Zero-Knowledge Proofs of
Knowledge

Yehuda Lindell

Bar-llan University

Center for Research in Applied
Cryptography and Cyber Security

Knowledge — Motivation

* Prove that you know the shortest path from A to B
* A shortest path exists, but who says that you know it?

* Prove identity:
* For public key h = g* in a group where discrete log is hard, prove that | know x
* This proves identity since it is my private key and only | know it
 Attempt: prove in ZKthat h € L for L = {h | 3x: g* = h}

* Problem:
* This statement is TRUE for all group elements (and so ZK is actually trivial — send YES)
* Who says that | need to know a witness to prove a true statement

Center for Research in Applied
Cryptography and Cyber Security

What is Knowledge?

 Definition: a student knows the material if she can output it

* We approximate this by saying that a student knows the material if she can
output the answers to the questions on the test

* Definition: a machine knows something if it can output it
* Let R be an NP-relation
* A machine knows the witness to a statement x if it can output w s.t. (x,w) € R

* What does it mean for a machine to be able to output it?

Center for Research in Applied
Cryptography and Cyber Security

Formalizing Knowledge (first attempt)

e Attempt 1: a machine M knows the witness to a statement x if there
exists some M’ who outputs w s.t. (x,w) € R

* Questions:
* How does this relate to the machine’s actions (e.g., proving a proof)?
* How is M’ related to M; if there is no connection then why does M know it?

Center for Research in Applied
Cryptography and Cyber Security

Formalizing Knowledge (second attempt)

* Attempt 2:
* We define a PPT oracle machine K, called a knowledge extractor

* We say that M knows the witness to a statement x if K”()(x) outputs w s.t.
(x,w) € R
e K interacts with M and can use whatever it does to obtain w
* Since K is generic, its ability to output w means that M knows w

* Questions:
 This still doesn’t relate to the machine’s actions (e.g., proving a proof)?
* K could still just know w independently of M

Center for Research in Applied
Cryptography and Cyber Security

Formalizing Knowledge (third attempt)

* Definition:
* We define a PPT oracle machine K, called a knowledge extractor

« We say that a prover P* knows the witness to a statement x if K¥) (x)
outputs w s.t. (x,w) € R whenever P* convinces I/ of x

* Intuition:

* K is generic and works for any x and any P*: if P* can convince V then K can
output w and so M knows w

* Question: what does it mean: “whenever P* convinces V of x”?

e K should run in (expected) polynomial-time and output a witness w with the
same probability that P* convinces V of x

Center for Research in Applied
Cryptography and Cyber Security

Formalizing Knowledge (final)

* One can always prove in ZK without knowing, with negligible prob

* Run the zero-knowledge simulator and hope that the verifier’s queries in the
result match the real queries

* The definition is updated to allow a knowledge error k, which takes
this into account

* If P* convinces V of x with probability > k, then K should run in (expected)
polynomial-time and output a witness w with probability at most k less than
P* convinces IV of x

* This property is called knowledge soundness

Center for Research in Applied
Cryptography and Cyber Security

The Definition

 Definition (knowledge soundness):

* A proof system has knowledge soundness with error k if there
exists a PPT K s.t. for every prover P, if P* convinces IV of x with
probability € > k, then K¥) (x) outputs w s.t. (x, w) € R with
probability at least e(|x|) — x(]x|)

Center for Research in Applied
Cryptography and Cyber Security

An Alternative Formulation

* Motivation: one can trade off running time and success probability
e Definition says: run in PPT and output w.p. €

, " . .1
» Alternative definition: run in expected time . and always output

* Definition (knowledge soundness):
» A proof system has knowledge soundness with error k if there exists a K s.t.
for every prover P*, if P* convinces I/ of x with probability € > k, then

poly(|x])
e(|x|)—r(]x)

KP"O)(x) outputs w s.t. (x,w) € R in expected time

Center for Research in Applied
Cryptography and Cyber Security

Equivalence of the Definitions

* Original implies alternative:
* We are given K that runs in PPT and outputs a witness w.p. €

* We can run K many times until a witness is output
* Since it is an NP relation, can verify when get correct result
* Expected number of times needed is 1/¢

* Alternative implies original:
* We are given K that runs in time 1/¢ and outputs a witness

: : e : 1
e Fori = 1,...,n, runK for 2!*1 steps; if finish output witness; else proceed w.p. p

* Leti be smallests.t. 2:¥1 > 1/€: probability of getting here is at least SR s e
* Expected running time is poly(|x|)

