
Permisionless Consensus

Rafael Pass

TAU, Cornell Tech

“Anyone Can Join” Consensus

Consensus
(a.k.a. state-machine replication, public ledger, permissioned blockchain)

Paxos/PBFT

● Consistency

● Liveness

(e.g., assuming 2/3 nodes honest)

Consistency:
At any point, my ledger is a prefix of yours or vice versa.

At any point, my ledger is a prefix of my future ledger.

Liveness:
There exists some polynomial Confirm, such that if any honest player

sees a transaction, w.h.p. it will be added to everyone’s ledger
within time Confirm(Δ), where Δ = max network delay.

Synchronous model: Protocol may be parametrized by Δ
Partially synchronous model: Same protocol works for any Δ

Consistency + Liveness

=

Trusted Public Ledger
“a trusted party that maintains ledger”

(e.g., think of Facebook wall)

● number and identities of nodes is common
knowledge

● nodes stick around for the whole execution.

● authenticated channels/PKI

The Traditional “Permissioned” Model

● number and identities of nodes is common
knowledge

● nodes stick around for the whole execution.

● authenticated channels/PKI

The Traditional “Permissioned” Model

Thm: In Sync: possible iff 2/3 honest with auth channels.
possible with just 1 honest, in PKI model (+ OWF)

Thm: In Part-sync: possible iff 2/3 honest with auth channels
PKI doesn’t help

Tx1

Impossibility of 1/3 corruption with partial

synchrony

Very slow connection
Q1 Q2

Attacker

Tx2

Must output Tx1 within Confirm(1 sec)

But not Tx2
Must output Tx2 within Confirm(1 sec)

But not Tx1

1 sec 1 sec

The “Permissionless” Model:

Bitcoin/Blockchain

The Times 03/Jan/2009

Chancellor on brink of

second bailout for banks.

The Times 03/Jan/2009

Chancellor on brink of

second bailout for banks.

● Nodes don’t know the exact # of nodes

● Nodes come and go: “late joining”

● No authentication mechanisms: “anyone can join”

● “economic robustness”

The “Permissionless” Model Axiom: Computation

polylog(# nodes)

The Times 03/Jan/2009

Chancellor on brink of

second bailout for banks.

● Nodes don’t know the exact # of nodes

● Nodes come and go: “late joining”

● No authentication mechanisms: “anyone can join”

We are still at the beginning of understanding

even this model…

The “Permissionless” Model Axiom: Computation

polylog(# nodes)

The Times 03/Jan/2009

Chancellor on brink of

second bailout for banks.

Thm [BCLPR’05]: Consensus impossible without
authentication in partially synchronous model.

Thm [PS’17]: Consensus impossible without
authentication even in synchronous model.

Proof: the “Sybil” attack…but a bit delicate to
formalize

The Unauthenticated Model [BCLPR05]

The Times 03/Jan/2009

Chancellor on brink of

second bailout for banks.

Real protocol running with a random Tx1

Alternative Universe: Attacker “honestly” runs a
different execution with a random Tx2

Which transaction should a late joiner output?

Impossibility of Consensus without

Authentication

Must output Tx1 but not Tx2

Random Tx1 Random Tx2

Must agree with Real by security.

Impossibility of Consensus without

Authentication
Real World “Alternative Universe”

Must output Tx2 but not Tx1

Late joiner

But also with attacker produced alternative universe

Nakamoto’s Blockchain [Nak’08]

Prevents Sybil attacks with Proofs-of-Work Puzzles [DN’92]

Claims protocol achieves “public ledger” assuming “honest

majority of computing power”:

● Consistency: everyone sees the same history

● Liveness: everyone can add new transactions

Nakamoto’s Blockchain [Nak’08]

Prevents Sybil attacks with Proofs-of-Work Puzzles [DN’92]

Claims blockchain achieves “public ledger” assuming “honest

majority”

● Consistency: everyone sees the same history

● Liveness: everyone can add new transactions

2 amazing aspects:

● Overcomes permissionless barrier [BCLPR]

● Overcomes ⅓ barrier even in permissioned setting[

2 amazing aspects:

● Overcomes “unauthetication barrier”

● Overcomes ⅓ barrier even in permissioned

setting

0

1

0

0 1

1

0Srini’s corrupt

1

● An abstract notion of a blockchain;

- how it compares to “consensus”;

- why a new definition? (hint: incentives)

● Does Nakamoto’s protocol achieve CONSISTENCY?
○ Classes of attacks don’t work [N’08,GKL’15, SZ’15]

○ 49.1% attack (with 10s network delays) claimed [DW’14]

What is a blockchain?

