The Fiat-Shamir Transform

Ron Rothblum

Technion

The Fiat-Shamir Transform
[FS86]

In a nutshell: Awesome technique for minimizing
interaction in public-coin interactive protocols.

Fascinating both in theory and in practice.

* Original goal was transforming ID schemes into signature schemes.

Interactive Argument [BCC88]

X € L?

Prover P Verifier V

Public-coin if all V does is
e Completeness: P convince flip coins and send the

: result
 Computational Soundness

cheating prover can convincew
with negligible probability).

The Fiat-Shamir Transform

Public-Coin o
Interactive Argument

ay : vV
1

dy—1
Br_1

Ay

(Each S; uniformly random)

Non-Interactive
Argument

Hash Function H

Pgg

a4

B =H(x, a)

The Fiat-Shamir Transform

Public-Coin o
Interactive Argument

ay : vV
1

dy—1
Br_1

Ay

(Each S; uniformly random)

Non-Interactive
Argument

Hash Function H

Pgg

aq,,q;

B =H(x, a)

The Fiat-Shamir Transform

Public-Coin o
Interactive Argument

aq

b1
dy—1
Br_1

Ay

<

(Each S; uniformly random)

Non-Interactive
Argument

Hash Function H

Pgg

Ay, ey Ay

B =H(x, a,)
B, = H(x,a1,a;)

p; = H(x,aq, ..., a;)

The Fiat-Shamir Transform

Extremely influential methodology.

Powerful: We know that interaction buys a lot.

FS makes interaction free.

Practical: Very low overhead.

Expressive: Efficient Signature, CS proofs,
(zk-)SNARGs, STARKSs...

Fiat Shamir — Security?

Central question in cryptography:

Do there exist hash functions for which the Fiat-
Shamir transformis secure?

Answer: we don’t (quite) know ®.

Still, would like to understand and so we’ll analyze
security assuming an ideal hash function.

The Random Oracle Model [BR93]

The random oracle model simply means that all
parties are given blackbox access to a fully
random function R: {0,1}* - {0,1}~.

Security should hold whp over the choice of R.

Q: How should we view protocols secure in ROM?
A: TBD.

FS in the ROM

Public-Coin o
Interactive Argument

ay : vV
1

dy—1
Br_1

Ay

(Each S; uniformly random)

Non-Interactive
Argument

Random Oracle R

Pgg

Ay, ey Ay

B = R(x,ay)
B2 = R(x, a1, a;)

f; = R(x,aq, ..., q;)

FS in the ROM

Thm [PS96,Folklore]: for every constant-round
interactive argument I with negl. soundness,
whp over R, the protocol Il is secure.

Tightness

Claim: 3multi-round protocol II with negl.

soundness error s.t. Iz is *not* sound (even
in ROM).

Proof: Take any constant-round protocol with
constant soundness and repeat sequentially.

Tightness

Public-Coin Non-Interactive
Interactive Argument Argument

Hash Function H

p; = H(x,aq, ..., a;)

@, V + Ppgg

P : A, e, Ay
s By = H(x,az)
br_1 E f, = H(x,aq,a;)

. .

FS in the ROM

Thm [PS96,Folklore]: for every constant-round
interactive argument I with negl. soundness,
whp over R, the protocol Il is secure.

(Actually extends to some multi-round protocols.)

We will see the proof in detail, but for simplicity
focus on 3-message protocol.

FS in ROM

Public-Coin
Interactive Protocol

S
S

Pgg

N

Non-Interactive
Argument

Random Oracle R

a,B,y

b =R(xa)

FS in ROM

Need to show:

e Completeness. [:l\/
* Soundness.

e Zero knowledge.

FS in ROM: Soundness

Suppose 3x & L and Pg¢ that runsin time T and
makes V¢ accept x wp = €.

Will construct P* s.t. I/ accepts x w.p. poly (e, %) .

First, a Useful Fact

Fact: suppose (X, Y) are jointly distributed RVs s.t.
Pr[A(X,Y)] = €.
Then, for at least €/2 fraction of x's it holds that
(*) Pr[A(x,Y)] = €/2.
Y|x

Proof: Markov’s inequality.

First, a Useful Fact

Fact: suppose (X, Y) are jointly distributed RVs s.t.
Pr[A(X,Y)] = €.
Then, for at least €/2 fraction of x's it holds that
(*) Pr[A(x,Y)] = €/2.
Y|x

Proof:

First, a Useful Fact

Fact: suppose (X, Y) are jointly distributed RVs s.t.
Pr[A(X,Y)] = €.
Then, for at least €/2 fraction of x's it holds that
(*) Pr[A(x,Y)] = €/2.
Y|x

Proof: suppose not. Call x good if (*) holds

Prl[A(X,Y)] =

First, a Useful Fact

Fact: suppose (X, Y) are jointly distributed RVs s.t.
Pr[A(X,Y)] = €.
Then, for at least €/2 fraction of x's it holds that
(*) Pr[A(x,Y)] = €/2.
Y|x

