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Previously

* Described Plonkish Arithmetisation System in detail:
 Addition and multiplication constraints
 Copy constraints
e Selector polynomials
 Custom Constraints

* Now we will discuss lookup constraints



Revisiting Simple Constraint System
Prove that 0 < x < 4

A Simple Constraint System

Prove that 0 =<cz <4 ?

B x &
B x &

Quite a lot of
constraints

A x &
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range




Revisiting Simple Constraint System
Prove that 0 < x <4

Alternatively
e Prove that x is inside table T
Witness value Table T of allowed
range  Polynomial #(X) such that:

e (1) =

Do
e 1(2) =1
¢ 1(3) =12

« 1(4) =3




Revisiting Simple Constraint System
Prove that 0 < x <4

Y * Prove that x is inside table T°
Witness value Table T of allowed « Polynomial #(X) such that:
range . 1(1) = 0
 1(4) =3

* Prove that x € {#(1),#2),#(3),14)}




Revisiting Simple Constraint System

Almost free range constraints

* Prove that ay, a,, as, a, is inside table T

Table 1" of allowed
range  Polynomial #(X) such that:

« (1) =0
« 1(2) =1
« 1(3) =2
« 1(4) =3

Witness values

» Witness polynomial a(X) such that:
e a(l) = q,
ca(2) =a,
ca(3) = a4
ca(4) =q,

 Prove that a(i) € {#(1),#(2),#(3),t(4)} fori € {0,1,2,3}



Revisiting Simple Constraint System

Selector Polynomials

« Prove that a,, a, is inside table T

. Table 1T of allowed
Witness values

range  Polynomial #(X) such that:
¢ 17(1) =0
¢ 1(2) =1
¢ 1(3) =2
We will ignore + 1(4) =3
selector
polynomials in this » Witness polynomial a(X) such that:
talk. e a(l) = q,
ca(2) =a,
ca(3) = a4
ca(4) =q,

 Prove that a(i) € {#(1),#(2),#(3),t(4)} fori € {0,2}



The Halo2 Strategy

Want to Prove a Lookup Argument.

¢ Q The halo2 Book

Lookup argument

Halo 2 uses the following lookup technique, which allows for lookups in arbitrary sets, and is
arguably simpler than Plookup.

https://zcash.github.io/halo2/design/proving-system/lookup.html
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Want to Prove a Lookup Argument.
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Lookup argument
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https://zcash.github.io/halo2/design/proving-system/lookup.html



The Halo2 Strategy

Want to Prove a Lookup Argument.

Prove that

a(i) € {1(1),12),1(3),t(4)} fori € {0,1,2,3}

J Q The halo2 Book

Lookup argument * We will try and fail to use a copy

Halo 2 uses the following lookup technique, which allows for lookups in arbitrary sets, and is argument tO prove our |OOkU p
arguably simpler than Plookup. COnStraint.

* We will try and fail to use a
permutation argument to prove our

https://zcash.github.io/halo2/design/proving-system/lookup.html lookup constraint.

e We will then discuss how Halo?2
actually does It.



Table 1 of allowed

The Halo2 Strategy Winess values e

Can we use a copy argument?

* Polynomial #(X) such that:

¢ 1(1) =0
¢ 1(2) =1
¢ 1(3) =2
e 1(4) =3
» Witness polynomial a(X) such that:
e a(l) =aq,
ca(2) =a,
ca(3) = a4
ca(4) =ay

 Prove that {al, y, s, a4} = {tl’ tz, t3, t4}



Table 1 of allowed

The Halo2 Strategy Winess values e

Can we use a copy argument?

* Polynomial #(X) such that:

¢ 1(1) =0
¢ 1(2) =1
¢ 1(3) =2
e 1(4) =3
» Witness polynomial a(X) such that:
e a(l) =aq,
ca(2) =a,
ca(3) = a4
ca(4) =ay

m— What if a; = 1;?

 Prove that {al, y, s, a4} = {tl’ tz, t3, t4}



Table 1 of allowed

The Halo2 Strategy Winess values e

Can we use a permutation argument?

* Polynomial #(X) such that:

¢ 1(1) =0
¢ 1(2) =1
¢ 1(3) =2
e 1(4) =3
» Witness polynomial a(X) such that:
e a(l) =aq,
ca(2) =a,
ca(3) = a4
ca(4) =ay

 Prove that {al, y, s, a4} = {tl’ tz, t3, t4}



Table 1 of allowed

The Halo2 Strategy Winess values e

Can we use a permutation argument?

