

The Fiat-Shamir Transform

Ron Rothblum

Technion

The Fiat-Shamir Transform

[FS86]

In a nutshell: Awesome technique for minimizing interaction in public-coin interactive protocols.

Fascinating both in theory and in practice.

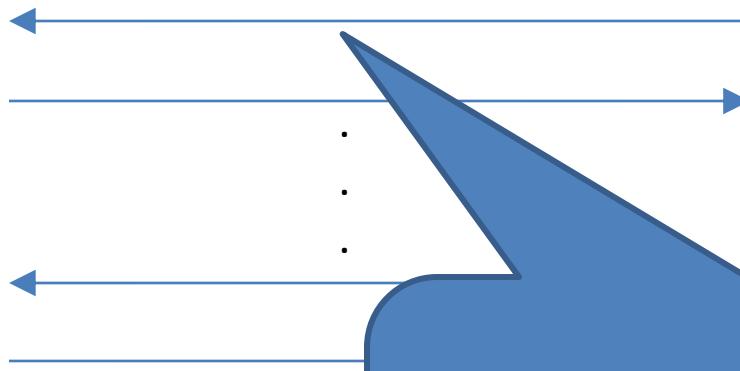
* Original goal was transforming ID schemes into signature schemes.

Interactive Argument [BCC88]

$x \in L?$

Prover P

Verifier V

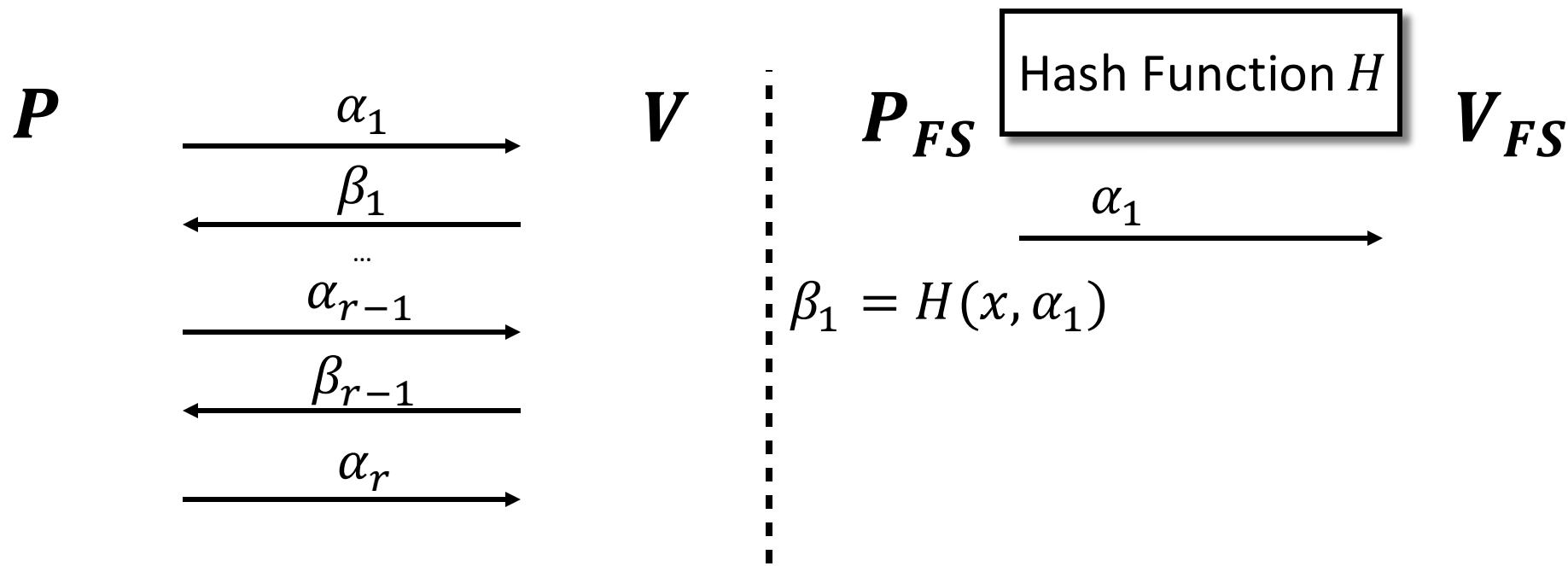


- **Completeness:** P convinces V to accept $x \in L$ (except with negligible probability). flip coins and send the result
- **Computational Soundness**: cheating prover can convince V to accept $x \notin L$ (except with negligible probability).

