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Previously

• Described Plonkish Arithmetisation System in detail:


• Addition and multiplication constraints


• Copy constraints


• Selector polynomials


• Custom Constraints


• Now we will discuss lookup constraints



Revisiting Simple Constraint System
Prove that 0 ≤ x < 4

Quite a lot of 
constraints
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Revisiting Simple Constraint System
Prove that 0 ≤ x ≤ 4

Alternatively
• Prove that  is inside table  

• Polynomial  such that:

• 

• 

• 

•  

• Prove that 

x T

t(X)
t(1) = 0
t(2) = 1
t(3) = 2
t(4) = 3

x ∈ {t(1), t(2), t(3), t(4)}

From 6 constraints + 
many copy constraints 
to 1 custom constraint
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Table  of allowed 
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Revisiting Simple Constraint System
Almost free range constraints

a1

Witness values

• Prove that  is inside table  

• Polynomial  such that:

• 

• 

• 

•  

• Witness polynomial  such that:

• 

• 

• 

•  

• Prove that 

a1, a2, a3, a4 T

t(X)
t(1) = 0
t(2) = 1
t(3) = 2
t(4) = 3

a(X)
a(1) = a1
a(2) = a2
a(3) = a3
a(4) = a4

a(i) ∈ {t(1), t(2), t(3), t(4)} for i ∈ {0,1,2,3}

a2

a3

a4
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Table  of allowed 
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T



Revisiting Simple Constraint System
Selector Polynomials

a1

Witness values

• Prove that  is inside table  

• Polynomial  such that:

• 

• 

• 

•  

• Witness polynomial  such that:

• 

• 

• 

•  

• Prove that 

a1, a3 T

t(X)
t(1) = 0
t(2) = 1
t(3) = 2
t(4) = 3

a(X)
a(1) = a1
a(2) = a2
a(3) = a3
a(4) = a4

a(i) ∈ {t(1), t(2), t(3), t(4)} for i ∈ {0,2}

a2

a3

a4

We will ignore 
selector 

polynomials in this 
talk.

0

1

2

3

Table  of allowed 
range
T



The Halo2 Strategy
Want to Prove a Lookup Argument.

https://zcash.github.io/halo2/design/proving-system/lookup.html



The Halo2 Strategy
Want to Prove a Lookup Argument.

https://zcash.github.io/halo2/design/proving-system/lookup.html

Prove that 
a(i) ∈ {t(1), t(2), t(3), t(4)} for i ∈ {0,1,2,3}



The Halo2 Strategy
Want to Prove a Lookup Argument.

https://zcash.github.io/halo2/design/proving-system/lookup.html

Prove that 
a(i) ∈ {t(1), t(2), t(3), t(4)} for i ∈ {0,1,2,3}

• We will try and fail to use a copy 
argument to prove our lookup 
constraint. 

• We will try and fail to use a 
permutation argument to prove our 
lookup constraint. 

• We will then discuss how Halo2 
actually does it.



The Halo2 Strategy
Can we use a copy argument?

• Polynomial  such that:

• 

• 

• 

•  

• Witness polynomial  such that:

• 

• 

• 

•  

• Prove that  

t(X)
t(1) = 0
t(2) = 1
t(3) = 2
t(4) = 3

a(X)
a(1) = a1
a(2) = a2
a(3) = a3
a(4) = a4

{a1, a2, a3, a4} ∈ {t1, t2, t3, t4}

t1

t2

t3

t4

a1

a2

a3

a4

Table  of allowed 
range
TWitness values



The Halo2 Strategy
Can we use a copy argument?

• Polynomial  such that:

• 

• 

• 

•  

• Witness polynomial  such that:

• 

• 

• 

•  

• Prove that  

t(X)
t(1) = 0
t(2) = 1
t(3) = 2
t(4) = 3

a(X)
a(1) = a1
a(2) = a2
a(3) = a3
a(4) = a4

{a1, a2, a3, a4} ∈ {t1, t2, t3, t4}
t1a1

t1

t2

t3

t4

a1

a2

a3

a4

Table  of allowed 
range
TWitness values

= What if ? 
 

Then copy is not 
satisfied.

a1 = t3



The Halo2 Strategy
Can we use a permutation argument?

