

CONSTANT-ROUND CZK PROOFS for NP

ALON ROSEN

IDC HERZLIYA

fact FOUNDATIONS & APPLICATIONS
of CRYPTOGRAPHIC THEORY

The Goal

Goal: construct proof for every $L \in \text{NP}$

- in computational ZK
- with negligible soundness
- and a constant number of rounds

Need to address:

- malleability
- aborts in simulation

Recall: CZK proof for *HAM*

- $G_0 = \pi(w)$
- $G_1 = \pi, \pi(G)$

- **Prover:** commit to G_0, G_1
- **Verifier:** send $b \in_R \{0,1\}$
- **Prover:** decommit to G_b

- **Completeness:** can always make sure that G_0, G_1 are valid
- **Soundness:** either G_0 or G_1 is invalid
- **Zero-Knowledge:** given b can always ensure that G_b is valid

P

V

$$c = Com(G_0, G_1)$$

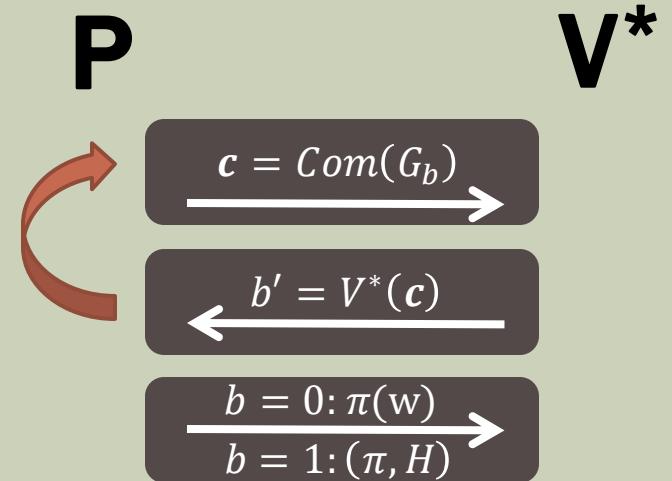
$$b = V^*(c)$$

$$\frac{b = 0: \pi(w)}{b = 1: (\pi, H)}$$

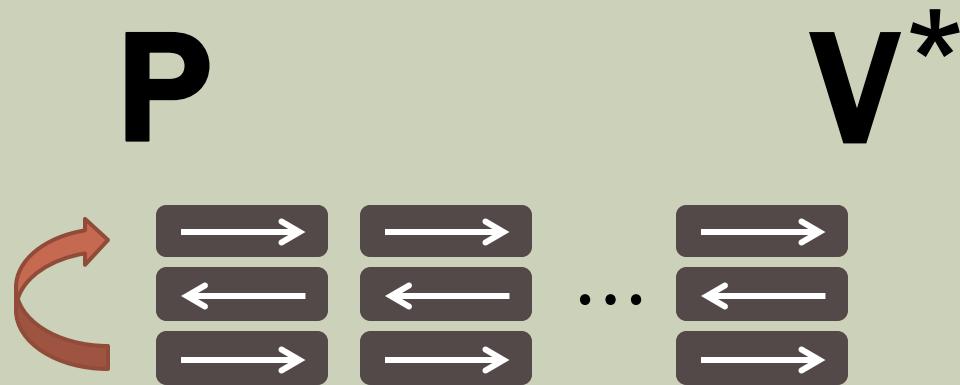
Zero-Knowledge

- $G_0 = \pi(w)$
- $G_1 = \pi, \pi(G)$

- Simulator: sample $b \in_R \{0,1\}$
- Simulator: commit to G_0, G_1 so that G_b is valid
- Verifier^{*}: send $b' = V^*(c)$
- Simulator: if $b' = b$ decommit to G_b , otherwise repeat



