
The Fiat-Shamir Transform

Ron Rothblum
Technion

The Fiat-Shamir Transform
[FS86]

In a nutshell: Awesome technique for minimizing
interaction in public-coin interactive protocols.

Fascinating both in theory and in practice.

* Original goal was transforming ID schemes into signature schemes.

Interactive Argument [BCC88]

𝑥 ∈ 𝐿?

.

.

.

• Completeness: 𝑃 convinces 𝑉 to accept 𝑥 ∈ 𝐿.

• Computational Soundness: no computationally bounded
cheating prover can convince 𝑉 to accept 𝑥 ∉ 𝐿 (except
with negligible probability).

Prover 𝑷 Verifier 𝑽

Public-coin if all 𝑉 does is
flip coins and send the

result

The Fiat-Shamir Transform

Hash Function 𝐻
𝑷 𝑽

…

Public-Coin
Interactive Argument

(Each 𝛽𝑖 uniformly random)

Non-Interactive
Argument

generically

𝛼1

𝛽1

𝛼𝑟−1

𝛽𝑟−1

𝛼𝑟

𝛼1 , … , 𝛼𝑟

𝛽1 = 𝐻(𝑥, 𝛼1)

𝑷𝑭𝑺 𝑽𝑭𝑺

The Fiat-Shamir Transform

Hash Function 𝐻
𝑷 𝑽

…

Public-Coin
Interactive Argument

(Each 𝛽𝑖 uniformly random)

Non-Interactive
Argument

generically

𝛼1

𝛽1

𝛼𝑟−1

𝛽𝑟−1

𝛼𝑟

𝛼1 , … , 𝛼𝑟

𝛽1 = 𝐻(𝑥, 𝛼1)

, 𝛼2

𝑷𝑭𝑺 𝑽𝑭𝑺

The Fiat-Shamir Transform

Hash Function 𝐻
𝑷 𝑽

…

Public-Coin
Interactive Argument

(Each 𝛽𝑖 uniformly random)

Non-Interactive
Argument

generically

𝛼1

𝛽1

𝛼𝑟−1

𝛽𝑟−1

𝛼𝑟

𝛼1 , … , 𝛼𝑟

𝛽𝑖 = 𝐻(𝑥, 𝛼1, … , 𝛼𝑖)

𝑷𝑭𝑺 𝑽𝑭𝑺

𝛽2 = 𝐻(𝑥, 𝛼1 , 𝛼2)

𝛽1 = 𝐻(𝑥, 𝛼1)

…

Extremely influential methodology.

Powerful: We know that interaction buys a lot.

FS makes interaction free.

Practical: Very low overhead.

Expressive: Efficient Signature, CS proofs,

(zk-)SNARGs, STARKs…

The Fiat-Shamir Transform

Fiat Shamir – Security?

Central question in cryptography:

Do there exist hash functions for which the Fiat-
Shamir transform is secure?

Answer: we don’t (quite) know .

Still, would like to understand and so we’ll analyze
security assuming an ideal hash function.

The Random Oracle Model [BR93]

The random oracle model simply means that all
parties are given blackbox access to a fully

random function 𝑅: 0,1 𝜆 → 0,1 𝜆.

Security should hold whp over the choice of 𝑅.

Q: How should we view protocols secure in ROM?

A: TBD.

FS in the ROM

Random Oracle 𝑅
𝑷 𝑽

…

Public-Coin
Interactive Argument

(Each 𝛽𝑖 uniformly random)

Non-Interactive
Argument

generically

𝛼1

𝛽1

𝛼𝑟−1

𝛽𝑟−1

𝛼𝑟

𝛼1 , … , 𝛼𝑟

𝛽𝑖 = 𝑅(𝑥, 𝛼1, … ,𝛼𝑖)

𝑷𝑭𝑺 𝑽𝑭𝑺

𝛽2 = 𝑅(𝑥, 𝛼1, 𝛼2)

𝛽1 = 𝑅(𝑥, 𝛼1)

…

FS in the ROM

Thm [PS96,Folklore]: for every constant-round
interactive argument Π with negl. soundness,
whp over 𝑅, the protocol Π𝑅 is secure.

