

WITNESS-INDISTINGUISHABILITY and SZK ARGUMENTS for NP

ALON ROSEN

IDC HERZLIYA

fact FOUNDATIONS & APPLICATIONS
of CRYPTOGRAPHIC THEORY

BIU WINTER SCHOOL | February 2019

Statistical Zero-Knowledge

Statistical ZK: $\forall \text{PPT } V^* \exists \text{PPT } S \forall x \in L \forall z$

$$S(x, z) \cong_s (P(w), V^*(z))(x)$$

$$\text{PZK} \subseteq \text{SZK} \subseteq \text{CZK}$$

Recall: If $\text{NP} \subseteq \text{SZK}$ then the polynomial-time hierarchy collapses to the second level

Possible relaxations:

- Computational indistinguishability (previous lectures)
- Computational soundness (now)

Interactive Argument Systems

Definition [BCC'86]: An interactive argument system for L is a PPT algorithm V and a function P such that $\forall x$:

Completeness: If $x \in L$, then $\Pr[(P, V) \text{ accepts } x] = 1$

Computational soundness: If $x \notin L$, then $\forall PPT P^*$

$$\Pr[(P^*, V) \text{ accepts } x] \leq neg(n)$$

- Computational soundness is typically based on a cryptographic assumption (e.g. CRH)
- Hardness of breaking the assumption is parametrized by security parameter n
- Independent parallel repetitions do not necessarily reduce the soundness error [BIN'97]

CZK Proofs vs SZK Arguments

CZK Proofs

- **Soundness is unconditional (undisputable)**
- **Secrecy is computational - suitable when secrets are ephemeral and “environment” is not too powerful**

SZK Arguments

- **Secrecy is unconditional (everlasting)**
- **Soundness is computational – suitable when prover is a weak device and no much time for preprocessing**

$\text{NP} \subseteq \text{SZK}$ arguments

Statistical ZK argument for *HAM*

Theorem: If statistically-hiding commitments exist then there exists an SZK argument for *HAM*

P

$G \in HAM$

V

$c = Com(\pi(G))$

b

$b = 0: u \in Dec(c)$

$b = 1: \pi, H = Dec(c)$

Verify that u is a cycle

Verify that $H = \pi(G)$

Computational Soundness

Claim: If (Com, Dec) is computationally binding then (P, V) is an interactive argument for HAM

P*

V

$Com(\pi(G))$

b

$b = 0: u$

$b = 1: (\pi, H)$

u is a cycle

$H = \pi(G)$

Computational soundness:

If $Pr_b[(P^*, V) \text{ accepts } x] > 1/2$

- u is a cycle in H
- and $H = \pi(G)$

Case 1: $\pi^{-1}(u)$ is a cycle in G

Case 2: u not consistent with (π, H)

PPT P^* breaks binding of Com

Statistical ZK

$$\underline{S^V^*(G)|b=0}$$

$$c = Com(G_0)$$

$$\underline{H^V^*(G, w)|b=0}$$

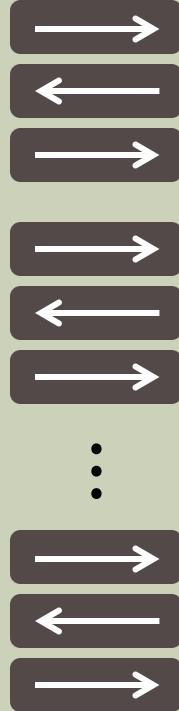
$$c = Com(G_1)$$

$$\approx_S$$

Amplifying soundness

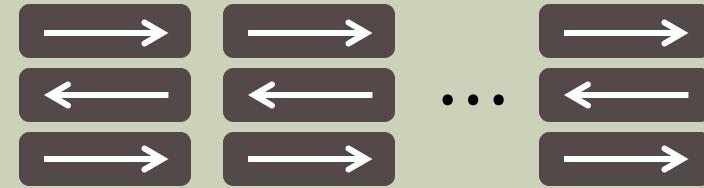
P

V



P

V



- Negligible soundness
- High round complexity
- ZK

- Negligible soundness
- Low round complexity
- ZK?

**Witness
Indistinguishability**

The Goal

Goal: construct argument for every $L \in \text{NP}$

- in statistical ZK
- with negligible soundness
- and a constant number of rounds

Main tool: witness indistinguishability

Witness-Indistinguishability

An extremely useful (and meaningful) relaxation of ZK

The interaction does not reveal which of the NP-witnesses for $x \in L$ was used in the proof

Witness-indistinguishable: $\forall w_1, w_2$

$$(P(w_1), V^*)(x) \cong_c (P(w_2), V^*)(x)$$

Witness independent: $\forall w_1, w_2$

$$(P(w_1), V^*)(x) \cong_s (P(w_2), V^*)(x)$$

Defined with respect to some NP-relation R_L

NP -Witnesses and NP -Relations

$L \in \text{NP}$ if \exists poly-time recognizable relation R_L so that

$$x \in L \Leftrightarrow \exists w, (x, w) \in R_L$$

Define the “set of NP-witnesses for $x \in L$ ”

$$\begin{aligned} R_L(x) &= \{w \mid (x, w) \in R_L\} \\ &= \{w \mid V(x, w) = \text{ACCEPT}\} \end{aligned}$$

