Permisionless Consensus
“Anyone Can Join” Consensus

Rafael Pass
TAU, Cornell Tech

e CPIIS - CHECK POINT INSTITUTE FOR
4@,~ INFORMATION SECURITY
% Blavatnik School of Computer Science

Tel Aviv University

consensus

(a.k.a. state-machine replication, public ledger, permissioned blockchain)

\E \5

i,

(. Paxos/PBFT_ \E
‘5 \E (e.g., assuming 2/3 nodes honest)

e Consistency
e Liveness

Consistency:

At any point, my ledger is a prefix of yours or vice versa.
At any point, my ledger is a prefix of my future ledger.

Liveness:

There exists some polynomial Confirm, such that if any honest player

sees a transaction, w.h.p. it will be added to everyone’s ledger
within time Confirm(A), where A = max network delay.

Synchronous model: Protocol may be parametrized by A
Partially synchronous model: Same protocol works for any A

Consistency + Liveness

Trusted Public Ledger
“a trusted party that maintains ledger”
(e.g., think of Facebook wall)

The Traditional “Permissioned” Model

e number and identities of nodes is common
knowledge
® nodes stick around for the whole execution.

e authenticated channels/PKI

The Traditional “Permissioned” Model

e number and identities of nodes is common
knowledge
® nodes stick around for the whole execution.

e authenticated channels/PKI

Thm: In Sync: possible iff 2/3 honest with auth channels.

possible with just 1 honest, in PKI model (+ OWF)

Thm: In Part-sync: possible iff 2/3 honest with auth channels
PKI doesn’t help

Impossibility of 1/3 corruption with partial
synchrony

Attacker

lsec Tx1 X2 1sec
1
Q Very slow connection Q2

Must output Tx1 within Confirm(1 sec) Must output Tx2 within Confirm(1 sec)
But not Tx2 But not Tx1

The “Permissionless” Model:

Bitcoin/Blockchain

The Times 03/Jan/2009
Chancellor on brink of

second bailout for banks.

The “Permissionless” Model |/A*iom: Computation
polylog(# nodes)

e Nodes don’t know the exact # of nodes

e Nodes come and go: “late joining”

e No authentication mechanisms: “anyone can join”
e “economic robustness”

The “Permissionless” Model |2X/om: Computation
polylog(# nodes)

e Nodes don’t know the exact # of nodes

® Nodes come and go:

® No authentication mechanisms: “anyone can join”

We are still at the beginning of understanding
even this model...

The Unauthenticated Model [BCLPROS5]

Thm [BCLPR’05]: Consensus impossible without
authentication in partially synchronous model.

Thm [PS’17]: Consensus impossible without
authentication even in synchronous model.

Proof: the “Sybil” attack...but a bit delicate to
formalize

Impossibility of Consensus without
Authentication

Real protocol running with a random Tx1

Alternative Universe: Attacker “honestly” runs a
different execution with a random Tx2

Which transaction should a late joiner output?

Impossibility of Consensus without

Authentication
Real World “Alternative Universe”
Random Tx1 Random Tx2

Must output Tx1 but not sz\ / Must output Tx2 but not Tx1

Late joiner

Must agree with Real by security.
But also with attacker produced alternative universe

Nakamoto’s Blockchain [Nak'08]

Prevents Sybil attacks with Proofs-of-Work Puzzles [DN'92]

Claims protocol achieves “public ledger” assuming “honest
majority of computing power”:

e Consistency: everyone sees the same history
e Liveness: everyone can add new transactions

Nakamoto’s Blockchain [Nak'08]

Prevents Sybil attacks with Proofs-of-Work Puzzles [DN'92]

2 amazing aspects:

e Overcomes “unauthetication barrier”
e Overcomes Vs barrier even in permissioned
setting

Srini’s corrupt

An abstract notion of a blockchain;

- how it compares to “consensus”;
- why a new definition? (hint: incentives)

Does Nakamoto’s protocol achieve CONSISTENCY?

o Classes of attacks don’t work [N'08,GKL’15, SZ'15]
o 49.1% attack (with 10s network delays) claimed [DW’14]

What is a blockchain?