Public-coin if all V does is flip coins and send the result

The Fiat-Shamir Transform

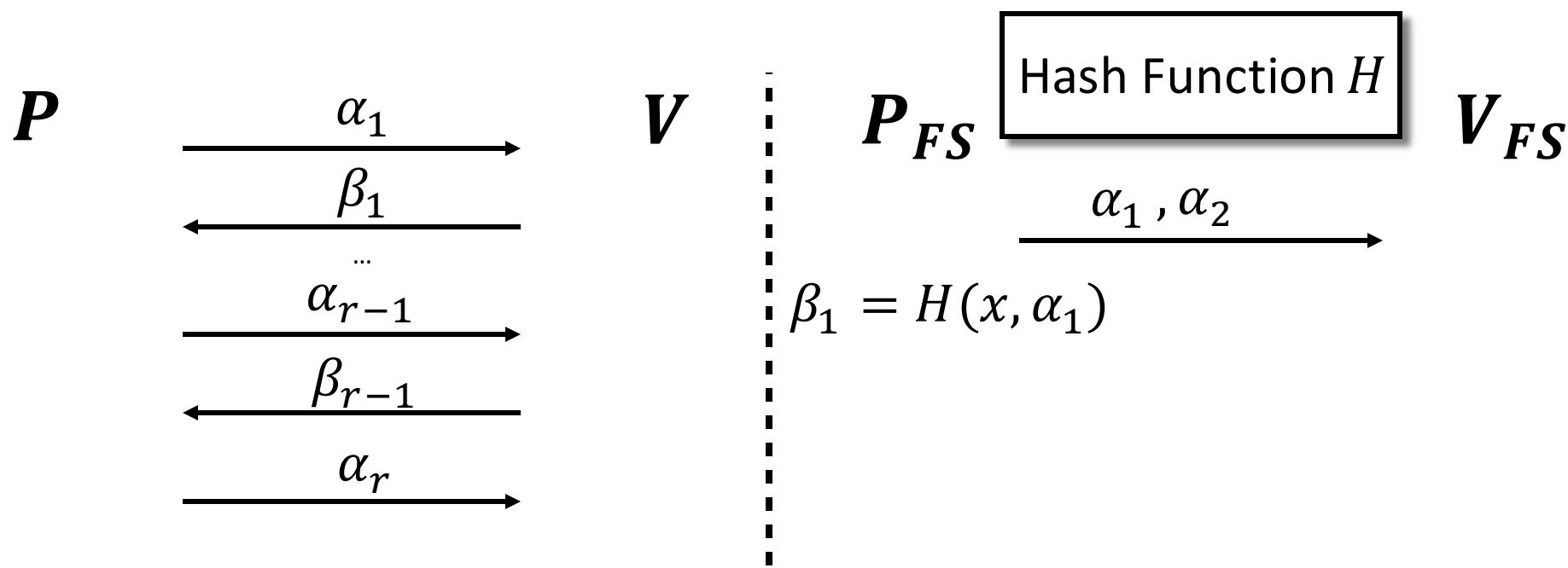
Public-Coin
Interactive Argument $\xrightarrow{\text{generically}}$ Non-Interactive
Argument



(Each β_i uniformly random)

