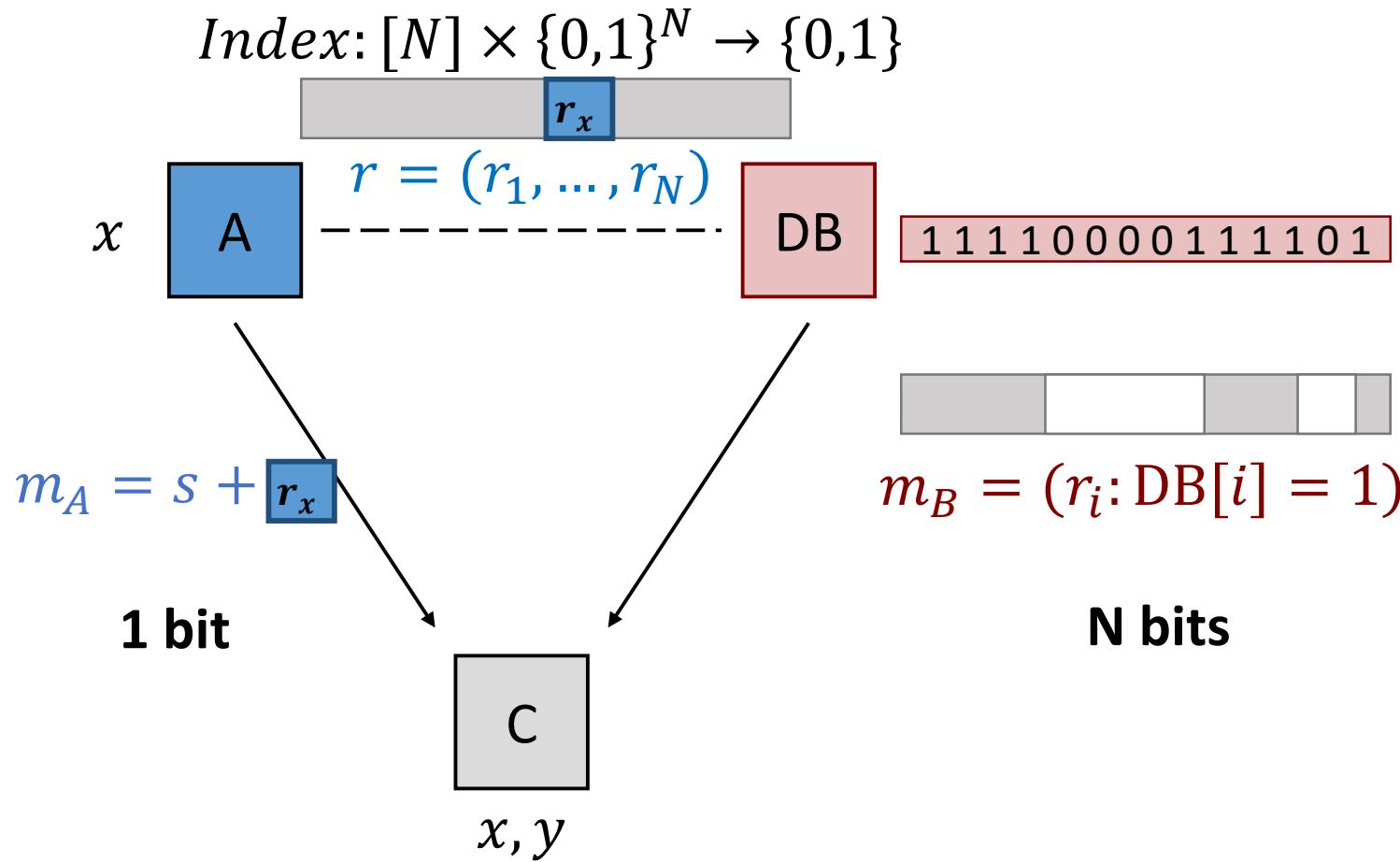
Completeness of the Index function

Index: $[N] \times \{0,1\}^N \rightarrow \{0,1\}$

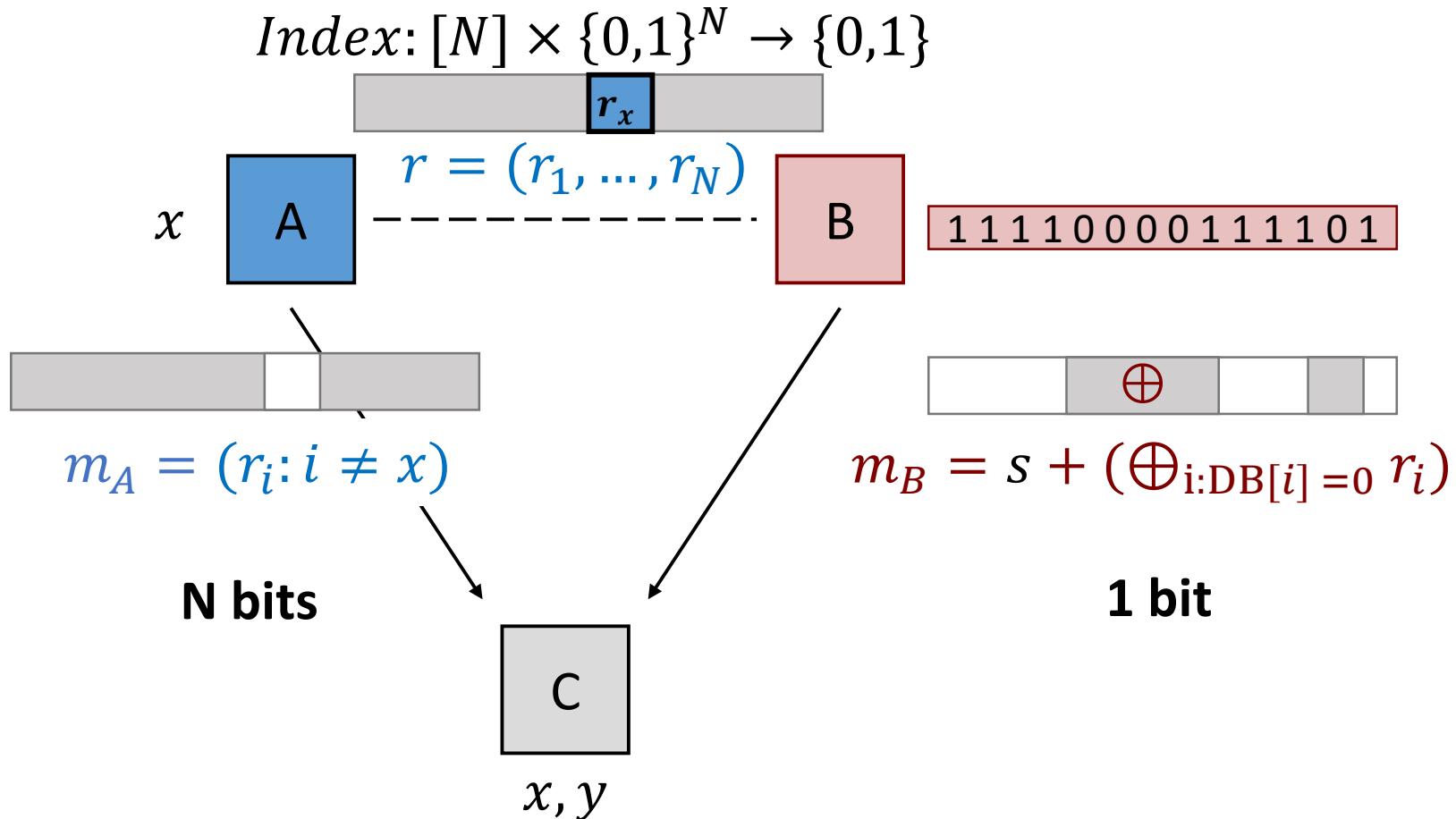


Observation: $CDS(f) \leq CDS(\text{Index})$

Linear CDS for Index



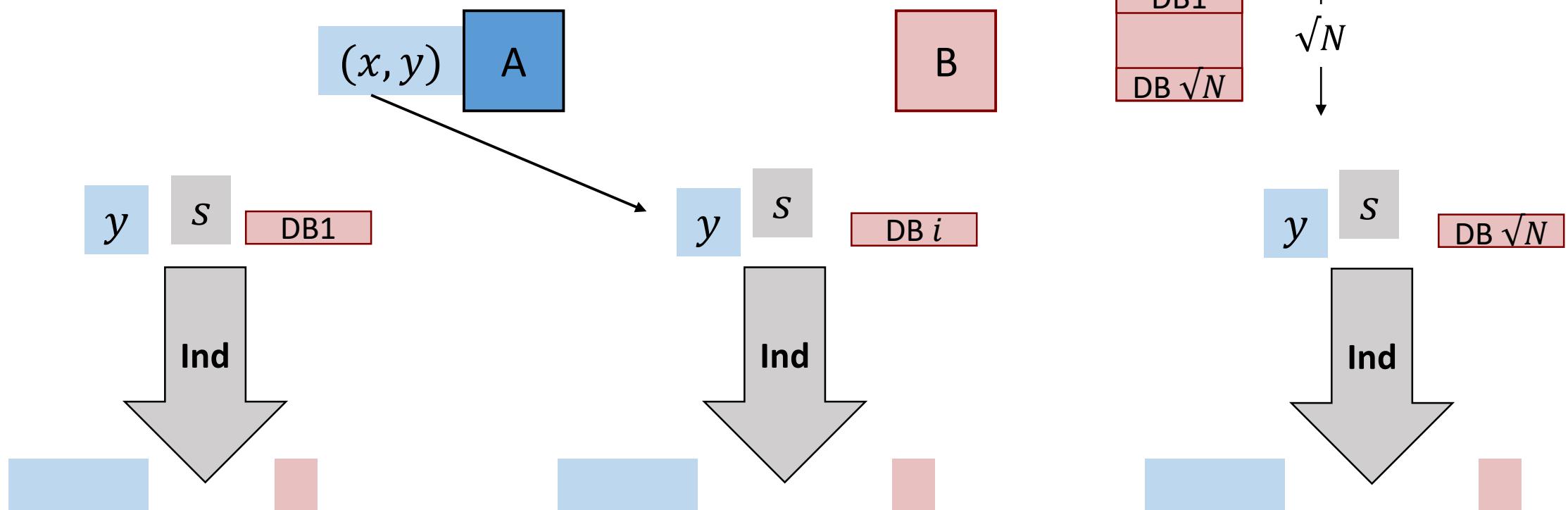
CDS for Index: Dual version?