* Polynomial #(X) such that:

¢ 1(1) =0
¢ 1(2) =1
¢ 1(3) =2
e 1(4) =3
» Witness polynomial a(X) such that:
e a(l) =aq,
ca(2) =a,
ca(3) = a4
ca(4) =ay

What if there are repeated
 Prove that {al, y, s, a4} = {tl’ tz, t3, t4} witnhess values?



The Halo2 Strategy

Can we use a permutation argument?

Table T of allowed
« Polynomial #(X) such that: range 1 2 3 4

¢ /(1) =0 1
® t(2) =1 Permute
¢ 1(3) =12

Yo LLL

» Witness polynomial a(X) such that:

Copy this or that
e a(l) =aq,
. a(2) = a,
e T
ca(4) = q,

Permute again
 Prove that {al, y, s, a4} = {tl’ tz, t3, t4}

Witness a(X)




The Halo2 Strategy

Can we use a permutation argument?

Table 1 of allowed . . . .
range

A

Permute

Temporary Table C . . . .

A

Copy this or that

v

Temporary Table D

A

Permute again

v

Witness a(X)




The Halo2 Strategy

Can we use a permutation argument?

Table 1 of allowed . . . .
range

A

Permute

Temporary Table C . . . .

A

Copy this or that

v

Temporary Table D

A

Permute again

v

Witness a(X)




The Halo2 Strategy

Can we use a permutation argument?

Table 1 of allowed . . . .
range

A

Permute

Temporary Table C . . . .

A

d, is not a copy,

Copy this or that
thus dl - Cl

v

Temporary Table D . . . .

A A A
Permute again ><
\ 4

— 1]




The Halo2 Strategy

Can we use a permutation argument?

Table 1 of allowed . . . .
range

A

Permute

Temporary Table C . . . .

A

Copy this or that d2 — dl is a copy

v

p— T 1 [

A A A
Permute again ><
\ 4

— 1]




The Halo2 Strategy

Can we use a permutation argument?

Table 1 of allowed . . . .
range

A

Permute

Temporary Table C . . . .

! dy # d,
Copy this or that thus
v d; = 5

Temporary Table D

A

Permute again

v

Witness a(X)




The Halo2 Strategy

Can we use a permutation argument?

Table 1 of allowed . . . .
range

A

Permute

Temporary Table C . . . .

‘ d, # d
Copy this or that thus
' d, = ¢y

Temporary Table D

A

Permute again

v

Witness a(X)




The Halo2 Strategy

Can we use a permutation argument?

Table 1 of allowed
range

A

Permute

\4

Temporary Table C

A

Copy this or that

v

Temporary Table D

A

Permute again

v

Witness a(X)




The Halo2 Strategy

Can we use a permutation argument?

Table 1 of allowed
range

A

Permute

\4

Temporary Table C

A

Copy this or that

v

Temporary Table D

A

Permute again

v

Witness a(X)




The Halo2 Strategy

Can we use a permutation argument?

Table 1 of allowed
range

Temporary Table C

A

\4

A

Copy this or that

v

Temporary Table D

Witness a(X)

A

v




The Halo2 Strategy

Copy this or that constraints?

Temporary Table C . . . .

Copy this or that




The Halo2 Strategy

Copy this or that constraints?

Temporary Table C . . . .

Copy this or that

When c(i) = d(i) have c(i) — d(i) = 0O



The Halo2 Strategy

Copy this or that constraints?

Temporary Table C . . . .

Copy this or that

Recall that z(X) = (X - (X = 2)(X = 3)(X — 4)

/ When ¢(i) = d(i) have c(i) — d(i) = 0
Vanhishing

polynomial



The Halo2 Strategy

Copy this or that constraints?

Temporary Table C . . . .

Copy this or that

remorery e [

Recall that Z(X) — (X — 1)(X — 2)(X _ 3)(X _ 4) Then copy this or

that is not satisfied
Varﬁing(

When c¢(i) = d(i) have c(i) — d(i) = 0 when
polynomial

dii+ 1) =d@)



The Halo2 Strategy

Copy this or that constraints?

Temporary Table C . . . .

Copy this or that

When c(i) = d(i) have b(i) = 1
When c(i) # d(i) have b(i) = 0O

The identity polynomial 1d(i) = 1

The vanishing polynomial z(i) = O



The Halo2 Strategy

Copy this or that constraints?

