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The Fiat-Shamir Transform
[FS86]

In a nutshell: Awesome technique for minimizing 
interaction in public-coin interactive protocols.

Fascinating both in theory and in practice.

* Original goal was transforming ID schemes into signature schemes.



Interactive Argument [BCC88]

𝑥 ∈ 𝐿?

.

.

.

• Completeness: 𝑃 convinces 𝑉 to accept 𝑥 ∈ 𝐿.

• Computational Soundness: no computationally bounded 
cheating prover can convince 𝑉 to accept 𝑥 ∉ 𝐿 (except 
with negligible probability).

Prover 𝑷 Verifier 𝑽

Public-coin if all 𝑉 does is 
flip coins and send the 

result
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Extremely influential methodology.

Powerful: We know that interaction buys a lot. 

FS makes interaction free.

Practical: Very low overhead.

Expressive: Efficient Signature, CS proofs, 

(zk-)SNARGs, STARKs…

The Fiat-Shamir Transform



Fiat Shamir – Security?

Central question in cryptography:

Do there exist hash functions for which the Fiat-
Shamir transform is secure?

Answer: we don’t (quite) know .

Still, would like to understand and so we’ll analyze 
security assuming an ideal hash function.



The Random Oracle Model [BR93]

The random oracle model simply means that all 
parties are given blackbox access to a fully 

random function 𝑅: 0,1 𝜆 → 0,1 𝜆.

Security should hold whp over the choice of 𝑅.

Q: How should we view protocols secure in ROM? 

A: TBD.
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FS in the ROM

Thm [PS96,Folklore]: for every constant-round 
interactive argument Π with negl. soundness, 
whp over 𝑅, the protocol Π𝑅 is secure.



Tightness

Claim: ∃multi-round protocol Π with negl. 
soundness error s.t. Π𝐹𝑆 is *not* sound (even 
in ROM).

Proof: Take any constant-round protocol with 
constant soundness and repeat sequentially.
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FS in the ROM

Thm [PS96,Folklore]: for every constant-round 
interactive argument Π with negl. soundness, 
whp over 𝑅, the protocol Π𝑅 is secure.

(Actually extends to some multi-round protocols.)

We will see the proof in detail, but for simplicity 
focus on 3-message protocol.



FS in ROM
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FS in ROM

Need to show:

• Completeness.

• Soundness.

• Zero knowledge.



FS in ROM: Soundness

Suppose ∃𝑥 ∉ 𝐿 and 𝑃𝐹𝑆
∗ that runs in time 𝑇 and 

makes 𝑉𝐹𝑆 accept 𝑥 wp ≥ 𝜖.

Will construct 𝑃∗ s.t. 𝑉 accepts 𝑥 w.p. poly 𝜖,
1

𝑇
.



First, a Useful Fact

Fact: suppose (𝑋, 𝑌) are jointly distributed RVs s.t.

Pr 𝐴 𝑋, 𝑌 ≥ 𝜖.

Then, for at least 𝜖/2 fraction of 𝑥′𝑠 it holds that

(*) Pr
𝑌|𝑥

[𝐴 𝑥, 𝑌 ] ≥ 𝜖/2.

Proof: Markov’s inequality.

Pr 𝐴 𝑋,𝑌 = Pr 𝑋 good ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑔𝑜𝑜𝑑 +
Pr 𝑋 bad ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑏𝑎𝑑

<
𝜖

2
⋅ 1 + 1 ⋅

𝜖

2

= 𝜖



First, a Useful Fact

Fact: suppose (𝑋, 𝑌) are jointly distributed RVs s.t.

Pr 𝐴 𝑋, 𝑌 ≥ 𝜖.

Then, for at least 𝜖/2 fraction of 𝑥′𝑠 it holds that

(*) Pr
𝑌|𝑥

[𝐴 𝑥, 𝑌 ] ≥ 𝜖/2.

Proof: Markov’s inequality.

Pr 𝐴 𝑋,𝑌 = Pr 𝑋 good ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑔𝑜𝑜𝑑 +
Pr 𝑋 bad ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑏𝑎𝑑

<
𝜖

2
⋅ 1 + 1 ⋅

𝜖

2

= 𝜖



First, a Useful Fact

Fact: suppose (𝑋, 𝑌) are jointly distributed RVs s.t.

Pr 𝐴 𝑋, 𝑌 ≥ 𝜖.