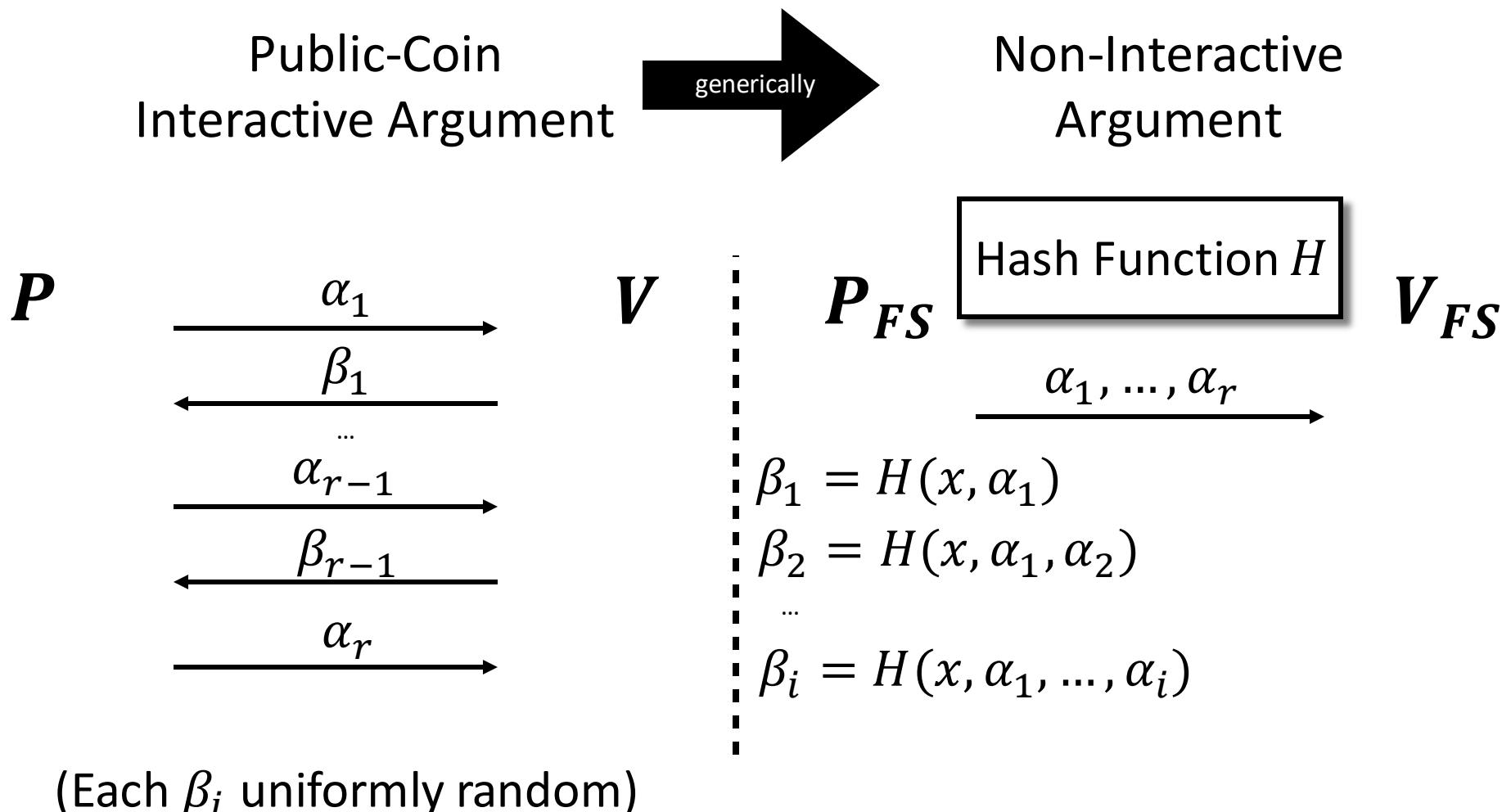
The Fiat-Shamir Transform

Public-Coin
Interactive Argument $\xrightarrow{\text{generically}}$ Non-Interactive Argument



(Each β_i uniformly random)

The Fiat-Shamir Transform



The Fiat-Shamir Transform

Extremely influential methodology.

