Non-Interactive
/ero-Knowledge
Ron Rothblum

Technion

/ero-Knowledge

* So far today: Zero-Knowledge is really awesome!
e ZK Crucially relies on a combination of interaction and randomness.

* Even more awesome — ZK with “no” interaction! Prover just sends a
ZK proof and verifier is convinced (a la NP proof).

* Non-interactive proofs are very important in some domains.
For example, can simply post proof on website (or blockchain).

Non-interactive Zero-knowledge?

Claim: If L has a ZK proof in which prover sends a single message
then L € BPP.

Proof: Decision procedure for L:
1. Givenx € L, run Sim(x) to get a simulated proof .
2. Output V(x, m).

* Completeness: If x € L then simulated proof indis. from real
proof = V accepts.

* Soundness: If x € L then V rejects all proofs (whp).

Thanks!

Non-Interactive Zero-Knowledge [BFM&8]

* Key idea: trusted setup.

* Typically, the Common Reference String (CRS) model.

* A trusted party generates a CRS that all parties can see.

e Even Better: common uniform random string (CURS).

Definition: NIZK

P(x.w) V(x)

4

Completeness: if x € L = Pr|V accepts| = 1 — negl

Soundness: if x € L = VPPT P*, Pr|V accepts] = negl

Definition: NIZK

P(x,w) V (x)

4

Zero-Knowledge: “Can simulate view of the verifier”

345im such thatforx € L
Sim(x) =¢ (CRS,)

Philosophical Detour: is NIZK actually ZK?

You can share an NIZK proof with your friends and convince them that
X € L!

Q: you've not learned only that x € L but also a convincing proof for
that fact. How can this be ZK???

A: you've learned a proof for this specific CRS. Arguably did not learn
directly about x.

Regardless of philosophical mumbo jumbo, very useful in applications!

Impossibility Results No Longer Applies!

False Claim: If L has an NIZK in CRS model then L € BPP.

Wrong Proof: Decision procedure for L:
1. Givenx € L, run Sim(x) to get (m, CRS).
2. Output V(x, CRS, m).

* Completeness: If x € L then simulated proof indis. from
real proof = V accepts.

e Soundness: If x € L then V rejects all proofs (whp).

NIZK Applications

 CCA secure encryption [NY90].

* Unique signatures [BG89].

* MPC with low round complexity [AJJTVW12].

e CS proofs [Micali94]

* Mechanism design [LIMPS04]

* Cryptocurrencies zk-SNARGS, zk-STARKS [BCGGMTV14,...]

Variants of NIZKs (aka the Boring Slide)

* Multi theorem: can-reuse CRS for many x’s.

* Adaptive soundness: sound even if x € L chosen after CRS.

* Adaptive ZK: ZK distinguisher can choose x € L after CRS.

e Statistical soundness (proof): sound against unbounded provers.

e Statistical ZK: ZK for unbounded distinguishers.

Feasibility Results [Circa 2018]
[FLS90]: NIZK for all of NP from Trapdoor Permutations™.

Corollary: NIZK based on hardness of factoring.

Other known results:
* Bilinear maps [GOS06].
* Random oracle model (tomorrow).
e Obfuscation [SW13,BP15].
e Optimal hardness assumptions [CCRR18,CCHLRR18].

New & Exciting Feasibility Results [2019]

* LWE + circular security [CLW19]
e Last week: LWE! [PS19]

Still Open:
1. From discrete log type assumptions (in standard group).

2. From less structured generic assumptions.
* One way functions???

Feasibility Results [Circa 2018]
[FLS90]: NIZK for all of NP from Trapdoor Permutations™.

Corollary: NIZK based on hardness of factoring.

Other known results:
* Bilinear maps [GOS06].
* Random oracle model (tomorrow).
e Obfuscation [SW13,BP15].
e Optimal hardness assumptions [CCRR18,CCHLRR18].

Feasibility Results [Circa 2018]
[FLS90]: NIZK for all of NP from Trapdoor Permutations™.

Corollary: NIZK based on hardness of factoring.

Other known results:
* Bilinear maps [GOS06].
* Random oracle model (tomorrow).
e Obfuscation [SW13,BP15].
e Optimal hardness assumptions [CCRR18,CCHLRR18].

The FLS Paradigm

Construction has two main steps:
1. Construct NIZK in the “hidden bits” model.

2. Compile hidden bits NIZK to standard NIZK.

The Hidden Bits Model

Hidden Bits

P(x.w) S V(x)

Think of CRS model, except verifier only sees a part of the CRS
determined by the prover.

The FLS Paradigm

Construction has two main steps:
1. Construct NIZK in the “hidden bits model”.

2. Compile any hidden bits NIZK to standard NIZK.

NIZK in the Hidden Bits Model

Construct hidden bits NIZK for Hamiltonicity — given a graph G, does it
contain a Hamiltonian cycle?

Hamiltonicity is NP complete = Hidden bits NIZK for all of NP.

Construction is information theoretic.

* Prover is polynomial-time (given the cycle).

* Perfect completeness.

* Perfect* soundness even against unbounded prover!

Hidden Bits NIZK for Hamiltonicity

Common Input: Agraph G = (V,E)

Auxiliary Prover Input: Hamiltoniancycle H € E.