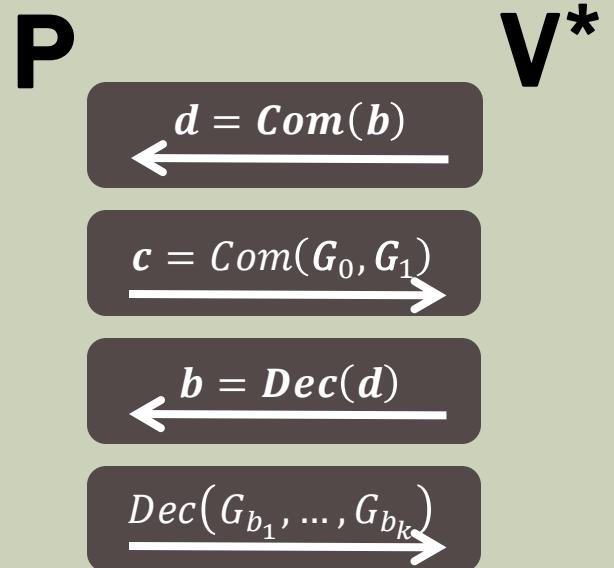
Parallel repetition



- To reduce soundness error – repeat k times in parallel
- Problem: V^* 's challenge is now a string $b \in_R \{0,1\}^k$
- Simulator's expected number of guessing attempts is 2^k
- Solution: Let verifier commit to b in advance

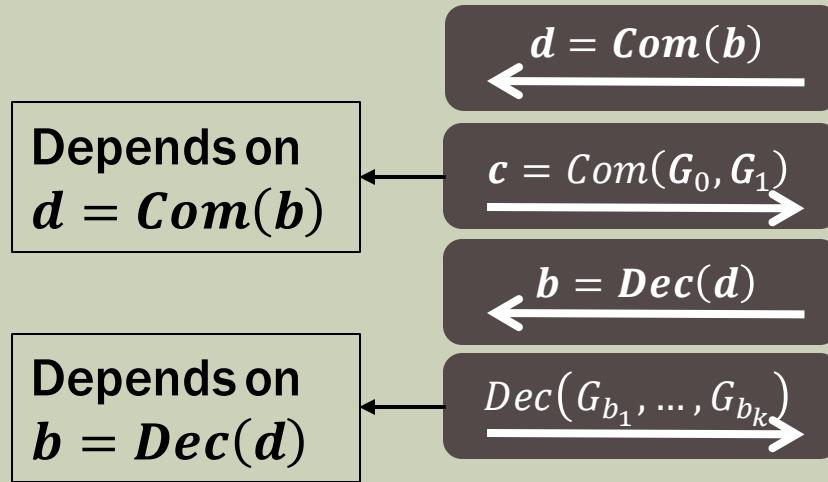
Parallel HAM

- $G_0 = \pi_1(w), \dots, \pi_k(w)$
- $G_1 = \pi_1, \pi_1(G), \dots, \pi_k, \pi_k(G)$
- **Verifier:** commit to $b \in_R \{0,1\}^k$
- **Prover:** commit to G_0, G_1
- **Verifier:** decommit to b
- **Prover:** decommit to G_{b_1}, \dots, G_{b_k}
- **Soundness:**
 - Relies on hiding of Com
 - Probability that G_{b_1}, \dots, G_{b_k} are all valid is at most 2^{-k}
- **Zero-Knowledge:** given b_i can ensure that G_{b_i} is valid



Malleability of Prover Commitment

- Com must be statistically hiding
- Otherwise P can generate $c = \text{Com}(G_0, G_1)$ that depends on $d = \text{Com}(b)$ so that upon seeing $b = \text{Dec}(d)$ he can generate valid $\text{Dec}(G_{b_1}, \dots, G_{b_k})$



- Succeeding in doing so would not necessitate P to violate the (computational) hiding property of Com
- “Man-in-the-middle” attacks are feasible and devastating
- This “malleability” issue is averted by using Com that is statistically hiding

Statistically-hiding Commitments

Definition: A **statistically-hiding** (Com, Dec) satisfies:

Statistical hiding: $\forall R^* \forall m_1, m_2$

$$Com(m_1) \cong_s Com(m_2)$$

Computational binding: $\forall PPT C^* \forall m_1 \neq m_2$

$$Pr[C^* \text{ wins the binding game}] \leq neg(n)$$

- Can also consider commitments that are simultaneously computationally hiding and binding
- **Exercise:** There do not exist commitments that are simultaneously statistically hiding and binding
- Instance-dependent: hiding for $x \in L$, binding for $x \notin L$

Examples (statistically-hiding)

- **Pedersen (assuming DL):**

$$\mathbf{Com}_{g,h}(m, r) = h^r \cdot g^m$$

- Any CRH $H: \{0,1\}^* \rightarrow \{0,1\}^n$:

$$\mathbf{Com}_H(m, r) = (H(r), h(r) \oplus m)$$

- “Random oracle” $H: \{0,1\}^* \rightarrow \{0,1\}^n$:

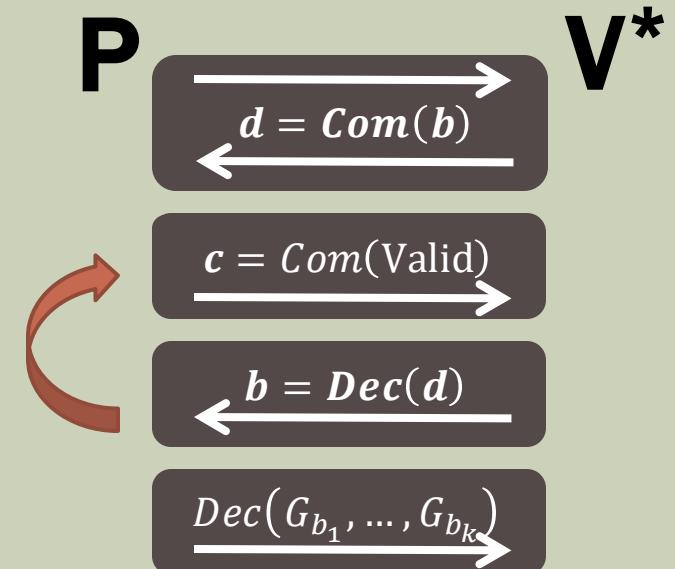
$$\mathbf{Com}(m) = H(m)$$

- Any OWF: $poly(n)$ rounds of interaction

Zero-Knowledge (attempt)

(garbage: all 0's string)

- Verifier: commit to $b \in_R \{0,1\}^k$
- Simulator: commit to garbage
- Verifier^{*}: decommit to b
- Simulator: rewind and adjust garbage to be valid
- Com is comp. binding so V^* cannot decommit to $b' \neq b$
- But what if V^* refuses to decommit altogether?
 - V^* might ABORT w/ unknown probability $0 \leq p \leq 1$
 - Simulator needs to generate the correct distribution

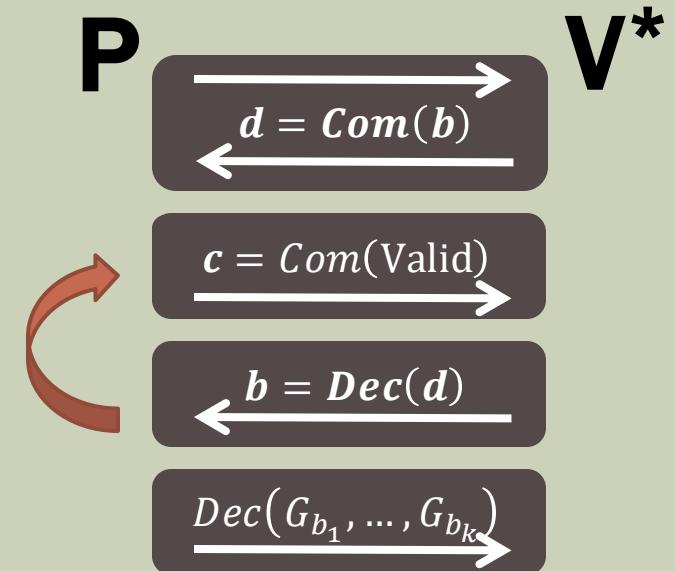


A Naïve Simulator

(garbage: all 0's string)

Naïve simulator:

- commit to garbage
- If $V^*(c) = \text{ABORT}$, halt
- If $V^*(c) \neq \text{ABORT}$,
 - a) rewind and adjust garbage to be valid
 - b) obtain decommitment to b from V^*
 - c) Repeat (a),(b) until $V^*(c) \neq \text{ABORT}$ again



The problem: $\Pr[V^* \neq \text{ABORT}]$ may change depending on whether simulator committed to garbage or to valid

The Issue

Let

$$s(n) = \Pr[V^* \neq \text{ABORT} \mid \text{garbage}]$$

$$t(n) = \Pr[V^* \neq \text{ABORT} \mid \text{valid}]$$

then

$$\mathbb{E}[\#\text{repetitions of } (a), (b)] = s(n)/t(n)$$

Suppose that for infinitely many n's

$$s(n) = 2^{-n}$$

$$t(n) = 2^{-2n}$$

Then for these n's, $s(n)/t(n)$ is too large!