Powerful: We know that interaction buys a lot.

FS makes interaction free.

Practical: Very low overhead.

Expressive: Efficient Signature, CS proofs,
(zk-)SNARGs, STARKs...

Fiat Shamir – Security?

Central question in cryptography:

Do there exist hash functions for which the Fiat-Shamir transform is secure?

Answer: we don't (quite) know ☹.

Still, would like to understand and so we'll analyze security assuming an *ideal* hash function.

The Random Oracle Model [BR93]

The random oracle model simply means that all parties are given blackbox access to a fully random function $R: \{0,1\}^\lambda \rightarrow \{0,1\}^\lambda$.

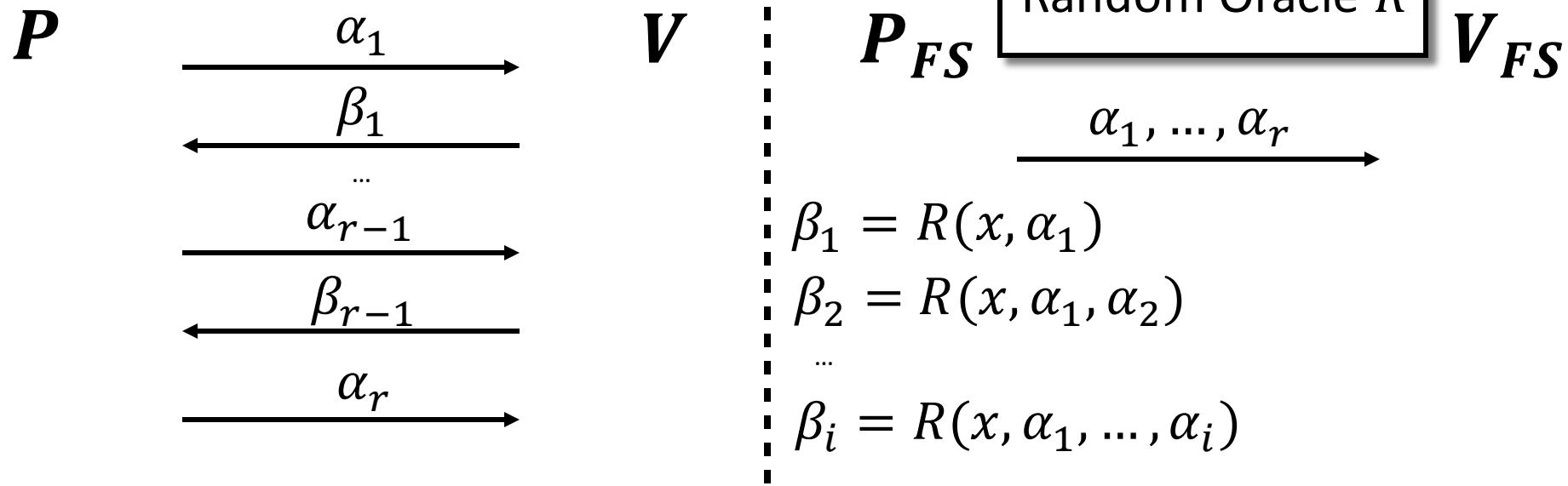
Security should hold whp over the choice of R .

Q: How should we view protocols secure in ROM?

A: TBD.

FS in the ROM

Public-Coin
Interactive Argument $\xrightarrow{\text{generically}}$ Non-Interactive Argument



(Each β_i uniformly random)

FS in the ROM

Thm [PS96,Folklore]: for every constant-round interactive argument Π with negl. soundness, whp over R , the protocol Π_R is secure.

