
Non-Interactive
Zero-Knowledge

Ron Rothblum
Technion

Zero-Knowledge

• So far today: Zero-Knowledge is really awesome!

• ZK Crucially relies on a combination of interaction and randomness.

• Even more awesome – ZK with “no” interaction! Prover just sends a
ZK proof and verifier is convinced (a la 𝑁𝑃 proof).

• Non-interactive proofs are very important in some domains.

For example, can simply post proof on website (or blockchain).

Non-interactive Zero-knowledge?

Claim: If 𝐿 has a ZK proof in which prover sends a single message
then 𝐿 ∈ 𝐵𝑃𝑃.

Proof: Decision procedure for 𝐿:
1. Given 𝑥 ∈ 𝐿, run 𝑆𝑖𝑚(𝑥) to get a simulated proof 𝜋.
2. Output 𝑉 𝑥, 𝜋 .

• Completeness: If 𝑥 ∈ 𝐿 then simulated proof indis. from real
proof ⇒ 𝑉 accepts.

• Soundness: If 𝑥 ∉ 𝐿 then 𝑉 rejects all proofs (whp).

Thanks!

Non-Interactive Zero-Knowledge [BFM88]

• Key idea: trusted setup.

• Typically, the Common Reference String (CRS) model.

• A trusted party generates a CRS that all parties can see.

• Even Better: common uniform random string (CURS).

Definition: NIZK

CRS

𝑃(𝑥, 𝑤) 𝑉(𝑥)
𝜋

Completeness: if 𝑥 ∈ 𝐿 ⇒ Pr 𝑉 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 = 1 − 𝑛𝑒𝑔𝑙

Soundness: if 𝑥 ∉ 𝐿 ⇒ ∀PPT 𝑃∗, Pr 𝑉 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 = 𝑛𝑒𝑔𝑙

Definition: NIZK

CRS

𝑃(𝑥, 𝑤) 𝑉 (𝑥)
𝜋

Zero-Knowledge: “Can simulate view of the verifier”

∃𝑆𝑖𝑚 such that for 𝑥 ∈ 𝐿
𝑆𝑖𝑚 𝑥 ≈𝑐 (𝐶𝑅𝑆, 𝜋)

Philosophical Detour: is NIZK actually ZK?

You can share an NIZK proof with your friends and convince them that
𝑥 ∈ 𝐿!

Q: you’ve not learned only that 𝑥 ∈ 𝐿 but also a convincing proof for
that fact. How can this be ZK???

A: you’ve learned a proof for this specific CRS. Arguably did not learn
directly about 𝑥.

Regardless of philosophical mumbo jumbo, very useful in applications!

Impossibility Results No Longer Applies!

False Claim: If 𝐿 has an NIZK in CRS model then 𝐿 ∈ 𝐵𝑃𝑃.

Wrong Proof: Decision procedure for 𝐿:
1. Given 𝑥 ∈ 𝐿, run 𝑆𝑖𝑚(𝑥) to get (𝜋, 𝐶𝑅𝑆).
2. Output 𝑉 𝑥, 𝐶𝑅𝑆, 𝜋 .

• Completeness: If 𝑥 ∈ 𝐿 then simulated proof indis. from
real proof ⇒ 𝑉 accepts.

• Soundness: If 𝑥 ∉ 𝐿 then 𝑉 rejects all proofs (whp).

NIZK Applications

• 𝐶𝐶𝐴 secure encryption [NY90].

• Unique signatures [BG89].

• MPC with low round complexity [AJJTVW12].

• CS proofs [Micali94]

• Mechanism design [LMPS04]

• Cryptocurrencies zk-SNARGS, zk-STARKS [BCGGMTV14,…]

• …

Variants of NIZKs (aka the Boring Slide)

• Multi theorem: can-reuse CRS for many 𝑥’s.

• Adaptive soundness: sound even if 𝑥 ∉ 𝐿 chosen after 𝐶𝑅𝑆.

• Adaptive ZK: ZK distinguisher can choose 𝑥 ∈ 𝐿 after 𝐶𝑅𝑆.

• Statistical soundness (proof): sound against unbounded provers.

• Statistical ZK: ZK for unbounded distinguishers.

Feasibility Results [Circa 2018]

[FLS90]: NIZK for all of NP from Trapdoor Permutations*.

Corollary: NIZK based on hardness of factoring.

Other known results:
• Bilinear maps [GOS06].
• Random oracle model (tomorrow).
• Obfuscation [SW13,BP15].
• Optimal hardness assumptions [CCRR18,CCHLRR18].