Proof: suppose not. Call x good if (*) holds

Pr[A(X,Y)] = Pr[X good] - Pr[A(X,Y)|X good] +
Pr|X bad] - Pr[A(X,Y)|X bad]

-— —

First, a Useful Fact

Fact: suppose (X, Y) are jointly distributed RVs s.t.
Pr[A(X,Y)] = €.
Then, for at least €/2 fraction of x's it holds that
(*) Pr[A(x,Y)] = €/2.
Y|x

Proof: suppose not. Call x good if (*) holds

Pr[A(X,Y)] = Pr[X good] - Pr[A(X,Y)|X good] +
Pr|X bad] - Pr[A(X,Y)|X bad]

<< 141-=
2 2

First, a Useful Fact

Fact: suppose (X, Y) are jointly distributed RVs s.t.
Pr[A(X,Y)] = €.
Then, for at least €/2 fraction of x's it holds that
(*) Pr[A(x,Y)] = €/2.
Y|x

Proof: suppose not. Call x good if (*) holds

Pr[A(X,Y)] = Pr[X good] - Pr[A(X,Y)|X good] +
Pr|X bad] - Pr[A(X,Y)|X bad]

<< 141-=
2

m N[m

FS in ROM: Soundness

Suppose 3x & L and Pg¢ that runsin time T and
makes V¢ accept x wp = €.

Will construct P* s.t. I/ accept x w.p. poly (e, %) .

Soundness Analysis

Denote oracle queries by 4, ..., Q7.
Wilog all Q;’s distinctand a € {Q4, ..., Q7}.

Claim: 3i" € |T] s.t. Pr¢ winsw.p. €/T
conditionedon Q;+ = «.

Proof: by contradiction.

“The Forking Lemma”

Key Lemma: for% fraction of (g4, ..., ;) it holds

that Pz wins w.p. % conditionedon Q;x = «

and Q; = qg; foralli < i".

Proof: by useful fact.

Breaking Soundness of V

p* I
B
)4

. Start running Pz up toit’s i"th query, using random
answers.

. Let @ = Q; be the i"th query. Send «a (and get f3).

. Continue running Pp¢ while answering Q;+ with and
other queries uniformly at random.

. Eventually Pz¢ outputs (a’,B',7").

. Ma=a andf =pL"sendy =vy".

Breaking Soundness of I/: Analysis

Rely on forking lemma:

Forking Lemma: for % fraction of (g4, ..., g;*) it holds that

Pr¢ wins w.p. i conditioned on Q;+ = a and Q; = q; for all
[<i"

Get that Wp 7 Over choice of (Q4, ..., Q;) it holds that wp
5 over all remamlng coin tosses that Pz wins and a’ = a.

2
= our P* wins wp (%) , Which is non-negligible.

FS in ROM: ZK

Have not defined ZK in the ROM and as there are multiple
definitions (and issues).

Intuitively though, beyond seeing («, 5, ¥) (which can be
generated from x by (HV)-ZK), the verifier has obtained
oracle access to a random function R such that R(x, @) = B.

Could it have obtained such a function by itself?
Short answer: kind of...
Long answer: depends on the definition. ©

FS in ROM

Conclusion: FS is sound in ROM (and ZK for some
suitable definitions).

But we cannot use hash functions that take 24 bits
to describe!

So, is the Fiat-Shamir transform secure?

Bad news [CHG98]: 3 protocols secure in ROM but
totally broken using any instantiation.

Fiat Shamir — Security?

Given negative result, how to interpret ROM proof of
security?

Optimist’s view:

 Counterexamples are contrived.
* ROM analysis = strong indication FS is secure in real-life.

e ROM analysis = good heuristic. Can help both in terms of
feasibility and efficiency.

Pessimist’s view:

e Basing security on an assumption that we do not
understand, and have a negative indication for, is
undesirable if not flat out dangerous.

Instantiating Fiat Shamir with
Explicit Hash function

A Basic Question

Can we instantiate the heuristic securely using
an explicit hash family?

Def: a hash family H is FS-compatible for a II if
FSy(IT) is “secure”.

PFS h VFS
) heH

f =h(x,a) 4

FS using Explicit Family

Need to consider soundness & zero-knowledge.
Start with zero-knowledge.

Def: H is programmable if can sample random
h € H conditionedon h(x, a) = .

ZK for FS

Claim: if H is programmable and II is HVZK = Ilg¢(h)
Is ZK.

Proof: construct simulator.

1. Sample (a, 5,7).
2. Sample H conditioned on H(x, @) = B.

3. Output (H, (a, B, y)).

Exercise: show dist. identical.

Soundness for FS

Thm [BO1,GKO3]: 3 protocols which are not FS-
compatible for any H.

Hope? Those counterexamples are arguments!
Maybe sound if we start with a proof?

IBDGJKLW13]: no blackbox reduction to a
falsifiable assumption, even for proofs.

Fiat Shamir for Proofs?

e Stay tuned for afternoon talk.

* Closely related to the question of parallel
composition of ZK [DNRSO3].

Thanks!