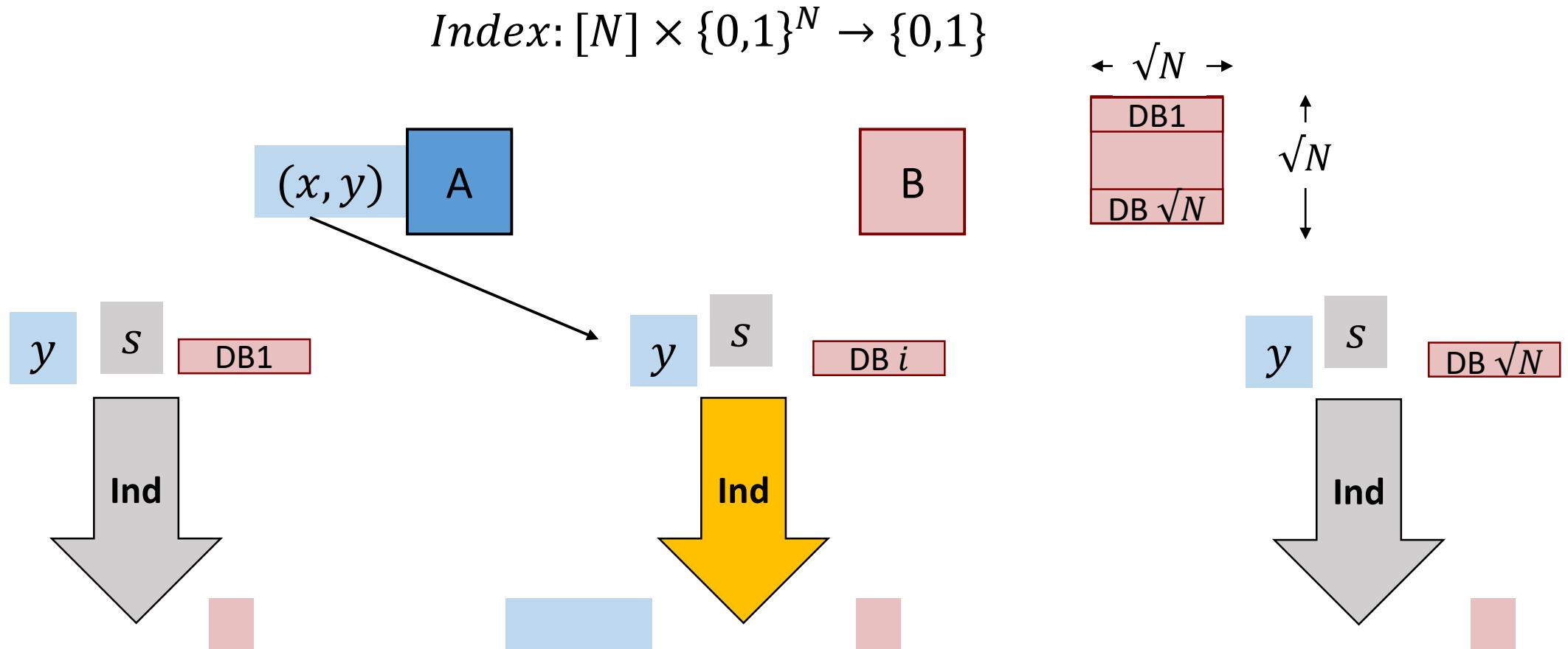
The missing key participates in encryption iff $D[x]=0$

CDS for Index - Balancing

Index: $[N] \times \{0,1\}^N \rightarrow \{0,1\}$



CDS for Index - Balancing



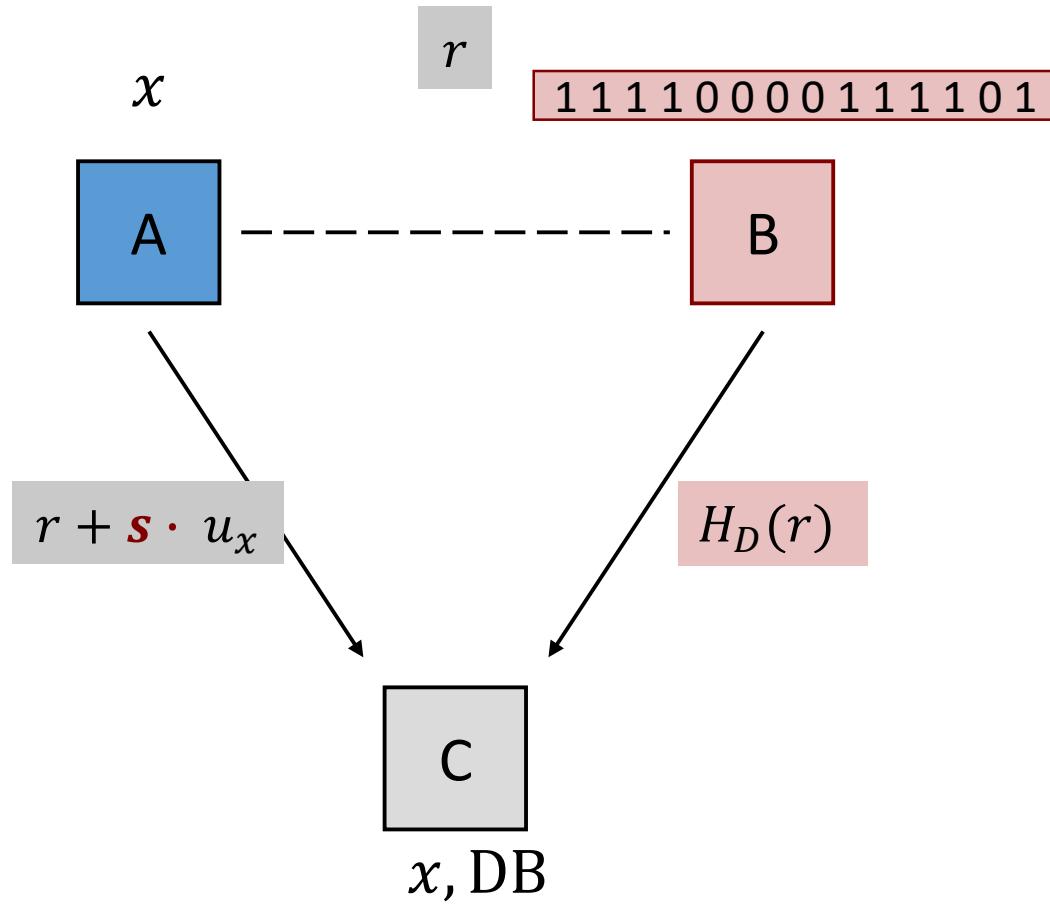
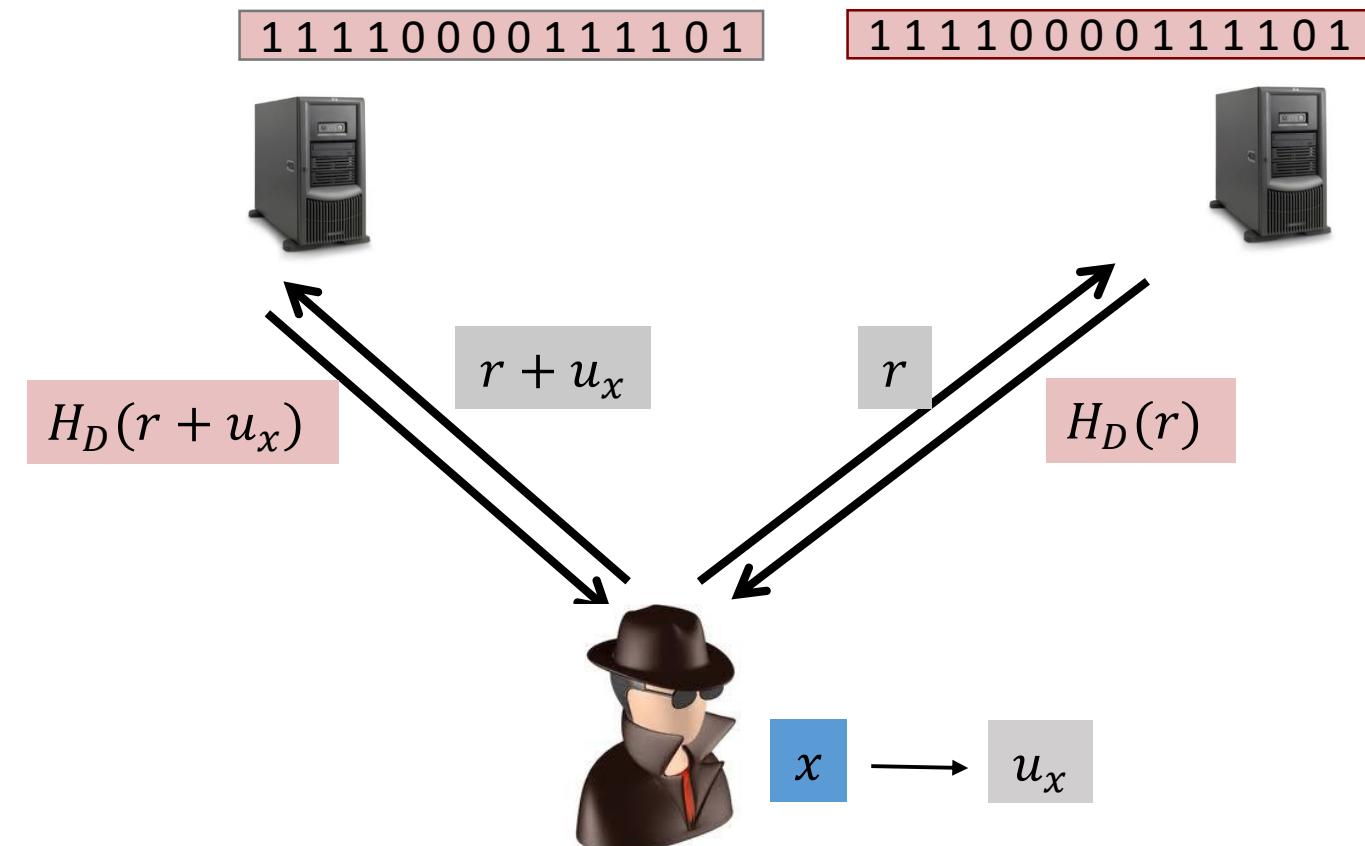
Linear CDS with $\sqrt{N} = 2^{n/2}$ complexity (optimal for linear schemes!)