New & Exciting Feasibility Results [2019]

• LWE + circular security [CLW19]

• Last week: LWE! [PS19]

Still Open:

1. From discrete log type assumptions (in standard group).

2. From less structured generic assumptions.
• One way functions???

Feasibility Results [Circa 2018]

[FLS90]: NIZK for all of NP from Trapdoor Permutations*.

Corollary: NIZK based on hardness of factoring.

Other known results:
• Bilinear maps [GOS06].
• Random oracle model (tomorrow).
• Obfuscation [SW13,BP15].
• Optimal hardness assumptions [CCRR18,CCHLRR18].

Feasibility Results [Circa 2018]

[FLS90]: NIZK for all of NP from Trapdoor Permutations*.

Corollary: NIZK based on hardness of factoring.

Other known results:
• Bilinear maps [GOS06].
• Random oracle model (tomorrow).
• Obfuscation [SW13,BP15].
• Optimal hardness assumptions [CCRR18,CCHLRR18].

The FLS Paradigm

Construction has two main steps:

1. Construct NIZK in the “hidden bits” model.

2. Compile hidden bits NIZK to standard NIZK.

The Hidden Bits Model

Think of CRS model, except verifier only sees a part of the CRS
determined by the prover.

Hidden Bits

𝑃(𝑥, 𝑤) 𝑉(𝑥)
𝜋, 𝑆

𝑆

The FLS Paradigm

Construction has two main steps:

1. Construct NIZK in the “hidden bits model”.

2. Compile any hidden bits NIZK to standard NIZK.

NIZK in the Hidden Bits Model

Construct hidden bits NIZK for Hamiltonicity – given a graph 𝐺, does it
contain a Hamiltonian cycle?

Hamiltonicity is 𝑁𝑃 complete ⇒ Hidden bits 𝑁𝐼𝑍𝐾 for all of 𝑁𝑃.

Construction is information theoretic.

• Prover is polynomial-time (given the cycle).

• Perfect completeness.

• Perfect* soundness even against unbounded prover!

Hidden Bits NIZK for Hamiltonicity

Common Input: A graph 𝐺 = 𝑉, 𝐸

Auxiliary Prover Input: Hamiltonian cycle 𝐻 ⊆ 𝐸.

CRS: random cycle graph 𝐶 on |𝑉| vertices (represented by
adjacency matrix).*

Hidden Bits NIZK for Hamiltonicity

Random cycle graph 𝐶 = (𝑉𝐶 , 𝐸𝐶)

𝑃(𝐺, 𝐻) 𝑉(𝐺)
𝜋, 𝑆

Find injective mapping 𝜋: 𝑉 → 𝑉𝐶

that preserves cycle structure

Reveal 𝑆 ⊆ 𝑉𝐶 × 𝑉𝐶 s.t.:
𝑆 = 𝜋 𝑉2 ∖ 𝐸

Check that
1. 𝜋 is injective
2. ∀𝑒 ∉ 𝐸, the edge 𝜋(𝑒)
was revealed (as a non-edge)

Completeness

Random cycle graph 𝐶 = (𝑉𝐶 , 𝐸𝐶)

𝑃(𝐺, 𝐻) 𝑉(𝐺)
𝜋, 𝑆

Find injective mapping 𝜋: 𝑉 → 𝑉𝐶

that preserves cycle structure

Reveal 𝑆 ⊆ 𝑉𝐶 × 𝑉𝐶 s.t.:
𝑆 = 𝜋 𝑉2 ∖ 𝐸

Check that
1. 𝜋 is injective
2. ∀𝑒 ∉ 𝐸, the edge 𝜋(𝑒)
was revealed (as a non-edge)

Soundness

Suppose 𝑉 accepts.

1. 𝜋 is injective.

2. All non-edges of 𝐸 were revealed.

Consider the inverse 𝐸′ of the cycle edges of 𝐶. Observations:

1. 𝐸′ ⊆ 𝐸 (i.e,. contains only actual edges).

2. 𝐸′ forms a Hamiltonian cycle.

⇒ 𝐺 is Hamiltonian.

Perfect soundness!

Actually, for CURS (instead of CRS) pay
exponentially small soundness error.

Hidden Bits NIZK for Hamiltonicity:
Zero-Knowledge

Intuitively, all the verifier sees is a mapping 𝜋: 𝑉 → 𝑉𝐶 and that all the non-
edges of 𝐺 were revealed.