• Polynomial  such that:

• 

• 

• 

•  

• Witness polynomial  such that:

• 

• 

• 

•  

• Prove that  

t(X)
t(1) = 0
t(2) = 1
t(3) = 2
t(4) = 3

a(X)
a(1) = a1
a(2) = a2
a(3) = a3
a(4) = a4

{a1, a2, a3, a4} ∈ {t1, t2, t3, t4}

t1

t2

t3

t4

t1

t2

t1

t4

Table  of allowed 
range
TWitness values



The Halo2 Strategy
Can we use a permutation argument?

• Polynomial  such that:

• 

• 

• 

•  

• Witness polynomial  such that:

• 

• 

• 

•  

• Prove that  

t(X)
t(1) = 0
t(2) = 1
t(3) = 2
t(4) = 3

a(X)
a(1) = a1
a(2) = a2
a(3) = a3
a(4) = a4

{a1, a2, a3, a4} ∈ {t1, t2, t3, t4}

t1

t2

t3

t4

t1

t2

t1

t4

Table  of allowed 
range
TWitness values

What if there are repeated 
witness values? 

 
Then permutation is not 

satisfied.



The Halo2 Strategy
Can we use a permutation argument?

t1 t2 t3 t4
Table  of allowed 

range
T

c1 c2 c3 c4Temporary Table C

d1 d2 d3 d4Temporary Table D

Permute

Copy this or that

• Polynomial  such that:

• 

• 

• 

•  

• Witness polynomial  such that:

• 

• 

• 

•  

• Prove that  

t(X)
t(1) = 0
t(2) = 1
t(3) = 2
t(4) = 3

a(X)
a(1) = a1
a(2) = a2
a(3) = a3
a(4) = a4

{a1, a2, a3, a4} ∈ {t1, t2, t3, t4}

a1 a2 a3 a4Witness a(X)

Permute again



The Halo2 Strategy
Can we use a permutation argument?

t1 t2 t3 t4
Table  of allowed 

range
T

Temporary Table C

Temporary Table D

Permute

Copy this or that

• Polynomial  such that:

• 

• 

• 

•  

• Witness polynomial  such that:

• 

• 

• 

•  

• Prove that  

t(X)
t(1) = 0
t(2) = 1
t(3) = 2
t(4) = 3

a(X)
a(1) = a1
a(2) = a2
a(3) = a3
a(4) = a4

{a1, a2, a3, a4} ∈ {t1, t2, t3, t4}

t2 t3 t2 t4Witness a(X)

Permute again



The Halo2 Strategy
Can we use a permutation argument?

t1 t2 t3 t4
Table  of allowed 

range
T

Temporary Table C

t2 t2 t3 t4Temporary Table D

Permute

Copy this or that

• Polynomial  such that:

• 

• 

• 

•  

• Witness polynomial  such that:

• 

• 

• 

•  

• Prove that  

t(X)
t(1) = 0
t(2) = 1
t(3) = 2
t(4) = 3

a(X)
a(1) = a1
a(2) = a2
a(3) = a3
a(4) = a4

{a1, a2, a3, a4} ∈ {t1, t2, t3, t4}

t2 t3 t2 t4Witness a(X)

Permute again



The Halo2 Strategy
Can we use a permutation argument?

t1 t2 t3 t4
Table  of allowed 

range
T

t2Temporary Table C

t2 t2 t3 t4Temporary Table D

Permute

Copy this or that

• Polynomial  such that:

• 

• 

• 

•  

• Witness polynomial  such that:

• 

• 

• 

•  

• Prove that  

t(X)
t(1) = 0
t(2) = 1
t(3) = 2
t(4) = 3

a(X)
a(1) = a1
a(2) = a2
a(3) = a3
a(4) = a4

{a1, a2, a3, a4} ∈ {t1, t2, t3, t4}

t2 t3 t2 t4Witness a(X)

Permute again

 is not a copy, 
thus 

d1
d1 = c1



The Halo2 Strategy
Can we use a permutation argument?

t1 t2 t3 t4
Table  of allowed 

range
T

t2Temporary Table C

t2 t2 t3 t4Temporary Table D

Permute

Copy this or that

• Polynomial  such that:

• 

• 

• 

•  

• Witness polynomial  such that:

• 

• 

• 

•  

• Prove that  

t(X)
t(1) = 0
t(2) = 1
t(3) = 2
t(4) = 3

a(X)
a(1) = a1
a(2) = a2
a(3) = a3
a(4) = a4

{a1, a2, a3, a4} ∈ {t1, t2, t3, t4}

t2 t3 t2 t4Witness a(X)

Permute again

 is a copyd2 = d1



The Halo2 Strategy
Can we use a permutation argument?

t1 t2 t3 t4
Table  of allowed 

range
T

t2 t3Temporary Table C

t2 t2 t3 t4Temporary Table D

Permute

Copy this or that

• Polynomial  such that:

• 

• 

• 

•  

• Witness polynomial  such that:

• 

• 

• 

•  

• Prove that  

t(X)
t(1) = 0
t(2) = 1
t(3) = 2
t(4) = 3

a(X)
a(1) = a1
a(2) = a2
a(3) = a3
a(4) = a4

{a1, a2, a3, a4} ∈ {t1, t2, t3, t4}

t2 t3 t2 t4Witness a(X)

Permute again

  
thus 

d3 ≠ d2

d3 = c3



The Halo2 Strategy
Can we use a permutation argument?

t1 t2 t3 t4
Table  of allowed 

range
T

t2 t3 t4Temporary Table C

t2 t2 t3 t4Temporary Table D

Permute

Copy this or that

• Polynomial  such that:

• 

• 

• 

•  

• Witness polynomial  such that:

• 

• 

• 

•  

• Prove that  

t(X)
t(1) = 0
t(2) = 1
t(3) = 2
t(4) = 3

a(X)
a(1) = a1
a(2) = a2
a(3) = a3
a(4) = a4

{a1, a2, a3, a4} ∈ {t1, t2, t3, t4}

t2 t3 t2 t4Witness a(X)

Permute again

  
thus 

d4 ≠ d3

d4 = c4



The Halo2 Strategy
Can we use a permutation argument?

t1 t2 t3 t4
Table  of allowed 

range
T

t2 t3 t4Temporary Table C

t2 t2 t3 t4Temporary Table D

Permute

• Polynomial  such that:

• 

• 

• 

•  

• Witness polynomial  such that:

• 

• 

• 

•  

• Prove that  

t(X)
t(1) = 0
t(2) = 1
t(3) = 2
t(4) = 3

a(X)
a(1) = a1
a(2) = a2
a(3) = a3
a(4) = a4

{a1, a2, a3, a4} ∈ {t1, t2, t3, t4}

t2 t3 t2 t4Witness a(X)

Permute again

Copy this or that



The Halo2 Strategy
Can we use a permutation argument?

t1 t2 t3 t4
Table  of allowed 

range
T

t2 t1 t3 t4Temporary Table C

t2 t2 t3 t4Temporary Table D

Permute

• Polynomial  such that:

• 

• 

• 

•  

• Witness polynomial  such that:

• 

• 

• 

•  

• Prove that  

t(X)
t(1) = 0
t(2) = 1
t(3) = 2
t(4) = 3

a(X)
a(1) = a1
a(2) = a2
a(3) = a3
a(4) = a4

{a1, a2, a3, a4} ∈ {t1, t2, t3, t4}

t2 t3 t2 t4Witness a(X)

Permute again

Copy this or that



The Halo2 Strategy
Can we use a permutation argument?

t1 t2 t3 t4
Table  of allowed 

range
T

t2 t1 t3 t4Temporary Table C

t2 t2 t3 t4Temporary Table D

• Polynomial  such that:

• 

• 

• 

•  

• Witness polynomial  such that:

• 

• 

• 

•  

• Prove that  

t(X)
t(1) = 0
t(2) = 1
t(3) = 2
t(4) = 3

a(X)
a(1) = a1
a(2) = a2
a(3) = a3
a(4) = a4

{a1, a2, a3, a4} ∈ {t1, t2, t3, t4}

t2 t3 t2 t4Witness a(X)

Permute again

Copy this or that

Permute

Permutation 
arguments 

discussed in 
prior talks.