[Bei-Ish-Kum-Kus14, GayKerWee15]

Sub-exponential CDS via Nice-PIR

[Liu-Vai-Wee18]

IDEA: Use Linear-PIR to evaluate $D[x] \cdot s$

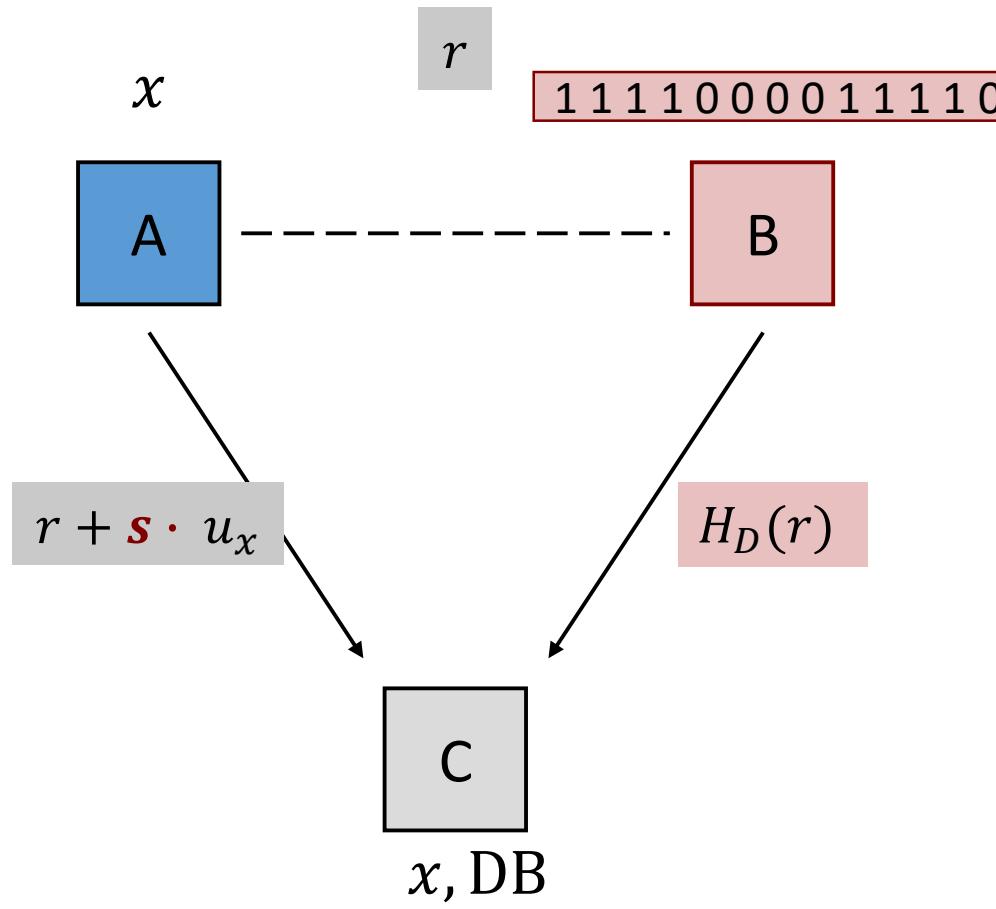
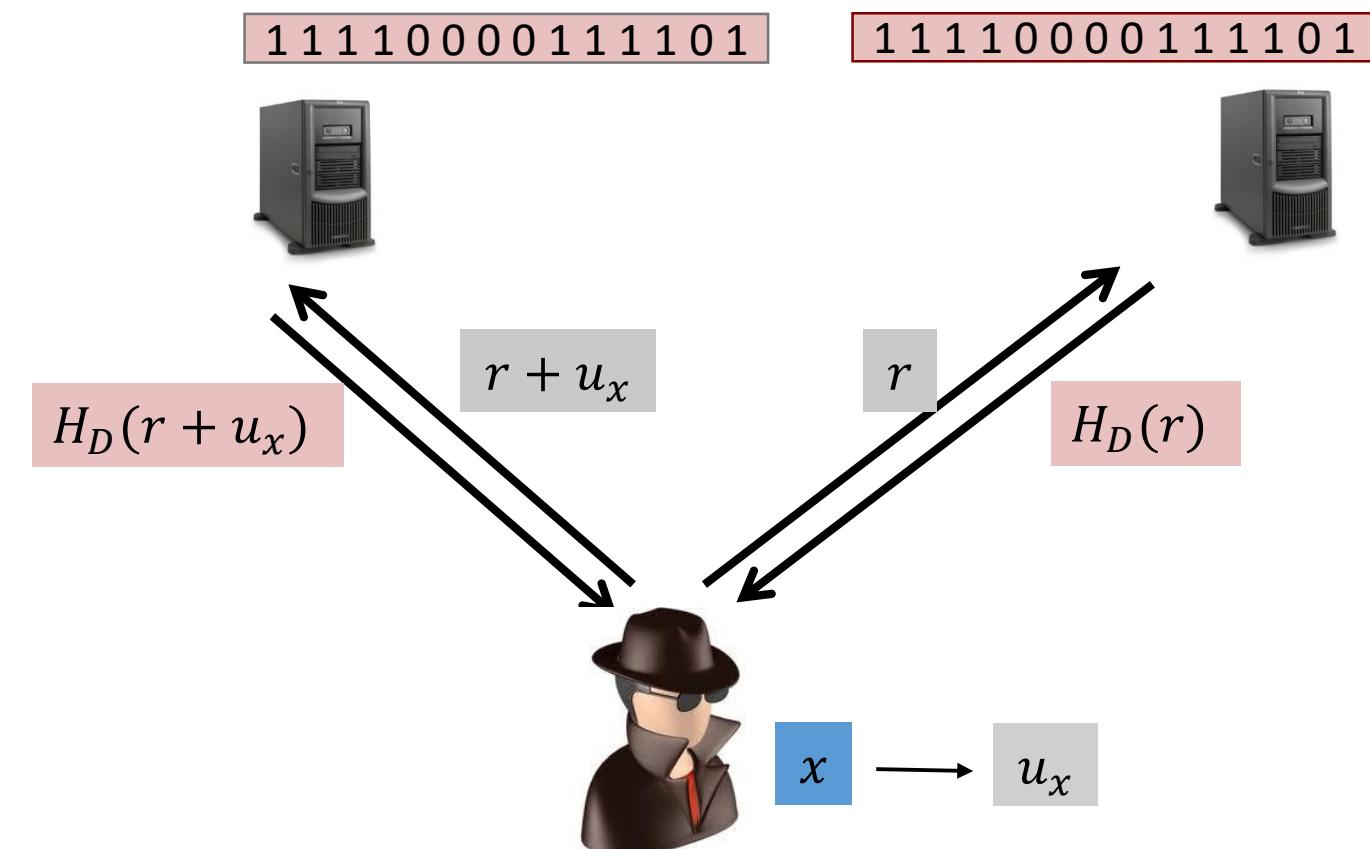