How to simulate? Given graph 𝐺:

• Choose random injective function 𝜋 → [𝑛].

• Output (𝜋, 𝑆, 𝐶𝑅𝑆𝑆) where 𝑆 = 𝜋 𝑉2\𝐸 and 𝐶𝑅𝑆𝑆 = 000 … 0.

Claim 1: for every fixed choice of 𝜋 the simulated view is identical to the real.

Claim 2: mapping in real execution is a random injective function.

The FLS Paradigm

Construction has two main steps:

1. Construct NIZK in the “hidden bits model”.

2. Compile any hidden bits NIZK to standard NIZK.

From Hidden Bits to CRS

Hidden bits model is a fictitious abstraction.

Will use crypto to compile into standard CRS model.

Main tool: Trapdoor Permutations (TDP).

Trapdoor Permutations

• Will use an idealized definition.

• Actual candidates don’t satisfy this…

• To make a long story short, it causes massive headaches.

• See: enhanced TDP [G04], doubly-enhanced TDP
[G11,GR13], certifying TDP [BY96,CL18]…

Idealized Trapdoor Permutations

Definition: a collection of efficiently computable permutations

𝑝𝛼: 0,1 𝜆 → 0,1 𝜆
𝛼∈ 0,1 𝜆 such that:

1. ∃𝑃𝑃𝑇 algorithm that samples 𝛼 together with a “trapdoor” 𝜏
2. 𝛼, 𝑝𝛼 𝑥 ↛ 𝑥.

3. 𝜏, 𝑝𝛼 𝑥 → 𝑥.

Examples*: RSA, Rabin.

Hardcore bit of TDP: efficient ℎ: 0,1 𝜆 → {0,1} s.t. 𝛼, 𝑝𝛼 𝑥 ↛ ℎ 𝑥 .

Implementing Hidden Bits Model – Bird’s Eye

CRS consists of 𝑦1 , … , 𝑦ℓ ∈ 0,1 𝜆.

Prover chooses a TDP 𝛼, 𝜏 .

Hidden bits are defined as 𝑏𝑖 = ℎ(𝑦𝑖).

To reveal a bit the prover sends 𝑥𝑖 .

Implementing Hidden Bits – Frog’s Eye

𝑦1, … 𝑦ℓ

𝑃(𝑥, 𝑤) 𝑉(𝑥)
𝛼, 𝜋, 𝑥𝑖 𝑖∈𝑆1. Choose (𝛼, 𝜏).

2. Define 𝑥𝑖 = 𝑝𝛼
−1 𝑦𝑖 .

3. Hidden bits are 𝑏𝑖 = ℎ 𝑥𝑖

4. Run HB prover on 𝑥, 𝑤, 𝑏1 , … , 𝑏ℓ

5. Get proof 𝜋 and 𝑆 ⊆ ℓ .

1. Check 𝛼 in collection
2. ∀𝑖 ∈ 𝑆, check 𝑝𝛼 𝑥𝑖 = 𝑦𝑖.
3. Define 𝑏𝑖 = ℎ 𝑥𝑖

4. Check that HB verifier accepts
(𝑥, 𝜋, 𝑏𝑖 𝑖∈𝑆)

Completeness

𝑦1, … 𝑦ℓ

𝑃(𝑥, 𝑤) 𝑉(𝑥)
𝛼, 𝜋, 𝑥𝑖 𝑖∈𝑆1. Choose (𝛼, 𝜏).

2. Define 𝑥𝑖 = 𝑝𝛼
−1 𝑦𝑖 .

3. Hidden bits are 𝑏𝑖 = ℎ 𝑥𝑖

4. Run HB prover on 𝑥, 𝑤, 𝑏1 , … , 𝑏ℓ

5. Get proof 𝜋 and 𝑆 ⊆ ℓ .

1. Check 𝛼 in collection
2. ∀𝑖 ∈ 𝑆, check 𝑝𝛼 𝑥𝑖 = 𝑦𝑖.
3. Define 𝑏𝑖 = ℎ 𝑥𝑖

4. Check that HB verifier accepts
(𝑥, 𝜋, 𝑏𝑖 𝑖∈𝑆)

From Hidden Bits to NIZK – Zero Knowledge

• Intuitively the bits 𝑏𝑖 𝑖∈𝑆 are revealed and by the hard-core property
+ hybrid argument the bits 𝑏𝑖 𝑖∉𝑆 are hidden.