CRS: random cycle graph C on |V| vertices (represented by
adjacency matrix).*

Hidden Bits NIZK for Hamiltonicity

Random cycle graph C = (V, E;)

P(G.H) V(G)
T,S
>
Find injective mapping m: V' — V, Check that
that preserves cycle structure 1. 7 is injective
2.Ve & E, the edge m(e)
Reveal S € V. X V. s.t.: was revealed (as a non-edge)

S=n(V?\E)

Completeness

Random cycle graph C = (V, E;)

P(G.H) V(G)
T, S
2
Find injective mapping m: V' — V, Check that
that preserves cycle structure E_I/ 1. 7 is injective
(V] 2.Ve & E, the edge m(e)
Reveal S € V. X V. s.t.: ~was revealed (as a non-edge)

S=n(V?\E)

Soundness

Suppose V' accepts.

1. misinjective.

PR (ol BT F Y W R AUl for CURS (instead of CRS) pay
exponentially small soundness error.
Consider the inverse E’

1. E' € E (i.e,. containsonly a
2. E' forms a Hamiltonian @

= (is Hamiltonian.

Perfect soundness!

Hidden Bits NIZK for Hamiltonicity:
/ero-Knowledge

Intuitively, all the verifier sees is a mapping m: V — V- and that all the non-
edges of G were revealed.

How to simulate? Given graph G:
* Choose random injective function T — [n].

e Output (77, S, CRSs) where S = m(V4\E) and CRSg = 000 ... 0.

Claim 1: for every fixed choice of T the simulated view is identical to the real.

Claim 2: mapping in real execution is a random injective function.

The FLS Paradigm

Construction has two main steps:
1. Construct NIZK in the “hidden bits model”.

2. Compile any hidden bits NIZK to standard NIZK.

From Hidden Bits to CRS

Hidden bits model is a fictitious abstraction.

Will use crypto to compile into standard CRS model.

Main tool: Trapdoor Permutations (TDP).

Trapdoor Permutations

* Will use an idealized definition.
 Actual candidates don’t satisfy this... ®
* To make a long story short, it causes massive headaches.

* See: enhanced TDP [G04], doubly-enhanced TDP
[G11,GR13], certifying TDP [BY96,CL18]...

|[dealized Trapdoor Permutations

Definition: a collection of efficiently computable permutations
{Pa: {0,134 - {0,1}’1}“6{0 A such that:

1. 3APPT algorithm that samples a together with a “trapdoor”t
2. a,pu(x) » x.
3. T,pe(x) - x.

Examples*: RSA, Rabin.

Hardcore bit of TDP: efficient h: {0,1}* — {0,1} s.t. @, po(x) + h(x).

Implementing Hidden Bits Model — Bird’s Eye

CRS consists of y5, ..., ¥, € {0,1}*.
Prover chooses a TDP (a, 7).
Hidden bits are defined as b; = h(y;).

To reveal a bit the prover sends x;.

Implementing Hidden Bits — Frog’s Eye

P(x,w) V(x)
1. Choose (a, 7). a, 1, {Xi}ies » 1. Check a in collection
2. Define x; = p; 1 (y;). 2. Vi €S, checkp,(x;) =v;.
3. Hidden bits are b; = h(x;) 3. Define b; = h(x;)
4. Run HB prover on (x, w, (by, ___,b{,)) 4. Check that HB verifier accepts

5. Get proof T and S C [£]. (x, T, {bi}iesy)

Completeness

P(x,w) V(x)
1. Choose (a, 7). a, 1, {Xi}ies » 1. Check a in collection
2. Define x; = p; 1 (y;). - D‘/ 2. Vi€eSs, check(pa§xi) = y;.
3. Hidden bits are b; = h(x; 3. Define b; = h(x;
4. Run HB prover on (x, w, (by, ___,b{,)) 4. Check that HB verifier accepts

5. Get proof T and S C [£]. (x, T, {bi}iesy)

From Hidden Bits to NIZK — Zero Knowledge

* Intuitively the bits {b;};c¢ are revealed and by the hard-core property
+ hybrid argument the bits {b;};¢s are hidden.

* Formally(ish) can construct a simulator Sim(x) as follows:
* Run Simpyg(x) to get (1, S, {b;}ics).
* Sample («, 7).
* Foreveryi € S sample x; s.t. h(x;) = b;. Sety; = p,(x;).
* Foreveryi & S sample y; € {0,1}*.
* Qutput ((a:, T, S), (¥4, ...,y{))).

* Exercise: show that Sim(x) =, Real.

From Hidden Bits to NIZK: Soundness

Suppose « is fixed (Important!).

Then, the hidden bits are automatically defined as

b = h(fa'())
Now soundness follows immediately from HB soundness.

Problem: cannot assume « is fixed — choice of a gives
prover leverage in deciding the values of by, ..., by.

From Hidden Bits to NIZK: Soundness

Idea: repeat HB proof-system enough times so that the soundness is
2724,

Now:

Pr{3a on which Prover can cheat]

From Hidden Bits to NIZK: Soundness

Idea: repeat HB proof-system enough times so that the soundness is
2724,

Now:

Pr[3a on which Prover can cheat] < Z Pr|Prover can cheat on «af

(04

From Hidden Bits to NIZK: Soundness

Idea: repeat HB proof-system enough times so that the soundness is
2724,

Now:

Pr{3a on which Prover can cheat] Z r|Prover can cheat on «]
a
21

—2A

I/\

From Hidden Bits to NIZK: Soundness

Idea: repeat HB proof-system enough times so that the soundness is
2724,

Now:

Pr[3a on which Prover can cheat] < Z Pr|Prover can cheat on «af
a

22) 2—21
2—/1

1A

Putting it all together

(Unconditional)
Hidden Bits NIZK Pe:r:\au?cg;g;s*
for NP

N

NIZK for NP

Thm: if factoring is hard, then ANIZK for all of NP.

Thanks!