How to build a “blockchain”

Eli= Dan: B10 !: e
- Ny
j:ﬂjp & o & 7 |

W =

4BbNaBbNadt
A) & P)
W _JIUJ’U w _JIDJ’U W _JIDJ’U

=

How to build a “blockchain”

http://bitcoinsymbol.org/

==~

"Hash function”

D> H (10,227 53)

How to build a “blockchain”

Sl puzzle

Difficulty solution
/ O\

Search for a puzzle solution

We found a new block

Best way to find a solution Is brute-
force search: model H as RO

= Lam

Honest nodes only “believe”
longest chain

Ell wants to erase this transaction

For Eli to erase his
transaction, he has to find a
longer chain

“If transaction is sufficiently deep, he cannot do this
unless he has majority hashpower”

“If transaction is sufficiently deep, he cannot do this
unless he has majority hashpower”

e [Nak'08]: “trying to mine alternative chain fails”
e [GKL’15]: no attack,aslongasA=1
e [SZ'15]: "non-withholding attacks” fail also with A-delays

Blockchain abstraction (a la
GKL,SZ,KL,PSS) w/ prob exp(-k)
o Consistency: Honest nodes agree on all

but last k blocks < k unstable

—
=
< k unstable
L_JA
=R S

Future-self
consistency

o Consistency: Honest, jo0a0¢s agree on all
but last k blocks < k unstable

—
=
< k unstable
L—JA
TR 3

Blockchain ab orob exp(-k)

Blockchain abstraction w/ prob exp(-K)

o Consistency: Honest nodes agree on all
but last k blocks

9 Chain quality: Any consecutive k blocks
contain “sufficiently many” honest blocks

S v B o 3
EF_J
k

Blockchain abstraction w/ prob exp(-k)

o Consistency: Honest nodes agree on all
but last k blocks

9 Chain quality: Any consecutive k blocks
contain “sufficiently many” honest blocks

0 Chain growth: Chain grows at a steady rate

Blockchain implies “state machine
replication” in the permissionless model

o Consistency Traditional
“state machine replication”
9 Chain quality .
Consistency

e Chain growth Liveness

Theorem [PSS'16]:

For every p< 1/2, if “mining difficulty” is appropriately set (as a
function of the network delay A, and total mining power),
Nakamoto’s blockchain guarantees:

® Consistency
e Chain quality: 1 - p/(1-p)
e Chain growth: O(1/A)

where p adv’s fraction of hashpower, and adv controls the network

Theorem [PSS'16]:

For every p< 1/3, if “mining difficulty” is appropriately set (as a
function of the network delay A, and total mining power),
Nakamoto’s blockchain guarantees:

® Consistency
e Chain quality: 1-(1/3)/(2/3)=1/2
e Chain growth: O(1/A)

where p adv’s fraction of hashpower, and adv controls the network

Theorem [PSS'16]:

For every p< 1/2, if “mining difficulty” is appropriately set (as a
function of the network delay A, and total mining power),
Nakamoto’s blockchain guarantees:

® Consistency
e Chain quality: 1 - p/(1-p)
e Chain growth: O(1/A)

where p adv’s fraction of hashpower, and adv controls the network

Theorem [PSS'16]:

For every p< 1/2, if “mining difficulty” is appropriately set (as a

function of the network delay A, and total mining poWer),
Nakamoto’s blockchain guarantees:

® Consistency

e Chain quality: 1 - p/(1-p)) |)
e Chain growth: O(1/A) Blocks are found SLOWER than A

where p adv’s fraction of hashpower, and adv controls the network

Theorem [PSS'16]:

For every p< 1/2, if “mining difficulty” is appropriately set (as a

function of the network delay A, and total mining poWer),
Nakamoto’s blockchain guarantees:

® Consistency
e Chain quality: 1 - p/(1-p) |
e Chain growth: O(1/A) “Blocktime” >> A

where p adv’s fraction of hashpower, and adv controls the network

“Appropriately set”

;///,f

Sle

p (Adversary fraction)

=

1 2 4 10 25 60 100
¢ (blocktime in terms of network delay A)

When ¢ =60 (10 min blocktime, 10s network delays)

Secure: p <49.57
Attack: p>49.79

“Appropriately set”
a(l -2(A+1)a) > B.