Temporary Table C . . . .

Copy this or that

Then copy this or
that is always
satisfied when

The identity polynomial 1d(i) = 1 b(i) =0

When c(i) = d(i) have b(i) = 1

When c(1) # d(i) have b(i) = 0 The vanishing polynomial z(i) = 0

Polynomial b(X) is such that b(i)(1 — b(i)) = 0 = b(i) € {0,1}



The Halo2 Strategy

Copy this or that constraints?

Temporary Table C . . . .

Copy this or that

b(i) € {0,1}
When c(i) = d(i) have b(i) = 1 When c(i) = d(i) have 1 X [c(i)) — d(i)] = 0
When c(i) # d(i) have b(i) = 0O



The Halo2 Strategy

Copy this or that constraints?

Temporary Table C . . . .

Copy this or that

b(X) is such that b(i) € {0,1}
When c(i) = d(i) have b(i) = 1 When c(i) = d(i) have 1 X [c(i) = d())]+0 =0
When c(i) # d(i) have b(i) = 0 Whend(i+ 1) =d(i)) have O+ (1 —0) X [d(i+ 1) —d(@{)] =0



The Halo2 Strategy

Copy this or that constraints?

Temporary Table C . . . .

Copy this or that

b(X) is such that b(i) € {0,1}
When c(i) = d(i) have b(i) = 1 When c(i) = d(i) have 1 X [c(i) = d())] +0 =0
When c(i) # d(i) have b(i) = 0 Whend(i+ 1) =d(i)) have O+ (1 —0) X [d(i+ 1) —d(@{)] =0




The Halo2 Strategy

Copy this or that constraints?

Temporary Table C . . . .

Copy this or that

b(X) is such that b(i) € {0,1}
When c(i) = d(i) have b(i) = 1 When c(i) = d(i) have 1 X [c(i) —d(i)]+0 =10
When c(i) # d(i) have b(i) = 0 Whend(i+ 1) =d(i)) have O+ (1 —0) X [d(i+ 1) —d(@{)] =0



The Halo2 Strategy

Slow for big tables?

Table 1 of allowed
range

A

Temporary Table C

\4

Copy this or that

\4

Temporary Table D

A

Permute again

\4

Witness a(X)




The CaUIk+ Strategy Caulk+: Table-independent lookup arguments

Fa St fo r b i g ta b I es _ Jim Posen! and Assimakis A. Kattis?

! Ulvetanna jimpo AT ulvetanna.io

2 New York University kattis AT cs.nyu.edu

* Halo2 runs a permutation argument over #(X). Table I"of allowed 2 b 2 I

range
A

* Prover time depends linearly on #(X).

 Want large tables e.g. {?;, ..., )27} '

« We would like a temporary table c¢(X) that is

.) the size of #(X).

Possible with preprocessing.



Th C I k St t Fast amortized KZG proofs
e a u + ra e gy Dankrad Feist*! and Dmitry Khovratovich'?

L2Ethereum Foundation

Preprocessing.

Abstract

In this note we explain how to compute n KZG proofs for a polynomial of degree d in time superlinear of
(t + d). Our technique is used in lookup arguments and vector commitment schemes.

Iy

|

A ) 2
Polynomial
commitments

O ©-w=q0x-i

e Polynomial commitments g,(X) can be precomputed quickly.



The Caulk+ Strategy

Obtaining a subtable If ¢(X) defined over [ is a
subtable then

1(X) — c(X) = q(X)z(X)

Polynomial
commitments

Subtable c¢(X) — .




The Caulk+ Strategy
Obtaining a subtable H(X) —c(X) = g(X @

Polynomial
commitments
// / « Can prove z;(X) divides z(X) and thus

Is valid.
Subtable c¢(X) —— . .

Vanishing polynomial over [ = {2,3,4}

7(X) = (X = 2)(X = 3)(X = 4)

At all pointsini € [ require c(i) = 1(i).




The Caulk+ Strategy

Obtaining a subtable H(X) — c(X) = q(X)z/(X)

Precomputed
values such that * 1(X) — c(2) = g,(X)(X — 2)
» 1(X) — c(3) = ¢3(X)(X — 3)

+ 1(X) — c(4) = g4(X)(X —4)

Polynomial
commitments

Subtable c¢(X) — .