Fixing the Naïve Simulator

Theorem [GK'91]: If statistically-hiding commitments exist then every $L \in \text{NP}$ has a ZK proof with soundness error 2^{-k}

Round-optimal[K'12]: if a language L has a four-round zero-knowledge proof then $L \in \text{coMA}$

The GK solution:

- have the simulator first obtain an estimate $\tilde{t}(n)$ on $t(n)$
- achieved by rewinding with valid commitment until $m(n)$ successful decommits occur for some $m(n) = \text{poly}(n)$
- In step (c), the simulator then repeats (a),(b) up to some $\text{poly}(n)/\tilde{t}(n)$ repetitions, unless $V^*(c) \neq \text{ABORT}$ again

A Simpler Solution

The idea [R'04]: V^* commits to challenge b in a way that allows extraction of b before c is even sent

Stage I:

- Verifier: commit to $b \in_R \{0,1\}^k$ and to
$$\begin{pmatrix} b_1^0, b_2^0 \dots, b_n^0 \\ b_1^1, b_2^1 \dots, b_n^1 \end{pmatrix}$$
 so that $\forall i \in [n], b_i^0 \oplus b_i^1 = b$
- Prover: send n random bits $r_1, \dots, r_n \in_R \{0,1\}^n$
- Verifier: decommit to $b_1^{r_1}, b_2^{r_2}, \dots, b_n^{r_n}$

Stage II:

- Run 3-round protocol for HAM (parallel version) with b as challenge (V decommits to b and $b_1^{1-r_1}, \dots, b_n^{1-r_n}$)

Simulating the protocol

Simulator:

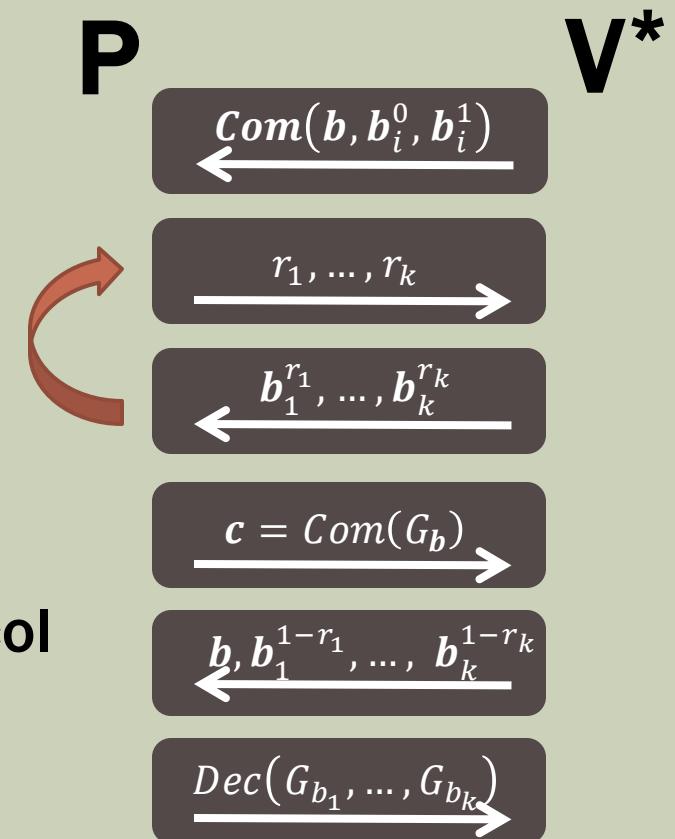
- Learn b using naïve rewinding by learning b_i^0, b_i^1 for some $i \in [n]$

$$\left\langle \begin{matrix} b_1^0, & \textcircled{b_2^0} & \dots, & b_n^0 \\ \textcircled{b_1^1}, & \textcircled{b_2^1} & \dots, & b_n^1 \end{matrix} \right\rangle \rightarrow b_2^0 \oplus b_2^1 = b$$

- Given b can simulate 3-round protocol

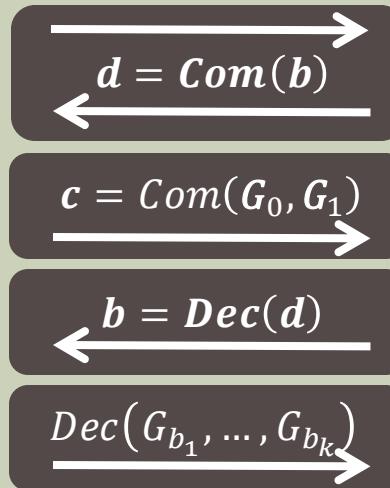
The point:

- rewindings are non adaptive (r_1, \dots, r_k are random)
- $s(n) = t(n)$ by definition



What about Proof of Knowledge?