Tightness

Claim: ∃multi-round protocol Π with negl.
soundness error s.t. Π𝐹𝑆 is *not* sound (even
in ROM).

Proof: Take any constant-round protocol with
constant soundness and repeat sequentially.

Tightness

Hash Function 𝐻
𝑷 𝑽

…

Public-Coin
Interactive Argument

Non-Interactive
Argument

generically

𝛼1

𝛽1

𝛼𝑟−1

𝛽𝑟−1

𝛼𝑟

𝛼1 , … , 𝛼𝑟

𝛽𝑖 = 𝐻(𝑥, 𝛼1, … , 𝛼𝑖)

𝑷𝑭𝑺 𝑽𝑭𝑺

𝛽2 = 𝐻(𝑥, 𝛼1 , 𝛼2)

𝛽1 = 𝐻(𝑥, 𝛼1)

…

FS in the ROM

Thm [PS96,Folklore]: for every constant-round
interactive argument Π with negl. soundness,
whp over 𝑅, the protocol Π𝑅 is secure.

(Actually extends to some multi-round protocols.)

We will see the proof in detail, but for simplicity
focus on 3-message protocol.

FS in ROM

Random Oracle 𝑅
𝑷 𝑽

Public-Coin
Interactive Protocol

Non-Interactive
Argument

𝛼

𝛽 𝛼,𝛽, 𝛾

𝑷𝑭𝑺 𝑽𝑭𝑺

𝛽 = 𝑅(𝑥,𝛼)
𝛾

FS in ROM

Need to show:

• Completeness.

• Soundness.

• Zero knowledge.

FS in ROM: Soundness

Suppose ∃𝑥 ∉ 𝐿 and 𝑃𝐹𝑆
∗ that runs in time 𝑇 and

makes 𝑉𝐹𝑆 accept 𝑥 wp ≥ 𝜖.

Will construct 𝑃∗ s.t. 𝑉 accepts 𝑥 w.p. poly 𝜖,
1

𝑇
.

First, a Useful Fact

Fact: suppose (𝑋, 𝑌) are jointly distributed RVs s.t.

Pr 𝐴 𝑋, 𝑌 ≥ 𝜖.

Then, for at least 𝜖/2 fraction of 𝑥′𝑠 it holds that

(*) Pr
𝑌|𝑥

[𝐴 𝑥, 𝑌] ≥ 𝜖/2.

Proof: Markov’s inequality.

Pr 𝐴 𝑋,𝑌 = Pr 𝑋 good ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑔𝑜𝑜𝑑 +
Pr 𝑋 bad ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑏𝑎𝑑

<
𝜖

2
⋅ 1 + 1 ⋅

𝜖

2

= 𝜖

First, a Useful Fact

Fact: suppose (𝑋, 𝑌) are jointly distributed RVs s.t.

Pr 𝐴 𝑋, 𝑌 ≥ 𝜖.

Then, for at least 𝜖/2 fraction of 𝑥′𝑠 it holds that

(*) Pr
𝑌|𝑥

[𝐴 𝑥, 𝑌] ≥ 𝜖/2.

Proof: Markov’s inequality.

Pr 𝐴 𝑋,𝑌 = Pr 𝑋 good ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑔𝑜𝑜𝑑 +
Pr 𝑋 bad ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑏𝑎𝑑

<
𝜖

2
⋅ 1 + 1 ⋅

𝜖

2

= 𝜖

First, a Useful Fact

Fact: suppose (𝑋, 𝑌) are jointly distributed RVs s.t.

Pr 𝐴 𝑋, 𝑌 ≥ 𝜖.

Then, for at least 𝜖/2 fraction of 𝑥′𝑠 it holds that

(*) Pr
𝑌|𝑥

[𝐴 𝑥, 𝑌] ≥ 𝜖/2.