The Halo2 Strategy
Copy this or that constraints?

t2 t1 t3 t4Temporary Table C

t2 t2 t3 t4Temporary Table D

Copy this or that

• Aim to show that  is such that:

• 

• OR  

• Prove that

•   

• Prove that 

•  

c(X), d(X)
c(i) = d(i)

d(i + 1) = d(i)

b(X)[c(X) − d(X)] + (𝗂𝖽(X) − b(X))[d(X) − d(X − 1)] = q′￼(X)z(X)

b(X)(𝗂𝖽(𝖷) − b(X)) = q(X)z(X)



The Halo2 Strategy
Copy this or that constraints?

t2 t1 t3 t4Temporary Table C

t2 t2 t3 t4Temporary Table D

Copy this or that

• Aim to show that  is such that:

• 

• OR  

• Prove that 

•  

• Prove that 

•  

c(x), d(X)
c(i) = d(i)

d(i + 1) = d(i)

[c(X) − d(X)] = q′￼(X)z(X)

b(X)(𝗂𝖽(𝖷) − b(X)) = q(X)z(X)

When  have c(i) = d(i) c(i) − d(i) = 0



The Halo2 Strategy
Copy this or that constraints?

t2 t1 t3 t4Temporary Table C

t2 t2 t3 t4Temporary Table D

Copy this or that

• Aim to show that  is such that:

• 

• OR  

• Prove that 

•  

• Prove that 

•  

c(x), d(X)
c(i) = d(i)

d(i + 1) = d(i)

[c(X) − d(X)] = q′￼(X)z(X)

b(X)(𝗂𝖽(𝖷) − b(X)) = q(X)z(X)

When  have c(i) = d(i) c(i) − d(i) = 0
Recall that z(X) = (X − 1)(X − 2)(X − 3)(X − 4)

Vanishing 
polynomial



The Halo2 Strategy
Copy this or that constraints?

t2 t1 t3 t4Temporary Table C

t2 t2 t3 t4Temporary Table D

Copy this or that

• Aim to show that  is such that:

• 

• OR  

• Prove that 

•  

• Prove that 

•  

c(x), d(X)
c(i) = d(i)

d(i + 1) = d(i)

[c(X) − d(X)] = q′￼(X)z(X)

b(X)(𝗂𝖽(𝖷) − b(X)) = q(X)z(X)

When  have c(i) = d(i) c(i) − d(i) = 0

Then copy this or 
that is not satisfied 

when 
d(i + 1) = d(i)

Recall that z(X) = (X − 1)(X − 2)(X − 3)(X − 4)

Vanishing 
polynomial



The Halo2 Strategy
Copy this or that constraints?

t2 t1 t3 t4Temporary Table C

t2 t2 t3 t4Temporary Table D

Copy this or that

• Aim to show that  is such that:

• 

• OR  

• Prove that 

•  

• Prove that 

•  

c(x), d(X)
c(i) = d(i)

d(i + 1) = d(i)

b(X)[c(X) − d(X)] = q′￼(X)z(X)

b(X)(𝗂𝖽(𝖷) − b(X)) = q(X)z(X)

When  have c(i) ≠ d(i) b(i) = 0

When  have c(i) = d(i) b(i) = 1 The identity polynomial 𝗂𝖽(i) = 1

The vanishing polynomial z(i) = 0



The Halo2 Strategy
Copy this or that constraints?

t2 t1 t3 t4Temporary Table C

t2 t2 t3 t4Temporary Table D

Copy this or that

• Aim to show that  is such that:

• 

• OR  

• Prove that 

•  

• Prove that 

•  

c(x), d(X)
c(i) = d(i)

d(i + 1) = d(i)

b(X)[c(X) − d(X)] = q′￼(X)z(X)

b(X)(𝗂𝖽(𝖷) − b(X)) = q(X)z(X)

When  have c(i) ≠ d(i) b(i) = 0

Then copy this or 
that is always 
satisfied when 

b(i) = 0When  have c(i) = d(i) b(i) = 1 The identity polynomial 𝗂𝖽(i) = 1

The vanishing polynomial z(i) = 0

Polynomial  is such that b(X) b(i)(1 − b(i)) = 0 ⇒ b(i) ∈ {0,1}



The Halo2 Strategy
Copy this or that constraints?