- $R_L(x)$ is fully determined by R_L (equivalently, by V)
- $L \in \text{NP}$ can have many different NP-relations R_L

Witness-Indistinguishability

Definition [FS'90]: (P, V) is witness indistinguishable wrt NP-relation R_L if $\forall \text{PPT } V^* \ \forall x \in L \ \forall w_1, w_2 \in R_L(x)$

$$(P(w_1), V^*)(x) \cong_c (P(w_2), V^*)(x)$$

- **Holds trivially (and hence no security guarantee) if there is a unique witness w for $x \in L$**
- **Interesting (and useful) whenever more than one w**
- **Holds even if w_1, w_2 are public and known**
- **Every ZK proof/argument is also WI**
- **WI is closed under parallel/concurrent composition**

An Equivalent Definition

Unbounded simulation: $\forall PPT V^* \exists S \forall x \in L$

$$S(x) \cong_c (P(w), V^*)(x)$$

Claim: (P, V) has unbounded simulation iff it is WI

Proof:

$$(\Rightarrow) (P(w_1), V^*)(x) \cong_c S(x) \cong_c (P(w_2), V^*)(x)$$

(\Leftarrow) Exercise

ZK implies WI

Claim: If (P, V) is ZK then it is also WI

Proof: $(P(w_1), V^*)(x) \cong_c S(x) \cong_c (P(w_2), V^*)(x)$

Corollary: If statistically-binding commitments exist then every $L \in \text{NP}$ has a witness-indistinguishable proof

Proof: (P, V) for *HAM* is CZK and so, by claim above, it is also witness-indistinguishable

Analogously,

Corollary: If statistically-hiding commitments exist then every $L \in \text{NP}$ has a witness-independent argument

WI is Closed under Parallel Composition

Let $(P^{(k)}, V^{(k)})$ denote k parallel executions of (P, V)

Theorem: If (P, V) is WI then $(P^{(k)}, V^{(k)})$ is also WI

Hybrid argument (w_1, w_2 are known):

$$\begin{aligned} (P^{(k)}(w_1), V^{(k)}) &\rightarrow \boxed{w_1} \boxed{w_1} w_1 w_1 w_1 w_1 w_1 w_1 w_1 w_1 w_1 \\ &\cong_c \boxed{w_2} \boxed{w_1} w_1 w_1 w_1 w_1 w_1 w_1 w_1 w_1 w_1 \\ &\cong_c \boxed{w_2} \boxed{w_2} w_1 w_1 w_1 w_1 w_1 w_1 w_1 w_1 \\ &\cong_c w_2 w_2 \boxed{w_2} w_1 w_1 w_1 w_1 w_1 w_1 w_1 \\ &\quad \vdots \\ &\cong_c w_2 w_2 w_2 w_2 w_2 w_2 w_2 w_2 w_2 \boxed{w_1} \\ &\cong_c w_2 w_2 w_2 w_2 w_2 w_2 w_2 w_2 w_2 \boxed{w_2} \rightarrow (P^{(k)}(w_2), V^{(k)}) \end{aligned}$$

Constant-round WI for NP

Theorem: Assuming non-interactive statistically-binding commitments, every $L \in \text{NP}$ has a 3-round witness-indistinguishable proof with soundness error 2^{-k}