The Caulk+ Strategy

Obtaining a subtable H(X) — c(X) =.g(X)z/(X)

lgnore unused

values \
Polyr?omlal
commitments

Precomputed
values such that * #(X) — c(2) = g,(X)(X — 2)
» #(X) —c(3) = gz(X)(X — 3)

+ H(X) = c(4) = gu(X)(X = 4)

Can quickly compute



The Caulk+ Strategy

Obtaining a subtable H(X) — c(X) =.g(X)z/(X)

lgnore unused

values \
Polyr?omlal
commitments

Precomputed
values such that * #(X) — c(2) = g,(X)(X — 2)
» #(X) —c(3) = g3(X)(X - 3)

+ H(X) = c(4) = gu(X)(X = 4)

Can quickly compute

Once we have a subtable how do we

use it?




The Baloo Strategy

Prove lookup over hidden domain

Polynomial
commitments

Baloo: Nearly Optimal Lookup Arguments

Arantxa Zapico*, Ariel Gabizon®, Dmitry Khovratovich!, Mary Maller!, and Carla Rafols?

! Ethereum Foundation t2 t3 t 4

2 Universitat Pompeu Fabra

3 Zeta Function Technologies
arantxa.zapico@upf.edu, ariel.gabizon@gmail.com, khovratovich@gmail.com, mary.maller@ethereum.org, l l l

carla.rafols@upf.edu

e Polynomial commitments ¢,(X) can be precomputed quickly.

e Subtable ¢(X) contains entries in #(X) over domain z;(X)



The Baloo Strategy

Prove lookup over hidden domain

: : Polynomial
Z ei,jc(] ) =q k;gﬁ?neecrﬁ commitments

GeD

Aurora: Transparent Succinct Arguments for R1CS
Witn (X) —
Eli Ben-Sasson Alessandro Chiesa Michael Riabzev eSS a t2 t2 t4
eli@cs.technion.ac.il alexch@berkeley.edu mriabzev@cs.technion.ac.1i

Technion UC Berkeley Technion

Nicholas Spooner Madars Virza Nicholas P. Ward

nick.spooner@berkeley.edu madars@mit.edu npward@berkeley.edu
UC Berkeley MIT Media Lab UC Berkeley

May 8, 2019

e Polynomial commitments ¢,(X) can be precomputed quickly.

« Subtable ¢(X) contains entries in #(X) over domai



The Baloo Strategy

Prove lookup over hidden domain

, Lincheck Polynomial
Z €; jC(] ) = q; Argument over commitments
@ unit matrix

e. € 1(1,0,0),(0,1,0),(0,0,1)}




The Baloo Strategy

Prove lookup over hidden domain

, Lincheck Polynomial
Z € jC(] ) = q Argument over commitments
jel unit matrix
ei e {(19090)9 (09190)9 (09091)} Subtable C(X) — .
el — (19090)




The Baloo Strategy

Prove lookup over hidden domain

, Lincheck Polynomial
Z € jC(] ) = q Argument over commitments
jel unit matrix
ei e {(19090)9 (09190)9 (09091)} Subtable C(X) — .
el — (19090)

€, = (1,0,0) Witness a(X) ——




The Baloo Strategy

Prove lookup over hidden domain l l l l
, Lincheck Polynomial _
Z € jC(] ) = q Argument over commitments @ @
jel unit matrix / /
ei e {(19090)9 (09190)9 (09091)} Subtable C(X) — .
el — (19090)

e, = (1,0,0)
e3 — (09091)



The Baloo Strategy

Prove lookup over hidden domain

, Lincheck Polynomial
Z €; jC(] ) = q; Argument over commitments

jel unit matrix A/A/

ei e {(19090)9 (09190)9 (09091)} Subtable C(X) — .

" .

el — (19090)
e2 — (19090)
e3 — (09091)

Repeated units
allowed



The Baloo Strategy

Prove lookup over hidden domain

N Lincheck Polynomial
Z €; jC(] ) = q; Argument over commitments
jel unit matrix

e. € 1(1,0,0),(0,1,0),(0,0,1)}

el — (19090)
e, = (1,0,0)
e3 — (09091)

Lagrange
polynomials are the Repeated units e Polynomial commitments ¢,(X) can be precomputed quickly.
unit vectors of the allowed
evaluation domain.