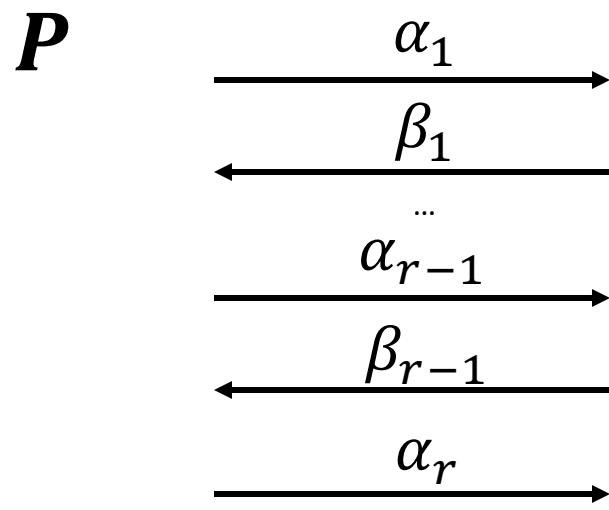
Tightness

Claim: \exists multi-round protocol Π with negl. soundness error s.t. Π_{FS} is ***not*** sound (even in ROM).

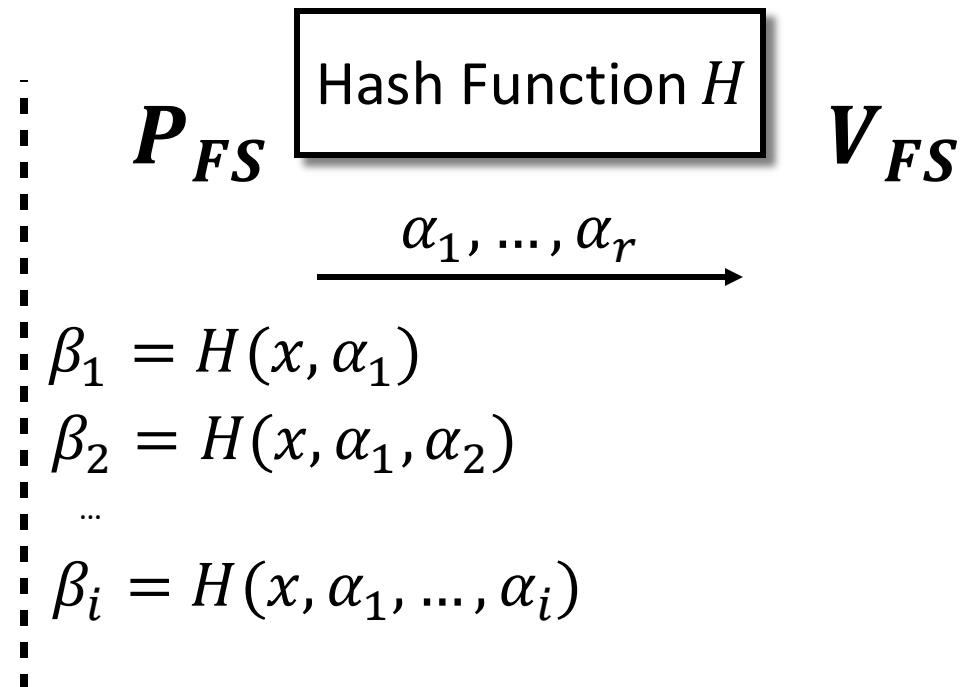
Proof: Take any constant-round protocol with constant soundness and repeat sequentially.

Tightness

Public-Coin
Interactive Argument



Non-Interactive
Argument



FS in the ROM

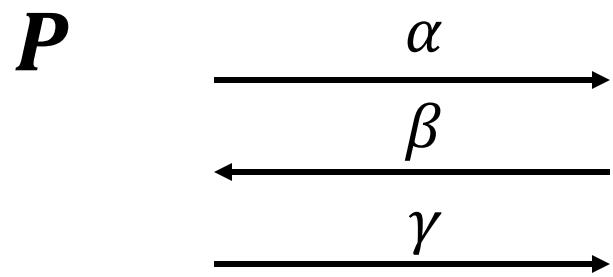
Thm [PS96,Folklore]: for every constant-round interactive argument Π with negl. soundness, whp over R , the protocol Π_R is secure.