\ \ \

Mining rate of Network Delay Mining rate
honest players of Adv

Proof Intuition:

Attack: When honest node mines a block, delay it by A.
Gives attacker A “free time”.
If Blocktime = c/, average advantage is 1/c

Proof Overview:

1. Replace RO with ideal F_mine func.

2. ldentity a “good pattern” for honest nodes.
Convergence opportunity: “silence” for A time, a single guy mines,
then “silence” again for A time.

3: Use convergence opportunity growth rate to argue chain growth
and consistency; chain quality follows as easy consequence

Convergence opportunity: “silence” for A, a single guy mines, then “silence” for A

Chain growth: whenever we have a convergence opportunity =>
ALL honest guys’ chains increase by 1!

Convergence opportunity: “silence” for A, a single guy mines, then “silence” for A

Chain growth: whenever we have a convergence opportunity =>
ALL honest guys’ chains increase by 1!

Consistency: whenever we have a convergence opportunity for length |,
unless attacker can mine a block for length |,
the honestly mined block at length | can never be changed.

in fact, to ruin convergence, attacker must mine a
block for length |, close to the time of the conv opportunity.

so, as long as # conv opps in any “long” interval >>
adv blocks in a “slightly longer” interval, we are guaranteed
convergence in that interval.

Convergence opportunity: “silence” for A, a single guy mines, then “silence” for A
How to analyze convergence opportunity growth:
Easy! This is just a markov chain, lets use concentration bounds for markov chains...

[PSS’'17]:

e Use concentration to bound # of successful mines.

* Look at distances between successful mines..

 On average, they should be longer that A

* Use concentration to bound the number of short distances.
 Each such short distance, can ruin at most 2 successful mines.

Today: better bounds now know when c is small [LRS’18] [DKT'19][Ren’20] by directly
analyzing Markov chain

Theorem [Security of Nakamoto]

For every p<1/2, if mining difficulty is appropriately set (as a
function of the network delay, and total mining power), Nakamoto’s
blockchain guarantees a) consistency, b) chain quality 1 - p/(1-p),
and c) Chain growth: O(1/A)

Theorem [Blatant attack]:

For every p>0, for every mining difficulty, there exists a network
delay such that Nakamoto’s blockchain is inconsistent and has 0
chain quality

Theorem [Security of Nakamoto]

In the ROM, assuming attacker controls < 0.49 fraction of
computational resources, there exists a synchronous state-machine
replication protocol.

Theorem [Impossiblility of partially-
syncl:

Even with POW, there does not exist a partially synchronous state-
machine replication protocol if players only know a 2 approx of the
of nodes, even if assuming attacker controls less than < .0001 of
the computational resources.

Total 2N players

N players N players
Random Tx1 Random Tx2

>> Confirm(1 sec)

M

1 second
1 second

Must output Tx1 within Confirm(1 sec) Must output Tx2 within Confirm(1 sec)

The “Permissionless” Model

e Nodes don’t know the exact # of nodes => synchronous
e Nodes come and go: “late joining” => % honesty
e No authentication => need POW

Under all those assumptions, Naka works!

Impossibility of Consensus without Honest
Majority

eal World “Alternative Universe”

Random Tx1 Random Tx2

Must output Tx1 but not sz\ / Must output Tx2 but not Tx1

Late joiner

Must agree with Real by security.
But also with attacker produced alternative universe

Nakamoto’s protocol achieves strong robustness

properties:

e assuming “honest majority of computational power”

« assuming puzzle difficulty is appropriately set as a
function of network delay A (i.e., synchrony)

BUT 1: Blocktime needs to be roughly 10 * A to handle p> 0.45 ;
thus, slow confirmation times

BUT 2: low throughput : 10 Tx

BUT 3: wasteful proof of work...