« Subtable c(X) contains entries in #(X) over domain z;(X)



The Baloo Strategy

Recall Lagrange Polynomials

Lagrange
polynomials are the
1ifX=1i unit vectors of the
Li(X ) — : : evaluation domain.
OIf X # 1
ey X =)

L(X) =

1.0

J



The Baloo Strategy

Recall Lagrange Polynomials

Lagrange

polynomials are the

1ifX=1i unit vectors of the

Li(X ) — : : evaluation domain.
OIf X # 1

|| e E)

LX) = ———"——
B N B (710,
If 7.(X) = H (X —J) then L(X) = 0

JELJF



The Baloo Strategy

Recall Lagrange Polynomials

Lagrange
polynomials are the
1ifX=1i unit vectors of the
Li(X ) — : : evaluation domain.
OIf X # 1

For z;(X) the vanishing polynomial over /

LI(X) _ HjEI];éi().( _])
) TS (X
f 7(X) = H (X = J) = -7 then L,(X) = 0

JELJFI



The Baloo Strategy
Prove lookup over hidden domain . . . .

() . B Lincheck Polynomial
Z c()) = q Argument over commitments
7i(v;) i i

jel

unit matrix

e. € 1(1,0,0),(0,1,0),(0,0,1)}

el — (19090)
e2 — (19090)
e3 — (09091)
« Polynomial commitments ¢.(X) can be precomputed quickly.
2(X) - (X) y q(X) p puted quickly
. j I
Unit vectors e;(X) = and 7(X) = for some v
(V) X—v « Subtable ¢(X) contains entries in #(X) over domain z;(X)

« Define unit vectors with respect to z;(X)




The CQ Strategy

Cached Quotients

Alternative precomputation

f A A t
.
s — @ @ @ @ 10wo-n=g00:0

t:" Cached quotients for fast lookups

Liam Eagen Dario Fiore
Blockstream IMDEA software institute

Ariel Gabizon

Zeta Function Technologies

January 8, 2023



The CQ Strategy

Cached Quotients

. . . . There exists m such that

l l l l Z i 1
e — @ @ @ @ -y R e PR

Straight to
witness a(X)

—

Prover time
O(mlog(m)), m = deg(a(X)) is

independent from t(X)




Lookup Constraints in Plonkish

Function Tables

Table 1 of allowed
range

Witness values




Lookup Constraints in Plonkish

Function Tables

B
1
S
|
Il

B -=
B =
=
B -
o, I
%z
B -

s Bs s -

Plonkish uses multiple columns



Lookup Constraints in Plonkish
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Table T of allowed
range

Witness values

Plonkish uses multiple columns
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Can lookup function tables e.g.

Table T of allowed
range

Witness values

Plonkish uses multiple columns



Lookup Constraints in Plonkish

Function Tables

Can lookup function tables e.g.

Table T of allowed

Witness values
\\\ range

All possible
inputs and
outputs.

Plonkish uses multiple columns



Lookup Constraints in Plonkish

Function Tables

Can lookup function tables e.g.

Table T of allowed

Witness values
\\\ range

All possible
inputs and
outputs.

Prove that (a, b;, c;) € (tj, Us, Vj)



Lookup Constraints in Plonkish

Function Tables

Witness values Table 7" of allowed e Prove that (a., b, ¢, € (t., u., v.)
range - O

e Prove that a; + b,.X + ¢, X* € (7 + 5.X + quz)

a, + b X + ;X

a, + b, X + ¢, X?

a; + b X + ;. X?

a, + b X + ¢, X?




Lookup Constraints in Plonkish

Function Tables

Witness values Table 7" of allowed e Prove that (a., b, ¢, € (t., u., v.)
range - O

e Prove that a; + b,.X + ¢, X* € (7 + 5.X + quz)

a, + b X + ;X

a, + b, X + ¢, X?

a; + b X + ;. X?

a, + b X + ¢, X?

Because random oracles exist..



Final Thoughts

* All sublinear time lookup arguments use pairings.

* Pairings are not post-quantum secure and require special, non-standardised,
elliptic curves.

* Open question: can we design a practical, sublinear time lookup argument (in
the size of the table) without pairings?



Final Thoughts

* All sublinear time lookup arguments use pairings.

* Pairings are not post-quantum secure and require special, non-standardised,
elliptic curves.

* Open gquestion: can we design a practical, sublinear time lookup argument (in
the size of the table) without pairings?

Thanks for

listening!