(Actually extends to **some** multi-round protocols.)

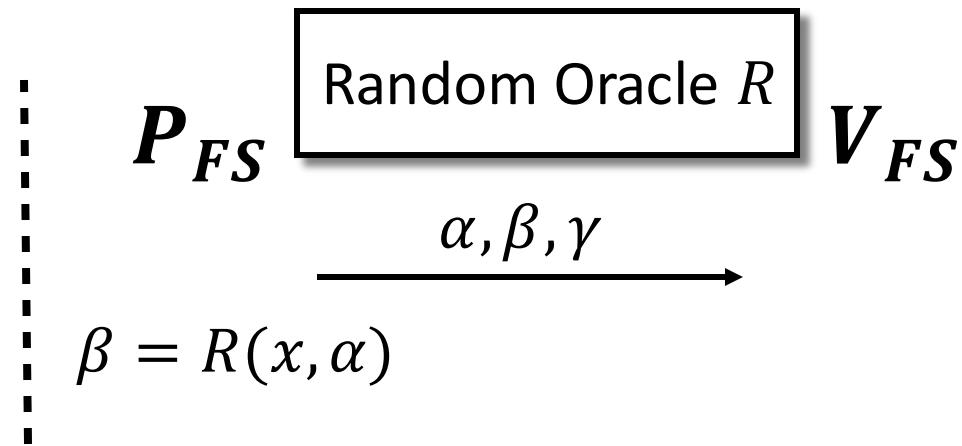
We will see the proof in detail, but for simplicity focus on 3-message protocol.

FS in ROM

Public-Coin
Interactive Protocol



Non-Interactive
Argument



FS in ROM

Need to show:

- Completeness.
- Soundness.
- Zero knowledge.

FS in ROM: Soundness

Suppose $\exists x \notin L$ and P_{FS}^* that runs in time T and makes V_{FS} accept x wp $\geq \epsilon$.

Will construct P^* s.t. V accepts x w.p. $\text{poly}\left(\epsilon, \frac{1}{T}\right)$.

First, a Useful Fact

Fact: suppose (X, Y) are jointly distributed RVs s.t.

$$\Pr[A(X, Y)] \geq \epsilon.$$

Then, for at least $\epsilon/2$ fraction of x 's it holds that

$$(*) \Pr_{Y|x}[A(x, Y)] \geq \epsilon/2.$$

Proof: Markov's inequality.

First, a Useful Fact

Fact: suppose (X, Y) are jointly distributed RVs s.t.

$$\Pr[A(X, Y)] \geq \epsilon.$$

Then, for at least $\epsilon/2$ fraction of x 's it holds that

$$(*) \Pr_{Y|x}[A(x, Y)] \geq \epsilon/2.$$

Proof:

First, a Useful Fact

Fact: suppose (X, Y) are jointly distributed RVs s.t.

$$\Pr[A(X, Y)] \geq \epsilon.$$

Then, for at least $\epsilon/2$ fraction of x 's it holds that

$$(*) \Pr_{Y|x}[A(x, Y)] \geq \epsilon/2.$$

Proof: suppose not. Call x good if $(*)$ holds

$$\Pr[A(X, Y)] =$$

First, a Useful Fact

Fact: suppose (X, Y) are jointly distributed RVs s.t.

$$\Pr[A(X, Y)] \geq \epsilon.$$

Then, for at least $\epsilon/2$ fraction of x 's it holds that

$$(*) \Pr_{Y|x}[A(x, Y)] \geq \epsilon/2.$$

Proof: suppose not. Call x good if $(*)$ holds

$$\Pr[A(X, Y)] = \Pr[X \text{ good}] \cdot \Pr[A(X, Y)|X \text{ good}] + \Pr[X \text{ bad}] \cdot \Pr[A(X, Y)|X \text{ bad}]$$

First, a Useful Fact

Fact: suppose (X, Y) are jointly distributed RVs s.t.

