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Prover Time Is an important Bottleneck

Prover time directly depends on computation size.

Option 1
X, =xXx mod p * Fermat's little theorem x*{-1} = x*{p-2} mod p
X4 =Xy X%, mod p « Compute xp-2} using double and add
* Check thaty = xMp-2}

« Costs log(p) constraints
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Objectives

* Previously, discussed how the Plonk proving system worked finishing
with the Plonkish arithmetisation system.

« Today, a closer look at the Plonkish arithmetisation system

« Addition and multiplication constraints
« Copy constraints

« Selector polynomials

« Custom constraints

» Lookup constraints



A Simple Constraint System
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A Simple Constraint System T

and additions

Prove that 0 =<c;<4? and copy?
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A Simple Constraint System

Prove that 0 =<cg <4 ? First add gate not satisfied by

correct witness
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If we check multiplication gates and addition gates at every step, problems.



A Simple Constraint System

Prove that 0 =<c;<4?
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Select which gate to use at each point
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A Simple Constraint System

Prove that 0 =<c;<4?
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To Enforce Copy Constraints

* Line up all publicand private inputsin order.
« Show equal to permuted inputs.

« Permutation argument by Neff, described
previously in Dan Boneh's talk.

Statement

| | v
d= (a1 +a+f)--(ar+ La+f) [ )
‘—M< Fiat-Shamir
B=A+aM+pfg=bxg -

exists b s.t.
d=0by by by

Detailed explanation in Curdleproofs, Chapter 5 L ]

B=bxg

https://github.com/asn-d6/curdleproofs/blob/main/doc/curdleproofs.pdf

Figure 5.1: Overview of SamePerm argument. The protocol uses GrandProd argument as a subroutine.
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e Suppose that
e a(X) is a polynomial such that a(i) = g,
e b(X) is a polynomial such that b(i) = b,
e c¢(X) is a polynomial such that c(i) = ¢;
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e a(X) is a polynomial such that a(i) = g, :>
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e ¢(X) is a polynomial such that c(i) = ¢;
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e b(X) is a polynomial such that b(i) = b,
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Selector Polynomials

Addition Constraints in Polynomials?

a(X) + b(X) — c(X) = g(X)z(X)

e Suppose that
e a(X) is a polynomial such that a(i) = g,
e b(X) is a polynomial such that b(i) = b,
e c¢(X) is a polynomial such that c(i) = ¢;




Selector Polynomials

Addition Constraints in Polynomials?
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Custom Constraints
The MinRoot Verifiable Delay Function

* Overview:
* (Good randomness is really hard.

« Ethereum needs (good?) randomness for consensus.
* In future thinking of using the MinRoot verifiable delay function.

MinRoot:
Candidate Sequential Function for Ethereum VDF

Dmitry Khovratovich Mary Maller Pratyush Ranjan Tiwari
Ethereum Foundation Ethereum Foundation Johns Hopkins University

khovratovich@gmail.com mary.maller@ethereum.org ptiwari4@jhu.edu

November 24, 2022

Compute the round function over and
over and over again
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Custom Constraints
The MinRoot Verifiable Delay Function
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Custom Constraints

The MinRoot Verifiable Delay Function
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Custom Constraints
The MinRoot Verifiable Delay Function
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» These constraints are neither addition, multiplication, nor copy.
* We will use them time and time again.

* |f we allow this constraint, which is specific to our circuit, then total
number of constraints is less.




Custom Constraints
The MinRoot Verifiable Delay Function
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The MinRoot Verifiable Delay Function
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Custom Constraints
The MinRoot Verifiable Delay Function




Custom Constraints
Trade-offs

Each additional column allows more expressive custom constraints but
costs additional proof elements.

Each additional multiplier per custom constraint allows more expressive
custom constraints but costs additional proof elements.

Each type of custom constraint costs additional proof elements.




Custom Constraints
Trade-offs

Each additional column allows more expressive custom constraints but
costs additional proof elements.

Each additional multiplier per custom constraint allows more expressive
custom constraints but costs additional proof elements.

Each type of custom constraint costs additional proof elements.

Thus there Is a trade-off between proof size/ verifier
time and prover time.




Up Next...

Lookup Constraints

Lookup constraints are a very useful type of custom
constraint.



Bonus Slide
Adding Zero-Knowledge to a Multiplication Constraint

a(X)b(X) — c(X) = qg(X)z(X)

aX) = a(X) + r, X z(X)
b(X) = b(X) + r, X 2(X)
c(X) =c(X)+r.xXz(X)

g(X) = (g(X) + r,b(X) + ra(X) + r,rz(X) — r,)