Center for Research in Applied
Cryptography and Cyber Security

Definition of ZKPOK

* A proof system is a zero-knowledge proof of knowledge if it has
* Completeness: honest prover convinces honest verifier
» Zero knowledge: ensures verifier learns nothing
* Knowledge soundness: ensures prover knows witness

e Zero knowledge is a property of the prover
* Prover behavior is guaranteed to reveal nothing
* Protect against a cheating verifier

 Knowledge soundness is a property of the verifier
* Verifier behavior guarantees that prover knows witness
* Protect against a cheating prover

Center for Research in Applied
Cryptography and Cyber Security

Reducing Knowledge Error

* Sequential composition reduces knowledge error exponentially

* Exponentially small error = zero error
e Assume knowledge error k < 271*I and consider alternative definition

e Run K" (x) in parallel to running a brute-force search on witness
« Assume brute force in time 2/*!
* Let P* be s.t. it convinces IV of x with probability €

poly(|x|) < 2-poly(|x]|)

poly’(|x|)
E—K €

e Ife > 2-Kkthen and so succeed in time

e Ife < 2-kKkthen

Center for Research in Applied
Cryptography and Cyber Security

_polye(lxl) > 2¥1 . poly(|x|) and so brute force finishes

Constructing ZKPOKs

A Zero-Knowledge proof for QRy

x =w?modN P x € QRy v

r €Eg Ly

Center for Research in Applied
Cryptography and Cyber Security

A Zero-Knowledge proof for QRy

. x =w?mod N P x € QRy V
Knowledge Extraction Idea

* K invokes P* and “receives” some y
* K “sends” P* the query b = 0 and receives z

* K rewinds and “sends” P* the query b = 1 and receives z;
* K outputs w = ? mod N

0
* Proof:

* If P* convinces w.p. greater than k = %then (z9)? = yand (z1)? = xy

* | am assuming for deterministic P*; to discuss!

2
e Thus w? = (z—l) — 9;—3/ = x and so K outputs a square root
0

Center for Research in Applied
Cryptography and Cyber Security

ZKPOK for NP

An inferactive proof for HAM
Ham cycle w P G € HAM v

T Eg Sp c= Cam(n(G))

u=m(w) RISEARICU(IMN Verify that u is a cycle
N W BN T (A Verify that H = (G)

b €, {0,1}

Center for Research in Applied
Cryptography and Cyber Security

An interactive proof for HAM

Ham cycle w P G € HAM v
ZKPOK for NP

u=r(w) RISNIR-RIZCIM Verify that u is a cycle
VR B N W L Verify that H = 7(G)

* K invokes P* and receives a commitment ¢
* K sends P* the query b = 0 and receives a cycle w
e K rewinds and sends P* the query b = 1 and receives 1, G

* Proof:

: 1 : .
* If P* convinces w.p. greater than k = 5 thenwisacyclein G = w(G)

* Thus, m~1(w) is a Hamiltonian cycle in G

Center for Research in Applied
Cryptography and Cyber Security

ZKPOK for NP with Negligible Error

* Run Hamiltonicity n = |x| times sequentially

* Extractor strategy:
* Consider binary tree of execution

* Attempt to extract in ith execution
* |f P* answers both queries, get Hamiltonian cycle
* If P* answers neither query, V always rejects
* If P* answers exactly one query, go down that edge

* Repeat with next execution

 Extraction fails iff P* answers exactly one query in each execution
* Thus, extraction works with probability 1 if e > 27"

Center for Research in Applied
Cryptography and Cyber Security

Strong Proofs of Knowledge

* Definition — strong knowledge soundness

* A proof system has strong knowledge soundness if there exists a negligible
function u and a PPT K s.t. for every prover P*, if P* convinces V of x with

probability € > u, then K2" O (x) outputs w s.t. (x,w) € R with probability at
least 1 — u(|x|)

* Theorem: sequential Hamiltonicity is a strong proof of knowledge

Center for Research in Applied
Cryptography and Cyber Security

Using the Alternative Definition

 Definition (knowledge soundness):
* A proof system has knowledge soundness with error k if there exists a K s.t.
for every prover P*, if P* convinces V of x with probability € > k, then

poly(|x|)
e(lx[)—r(lx)

KP" O (x) outputs w s.t. (x,w) € R in expected time

poly(|x])
e(|x])

 What does it help to run in time when this may not be

polynomial time?