$$H_D(r + s \cdot u_x) - H_D(r) = D(x) \cdot s$$

$$H_D(r + u_x) - H_D(r) = D(x)$$

IDEA: Use Linear-PIR to evaluate $D[x] \cdot s$

Correctness: Charlie learns $D[x] \cdot s$

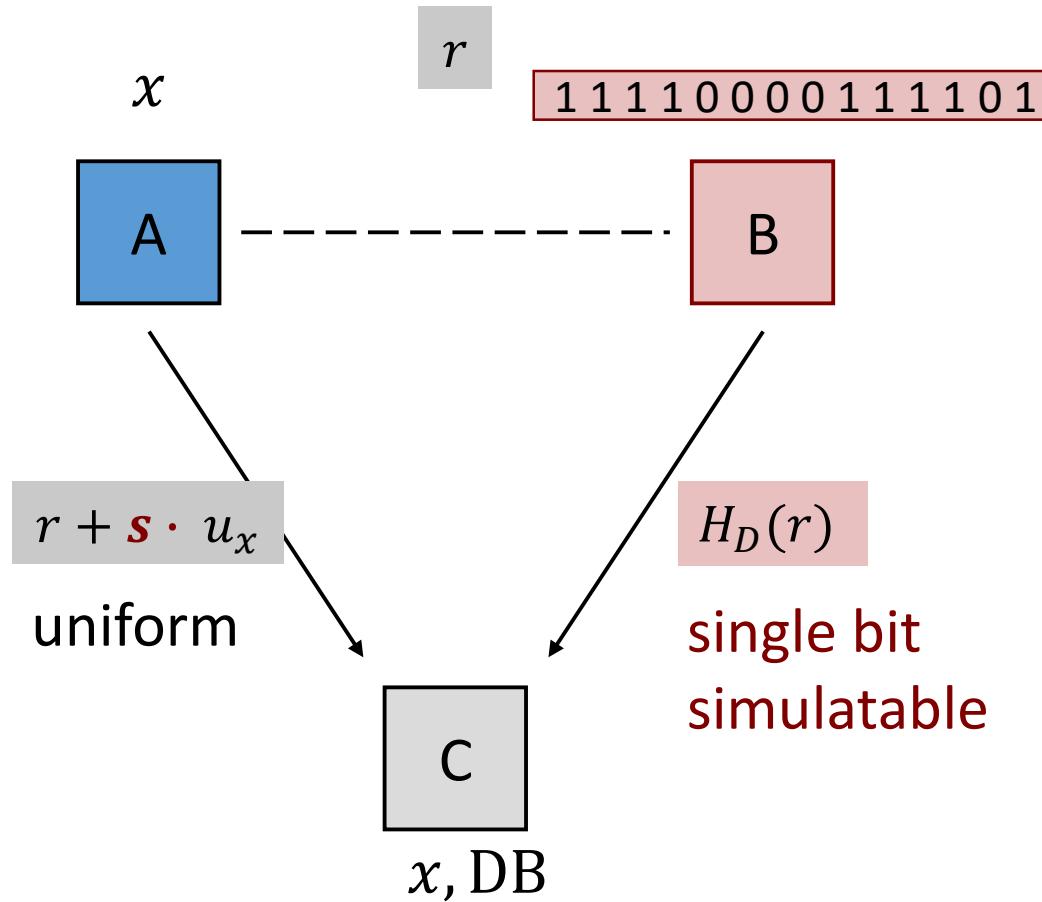


$$H_D(r + s \cdot u_x) - H_D(r) = D(x) \cdot s$$

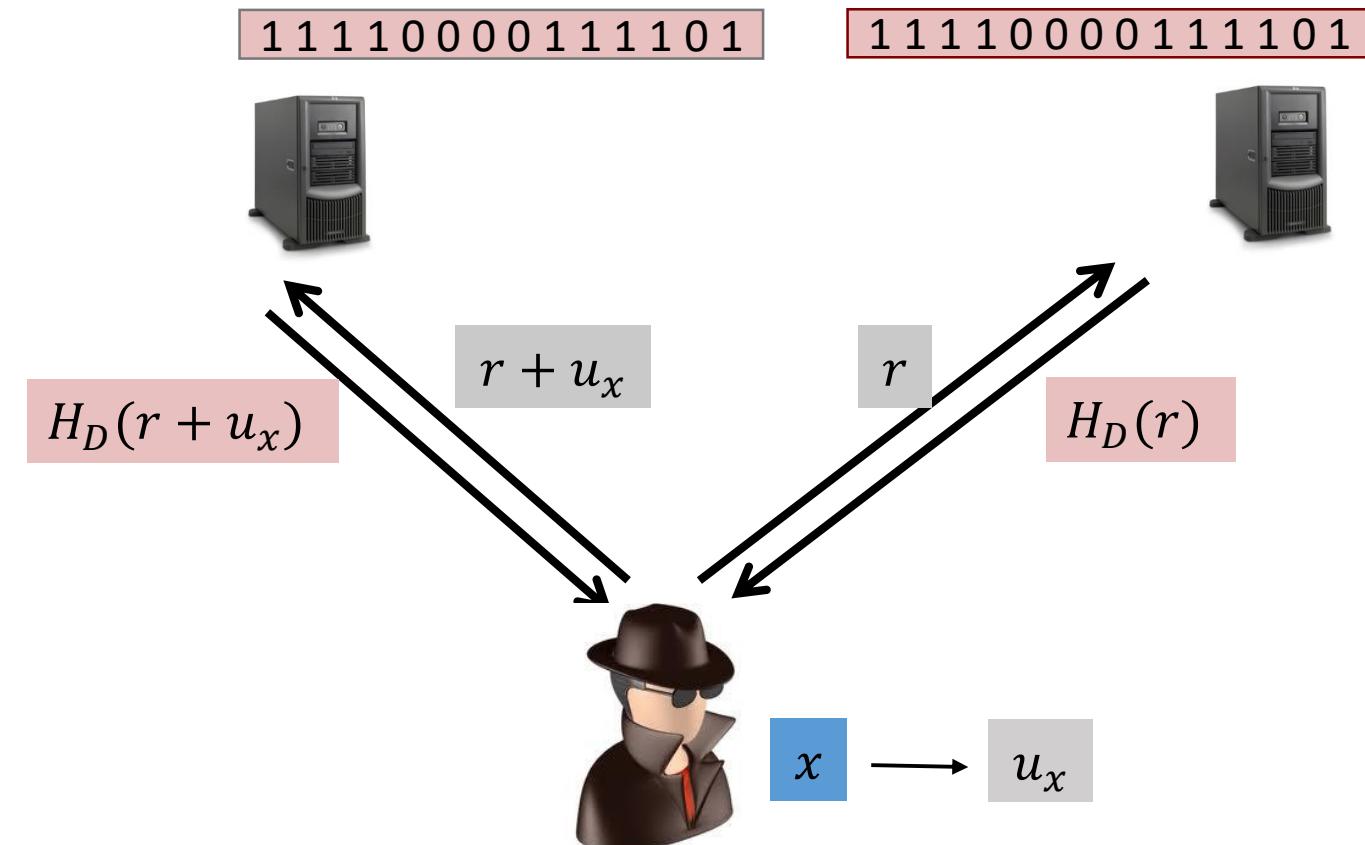
$$H_D(r + u_x) - H_D(r) = D(x)$$

IDEA: Use Linear-PIR to evaluate $D[x] \cdot s$

Privacy: Charlie learns **only** $D[x] \cdot s$



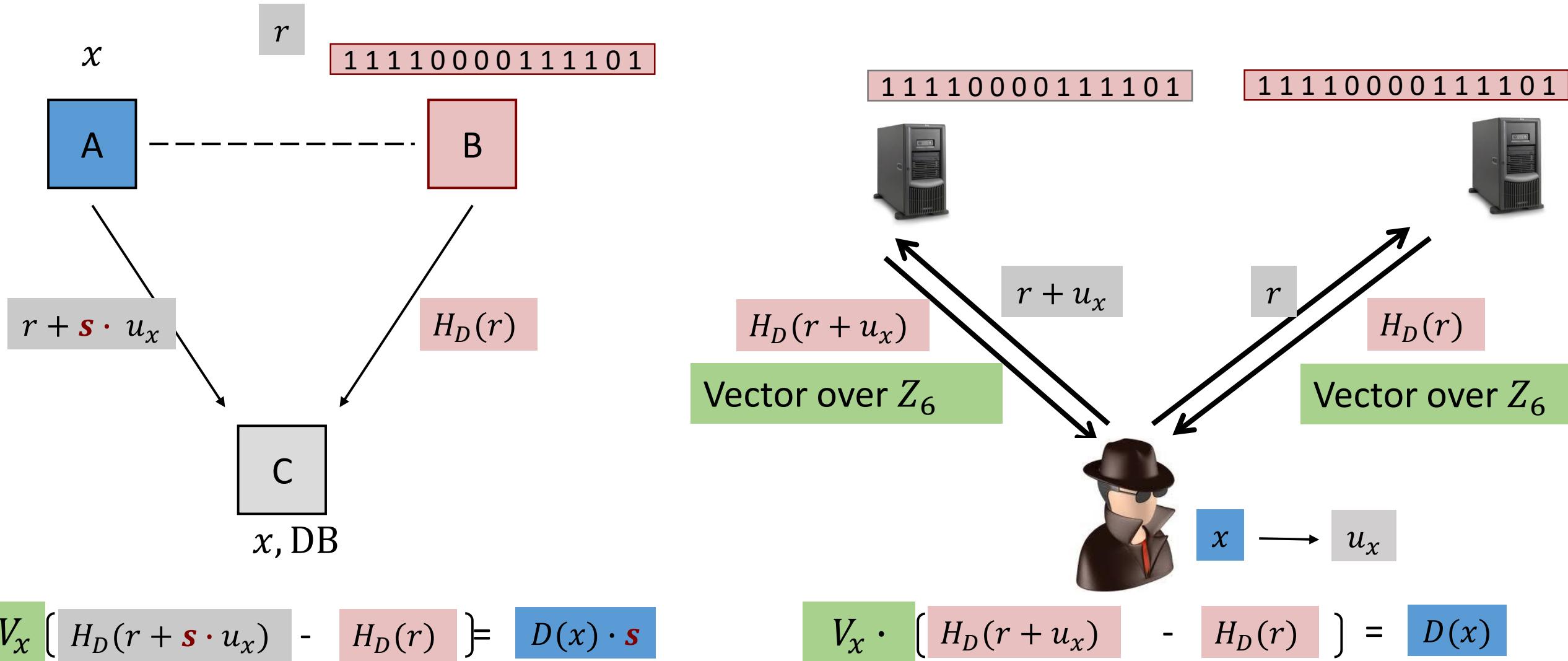
Ex: Instantiate with Hadamard-PIR



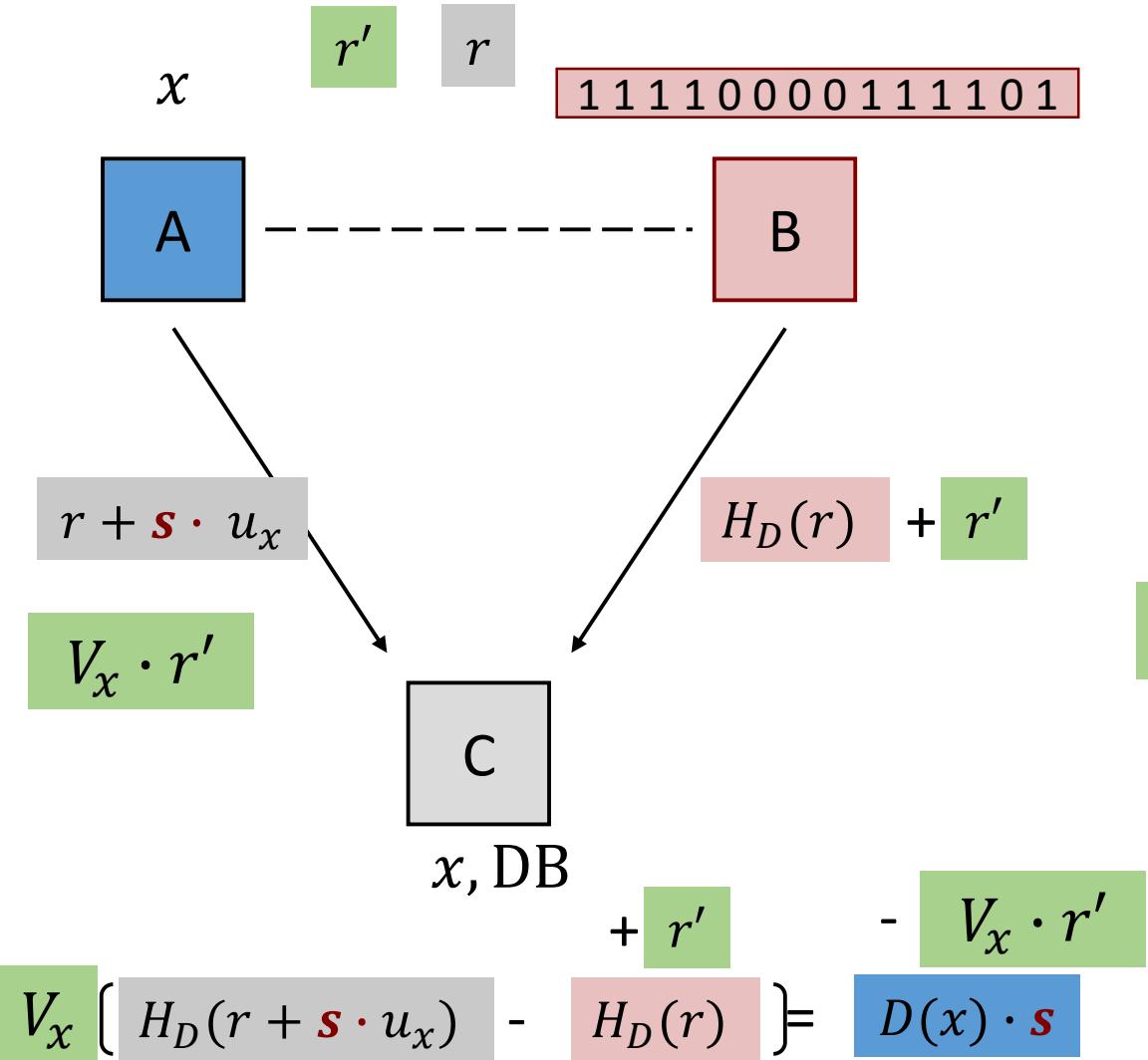
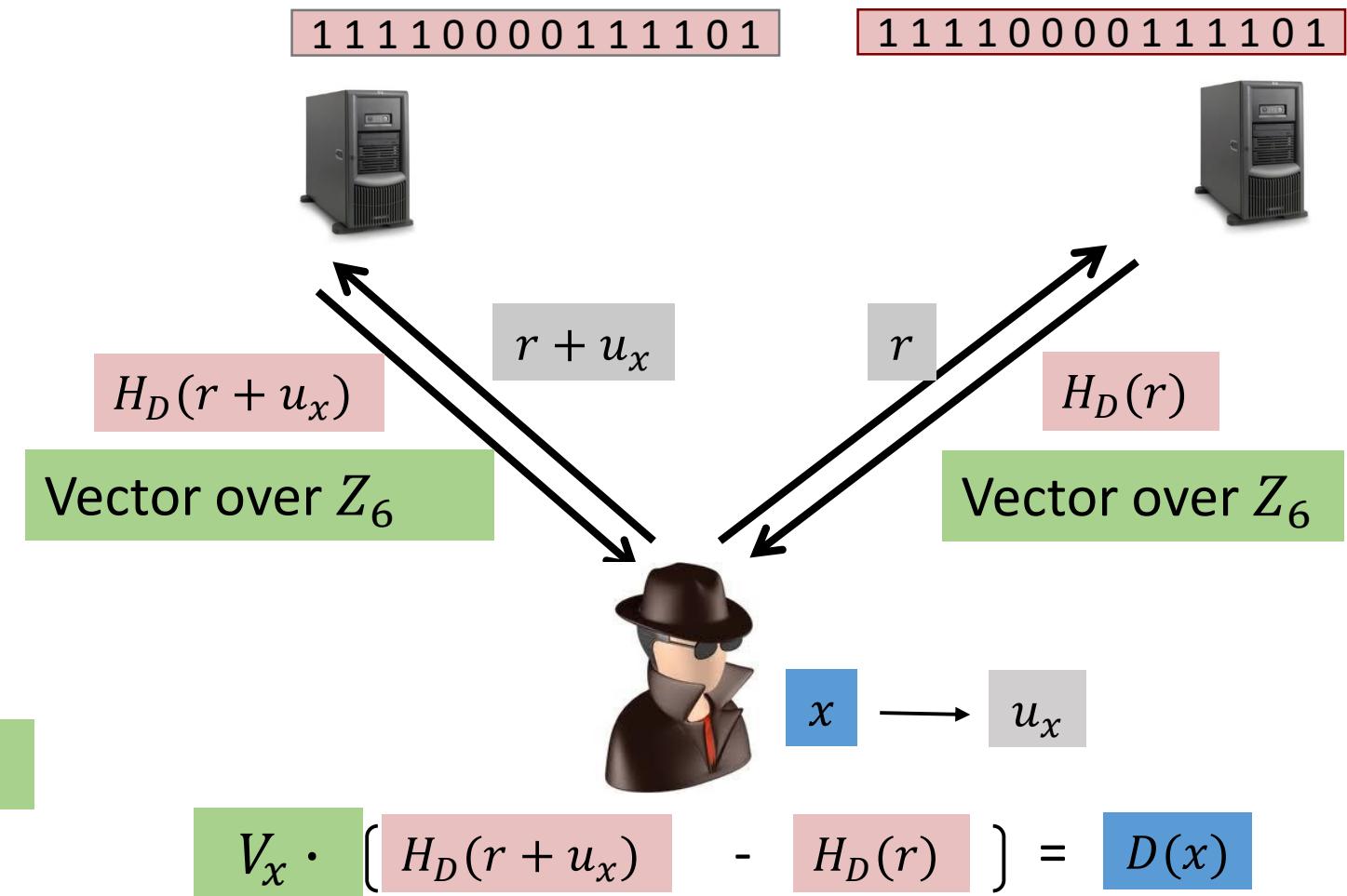
$$H_D(r + s \cdot u_x) - H_D(r) = D(x) \cdot s$$

$$H_D(r + u_x) - H_D(r) = D(x)$$

Beyond Linear-PIR (MV-based PIR)



Beyond Linear-PIR (MV-based PIR)



Sub-exponential CDS for general functions

By massaging the 2-server PIR of we get

Thm 1. [LiuVaiWee17] Every $f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$

has CDS for 1-bit secrets with communication $2\sqrt{n \log n}$

Using “multiparty”-MV-family

Thm 2. [LiuVaiWee18] Every k -party predicate $f: \{0,1\}^{n/k} \times \cdots \times \{0,1\}^{n/k} \rightarrow \{0,1\}$