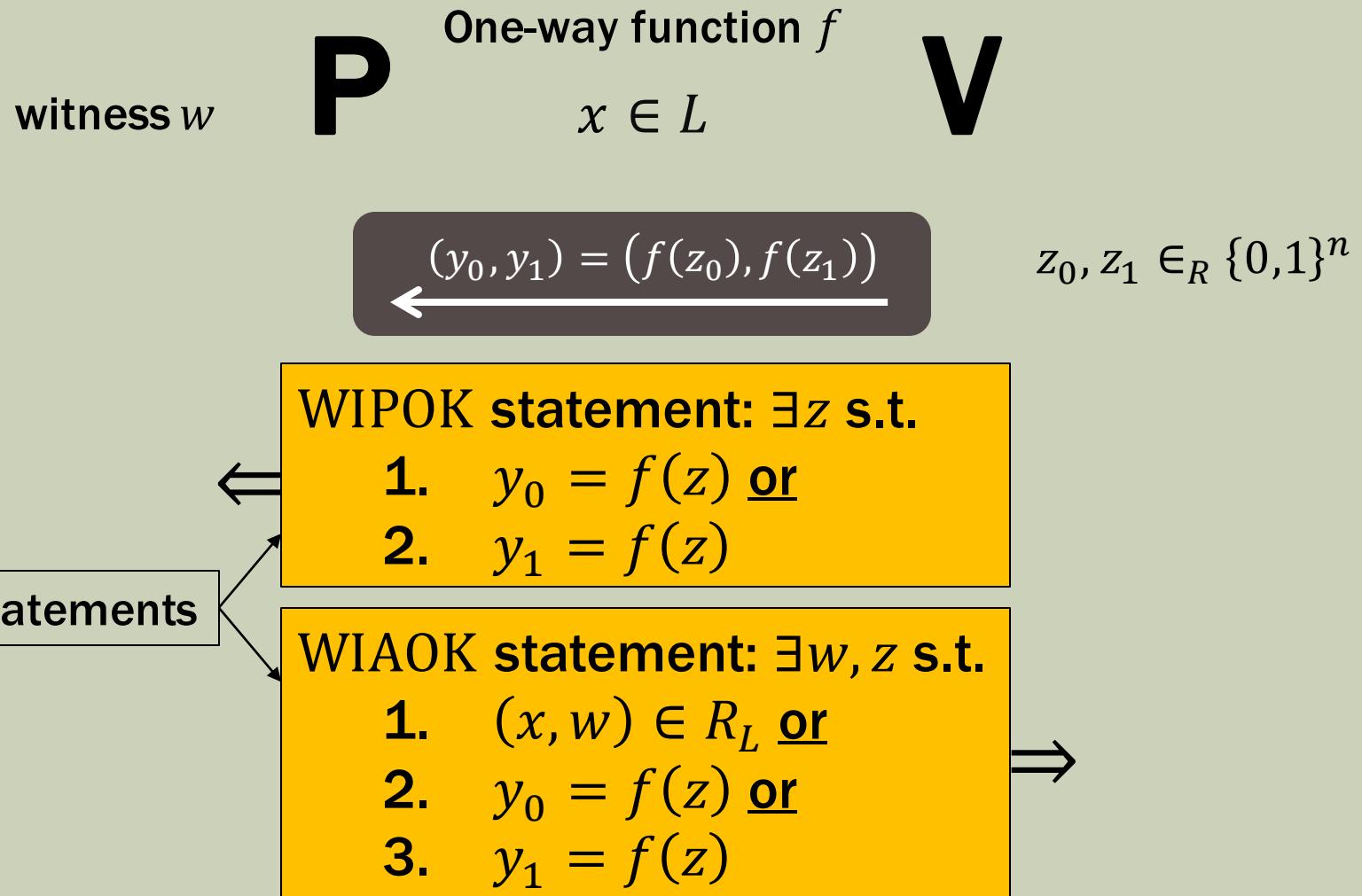
Theorem: Assuming 2-round statistically-hiding commitments, every $L \in \text{NP}$ has a 4-round witness-independent argument with soundness error $\exp(-O(k))$

- The protocols are in fact proofs of knowledge
- We will use them to construct
 - a 5-round SZK argument (of knowledge) for NP
 - a constant-round identification scheme

both with soundness error $\exp(-O(k))$

Constant-Round SZK Arguments for NP

Statistical ZK argument for NP [FS'90]



Completeness

witness w

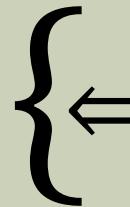
P

$x \in L$

V

$$(y_0, y_1) = (f(z_0), f(z_1))$$

Verify



WIPOK statement: $\exists z$ s.t.