BUT 4: not fair, not incentive compatible!

Do we need to waste energy?

Permissioned Blockchain

* |Instead of voting based on computing
power, have a fixed set of voting
authorities (e.g., banks)

1 vote per authority

« High throughput & Fast Confirmation!
* But not “open”

Proof of Stake

Instead of voting based on computing power, vote based on amount of

currency in the systems (a.k.a. stake)
- Note: needs a blockchain with a cryptocurrency for this
- similar thing actually true also for Naka: how to incentivize mining

1 coin =1 vote

A greener alternative to Bitcoin
But: large account holders get more votes

Main Take-away:

“Anyone can join” # no authentication

Consensus for Proof of Stake Blockchains

Two approaches:

1. Variants of Nakamoto consensus that remove proof of work [PS’17,GKL’17]

Pro: handle dynamic participation:
we don’t know how may people show up; security holds
(assuming that %2 of online nodes are intact).

Con: roughly as slow confirmation as Nakamoto consensus

2. Sortition to Elect a Committee and next use Byzantine Fault Tolerance (BFT)
[Micali’17, Chen-Micali’17, TenderMint]

Pro: has been researched since 1970s;
fast confirmation, partial synchrony
Con: requires all honest/intact nodes to be online

(security relies on > 2/3 of all players being online and intact)

Proof of Stake with
Dynamic Participation

The “Permissionless” Model

e Nodes don’t know the exact # of nodes => synchronous
e Nodes come and go: “late joining” => % honesty

e No authen TOTr— LQ e ed POW

The “Sleepy” Model (a.k.a. dynamic participation

Q’471

e Nodes don’t know the exact # of nodes => synchronous

e Nodes come and go: “late joining” => % honesty

e No authen TOTr— LQ e ed POW

will assume PKI

Can we Remove
“proof-of-work”
from Nakamoto Consensus
IN PKI model?

(dynamic participation)

==~

Proof-of-work = “Leader election”

Key idea: restrict the puzzle space

(possible since we have a fixed set of players and a PKI)

Time-Based Leader Election

= ==
H .’fv ﬁ)<D

Q Slgn(Ska, , W,uw ,)

Sign a new block as a leader

\ B 220
v b Y
u"tl, o JJJ'_JJII"IL o jJJ"JJ J 4

Q:Sign(sk@,@ S ,ﬁ)

Sign a new block as a leader

Also:

e Time steps In blocks strictly increasing

e Honest nodes reject blocks “in the future”

Thm [PS’17]: Assuming OWF +
CRS+PKIl, there exists a secure
blockchain in the synchronous
model, handling dynamic
participation and < % static
corruption

Problem: Can predict who will be a leader in advance. Corrupt them!

VRE(&, ©)< D

“Cryptographic Sortition™ [Micali’17]

Thm [PS’17]: Using stronger
Crypto, there exists a secure
blockchain in the synchronous
model, handling dynamic
participation and < %2 adaptive
corruption

Dynamic participation => Synchronous

N players Total 2N players N players
Random Tx1 Random Tx2

>> Confirm(1 sec)

M

1 second
1 second

Must output Tx1 within Confirm(1 sec) Must output Tx2 within Confirm(1 sec)

polylog(# nodes)
Proof of Stake

From Partially-Synchronous BFT
(known # participants)

Sortition + BF T [Micali’17, Algorand]

VRF(&, O)

Use sortition to elect a committee:; use BFT on the committee

Need an underlying BFT protocol with “speak once property”:
YOSO = “You only speak once” [GHKMNRY’21]

Proceed In iterations |

-

,’—v'
‘ &
y * ol
€. et
Q;. ‘v“ g
’ (>

x;} \

@ Leader(i) proposes “block”