has CDS for 1-bit secrets with communication $2\sqrt{n} \log n$

Amortized CDS for general functions

[A-Ark-Ray-Vas17,A-Ark18]

What if the secret is very long?

Secret S

$CDS(f, L) \stackrel{\text{def}}{=} \text{CDS-communication of } L\text{-bit secret per party}$

Clearly,

$$L \leq CDS(f, L) \leq L \cdot CDS(f, 1)$$

<<

Can we save?

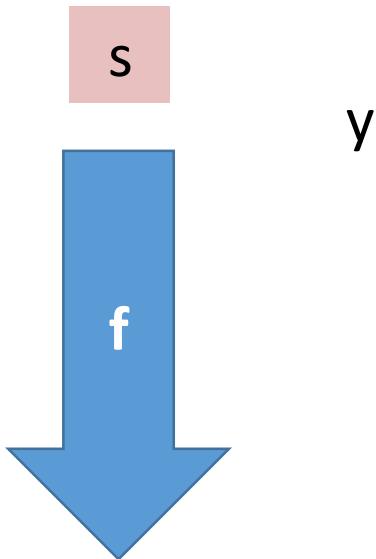
What is the best achievable rate?

$$\overline{CDS}(f) \stackrel{\text{def}}{=} \lim_{L \rightarrow \infty} \frac{CDS(f, L)}{L}$$

If $f(x, y) = 1$

f-channel

x y



If $f(x, y) = 0$

s

\perp

Constant-Rate CDS

Thm. [AArkRayVas17,AArk18]

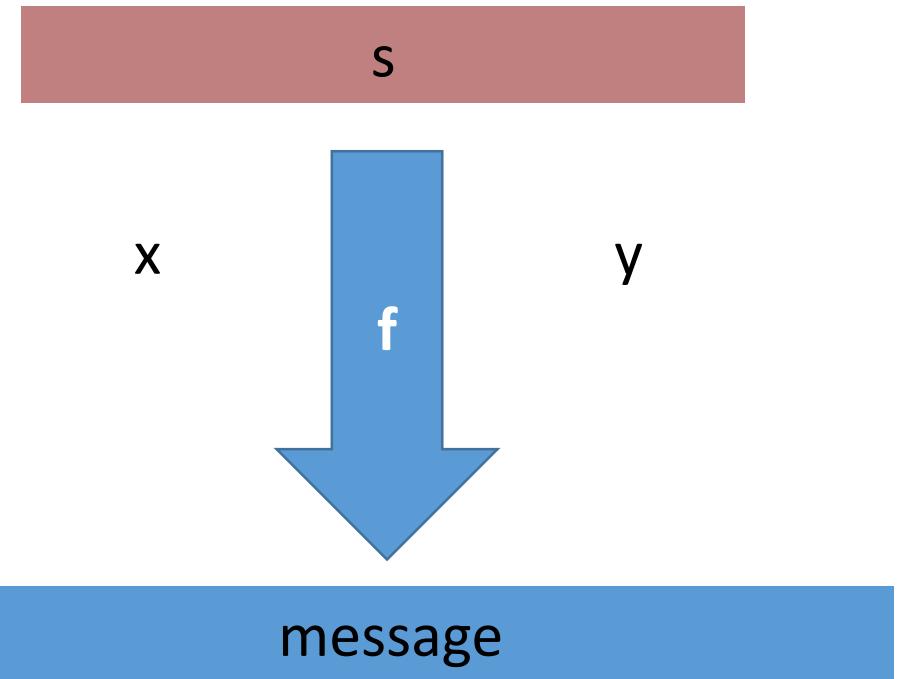
For every $f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$

$$\overline{\text{CDS}}(f) \leq 3$$

- Very long secrets $L \geq \exp(\exp n)$
- Extends to arbitrary number of parties
- Barriers against lower-bounds
 - Entropy-based argument yield $\overline{\text{CDS}}(f)$ LB's

Amortized-CDS=

channel for long messages



Constant-Rate CDS

Thm. [AArkRayVas17,AArk18]

For every $f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$

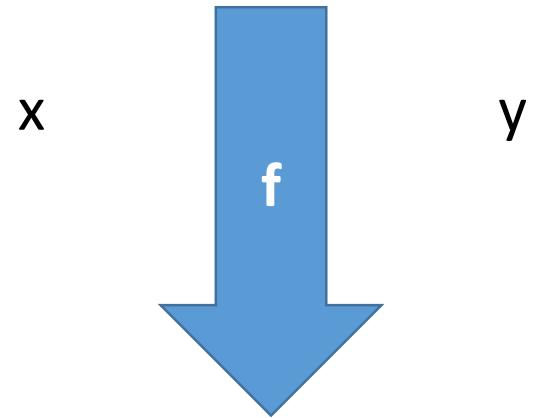
$$\overline{\text{CDS}}(f) \leq 3$$

Proof:

1. Construct Batch-CDS
2. From Batch-CDS to Amortized-CDS

Amortized-CDS=
f-channel for long messages

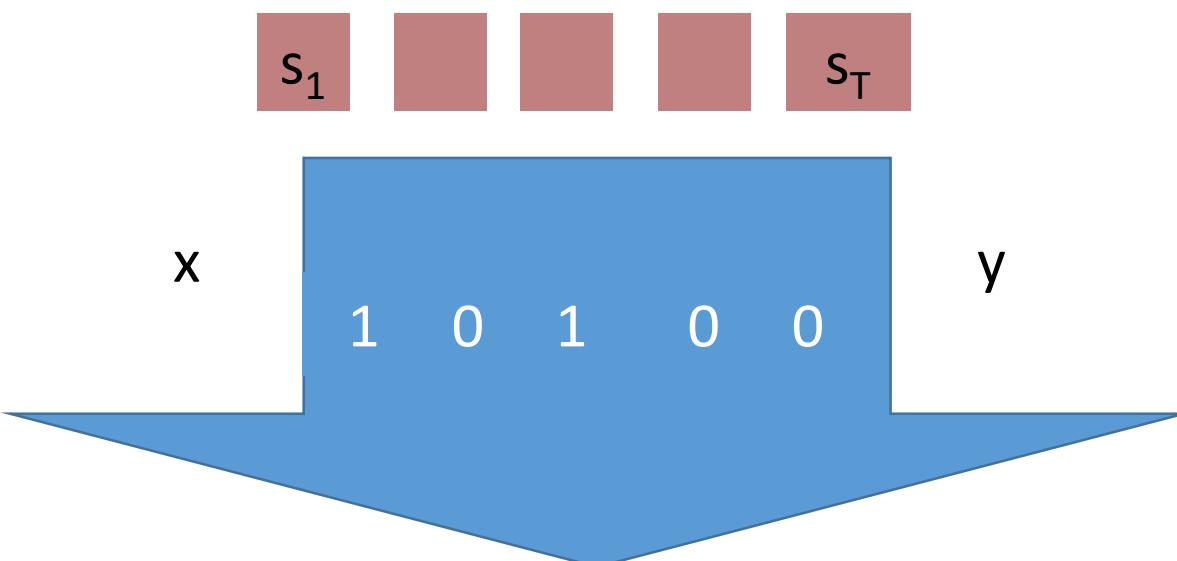
s



message

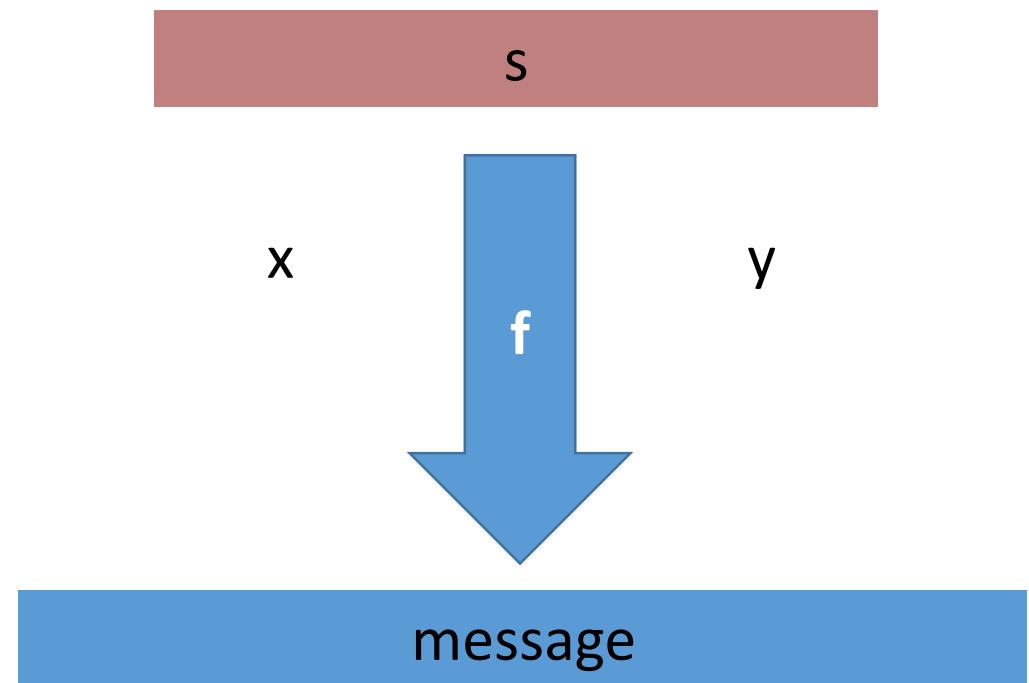
Constructing Amortized CDS

Batch-CDS=
multi-function-channel



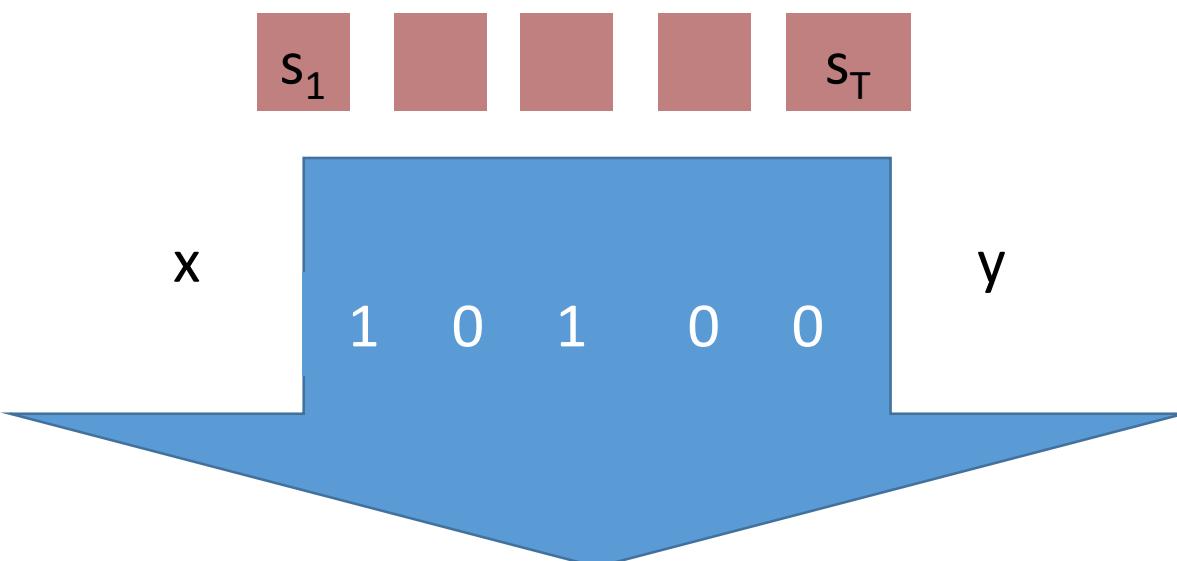
s_i is passed iff $f_i(x,y)=1$

Amortized-CDS=
f-channel for long messages

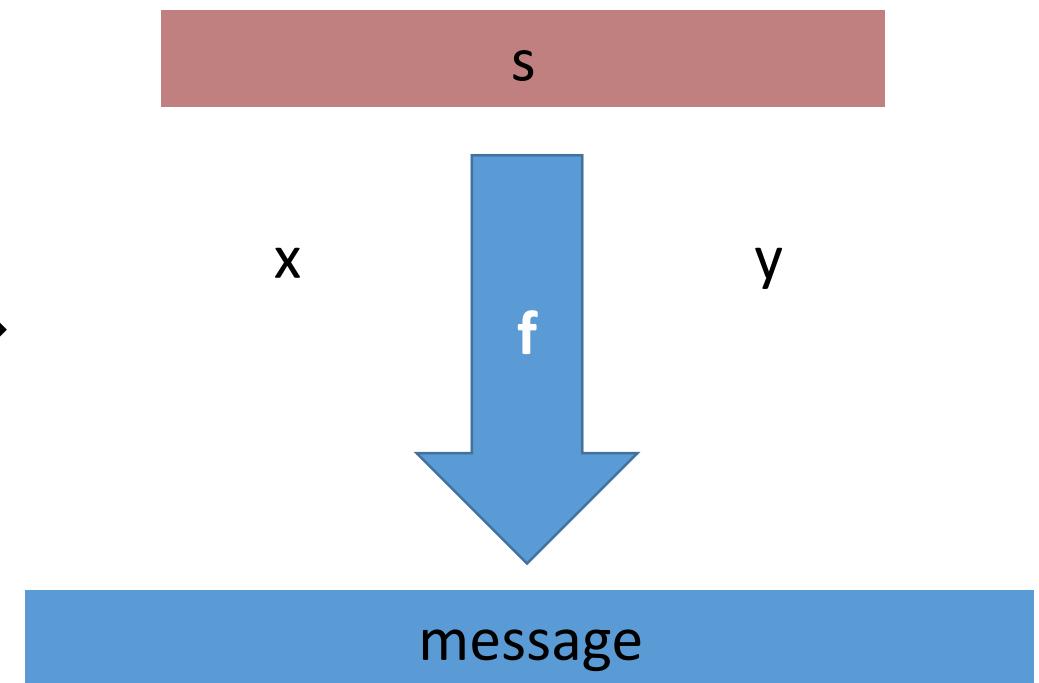


Thm: Batch-CDS for ALL-Functions with blow-up 1.5

Batch-CDS=
multi-function-channel

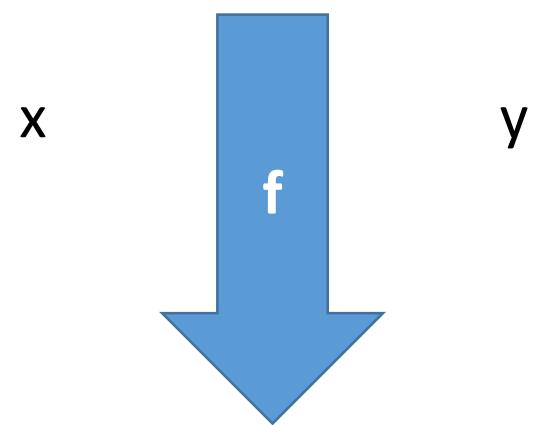


Amortized-CDS=