Then, for at least 𝜖/2 fraction of 𝑥′𝑠 it holds that

(*) Pr
𝑌|𝑥

[𝐴 𝑥, 𝑌 ] ≥ 𝜖/2.

Proof: suppose not. Call 𝑥 good if (*) holds

Pr 𝐴 𝑋,𝑌 = Pr 𝑋 good ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑔𝑜𝑜𝑑 +
Pr 𝑋 bad ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑏𝑎𝑑

<
𝜖

2
⋅ 1 + 1 ⋅

𝜖

2

= 𝜖



First, a Useful Fact

Fact: suppose (𝑋, 𝑌) are jointly distributed RVs s.t.

Pr 𝐴 𝑋, 𝑌 ≥ 𝜖.

Then, for at least 𝜖/2 fraction of 𝑥′𝑠 it holds that

(*) Pr
𝑌|𝑥

[𝐴 𝑥, 𝑌 ] ≥ 𝜖/2.

Proof: suppose not. Call 𝑥 good if (*) holds

Pr 𝐴 𝑋,𝑌 = Pr 𝑋 good ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑔𝑜𝑜𝑑 +
Pr 𝑋 bad ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑏𝑎𝑑

<
𝜖

2
⋅ 1 + 1 ⋅

𝜖

2

= 𝜖



First, a Useful Fact

Fact: suppose (𝑋, 𝑌) are jointly distributed RVs s.t.

Pr 𝐴 𝑋, 𝑌 ≥ 𝜖.

Then, for at least 𝜖/2 fraction of 𝑥′𝑠 it holds that

(*) Pr
𝑌|𝑥

[𝐴 𝑥, 𝑌 ] ≥ 𝜖/2.

Proof: suppose not. Call 𝑥 good if (*) holds

Pr 𝐴 𝑋,𝑌 = Pr 𝑋 good ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑔𝑜𝑜𝑑 +
Pr 𝑋 bad ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑏𝑎𝑑

<
𝜖

2
⋅ 1 + 1 ⋅

𝜖

2

= 𝜖



First, a Useful Fact

Fact: suppose (𝑋, 𝑌) are jointly distributed RVs s.t.

Pr 𝐴 𝑋, 𝑌 ≥ 𝜖.

Then, for at least 𝜖/2 fraction of 𝑥′𝑠 it holds that

(*) Pr
𝑌|𝑥

[𝐴 𝑥, 𝑌 ] ≥ 𝜖/2.

Proof: suppose not. Call 𝑥 good if (*) holds

Pr 𝐴 𝑋,𝑌 = Pr 𝑋 good ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑔𝑜𝑜𝑑 +
Pr 𝑋 bad ⋅ Pr 𝐴 𝑋, 𝑌 𝑋 𝑏𝑎𝑑

<
𝜖

2
⋅ 1 + 1 ⋅

𝜖

2

= 𝜖



FS in ROM: Soundness

Suppose ∃𝑥 ∉ 𝐿 and 𝑃𝐹𝑆
∗ that runs in time 𝑇 and 

makes 𝑉𝐹𝑆 accept 𝑥 wp ≥ 𝜖.

Will construct 𝑃∗ s.t. 𝑉 accept 𝑥 w.p. poly 𝜖,
1

𝑇
.



Soundness Analysis

Denote oracle queries by 𝑄1, … , 𝑄𝑇 .

Wlog all 𝑄𝑖’s distinct and 𝛼 ∈ {𝑄1,… , 𝑄𝑇}.

Claim: ∃𝑖∗ ∈ [𝑇] s.t. 𝑃𝐹𝑆
∗ wins w.p. 𝜖/𝑇

conditioned on 𝑄𝑖∗ = 𝛼.

Proof: by contradiction.



“The Forking Lemma”

Key Lemma: for 
𝜖

2𝑇
fraction of (𝑞1,… , 𝑞𝑖∗) it holds 

that 𝑃𝐹𝑆
∗ wins w.p. 

𝜖

2𝑇
conditioned on 𝑄𝑖∗ = 𝛼

and 𝑄𝑖 = 𝑞𝑖 for all 𝑖 ≤ 𝑖∗.

Proof: by useful fact.