Proof: suppose not. Call 𝑥 good if (*) holds

Pr 𝐴 𝑋,𝑌 = Pr 𝑋 good ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑔𝑜𝑜𝑑 +
Pr 𝑋 bad ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑏𝑎𝑑

<
𝜖

2
⋅ 1 + 1 ⋅

𝜖

2

= 𝜖

First, a Useful Fact

Fact: suppose (𝑋, 𝑌) are jointly distributed RVs s.t.

Pr 𝐴 𝑋, 𝑌 ≥ 𝜖.

Then, for at least 𝜖/2 fraction of 𝑥′𝑠 it holds that

(*) Pr
𝑌|𝑥

[𝐴 𝑥, 𝑌] ≥ 𝜖/2.

Proof: suppose not. Call 𝑥 good if (*) holds

Pr 𝐴 𝑋,𝑌 = Pr 𝑋 good ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑔𝑜𝑜𝑑 +
Pr 𝑋 bad ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑏𝑎𝑑

<
𝜖

2
⋅ 1 + 1 ⋅

𝜖

2

= 𝜖

First, a Useful Fact

Fact: suppose (𝑋, 𝑌) are jointly distributed RVs s.t.

Pr 𝐴 𝑋, 𝑌 ≥ 𝜖.

Then, for at least 𝜖/2 fraction of 𝑥′𝑠 it holds that

(*) Pr
𝑌|𝑥

[𝐴 𝑥, 𝑌] ≥ 𝜖/2.

Proof: suppose not. Call 𝑥 good if (*) holds

Pr 𝐴 𝑋,𝑌 = Pr 𝑋 good ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑔𝑜𝑜𝑑 +
Pr 𝑋 bad ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑏𝑎𝑑

<
𝜖

2
⋅ 1 + 1 ⋅

𝜖

2

= 𝜖

First, a Useful Fact

Fact: suppose (𝑋, 𝑌) are jointly distributed RVs s.t.

Pr 𝐴 𝑋, 𝑌 ≥ 𝜖.

Then, for at least 𝜖/2 fraction of 𝑥′𝑠 it holds that

(*) Pr
𝑌|𝑥

[𝐴 𝑥, 𝑌] ≥ 𝜖/2.

Proof: suppose not. Call 𝑥 good if (*) holds

Pr 𝐴 𝑋,𝑌 = Pr 𝑋 good ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑔𝑜𝑜𝑑 +
Pr 𝑋 bad ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑏𝑎𝑑

<
𝜖

2
⋅ 1 + 1 ⋅

𝜖

2

= 𝜖

FS in ROM: Soundness

Suppose ∃𝑥 ∉ 𝐿 and 𝑃𝐹𝑆
∗ that runs in time 𝑇 and

makes 𝑉𝐹𝑆 accept 𝑥 wp ≥ 𝜖.

Will construct 𝑃∗ s.t. 𝑉 accept 𝑥 w.p. poly 𝜖,
1

𝑇
.

Soundness Analysis

Denote oracle queries by 𝑄1, … , 𝑄𝑇 .

Wlog all 𝑄𝑖’s distinct and 𝛼 ∈ {𝑄1,… , 𝑄𝑇}.

Claim: ∃𝑖∗ ∈ [𝑇] s.t. 𝑃𝐹𝑆
∗ wins w.p. 𝜖/𝑇

conditioned on 𝑄𝑖∗ = 𝛼.

Proof: by contradiction.

“The Forking Lemma”

Key Lemma: for
𝜖

2𝑇
fraction of (𝑞1,… , 𝑞𝑖∗) it holds

that 𝑃𝐹𝑆
∗ wins w.p.

𝜖

2𝑇
conditioned on 𝑄𝑖∗ = 𝛼

and 𝑄𝑖 = 𝑞𝑖 for all 𝑖 ≤ 𝑖∗.

Proof: by useful fact.

Breaking Soundness of 𝑉

𝑷∗ 𝑽𝛼

𝛽

𝛾

1. Start running 𝑃𝐹𝑆
∗ up to it’s 𝑖∗th query, using random

answers.
2. Let 𝛼 = 𝑄𝑖∗ be the 𝑖∗th query. Send 𝛼 (and get 𝛽).
3. Continue running 𝑃𝐹𝑆

∗ while answering 𝑄𝑖∗ with 𝛽 and
other queries uniformly at random.