f-channel for long messages



s_i is passed iff $f_i(x, y) = 1$

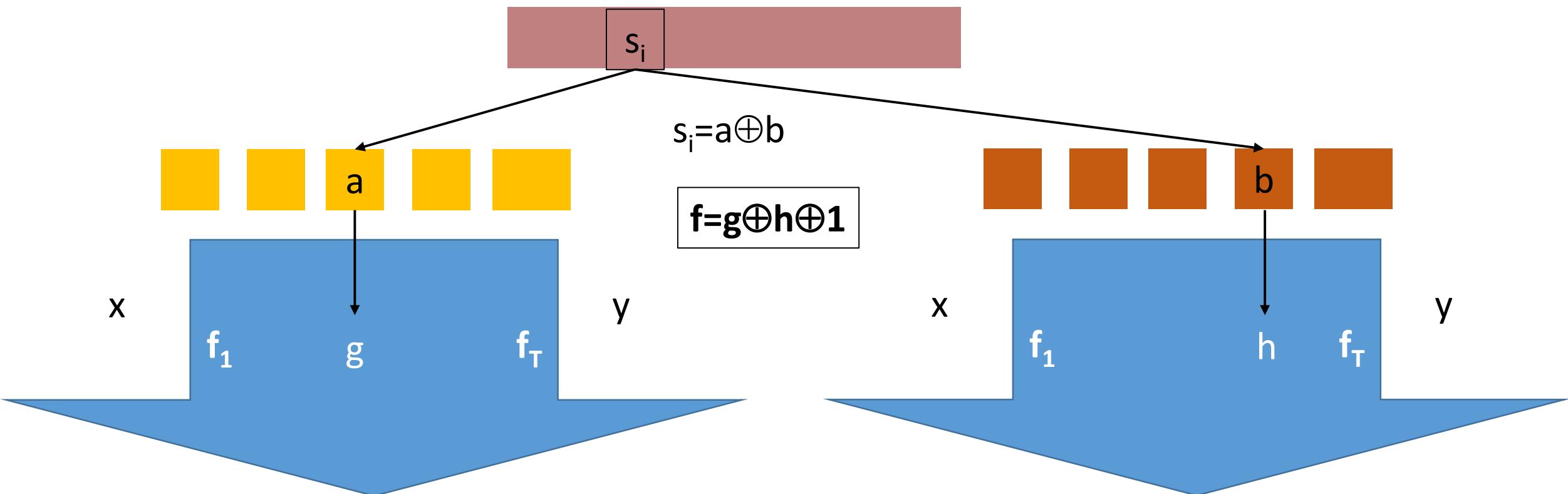
f-channel for long messages



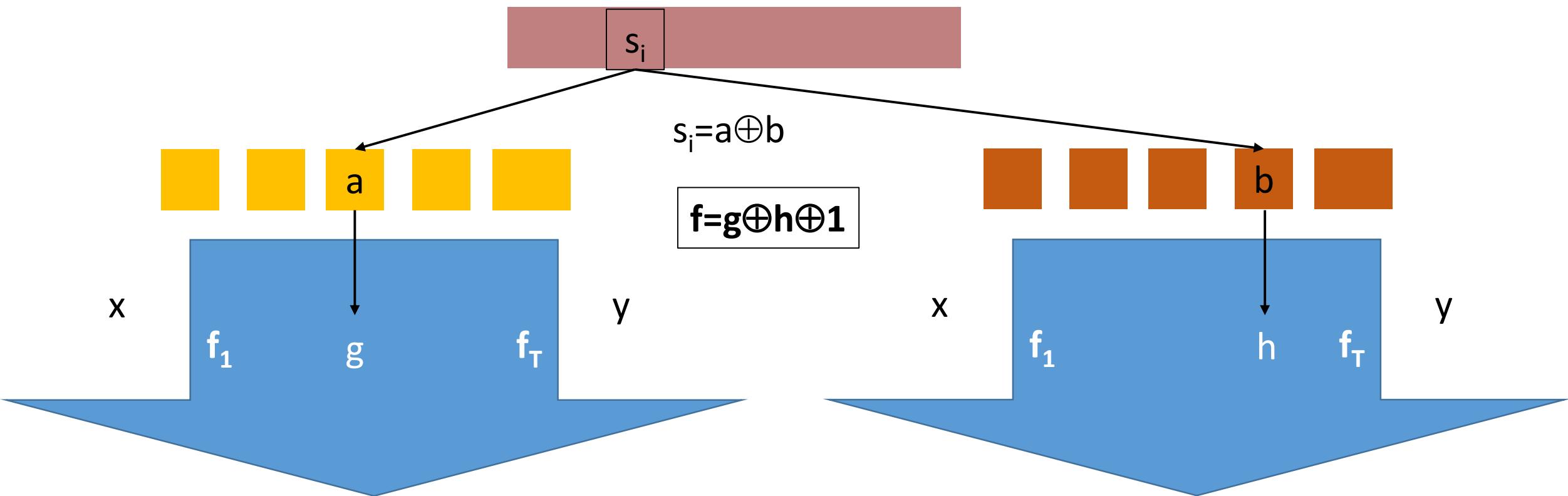
x

y

f-channel for long messages



f-channel for long messages



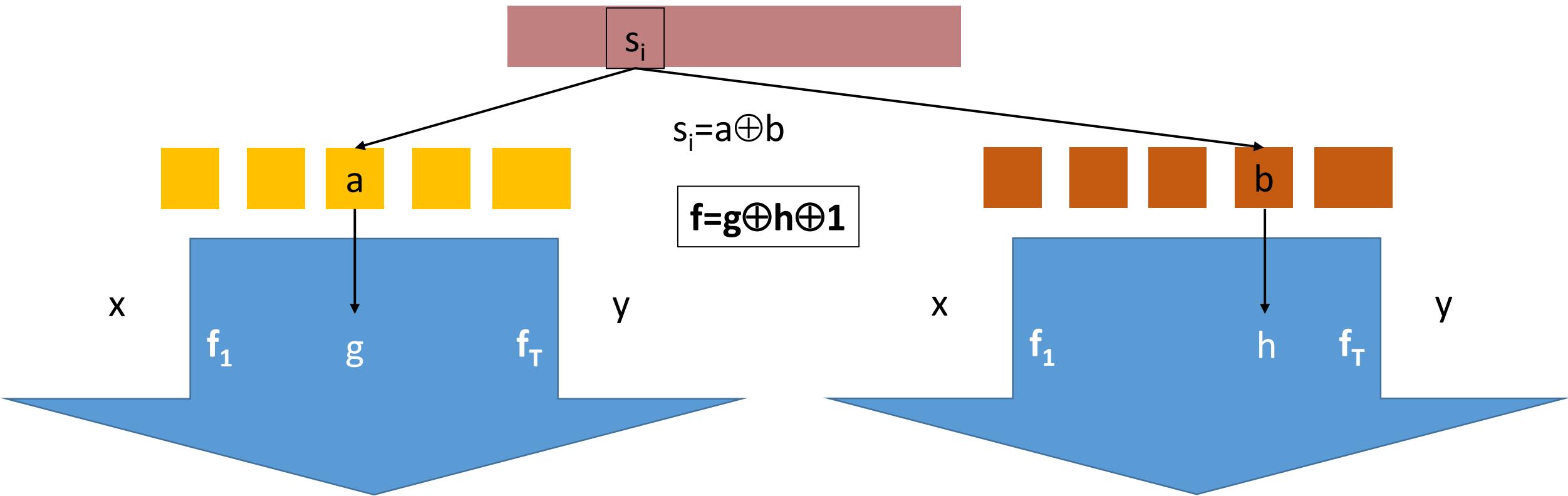
If $f(x, y) = 0$

⇒ Either $g = 0$ or $h = 0$

⇒ One of the shares is hidden

⇒ The channel hides s

f-channel for long messages

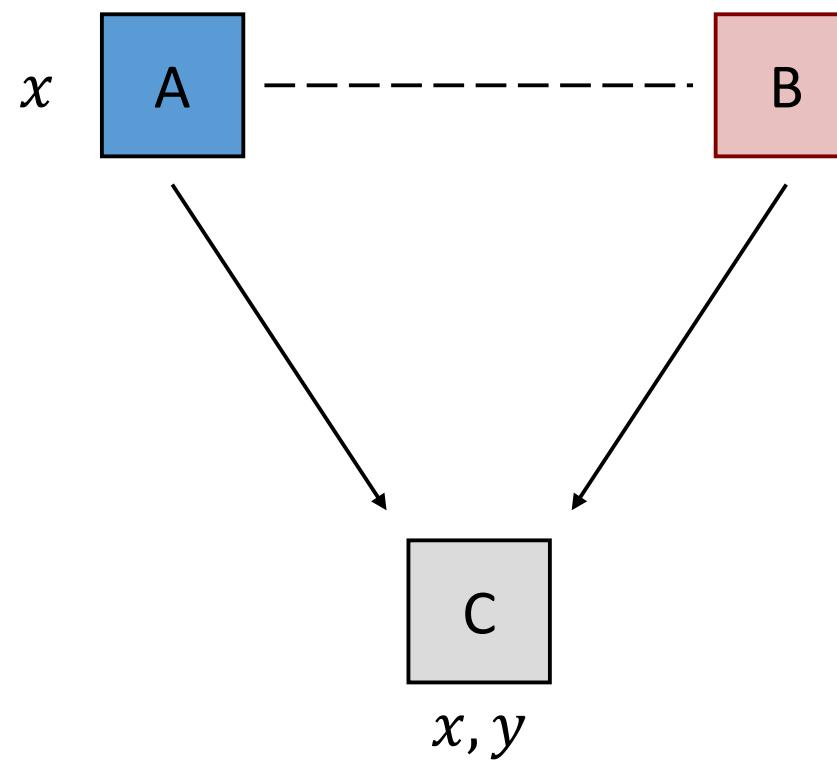


If $f(x,y)=1$
& if $g(x,y)=1$
 $\Rightarrow h=1$
 \Rightarrow Both shares are revealed
 \Rightarrow The channel releases s