t2 t1 t3 t4Temporary Table C

t2 t2 t3 t4Temporary Table D

Copy this or that

• Aim to show that  is such that:

• 

• OR  

• Prove that 

•  

• Prove that 

•  

c(x), d(X)
c(i) = d(i)

d(i + 1) = d(i)

b(X)[c(X) − d(X)] = q′￼(X)z(X)

b(X)(𝗂𝖽(𝖷) − b(X)) = q(X)z(X)

When  have c(i) ≠ d(i) b(i) = 0

When  have c(i) = d(i) b(i) = 1 When  have c(i) = d(i) 1 × [c(i) − d(i)] = 0

b(i) ∈ {0,1}



The Halo2 Strategy
Copy this or that constraints?

t2 t1 t3 t4Temporary Table C

t2 t2 t3 t4Temporary Table D

Copy this or that

• Aim to show that  is such that:

• 

• OR  

• Prove that 

•  

• Prove that 

•  

c(x), d(X)
c(i) = d(i)

d(i + 1) = d(i)

b(X)[c(X) − d(X)] + (𝗂𝖽(X) − b(X))[d(X) − d(X − 1)] = q′￼(X)z(X)

b(X)(𝗂𝖽(𝖷) − b(X)) = q(X)z(X)

When  have c(i) ≠ d(i) b(i) = 0

When  have c(i) = d(i) b(i) = 1

 is such that b(X) b(i) ∈ {0,1}

When  have c(i) = d(i) 1 × [c(i) − d(i)] + 0 = 0

When  have d(i + 1) = d(i) 0 + (1 − 0) × [d(i + 1) − d(i)] = 0



The Halo2 Strategy
Copy this or that constraints?

t2 t1 t3 t4Temporary Table C

t2 t2 t3 t4Temporary Table D

Copy this or that

• Aim to show that  is such that:

• 

• OR  

• Prove that 

•  

• Prove that 

•  

c(x), d(X)
c(i) = d(i)

d(i + 1) = d(i)

b(X)[c(X) − d(X)] + (𝗂𝖽(X) − b(X))[d(X) − d(X − 1)] = q′￼(X)z(X)

b(X)(𝗂𝖽(𝖷) − b(X)) = q(X)z(X)

When  have c(i) ≠ d(i) b(i) = 0

When  have c(i) = d(i) b(i) = 1

 is such that b(X) b(i) ∈ {0,1}

When  have c(i) = d(i) 1 × [c(i) − d(i)] + 0 = 0

When  have d(i + 1) = d(i) 0 + (1 − 0) × [d(i + 1) − d(i)] = 0



The Halo2 Strategy
Copy this or that constraints?

t2 t1 t3 t4Temporary Table C

t2 t2 t3 t4Temporary Table D

Copy this or that

• Aim to show that  is such that:

• 

• OR  

• Prove that 

•  

• Prove that 

•  

c(x), d(X)
c(i) = d(i)

d(i + 1) = d(i)

b(X)[c(X) − d(X)] + (𝗂𝖽(X) − b(X))[d(X) − d(X − 1)] = q′￼(X)z(X)

b(X)(𝗂𝖽(𝖷) − b(X)) = q(X)z(X)

When  have c(i) ≠ d(i) b(i) = 0

Works

When  have c(i) = d(i) b(i) = 1

 is such that b(X) b(i) ∈ {0,1}

When  have c(i) = d(i) 1 × [c(i) − d(i)] + 0 = 0

When  have d(i + 1) = d(i) 0 + (1 − 0) × [d(i + 1) − d(i)] = 0



The Halo2 Strategy
Slow for big tables?

t1 t2 t3 t4
Table  of allowed 

range
T

t2 t1 t3 t4Temporary Table C

t2 t2 t3 t4Temporary Table D

t2 t3 t2 t4Witness a(X)

Permute again

Copy this or that

Permute

• Halo2 runs a permutation argument over . 

• Prover time depends linearly on . 

• Want large tables e.g.  

t(X)

t(X)

{t1, …, t227}



The Caulk+ Strategy
Fast for big tables.

t1 t2 t3 t4
Table  of allowed 

range
T

t2 t3 t4Temporary Table C

• Halo2 runs a permutation argument over . 