How to build a “blockchain”

How to build a “blockchain”

Eli➔ Dan: Ƀ10

http://bitcoinsymbol.org/

How to build a “blockchain”

“Hash function”

H (, ,)D >

Search for a puzzle solution

puzzle

solution

(, ,)D >

Difficulty

H

We found a new block

(, ,)D > H

Best way to find a solution is brute-

force search: model H as RO

(, ,)D > H

Honest nodes only “believe”

longest chain

Eli→

Dan

Eli wants to erase this transaction

Eli→

Dan

For Eli to erase his

transaction, he has to find a

longer chain

Eli→

Dan

“If transaction is sufficiently deep, he cannot do this

unless he has majority hashpower”

● [Nak’08]: “simply trying to mine alternative chain fails”

● [GLK’15]: in synchronous network

● [SZ’15]: “non-withholding attacks” fail also with Delta-delay

networks

“If transaction is sufficiently deep, he cannot do this

unless he has majority hashpower”

● [Nak’08]: “trying to mine alternative chain fails”

● [GKL’15]: no attack, as long as Δ = 1

● [SZ’15]: “non-withholding attacks” fail also with Δ-delays

Eli→

Dan

Blockchain abstraction (a la

GKL,SZ,KL,PSS)
Consistency: Honest nodes agree on all

but last k blocks

w/ prob exp(-k)

≤ k unstable

≤ k unstable

Blockchain abstraction

Consistency: Honest nodes agree on all

but last k blocks

w/ prob exp(-k)

≤ k unstable

Future-self

consistency

≤ k unstable

Blockchain abstraction

Consistency: Honest nodes agree on all

but last k blocks

w/ prob exp(-k)

Chain quality: Any consecutive k blocks

contain “sufficiently many” honest blocks

k

Blockchain abstraction

Consistency: Honest nodes agree on all

but last k blocks

w/ prob exp(-k)

Chain quality: Any consecutive k blocks

contain “sufficiently many” honest blocks

Chain growth: Chain grows at a steady rate

Blockchain implies “state machine

replication” in the permissionless model

Consistency

Chain quality

Chain growth

Traditional

“state machine replication”

Consistency

Liveness

Theorem [PSS’16]:

For every ρ<1/2, if “mining difficulty” is appropriately set (as a

function of the network delay Δ, and total mining power),
Nakamoto’s blockchain guarantees:

● Consistency
● Chain quality: 1 - ρ/(1-ρ)
● Chain growth: O(1/Δ)

where ρ adv’s fraction of hashpower, and adv controls the network

Theorem [PSS’16]:

For every ρ<1/3, if “mining difficulty” is appropriately set (as a

function of the network delay Δ, and total mining power),
Nakamoto’s blockchain guarantees:

● Consistency
● Chain quality: 1 - (1/3)/(2/3) = 1/2
● Chain growth: O(1/Δ)

where ρ adv’s fraction of hashpower, and adv controls the network

Theorem [PSS’16]:

For every ρ<1/2, if “mining difficulty” is appropriately set (as a

function of the network delay Δ, and total mining power),
Nakamoto’s blockchain guarantees:

● Consistency
● Chain quality: 1 - ρ/(1-ρ)
● Chain growth: O(1/Δ)

where ρ adv’s fraction of hashpower, and adv controls the network

Theorem [PSS’16]:

For every ρ<1/2, if “mining difficulty” is appropriately set (as a

function of the network delay Δ, and total mining power),
Nakamoto’s blockchain guarantees:

● Consistency
● Chain quality: 1 - ρ/(1-ρ)
● Chain growth: O(1/Δ)

where ρ adv’s fraction of hashpower, and adv controls the network

“Blocks are found SLOWER than Δ”

Theorem [PSS’16]:

For every ρ<1/2, if “mining difficulty” is appropriately set (as a

function of the network delay Δ, and total mining power),
Nakamoto’s blockchain guarantees:

● Consistency
● Chain quality: 1 - ρ/(1-ρ)
● Chain growth: O(1/Δ)

where ρ adv’s fraction of hashpower, and adv controls the network

“Blocktime” >> Δ

When c = 60 (10 min blocktime, 10s network delays)
Secure: ρ < 49.57
Attack: ρ > 49.79

“Appropriately set”

“Appropriately set”

Mining rate of

honest players
Mining rate

of Adv

Network Delay

Proof Intuition:

Attack: When honest node mines a block, delay it by Δ.
Gives attacker Δ “free time”.
If Blocktime = cΔ, average advantage is 1/c

Proof Overview:
1. Replace RO with ideal F_mine func.

2. Identity a “good pattern” for honest nodes.
Convergence opportunity: “silence” for Δ time, a single guy mines,
then “silence” again for Δ time.

3: Use convergence opportunity growth rate to argue chain growth
and consistency; chain quality follows as easy consequence

Convergence opportunity: “silence” for Δ, a single guy mines, then “silence” for Δ

Chain growth: whenever we have a convergence opportunity =>
ALL honest guys’ chains increase by 1!

Convergence opportunity: “silence” for Δ, a single guy mines, then “silence” for Δ

Chain growth: whenever we have a convergence opportunity =>
ALL honest guys’ chains increase by 1!

Consistency: whenever we have a convergence opportunity for length l,
unless attacker can mine a block for length l,
the honestly mined block at length l can never be changed.

in fact, to ruin convergence, attacker must mine a
block for length l, close to the time of the conv opportunity.

so, as long as # conv opps in any “long” interval >>
adv blocks in a “slightly longer” interval, we are guaranteed
convergence in that interval.

Convergence opportunity: “silence” for Δ, a single guy mines, then “silence” for Δ

How to analyze convergence opportunity growth:

Easy! This is just a markov chain, lets use concentration bounds for markov chains…

[PSS’17]:
• Use concentration to bound # of successful mines.
• Look at distances between successful mines..
• On average, they should be longer that Δ
• Use concentration to bound the number of short distances.
• Each such short distance, can ruin at most 2 successful mines.

Today: better bounds now know when c is small [LRS’18] [DKT’19][Ren’20] by directly
analyzing Markov chain

Theorem [Security of Nakamoto]
For every ρ<1/2, if mining difficulty is appropriately set (as a
function of the network delay, and total mining power), Nakamoto’s
blockchain guarantees a) consistency, b) chain quality 1 - ρ/(1-ρ),
and c) Chain growth: O(1/Δ)

Theorem [Blatant attack]:
For every ρ>0, for every mining difficulty, there exists a network
delay such that Nakamoto’s blockchain is inconsistent and has 0
chain quality

Theorem [Security of Nakamoto]
In the ROM, assuming attacker controls < 0.49 fraction of
computational resources, there exists a synchronous state-machine
replication protocol.

Theorem [Impossibility of partially-

sync]:
Even with POW, there does not exist a partially synchronous state-
machine replication protocol if players only know a 2 approx of the
of nodes, even if assuming attacker controls less than < .0001 of
the computational resources.

1 second
1 second

N players N players

>> Confirm(1 sec)

Must output Tx1 within Confirm(1 sec)

Random Tx1 Random Tx2

Total 2N players

Must output Tx2 within Confirm(1 sec)

.>

● Nodes don’t know the exact # of nodes => synchronous

● Nodes come and go: “late joining” => ½ honesty

● No authentication => need POW

The “Permissionless” Model

Under all those assumptions, Naka works!

Must output Tx1 but not Tx2

Random Tx1 Random Tx2

Must agree with Real by security.

Impossibility of Consensus without Honest

Majority
Real World “Alternative Universe”

Must output Tx2 but not Tx1

Late joiner

But also with attacker produced alternative universe

Nakamoto’s protocol achieves strong robustness

properties:

• assuming “honest majority of computational power”

• assuming puzzle difficulty is appropriately set as a

function of network delay Δ (i.e., synchrony)

BUT 1: Blocktime needs to be roughly 10 * Δ to handle ⍴> 0.45 ;

thus, slow confirmation times

BUT 2: low throughput : 10 Tx/sec…

BUT 3: wasteful proof of work…

BUT 4: not fair, not incentive compatible!