The 5-round protocol seems to not be a POK:



- in order to extract, one must obtain different responses from the prover relative to the same first message c
- However, V (and thus extractor) is bound to b before P commits to c , and the value of c may depend on V 's commitment to b
- Thus the extractor cannot change the query b without P changing c

The Solution

- G_0, G_1 as before
- Prover: commit to G_0, G_1
- Verifier: commit to $b_1 \in_R \{0,1\}^k$
- Prover: commit to $b_2 \in_R \{0,1\}^k$
- Verifier: decommit to b_1
- Prover: decommit to b_2 and G_{c_1}, \dots, G_{c_k} where $c = b_1 \oplus b_2$

The diagram illustrates a protocol between two parties, P (Prover) and V (Verifier). The steps are arranged in two columns. The left column represents P's actions, and the right column represents V's actions. Horizontal arrows indicate the direction of communication between them.

- P sends $Com(G_0, G_1)$ to V.
- V sends $d = Com(b_1)$ to P.
- P sends $e = Com(b_2)$ to V.
- V sends $b_1 = Dec(d)$ to P.
- P sends $Dec(b_2, G_{c_1}, \dots, G_{c_k})$ to V.

Theorem [L'12]: If statistically-hiding commitments exist then every $L \in \text{NP}$ has a ZKPOK with soundness error 2^{-k}

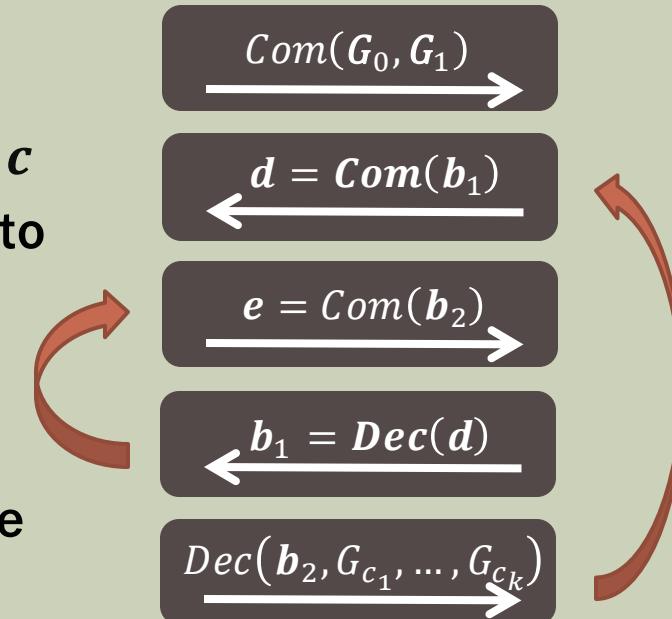
ZK and POK

Zero-knowledge:

- Simulator guesses ahead of time a string c
- It then obtains b_1 , and rewinds V in order to set b_2 such that $b_1 \oplus b_2 = c$

Proof of knowledge:

- Extractor rewinds P multiple times relative to the same first message
- it obtains multiple openings with different strings $c = b_1 \oplus b_2$
- This enables extraction from the *HAM* protocol, albeit with some complications



Summary

Saw:

- CZK proof of knowledge $\forall L \in \text{NP}$
- with negligible soundness
- and a constant number of rounds

Issues addressed:

- malleability
- aborts in simulation

Issues still to be addressed:

- public-coin
- Strict polynomial-time simulation

History

Ariel Kahan

Jonathan Katz

Yehuda Lindell

Alon Rosen

Ivan Damgård

Torben Pryds
Pedersen

Birgit Pfitzmann

Ramarathnam
Venkatesan

Moti Yung

Iftach Haitner

Omer Reingold

The End

Questions?