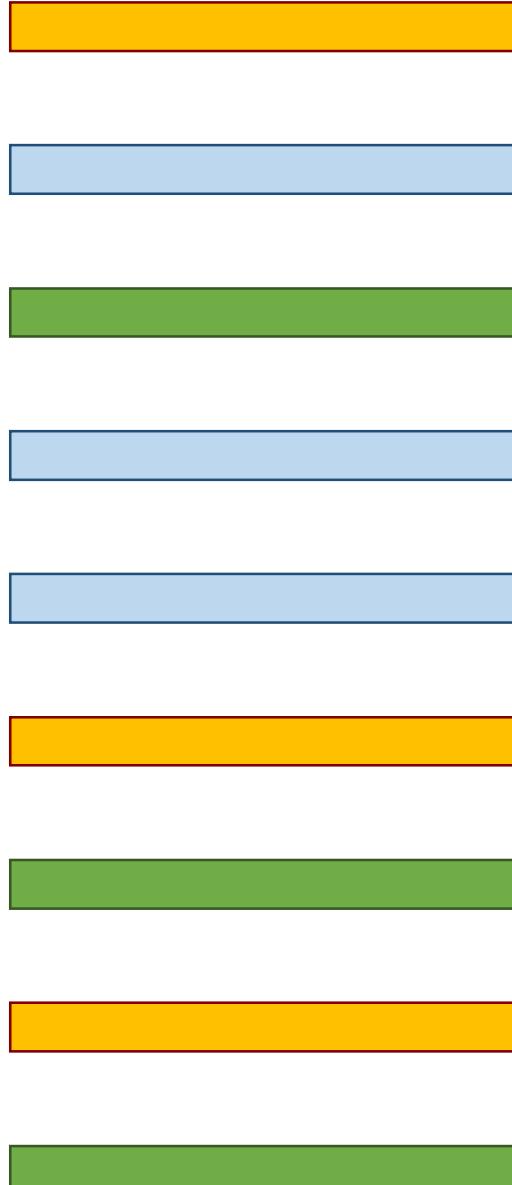
Happens to half of the functions
 \Rightarrow Half of the secrets go through
Can get all secrets using pre-coding
duplicate each secret twice & place it on g and $1-g$

Constructing Batch CDS

Single Index in Many DB's



$L = 2^{N^2}$ DB's each of length N



Key Observation: Each “color” appears equal number of times

S₁

Joint randomness

L keys colored in M colors

3

A

B

release
if

1
↑
 x

x, y

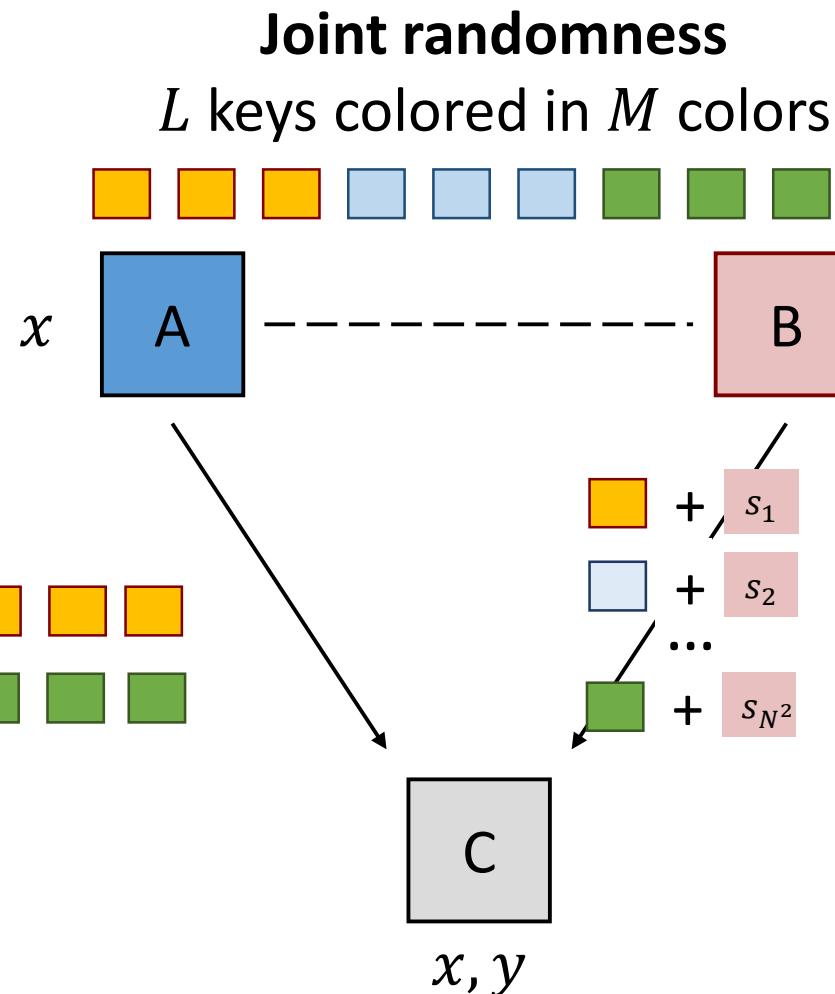
$L = 2^{N^2}$ DB's each of length N

$M = 2^N$ colors

S_L

Communication: Alice $0.5L$, Bob L ,

s_1



$L = 2^{N^2}$ DB's each of length N

$M = 2^N$ colors

s_2

s_L

Upper bounds: Summary

Complexity of 2-party CDS:

- **Linear CDS:** $2^{n/2}$ (Tight)
- **General CDS:** $2^{o(n)}$
- **Amortized CDS:** $O(1)$

OPEN

poly(n)? **poly(n) for circuits?**

Smaller amortization point?

Lower Bounds???

Cost of insecure solution is 1...

Lower-bounds via Communication Complexity Games

[GayKerWee15, A-ArkRayVas17, A-Hol-Mis-Sha18, A-Vas19]

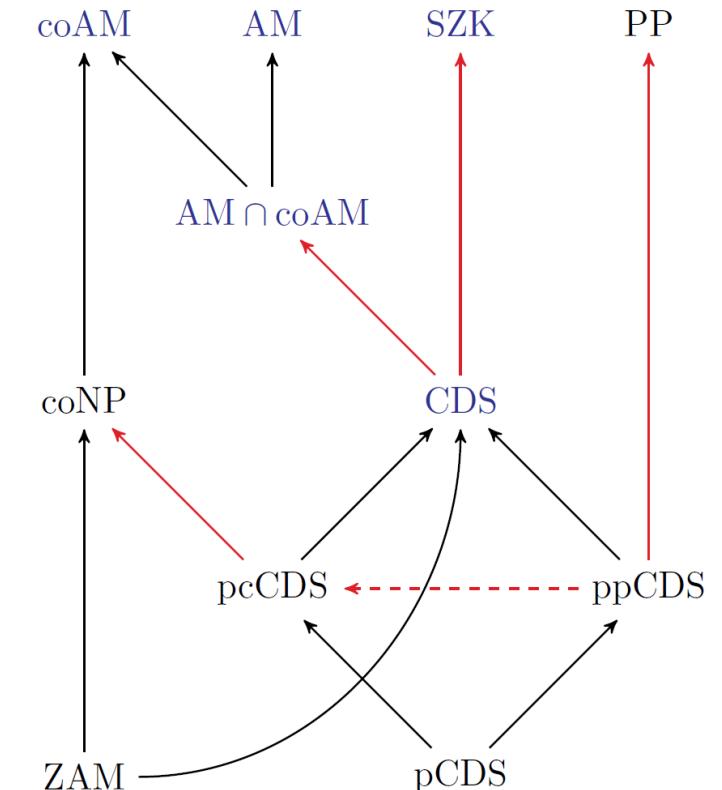
Rich connections (inclusions and separations):

Best known lower Bounds:

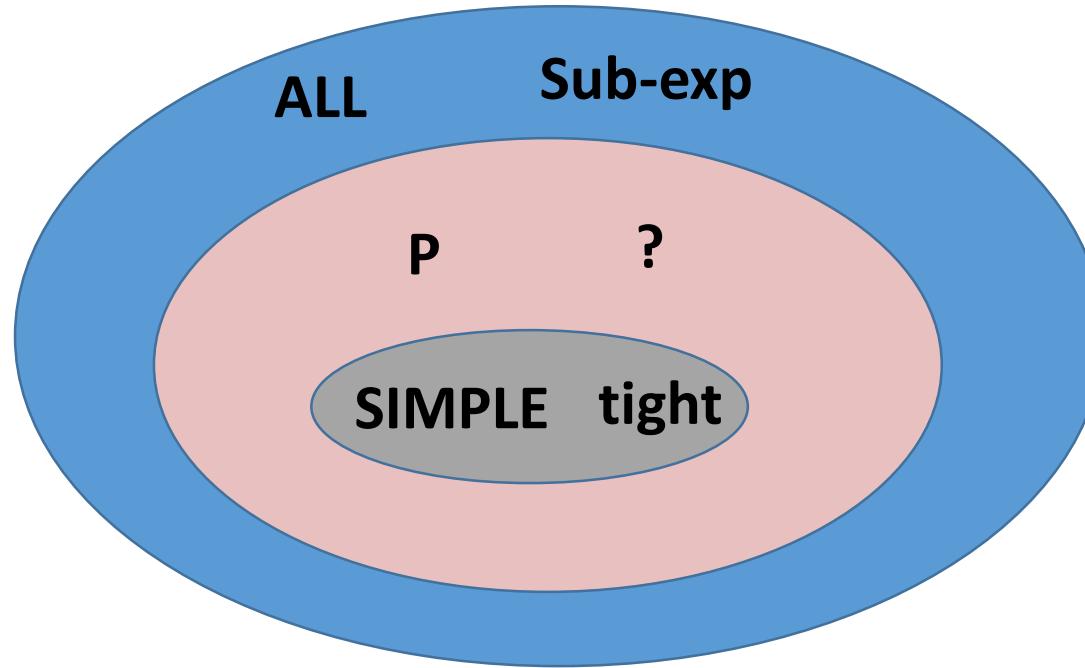
- For many (explicit functions) perfect-CDS(f) > $n - o(n)$
- For imperfect-CDS non-explicit CDS(f) > $n - o(n)$
- Trade-offs between Alice and Bob

Q: CDS(DISJOINTNESS)?

$$f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$$



Solid arrow: inclusion,
Dashed arrow: separation
Blue classes: explicit bounds are unknown.



Thank You !