Do we need to waste energy?

Permissioned Blockchain

• Instead of voting based on computing

power, have a fixed set of voting

authorities (e.g., banks)

• 1 vote per authority

• High throughput & Fast Confirmation!

• But not “open”

Proof of Stake

• Instead of voting based on computing power, vote based on amount of

currency in the systems (a.k.a. stake)
- Note: needs a blockchain with a cryptocurrency for this

- similar thing actually true also for Naka: how to incentivize mining

• 1 coin = 1 vote

• A greener alternative to Bitcoin

But: large account holders get more votes

• Main Take-away:

“Anyone can join” ≠ no authentication

Consensus for Proof of Stake Blockchains

Two approaches:

1. Variants of Nakamoto consensus that remove proof of work [PS’17,GKL’17]

Pro: handle dynamic participation:

we don’t know how may people show up; security holds

(assuming that ½ of online nodes are intact).

Con: roughly as slow confirmation as Nakamoto consensus

2. Sortition to Elect a Committee and next use Byzantine Fault Tolerance (BFT)

[Micali’17, Chen-Micali’17, TenderMint]

Pro: has been researched since 1970s;

fast confirmation, partial synchrony

Con: requires all honest/intact nodes to be online

(security relies on > 2/3 of all players being online and intact)

Proof of Stake with

Dynamic Participation

.>

● Nodes don’t know the exact # of nodes => synchronous

● Nodes come and go: “late joining” => ½ honesty

● No authentication: “anyone can join” => need POW

The “Permissionless” Model

The “Sleepy” Model (a.k.a. dynamic participation)

[PS’17]
.>

● Nodes don’t know the exact # of nodes => synchronous

● Nodes come and go: “late joining” => ½ honesty

● No authentication: “anyone can join” => need POW

will assume PKI

Can we Remove

“proof-of-work”

from Nakamoto Consensus

in PKI model?

(dynamic participation)

Proof-of-work = “Leader election”

Key idea: restrict the puzzle space

(possible since we have a fixed set of players and a PKI)

H (, ,) < D

H (,) < D

Time-Based Leader Election

H (,) < D

H (,) < D

Sign a new block as a leader

(sk , , ,)=Sign

(sk , , ,)

Sign a new block as a leader

=Sign

Also:

● Time steps in blocks strictly increasing

● Honest nodes reject blocks “in the future”

Thm [PS’17]: Assuming OWF +
CRS+PKI, there exists a secure
blockchain in the synchronous
model, handling dynamic
participation and < ½ static
corruption

Problem: Can predict who will be a leader in advance. Corrupt them!

VRF(,) < D

“Cryptographic Sortition” [Micali’17]

Thm [PS’17]: Using stronger
Crypto, there exists a secure
blockchain in the synchronous
model, handling dynamic
participation and < ½ adaptive
corruption

1 second
1 second

N players N players

>> Confirm(1 sec)

Must output Tx1 within Confirm(1 sec)

Random Tx1 Random Tx2

Total 2N players

Must output Tx2 within Confirm(1 sec)

Dynamic participation => Synchronous

Proof of Stake

From Partially-Synchronous BFT

(known # participants)

Axiom: Computation

polylog(# nodes)

Sortition + BFT [Micali’17, Algorand]

VRF(,)
Use sortition to elect a committee; use BFT on the committee

Need an underlying BFT protocol with “speak once property”:

YOSO = “You only speak once” [GHKMNRY’21]

Proceed in iterations i

Leader (i)

Leader(i) proposes “block”

(i , hprev,)

Leader (i)

Everyone votes

Everyone votes

Confirm on upon enough votes

Confirm on upon enough votesHonest nodes vote uniquely.