• Formally(ish) can construct a simulator 𝑆𝑖𝑚 𝑥 as follows:
• Run 𝑆𝑖𝑚𝐻𝐵(𝑥) to get (𝜋, 𝑆, 𝑏𝑖 𝑖∈𝑆).

• Sample (𝛼, 𝜏).

• For every 𝑖 ∈ 𝑆 sample 𝑥𝑖 s.t. ℎ 𝑥𝑖 = 𝑏𝑖 . Set 𝑦𝑖 = 𝑝𝛼(𝑥𝑖).

• For every 𝑖 ∉ 𝑆 sample 𝑦𝑖 ∈ 0,1 𝜆.

• Output 𝛼, 𝜋, 𝑆 , 𝑦1, … , 𝑦ℓ .

• Exercise: show that 𝑆𝑖𝑚 𝑥 ≈𝐶 𝑅𝑒𝑎𝑙.

From Hidden Bits to NIZK: Soundness

Suppose 𝛼 is fixed (Important!).

Then, the hidden bits are automatically defined as
𝑏𝑖 = ℎ 𝑓𝛼

−1 𝑦𝑖

Now soundness follows immediately from HB soundness.

Problem: cannot assume 𝛼 is fixed – choice of 𝛼 gives
prover leverage in deciding the values of 𝑏1, … , 𝑏ℓ.

From Hidden Bits to NIZK: Soundness

Idea: repeat HB proof-system enough times so that the soundness is
2−2𝜆.

Now:

Pr ∃𝛼 𝑜𝑛 𝑤ℎ𝑖𝑐ℎ 𝑃𝑟𝑜𝑣𝑒𝑟 𝑐𝑎𝑛 𝑐ℎ𝑒𝑎𝑡 ≤ ෍

𝛼

Pr 𝑃𝑟𝑜𝑣𝑒𝑟 𝑐𝑎𝑛 𝑐ℎ𝑒𝑎𝑡 𝑜𝑛 𝛼

≤ 2𝜆 ⋅ 2−2𝜆

= 2−𝜆

From Hidden Bits to NIZK: Soundness

Idea: repeat HB proof-system enough times so that the soundness is
2−2𝜆.

Now:

Pr ∃𝛼 𝑜𝑛 𝑤ℎ𝑖𝑐ℎ 𝑃𝑟𝑜𝑣𝑒𝑟 𝑐𝑎𝑛 𝑐ℎ𝑒𝑎𝑡 ≤ ෍

𝛼

Pr 𝑃𝑟𝑜𝑣𝑒𝑟 𝑐𝑎𝑛 𝑐ℎ𝑒𝑎𝑡 𝑜𝑛 𝛼

≤ 2𝜆 ⋅ 2−2𝜆

= 2−𝜆

From Hidden Bits to NIZK: Soundness

Idea: repeat HB proof-system enough times so that the soundness is
2−2𝜆.

Now:

Pr ∃𝛼 𝑜𝑛 𝑤ℎ𝑖𝑐ℎ 𝑃𝑟𝑜𝑣𝑒𝑟 𝑐𝑎𝑛 𝑐ℎ𝑒𝑎𝑡 ≤ ෍

𝛼

Pr 𝑃𝑟𝑜𝑣𝑒𝑟 𝑐𝑎𝑛 𝑐ℎ𝑒𝑎𝑡 𝑜𝑛 𝛼

≤ 2𝜆 ⋅ 2−2𝜆

= 2−𝜆

From Hidden Bits to NIZK: Soundness

Idea: repeat HB proof-system enough times so that the soundness is
2−2𝜆.

Now:

Pr ∃𝛼 𝑜𝑛 𝑤ℎ𝑖𝑐ℎ 𝑃𝑟𝑜𝑣𝑒𝑟 𝑐𝑎𝑛 𝑐ℎ𝑒𝑎𝑡 ≤ ෍

𝛼

Pr 𝑃𝑟𝑜𝑣𝑒𝑟 𝑐𝑎𝑛 𝑐ℎ𝑒𝑎𝑡 𝑜𝑛 𝛼

≤ 2𝜆 ⋅ 2−2𝜆

= 2−𝜆

Putting it all together

Thm: if factoring is hard, then ∃𝑁𝐼𝑍𝐾 for all of 𝑁𝑃.

(Unconditional)
Hidden Bits NIZK

for 𝑁𝑃

Factoring

Trapdoor
Permutations*

NIZK for NP

Thanks!