4. Eventually 𝑃𝐹𝑆
∗ outputs (𝛼′ , 𝛽′ , 𝛾′).

5. If 𝛼 = 𝛼′ and 𝛽 = 𝛽′ send 𝛾 = 𝛾′ .

Breaking Soundness of 𝑉: Analysis

Rely on forking lemma:

Forking Lemma: for
𝜖

2𝑇
fraction of (𝑞1 , … , 𝑞𝑖∗) it holds that

𝑃𝐹𝑆
∗ wins w.p.

𝜖

2𝑇
conditioned on 𝑄𝑖∗ = 𝛼 and 𝑄𝑖 = 𝑞𝑖 for all

𝑖 ≤ 𝑖∗.

Get that wp
𝜖

2𝑇
over choice of (𝑄1, … , 𝑄𝑖) it holds that wp

𝜖

2𝑇
over all remaining coin tosses that 𝑃𝐹𝑆

∗ wins and 𝛼′ = 𝛼.

⇒ our 𝑃∗ wins wp
𝜖

2𝑇

2
, which is non-negligible.

FS in ROM: ZK

Have not defined ZK in the ROM and as there are multiple
definitions (and issues).

Intuitively though, beyond seeing 𝛼, 𝛽, 𝛾 (which can be
generated from 𝑥 by (HV)-ZK), the verifier has obtained
oracle access to a random function 𝑅 such that 𝑅 𝑥, 𝛼 = 𝛽.

Could it have obtained such a function by itself?

Short answer: kind of…

Long answer: depends on the definition. 

FS in ROM

Conclusion: FS is sound in ROM (and ZK for some
suitable definitions).

But we cannot use hash functions that take 2𝜆 bits
to describe!

So, is the Fiat-Shamir transform secure?

Bad news [CHG98]: ∃ protocols secure in ROM but
totally broken using any instantiation.

Fiat Shamir – Security?
Given negative result, how to interpret ROM proof of
security?

Optimist’s view:

• Counterexamples are contrived.

• ROM analysis ⇒ strong indication FS is secure in real-life.

• ROM analysis = good heuristic. Can help both in terms of
feasibility and efficiency.

Pessimist’s view:

• Basing security on an assumption that we do not
understand, and have a negative indication for, is
undesirable if not flat out dangerous.

Instantiating Fiat Shamir with
Explicit Hash function

A Basic Question

Can we instantiate the heuristic securely using
an explicit hash family?

Def: a hash family 𝐻 is FS-compatible for a Π if
𝐹𝑆𝐻(Π) is “secure”.

𝛼,𝛽, 𝛾

𝑷𝑭𝑺 𝑽𝑭𝑺

𝛽 = ℎ(𝑥, 𝛼)
ℎ ∈ 𝐻

ℎ

FS using Explicit Family

Need to consider soundness & zero-knowledge.

Start with zero-knowledge.

Def:𝐻 is programmable if can sample random
ℎ ∈ 𝐻 conditioned on ℎ 𝑥, 𝛼 = 𝛽.

ZK for FS

Claim: if 𝐻 is programmable and Π is HVZK ⇒ Π𝐹𝑆(ℎ)
is ZK.

Proof: construct simulator.

1. Sample 𝛼, 𝛽, 𝛾 .

2. Sample 𝐻 conditioned on 𝐻 𝑥, 𝛼 = 𝛽.

3. Output 𝐻, 𝛼, 𝛽, 𝛾 .

Exercise: show dist. identical.

Soundness for FS

Thm [B01,GK03]: ∃ protocols which are not FS-
compatible for any 𝐻.

Hope? Those counterexamples are arguments!
Maybe sound if we start with a proof?

[BDGJKLW13]: no blackbox reduction to a
falsifiable assumption, even for proofs.

Fiat Shamir for Proofs?

• Stay tuned for afternoon talk.

• Closely related to the question of parallel
composition of ZK [DNRS03].

Thanks!