1. $y_0 = f(z)$ or
2. $y_1 = f(z)$

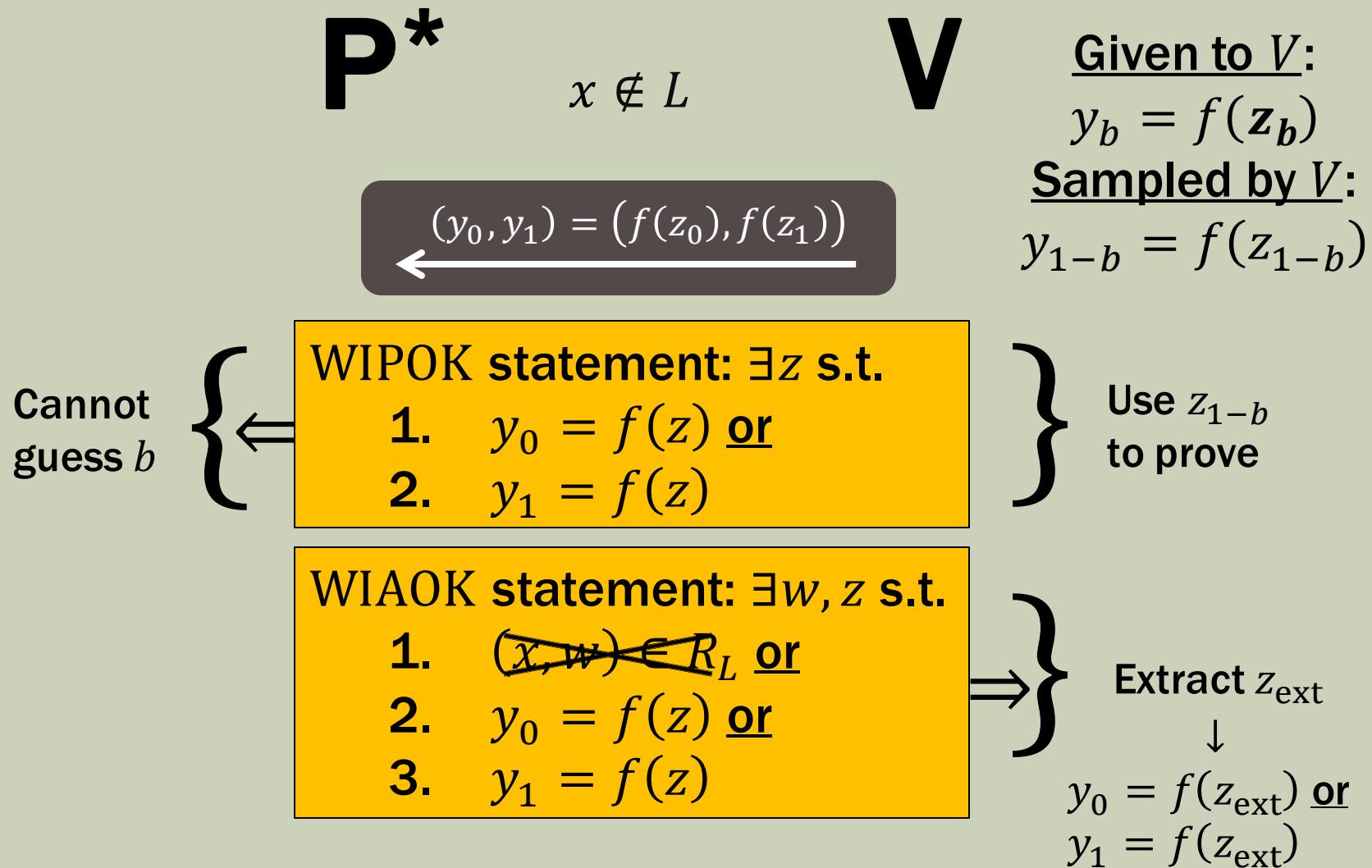
Use w
to prove

WIAOK statement: $\exists w, z$ s.t.

1. $(x, w) \in R_L$ or
2. $y_0 = f(z)$ or
3. $y_1 = f(z)$

ACCEPT

Soundness/POK



Claim: If POK is witness indistinguishable then $\forall PPT P^*$

$$\Pr_b [f(z_{\text{ext}}) = y_b] \approx 1/2$$

Exercise: otherwise P^* distinguishes between

$$(V(z_b), P^*)(y_0, y_1) \text{ and } (V(z_{1-b}), P^*)(y_0, y_1)$$

- If $f(z_{\text{ext}}) = y_b$ then z_{ext} is a preimage of $y_b = f(z_b)$
- So if P^* cheats w.p. ε we invert y_b w.p. $\approx \varepsilon/2$
- Thus, if f is one-way, P^* makes V accept $x \notin L$ with $neg(n)$ probability

Zero-Knowledge

Simulator S $x \in L$ V^*



Zero-Knowledge

Claim: If AOK is witness independent then $\forall PPT V^*$

$$S(x) \cong_s (P(w), V^*)(x)$$

Exercise: otherwise build \widehat{V}^* for AOK using V^* and then distinguish between

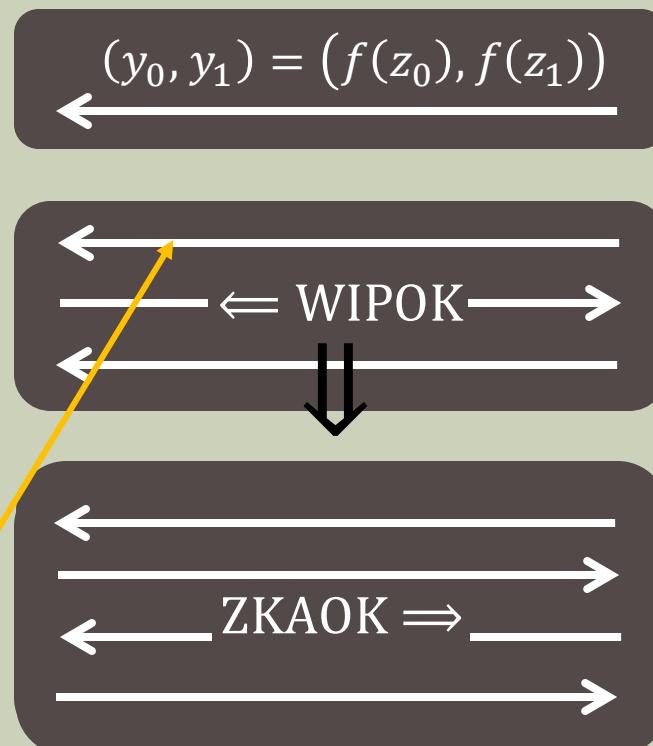
$$(P(w), \widehat{V}^*)(x, y_0, y_1) \text{ and } (P(z), \widehat{V}^*)(x, y_0, y_1)$$

Hint: \widehat{V}^* relays WIPOK messages between V^* and P

Corollary: If 2-round statistically-hiding commitments exist then every $L \in \text{NP}$ has a constant-round SZK argument

Towards 4-rounds?