Center for Research in Applied
Cryptography and Cyber Security

Using the Alternative Definition

* A classic use of zero-knowledge proofs of knowledge:
* Within a protocol, prover proves the proof

* To prove security, a simulator (or reduction) needs the witness
* Unless verifier would reject, in which case it doesn’t matter

* Using ZKPOKs in proofs of security — simulator (or reduction) plays
verifier with prover:
* If the verifier rejects, then the simulator can halt, since a real verifier would
* If the verifier accepts, then the simulator now has to extract the witness

Center for Research in Applied
Cryptography and Cyber Security

ZKPOK Inside a Protocol

 Recall simulator (reduction) strategy:
 Verify, then halt if reject and extract if accept

* What is the expected running time of this simulator (reduction)?
* Probability that prover convinces verifier is €(|x])
e Assuming that the knowledge error k is O:

l
E[Time] = (1 - e(IxD)) - poly(Ix|) + e(Ix]) - B2 5P = poly(lx|)

* Assuming that the knowledge error k is negligible:

l
E[Time] = (1= e(lxD)) - poly(Ix|) + e(lx]) - 22X = poly(|x]) +

e(lx])
e(lx|—r(lx])
* Actually not polynomial, but can be fixed...

Center for Research in Applied
Cryptography and Cyber Security

ZKPOK in a Protocol

* The issue that arises is that need to both
e Simulate the view of the prover in the execution, and
* Extract a withess

* This is called “witness-extended emulation”
* A witness-extended emulator EF" () (x) outputs a VIEW and some w:
* The view output is indistinguishable from a real execution

* The probability that the view is accepting and yet (x, w) & R is negligible
* F runsin expected polynomial-time

Center for Research in Applied
Cryptography and Cyber Security

Witnhess-Extended Emulation

* Lemma: If (P, V) is a ZKPOK, then there exists a witness extended
emulator for (P, V).

» Very useful when use ZKPOK inside proofs of security (and greatly simplifies)

* Can also formalize an ideal ZK functionality:
Tzk((x, w), x) = (/1, R(x, W))

* Lemma: If (P, V) is a ZKPOK, then it securely computes the ideal ZK
functionality (in the secure computation sense).

Center for Research in Applied
Cryptography and Cyber Security

Other Applications

* A zero-knowledge proof for NQR,

* Non-oblivious encryption

* Prove that committed value has a property, for statistically hiding
* |dentification schemes

Center for Research in Applied
Cryptography and Cyber Security

A zero-knowledge proof for QR

Interactive proof for QRy [GMR’'835]
P X & QRy V

b € {0,1}

Yy Ep Ly

b’(Z)=0 ZEQRN b' ;b
b'(z) =1 z¢&QRy

® BIU o,

Interactive proof for QRy [GMR'85]

—— P e V
A ZK proof for QR R .o

Z=xy- " h=1 Y €r Ly

* Why is the proof not ZK? caEeh

* The verifier may have some z and wants to know if is QR or not

* How can we make this proof ZK?
e The verifier sends z and proves that it knows y s.t. z = xy or z = xy?

* Why is ZK not enough and why is a ZKPOK needed?

e Intuitively: for every z, there exists a y s.t. z = xy or z = xy?, so statement is
always true

* Formally: simulation strategy

Center for Research in Applied
Cryptography and Cyber Security

—— P x & QRy V
A ZK proof for QR T, o
e Simulation Strategy

b'(z) =0 ze€QRy b';b
b'(z)=1 z¢&QRy
e Simulator S runs V* and gets z

e Simulator doesn’t know whether it should answerb =0orb =1
 Simulator runs the knowledge extractor on the proof from V* and gets y
e Simulator checks if z = xy or z = xy?, and so knowsif b = 0orb = 1

Center for Research in Applied
Cryptography and Cyber Security

Non-Oblivious Encryption

* Provide an encryption and prove that you know what’s encrypted

* Motivation:
* Prevent copying (e.g., in auction)
e Guarantee non-malleability (did not take a previous ciphertext and maul)

Center for Research in Applied
Cryptography and Cyber Security

Prove Property of Statistical Committed Value

e Consider a statistically-hiding commitment scheme
* A commitment value ¢ can be a commitment to any message

 Committer wishes to prove that it committed to a value in a certain
range (or any other property)

e Statement is almost always true for any given ¢

* The question is whether the committer knows a decommitment to a
message with this property

* Rule: whenever ZK is used with statistical hiding, ZKPOK is needed

Center for Research in Applied
Cryptography and Cyber Security

|dentification Schemes

* Alice has a public key h = g*
* In order to authenticate, she proves that she knows the dlog of h

* This must be a ZKPOK, since ZK for the language of DLOG is trivial

Center for Research in Applied
Cryptography and Cyber Security

Questions?

Center for Research in Applied
Cryptography and Cyber Security