$$\Pr[A(X, Y)] \geq \epsilon.$$

Then, for at least $\epsilon/2$ fraction of x 's it holds that

$$(*) \Pr_{Y|x}[A(x, Y)] \geq \epsilon/2.$$

Proof: suppose not. Call x good if $(*)$ holds

$$\begin{aligned} \Pr[A(X, Y)] &= \Pr[X \text{ good}] \cdot \Pr[A(X, Y)|X \text{ good}] + \\ &\quad \Pr[X \text{ bad}] \cdot \Pr[A(X, Y)|X \text{ bad}] \\ &< \frac{\epsilon}{2} \cdot 1 + 1 \cdot \frac{\epsilon}{2} \end{aligned}$$

First, a Useful Fact

Fact: suppose (X, Y) are jointly distributed RVs s.t.

$$\Pr[A(X, Y)] \geq \epsilon.$$

Then, for at least $\epsilon/2$ fraction of x 's it holds that

$$(*) \Pr_{Y|x}[A(x, Y)] \geq \epsilon/2.$$

Proof: suppose not. Call x good if $(*)$ holds

$$\begin{aligned} \Pr[A(X, Y)] &= \Pr[X \text{ good}] \cdot \Pr[A(X, Y)|X \text{ good}] + \\ &\quad \Pr[X \text{ bad}] \cdot \Pr[A(X, Y)|X \text{ bad}] \\ &< \frac{\epsilon}{2} \cdot 1 + 1 \cdot \frac{\epsilon}{2} \\ &= \epsilon \end{aligned}$$

FS in ROM: Soundness

Suppose $\exists x \notin L$ and P_{FS}^* that runs in time T and makes V_{FS} accept x wp $\geq \epsilon$.

Will construct P^* s.t. V accept x w.p. $\text{poly}\left(\epsilon, \frac{1}{T}\right)$.

Soundness Analysis

Denote oracle queries by Q_1, \dots, Q_T .

Wlog all Q_i 's distinct and $\alpha \in \{Q_1, \dots, Q_T\}$.

Claim: $\exists i^* \in [T]$ s.t. P_{FS}^* wins w.p. ϵ/T conditioned on $Q_{i^*} = \alpha$.

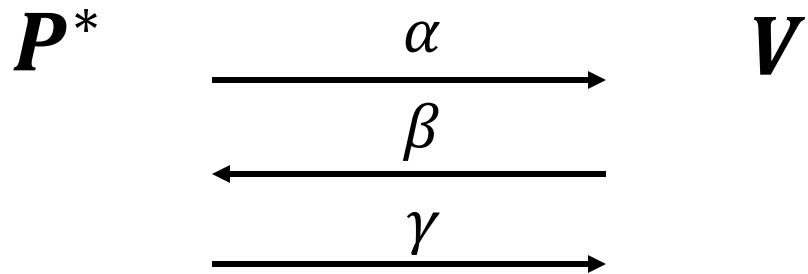
Proof: by contradiction.

“The Forking Lemma”

Key Lemma: for $\frac{\epsilon}{2T}$ fraction of (q_1, \dots, q_{i^*}) it holds that P_{FS}^* wins w.p. $\frac{\epsilon}{2T}$ conditioned on $Q_{i^*} = \alpha$ and $Q_i = q_i$ for all $i \leq i^*$.

Proof: by useful fact.

Breaking Soundness of V



1. Start running P_{FS}^* up to its i^* th query, using random answers.
2. Let $\alpha = Q_{i^*}$ be the i^* th query. Send α (and get β).
3. Continue running P_{FS}^* while answering Q_{i^*} with β and other queries uniformly at random.
4. Eventually P_{FS}^* outputs $(\alpha', \beta', \gamma')$.
5. If $\alpha = \alpha'$ and $\beta = \beta'$ send $\gamma = \gamma'$.