P $x \in L$ **V**



An issue: in simulation
can set 2nd message of
WIAOK only after z_b is
extracted from WIPOK

In order to get 4-rounds
more ideas are required
[FS'89, BGY'97]

Trapdoor commitments:

$$Com_{g,h}(m,r) = h^r \cdot g^m$$

If $\log_g h$ is known, can decommit to any (m', r')

+

Witness hiding: infeasible
for V^* to output witness
following the interaction

Summary so far

Defined:

- Interactive arguments
- Statistically-hiding commitments
- Witness indistinguishability/independence

Saw:

- $\text{NP} \subseteq \text{SZK}$ arguments
- ZK implies WI (and hence $\text{NP} \subseteq \text{WI}$)
- WI composes (and hence negligible error)
- $\text{NP} \subseteq \text{SZK}$ in constant number of rounds

Witness Hiding

Identification using a ZKPOK

Setup phase (f is a one-way function):

$Gen(1^n)$: Alice picks $z \in_R \{0,1\}^n$ and publishes $y = f(z)$

Identification phase:

A

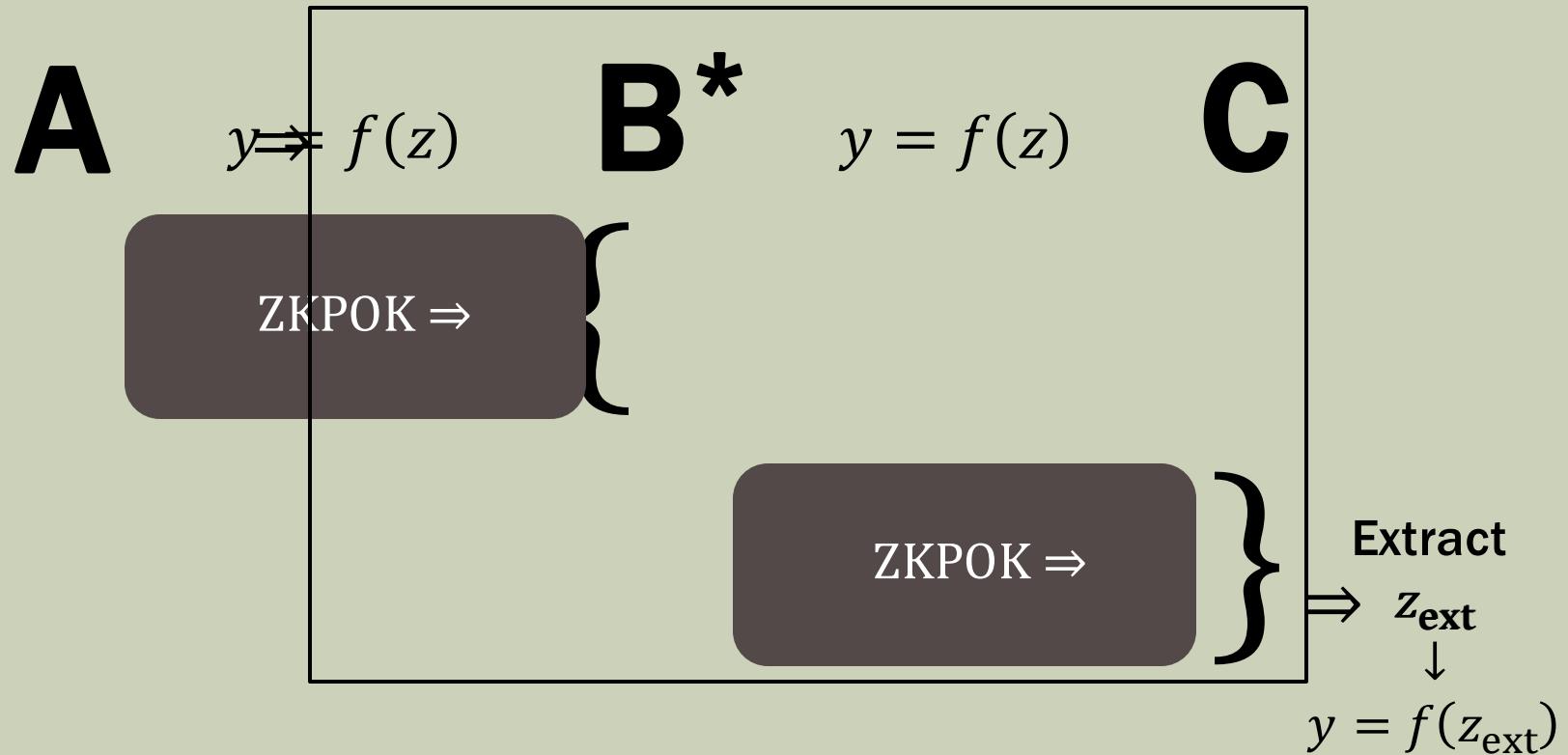
$$y = f(z)$$

B

NP statement

ZKPOK statement: $\exists z$ s.t.
 $y = f(z)$

Bob cannot impersonate Alice



- Use constant-round ZKPOK with $\text{neg}(n)$ error
- Observation: “witness hiding” is sufficient

Identification using a WHPOK

Setup phase:

$Gen(1^n)$: Alice picks $z_0, z_1 \in_R \{0,1\}^n$ and publishes
 $(y_0, y_1) = (f(z_0), f(z_1))$

Identification phase:

A (y_0, y_1) **B**

WIPOK statement: $\exists z$ s.t.