Wait for ⅔n+1 votes

⅔n+1 ⅔n+1

“Y”

Must intersect at an honest node

Assume ⅔n+1 honest

⅔n+1 ⅔n+1

“Y”

Must intersect at an honest node

Assume < 1/3n malicious

⅔n+1 ⅔n+1

“Y”

Must intersect at an honest node

Thus X = Y

Assume ⅔ honest and online

Assume ⅔ honest and online

Consistency

Liveness

Assume ⅔ honest and online

Consistency

Liveness

Consistency

No liveness

Dealing with faulty proposers:

• “Time-out” and move on to the next leader

• Approach 1: Require “many” rounds of

confirmation before moving to the next iteration

[PBFT,Algorand]

• Approach 2: Or can pipe-line [Casper,HotStuff,..]:

Can move on directly, but don’t finalize the whole

chain (c.f. Naka).

Summing Up

.>

● Nodes don’t know the exact # of nodes => synchronous

● Nodes come and go: “late joining” => ½ honesty

● No authentication => need POW

The “Permissionless” Model w/o set-up

Under all those assumptions, Naka works!

Permissionless with PKI (Proof of Stake)

Two approaches:

1. Variants of Nakamoto consensus that remove proof of work [PS’17,GKL’17]

Pro: handle dynamic participation:

we don’t know how may people show up; security holds

(assuming that ½ of online nodes are intact).

Con: roughly as slow confirmation as Nakamoto consensus

2. Sortition to Elect a Committee and next use Byzantine Fault Tolerance (BFT)

[Micali’17,Chen-Micali’17,TenderMint’16]

Pro: has been researched since 1970s;

fast confirmation, partial synchrony

Con: requires all honest/intact nodes to be online

(security relies on > 2/3 of all players being online and intact)

Incentives (for POW blockchains)

Why do miners “mine”?

Block rewards: each miner who

find a new block gets a reward

Transaction fees, but let’s ignore for now

Two issues

1. Fairness: honest players get less
than their “fair” rewards:
• Not “incentive-compatible”!

2. High-variance of Rewards
• [PSS’16]: needed to ensure consistency
• Join a mining pool

Ideal Fairness

In any length k segment of the chain,
fraction of blocks mined by an X-fraction

“coalition” of honest users is X

chain quality = ρ

ρ: adv’s fraction

𝜺 -approx Fairness

In any length k segment of the chain,
fraction of blocks mined by an X-fraction

“coalition” of honest users is (1- 𝜺) X

Chain
Distribute rewards + fees over k-length sliding window:

Implies Coalition-safe 3𝜺-NE

If each block in the chain were
selected like a random lottery,

𝜺 -approx fairness for any 𝜺 >0

(by Chernoff bound)

Nakamoto’s Blockchain
Completely UNFAIR

• An attacker controlling close to 1/2,
may get almost ALL the blocks

• An attacker controlling close 1/3
may get 1/2 the rewards,

Adversary withholds a private fork

Selfish Mining

Honest nodes see this chain

[bitcoinforum’10,

Eyal-Sirer’13]

Selfish Mining

Adversary immediately releases block

Combine with a network rushing attack

An honest node

mines next block

Adversary immediately releases block

Combine with a network rushing attack

An honest node

mines next block

Adversary can erase honest nodes’

work

(2/3t - 1/3t)/(2/3 t) =

1/2

ρ=1/3

By deviating get more than

“fair” share of rewards

Thm [PS’17]: for any 𝜺 >0, there
exists a secure blockchain that

satisfies
𝜺 -approx fairness

Fruitchain

Fruitchains O

Each step: An honest node has a chance of
mining a block and mining a fruit

Each step: An honest node has a chance of
mining a block and mining a fruit

Each round: An honest node has a chance of
mining a block or mining a fruit

A fruit contains transactions, blocks

don’t

An honest node includes
“recent” fruits in a newly mined block

An honest node includes
recent fruits in a newly mined block

Fruits contain transactions,

blocks contain fruits

Honest fruit will not get erased

Adversary can amass fruits and

release them all together?

(by liveness, eventually some

good guy will pick them up)

Old fruits perish
(only “recent” fruits count)

Thm: for any 𝜺 >0, there exists a secure
blockchain that satisfies 𝜺 -approx fairness

=> 𝜺-Incentive-Compatible blockchain
for 𝜺 = 1/poly(k)

Open to get 𝜺 = neg.

Fruit chain method also extremely useful to improve bandwith!

Similar ideas are currently used in Ethereum’s proof of stake protocol.