• Prover time depends linearly on . 

• Want large tables e.g.  

• We would like a temporary table  that is 
independent of the size of . 

t(X)

t(X)

{t1, …, t227}

c(X)
t(X)

Possible with preprocessing.



The Caulk+ Strategy
Preprocessing.

t1 t2 t3 t4

t(X) − t(i) = qi(X)(X − i)

• Polynomial commitments  can be precomputed quickly. 
 

qi(X)

q1(X) q2(X) q3(X) q4(X)Polynomial 
commitments



The Caulk+ Strategy
Obtaining a subtable

t1 t2 t3 t4

q1(X) q2(X) q3(X) q4(X)

• Polynomial commitments  can be precomputed quickly. 

• Subtable  contains entries in  over domain 

qi(X)

c(X) t(X) zI(X)

Polynomial 
commitments

t2 t3 t4Subtable c(X)

If  defined over  is a 
subtable then 

  

c(X) I

t(X) − c(X) = q(X)zI(X)
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t(X) − c(X) = q(X)zI(X)

Precomputed 
values such that

Can quickly compute 
 q(X) = f( q2(X), q3(X), q4(X) )

Ignore unused 
values

Once we have a subtable how do we 
use it?
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The Baloo Strategy
Recall Lagrange Polynomials

Li(X) = {1 if X = i
0 if X ≠ i

Lagrange 
polynomials are the 
unit vectors of the 
evaluation domain.

Li(X) =
∏j∈I,j≠i (X − j)

∏j∈I,j≠i (i − j)

If  then τi(X) = ∏
j∈I,j≠i

(X − j) =
zI(X)
X − i

Li(X) =
τi(X)
τi(i)

For  the vanishing polynomial over zI(X) I



The Baloo Strategy
Prove lookup over hidden domain

t1 t2 t3 t4

q1(X) q2(X) q3(X) q4(X)

• Polynomial commitments  can be precomputed quickly. 

• Subtable  contains entries in  over domain  

• Define unit vectors with respect to 

qi(X)

c(X) t(X) zI(X)

zI(X)

Polynomial 
commitments

t2 t3 t4Subtable c(X)

t2 t2 t4Witness a(X)

∑
j∈I

τi( j)
τi(vi)

c( j) = ai

Unit vectors  and  for some ei(X) =
τj(X)
τj(v)

τj(X) =
zI(X)
X − v

v

ei ∈ {(1,0,0), (0,1,0), (0,0,1)}

e2 = (1,0,0)
e1 = (1,0,0)

e3 = (0,0,1)

Lincheck 
Argument over 

unit matrix
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Cached Quotients

t1 t2 t3 t4

q1(X) q2(X) q3(X) q4(X)Polynomial 
commitments Li(X)(t(X) − ti) = qi(X)z(X)

Alternative precomputation



The CQ Strategy
Cached Quotients

t1 t2 t3 t4

q1(X) q2(X) q3(X) q4(X)Polynomial 
commitments

Straight to 
witness a(X)

There exists  such that 

 

m

∑
all tj

mj

Y + tj
= ∑

all ai

1
Y + ai

t2 t2 t4
Prover time 

 is 
independent from 

O(m log(m)), m = deg(a(X))
t(X)
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range
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Lookup Constraints in Plonkish
Function Tables

Table  of allowed 
range
TWitness values

a1 + b1X + c1X2

a2 + b2X + c2X2

a3 + b3X + c3X2

a4 + b4X + c4X2

t1 + s1X + u1X2

t2 + s2X + u2X2

t3 + s3X + u3X2

t4 + s4X + u4X2

• Prove that  

• Prove that 

(ai, bi, ci) ∈ (tj, uj, vj)

ai + biX + ciX2 ∈ (tj + sjX + ujX2)

Random linear 
combination

Because random oracles exist.. 



Final Thoughts

• All sublinear time lookup arguments use pairings.


• Pairings are not post-quantum secure and require special, non-standardised, 
elliptic curves.


• Open question: can we design a practical, sublinear time lookup argument (in 
the size of the table) without pairings?
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elliptic curves.


• Open question: can we design a practical, sublinear time lookup argument (in 
the size of the table) without pairings?

Thanks for 
listening!