1. $y_0 = f(z)$ or
2. $y_1 = f(z)$

We already saw: if proof is WI and f is a OWF then a PPT B^* cannot output z following the interaction

Witness Hiding

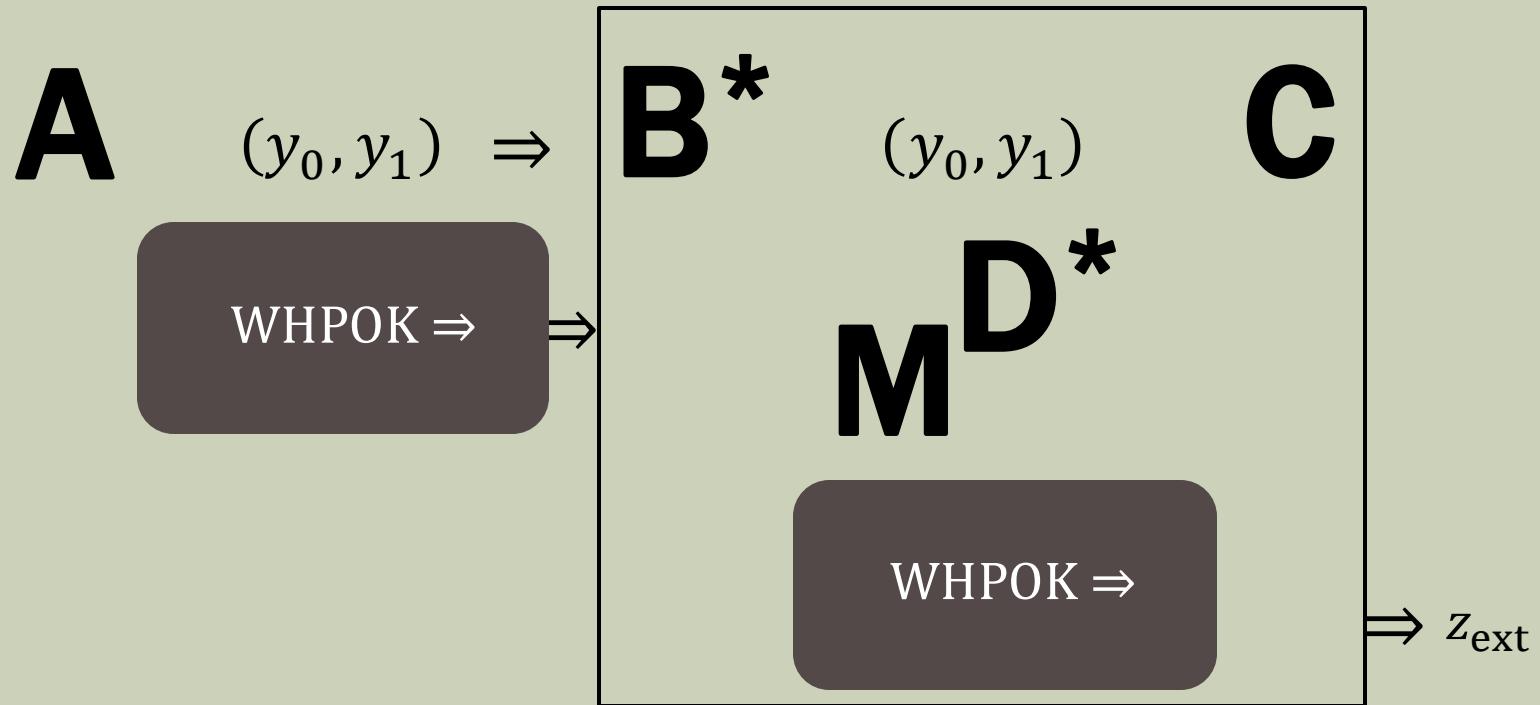
- If V^* can output a witness $w \in R_L(x)$ following the interaction with P he could have done so without it
- WH is implied by ZK but does not necessarily imply ZK
- Defined with respect to an instance generator Gen for R_L

Definition [FS'90]: (P, V) is witness hiding with respect to (Gen, R_L) if $\exists PPT M \forall PPT V^*$

$$\Pr[(P(w), V^*)(x) \in R_L(x)] \leq \Pr[M^{V^*}(x) \in R_L(x)] + neg(n)$$

Claim: If an NP-statement $x \in L$ has two independent witnesses then any WI protocol for $x \in L$ is also WH