Breaking Soundness of V : Analysis

Rely on forking lemma:

Forking Lemma: for $\frac{\epsilon}{2T}$ fraction of (q_1, \dots, q_{i^*}) it holds that P_{FS}^* wins w.p. $\frac{\epsilon}{2T}$ conditioned on $Q_{i^*} = \alpha$ and $Q_i = q_i$ for all $i \leq i^*$.

Get that wp $\frac{\epsilon}{2T}$ over choice of (Q_1, \dots, Q_i) it holds that wp $\frac{\epsilon}{2T}$ over all remaining coin tosses that P_{FS}^* wins and $\alpha' = \alpha$.

\Rightarrow our P^* wins wp $\left(\frac{\epsilon}{2T}\right)^2$, which is non-negligible.

FS in ROM: ZK

Have not defined ZK in the ROM and as there are multiple definitions (and issues).

Intuitively though, beyond seeing (α, β, γ) (which can be generated from x by (HV)-ZK), the verifier has obtained oracle access to a random function R such that $R(x, \alpha) = \beta$.

Could it have obtained such a function by itself?

Short answer: kind of...

Long answer: depends on the definition. ☺

FS in ROM

Conclusion: FS is sound in ROM (and ZK for some suitable definitions).

But we cannot use hash functions that take 2^λ bits to describe!

So, is the Fiat-Shamir transform secure?

Bad news [CHG98]: \exists protocols secure in ROM but totally broken using *any* instantiation.

Fiat Shamir – Security?

Given negative result, how to interpret ROM proof of security?

Optimist's view:

- Counterexamples are contrived.
- ROM analysis \Rightarrow strong indication FS is secure in real-life.
- ROM analysis = good heuristic. Can help both in terms of feasibility and efficiency.

Pessimist's view:

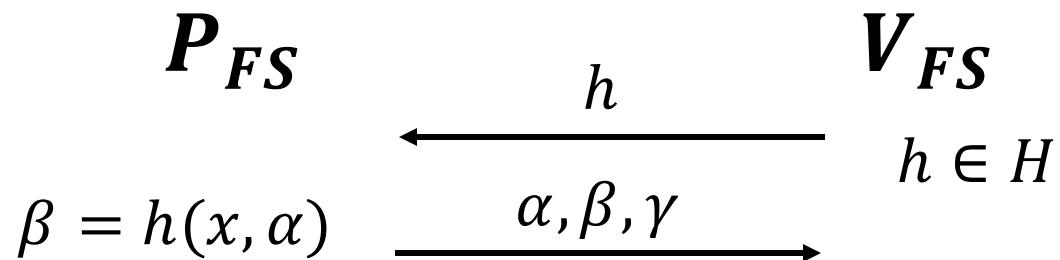
- Basing security on an assumption that we do not understand, and have a negative indication for, is undesirable if not flat out dangerous.

Instantiating Fiat Shamir with Explicit Hash function

A Basic Question

Can we instantiate the heuristic securely using an explicit hash family?

Def: a hash family H is FS-compatible for a Π if $FS_H(\Pi)$ is “secure”.



FS using Explicit Family

Need to consider soundness & zero-knowledge.

Start with zero-knowledge.

Def: H is programmable if can sample random $h \in H$ conditioned on $h(x, \alpha) = \beta$.

ZK for FS

Claim: if H is programmable and Π is HVZK $\Rightarrow \Pi_{FS}(h)$ is ZK.

Proof: construct simulator.

1. Sample (α, β, γ) .
2. Sample H conditioned on $H(x, \alpha) = \beta$.
3. Output $(H, (\alpha, \beta, \gamma))$.

Exercise: show dist. identical.

Soundness for FS

Thm [B01,GK03]: \exists protocols which are not FS-compatible for any H .

Hope? Those counterexamples are arguments!
Maybe sound if we start with a proof?

[BDGJKLW13]: no blackbox reduction to a falsifiable assumption, **even for proofs**.

Fiat Shamir for Proofs?

- Stay tuned for afternoon talk.
- Closely related to the question of parallel composition of ZK [DNRS03].

Thanks!