Breaking Soundness of 𝑉

𝑷∗ 𝑽𝛼

𝛽

𝛾

1. Start running 𝑃𝐹𝑆
∗ up to it’s 𝑖∗th query, using random 

answers.
2. Let 𝛼 = 𝑄𝑖∗ be the 𝑖∗th query. Send 𝛼 (and get 𝛽). 
3. Continue running 𝑃𝐹𝑆

∗ while answering 𝑄𝑖∗ with 𝛽 and 
other queries uniformly at random.

4. Eventually 𝑃𝐹𝑆
∗ outputs (𝛼′ , 𝛽′ , 𝛾′).

5. If 𝛼 = 𝛼′ and 𝛽 = 𝛽′ send 𝛾 = 𝛾′ .



Breaking Soundness of 𝑉: Analysis

Rely on forking lemma:

Forking Lemma: for 
𝜖

2𝑇
fraction of (𝑞1 , … , 𝑞𝑖∗) it holds that 

𝑃𝐹𝑆
∗ wins w.p. 

𝜖

2𝑇
conditioned on 𝑄𝑖∗ = 𝛼 and 𝑄𝑖 = 𝑞𝑖 for all 

𝑖 ≤ 𝑖∗.

Get that wp
𝜖

2𝑇
over choice of (𝑄1, … , 𝑄𝑖) it holds that wp

𝜖

2𝑇
over all remaining coin tosses that 𝑃𝐹𝑆

∗ wins and 𝛼′ = 𝛼.

⇒ our 𝑃∗ wins wp
𝜖

2𝑇

2
, which is non-negligible.



FS in ROM: ZK

Have not defined ZK in the ROM and as there are multiple 
definitions (and issues). 

Intuitively though, beyond seeing 𝛼, 𝛽, 𝛾 (which can be 
generated from 𝑥 by (HV)-ZK), the verifier has obtained 
oracle access to a random function 𝑅 such that 𝑅 𝑥, 𝛼 = 𝛽.

Could it have obtained such a function by itself?

Short answer: kind of…

Long answer: depends on the definition. 



FS in ROM

Conclusion: FS is sound in ROM (and ZK for some 
suitable definitions).

But we cannot use hash functions that take 2𝜆 bits 
to describe!

So, is the Fiat-Shamir transform secure?

Bad news [CHG98]: ∃ protocols secure in ROM but 
totally broken using any instantiation.



Fiat Shamir – Security?
Given negative result, how to interpret ROM proof of 
security?

Optimist’s view:

• Counterexamples are contrived.

• ROM analysis ⇒ strong indication FS is secure in real-life.

• ROM analysis = good heuristic. Can help both in terms of 
feasibility and efficiency.

Pessimist’s view:

• Basing security on an assumption that we do not 
understand, and have a negative indication for, is 
undesirable if not flat out dangerous.



Instantiating Fiat Shamir with 
Explicit Hash function



A Basic Question

Can we instantiate the heuristic securely using 
an explicit hash family?

Def: a hash family 𝐻 is FS-compatible for a Π if 
𝐹𝑆𝐻(Π) is “secure”.

𝛼,𝛽, 𝛾

𝑷𝑭𝑺 𝑽𝑭𝑺

𝛽 = ℎ(𝑥, 𝛼)
ℎ ∈ 𝐻

ℎ



FS using Explicit Family

Need to consider soundness & zero-knowledge.

Start with zero-knowledge.

Def:𝐻 is programmable if can sample random      
ℎ ∈ 𝐻 conditioned on ℎ 𝑥, 𝛼 = 𝛽.



ZK for FS

Claim: if 𝐻 is programmable and Π is HVZK ⇒ Π𝐹𝑆(ℎ)
is ZK.

Proof: construct simulator.

1. Sample 𝛼, 𝛽, 𝛾 .

2. Sample 𝐻 conditioned on 𝐻 𝑥, 𝛼 = 𝛽.

3. Output 𝐻, 𝛼, 𝛽, 𝛾 .

Exercise: show dist. identical.



Soundness for FS

Thm [B01,GK03]: ∃ protocols which are not FS-
compatible for any 𝐻.

Hope? Those counterexamples are arguments! 
Maybe sound if we start with a proof?

[BDGJKLW13]: no blackbox reduction to a 
falsifiable assumption, even for proofs.



Fiat Shamir for Proofs?

• Stay tuned for afternoon talk.

• Closely related to the question of parallel 
composition of ZK [DNRS03].



Thanks!