Bob cannot impersonate Alice



- D^* interacts with **A** and outputs a witness z_{ext} for (y_0, y_1)
- By witness hiding, $M^{D^*}(y_0, y_1)$ outputs a witness for (y_0, y_1)
- Exercise: use M^{D^*} to invert the one-way function f

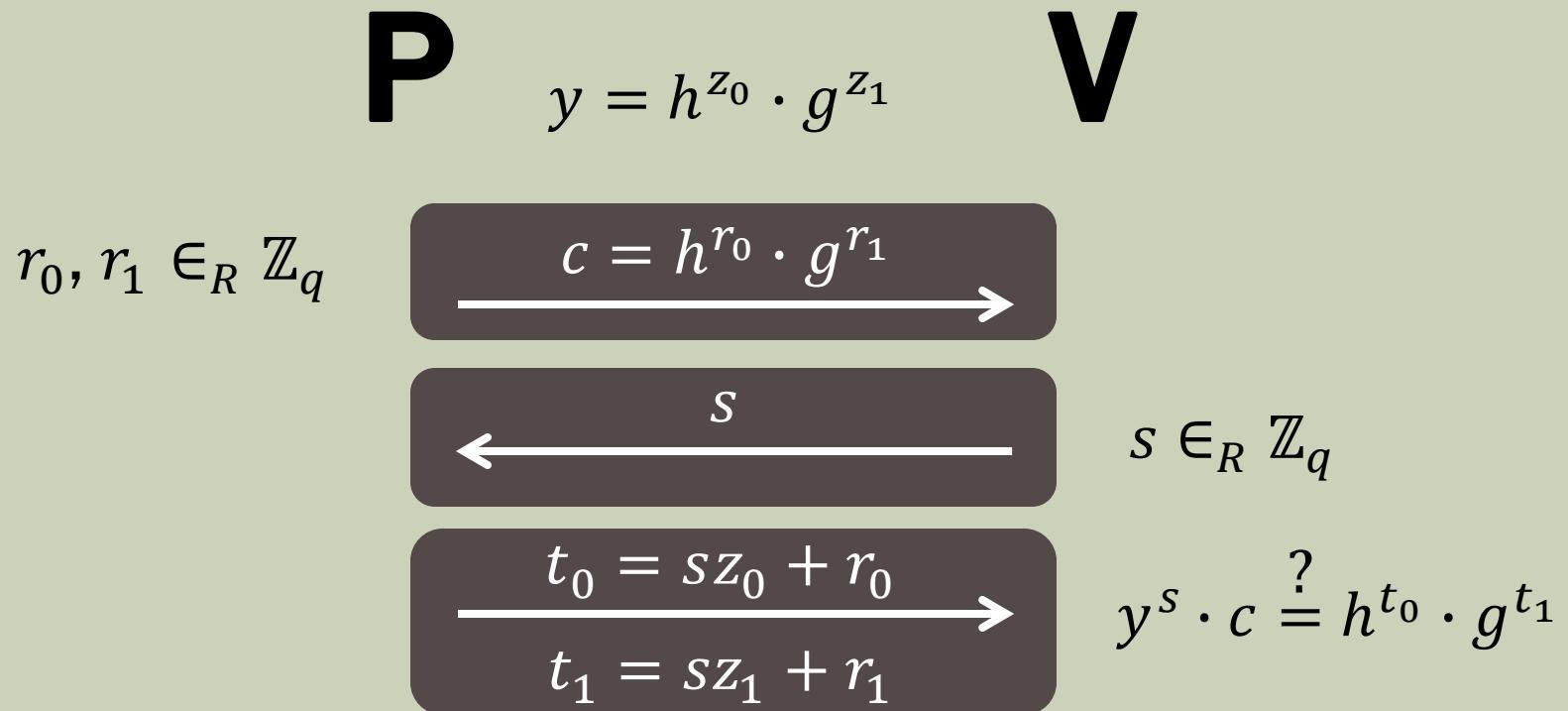
The Fiat-Shamir Identification Scheme

- Repeat the QR_N protocol k times in parallel
- Single execution is ZK and so is WI
- Single execution is WI and so k executions are WI
- k executions are WI with multiple independent witnesses and so are WH with error 2^{-k}
- This gives an identification scheme based on the hardness of finding a square root of

$$x = w^2 \bmod N$$

- Recent [CCHLRRW'19, PS'19]: k parallel repetitions of QR_N protocol are not ZK (under plain LWE)

Okamoto's protocol



- witness independent with soundness error $1/q$
- and each y has q witnesses $(z_0, z_1) \in \mathbb{Z}_q^2$
- so the protocol is witness hiding

Summary

Defined:

- Interactive arguments
 - Statistically-hiding commitments
 - Witness indistinguishability/independence
 - Witness hiding
-
- Saw:
 - $\text{NP} \subseteq \text{SZK}$ arguments
 - ZK implies WI and WI composes
 - $\text{NP} \subseteq \text{SZK}$ in constant number of rounds
 - Identification schemes via ZK and via WH