Everyone votes

.
b
-2 & ‘ e
: IVl
4 | &
0\ -
peeveen ., >
. . 4)
P s
-‘LL‘ ; 1 4
> e

9 Confirm € upon enough votes

Wait for %53n+1 votes

Must Intersect at an honest node

Assume 72N+1 honest

Must Intersect at an honest node

Assume < 1/31N malicious

Must Intersect at an honest node

Assume % honest and online

Assume % honest and online

Assume % honest and online

JConsistency

No liveness

Dealing with faulty proposers:

 “Time-out” and move on to the next leader

* Approach 1: Require "many” rounds of
confirmation before moving to the next iteration
[PBFT,Algorand]

* Approach 2: Or can pipe-line [Casper,HotStuff,..]:
Can move on directly, but don't finalize the whole
chain (c.f. Naka).

Summing Up

The “Permissionless” Model w/o set-up

e Nodes don’t know the exact # of nodes => synchronous
e Nodes come and go: “late joining” => % honesty
e No authentication => need POW

Under all those assumptions, Naka works!

Permissionless with PKI (Proof of Stake)

Two approaches:

1. Variants of Nakamoto consensus that remove proof of work [PS’17,GKL’17]

Pro: handle dynamic participation:
we don’t know how may people show up; security holds
(assuming that %2 of online nodes are intact).

Con: roughly as slow confirmation as Nakamoto consensus

2. Sortition to Elect a Committee and next use Byzantine Fault Tolerance (BFT)
[Micali’17,Chen-Micali’17, TenderMint’16]

Pro: has been researched since 1970s;
fast confirmation, partial synchrony
Con: requires all honest/intact nodes to be online

(security relies on > 2/3 of all players being online and intact)

Incentives (for POW blockchains)

Why do miners “mine”?

Block rewards: each miner who
find a new block gets a reward

Transaction fees, but let’s ignore for now

TWO Issues

Fairness: honest players get less

than their “fair” rewards:
Not “incentive-compatible”!

2. High-variance of Rewards

. [PSS’16]: needed to ensure consistency
. Join a mining pool

|deal Fairness

In any length k segment of the chain,
fraction of blocks mined by an X-fraction
“coalition” of honest users is X

€ -approx Fairness

In any length k segment of the chain,
fraction of blocks mined by an X-fraction
“coalition” of honest usersis (1- €) X

Distribute rewards + fees over k-length sliding window:
Implies Coalition-safe 3e-NE

If each block in the chain were

selected like a random lottery,
———> & -approx fairness for any € >0

(by Chernoff bound)

Nakamoto’s Blockchain
Completely UNFAIR

An attacker controlling close to 1/2,
may get almost ALL the blocks

An attacker controlling close 1/3
may get 1/2 the rewards,

' NN [bitcoinforum’10,
Selfish Mining bitconforum

Honest nodes see this chain
rd

|
L _—

Adversary withholds a private fork

Selfish Mining

An honest node
mines next block

Adversary immediately releases block
Combine with a network rushing attack

Adversary can erase honest nodes’
work

An honest node
mines next block

Adversary immediately releases block
Combine with a network rushing attack

p=1/3

(2/3t - 1/3t)/(2/3 t) =
1/2

By deviating get more than
“fair” share of rewards

Thm [PS’17]: for any € >0, there
exists a secure blockchain that
satisfies

£ -approx fairness

Fruitchain

'@i@o’@@@ hroneiRosre) cmmmn

JORANGE:.BLOCK]

Each step: An honest node has a chance of
mining a block

={ === =

Each step: An honest node has a chance of

_

and mining a fruit

An honest node includes
“recent” fruits in a newly mined block

&% Honest fruit will not get erased
(by liveness, eventually some
good guy will pick them up)

L
B2,
| N_—
&)
o
)
=
-
 _—
(—
O
@,

(only “recent” fruits count)

Thm: for any € >0, there exists a secure
blockchain that satisfies € -approx fairness

=> £-Incentive-Compatible blockchain
for € = 1/poly(k)

Open to get € = neg.

Fruit chain method also extremely useful to improve bandwith!
Similar ideas are currently used in Ethereum’s proof of stake protocol.