Food for Thought

Man-in-the-middle Attacker

A

$$y = f(z)$$

B*

$$y = f(z)$$

C

ZKPOK \Rightarrow

ZKPOK \Rightarrow

- **What if both ZKPOKs take place at the same time?**
- **Both proof of security and real-life security fail**
- **Must address man-in-the-middle explicitly**

Zero Knowledge vs WI and WH

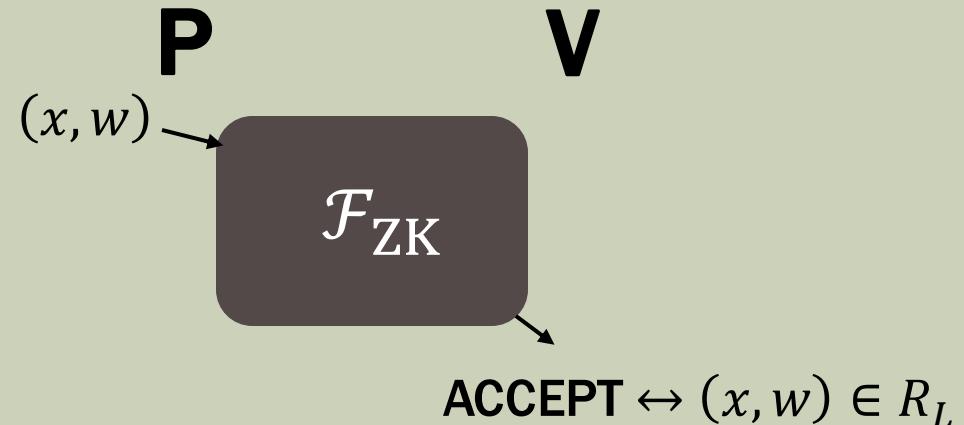
Encryption:

semantic security \leftrightarrow indistinguishability of encryptions

Protocols:

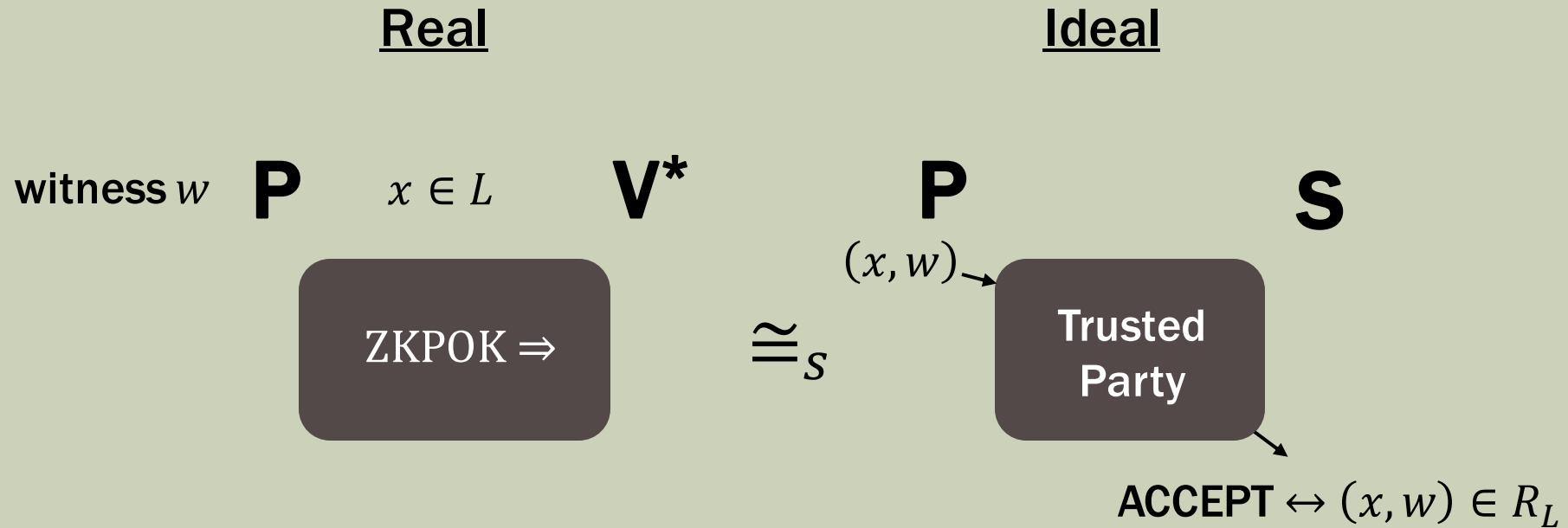
witness indistinguishability \leftarrow zero knowledge

- Unlike WH both ZK and WI compose
- ZK leaks nothing \rightarrow modular protocol design
- ZKPOK functionality:



ZK via Real/Ideal Paradigm

Real/ideal paradigm: $\forall \text{Real PPT } V^* \exists \text{Ideal PPT } S$



- Special case of two-party computation
- V has no input (binary output) and P has no output

History

Uriel Feige

Adi Shamir

Amos Fiat

Gilles Brassard

David Chaum

Claude Crépeau

Mihir Bellare

Russell Impagliazzo

Tatsuaki Okamoto

The End

Questions?