
Zero‐Knowledge Proofs of
Knowledge

Yehuda Lindell
Bar‐Ilan University

Knowledge – Motivation

• Prove that you know the shortest path from A to B
• A shortest path exists, but who says that you know it?

• Prove identity:
• For public key ℎ ൌ 𝑔௫ in a group where discrete log is hard, prove that I know 𝑥
• This proves identity since it is my private key and only I know it
• Attempt: prove in ZK that ℎ ∈ 𝐿 for 𝐿 ൌ ℎ ∃𝑥: 𝑔௫ ൌ ℎሽ
• Problem:

• This statement is TRUE for all group elements (and so ZK is actually trivial – send YES)
• Who says that I need to know a witness to prove a true statement

What is Knowledge?

• Definition: a student knows the material if she can output it
• We approximate this by saying that a student knows the material if she can
output the answers to the questions on the test

• Definition: a machine knows something if it can output it
• Let R be an NP‐relation
• A machine knows the witness to a statement 𝑥 if it can output 𝑤 s.t. 𝑥, 𝑤 ∈ 𝑅

• What does it mean for a machine to be able to output it?

Formalizing Knowledge (first attempt)

• Attempt 1: a machine 𝑀 knows the witness to a statement 𝑥 if there
exists some 𝑀′ who outputs 𝑤 s.t. 𝑥, 𝑤 ∈ 𝑅

• Questions:
• How does this relate to the machine’s actions (e.g., proving a proof)?
• How is 𝑀′ related to 𝑀; if there is no connection then why does 𝑀 know it?

Formalizing Knowledge (second attempt)

• Attempt 2:
• We define a PPT oracle machine 𝐾, called a knowledge extractor
• We say that 𝑀 knows the witness to a statement 𝑥 if 𝐾ெሺ⋅ሻሺ𝑥ሻ outputs 𝑤 s.t.

𝑥, 𝑤 ∈ 𝑅
• 𝐾 interacts with 𝑀 and can use whatever it does to obtain 𝑤
• Since 𝐾 is generic, its ability to output 𝑤 means that 𝑀 knows 𝑤

• Questions:
• This still doesn’t relate to the machine’s actions (e.g., proving a proof)?
• 𝐾 could still just know 𝑤 independently of 𝑀

Formalizing Knowledge (third attempt)

• Definition:
• We define a PPT oracle machine 𝐾, called a knowledge extractor
• We say that a prover 𝑃∗ knows the witness to a statement 𝑥 if 𝐾௉∗ሺ⋅ሻሺ𝑥ሻ
outputs 𝑤 s.t. 𝑥, 𝑤 ∈ 𝑅 whenever 𝑃∗ convinces 𝑉 of 𝑥

• Intuition:
• 𝐾 is generic and works for any 𝑥 and any 𝑃∗: if 𝑃∗ can convince 𝑉 then 𝐾 can
output 𝑤 and so 𝑀 knows 𝑤

• Question: what does it mean: “whenever 𝑃∗ convinces 𝑉 of 𝑥”?
• 𝐾 should run in (expected) polynomial‐time and output a witness 𝑤 with the
same probability that 𝑃∗ convinces 𝑉 of 𝑥

Formalizing Knowledge (final)

• One can always prove in ZK without knowing, with negligible prob
• Run the zero‐knowledge simulator and hope that the verifier’s queries in the
result match the real queries

• The definition is updated to allow a knowledge error 𝜅, which takes
this into account
• If 𝑃∗ convinces 𝑉 of 𝑥 with probability ൐ 𝜅, then 𝐾 should run in (expected)
polynomial‐time and output a witness 𝑤 with probability at most 𝜅 less than
𝑃∗ convinces 𝑉 of 𝑥

• This property is called knowledge soundness

The Definition

• Definition (knowledge soundness):
• A proof system has knowledge soundness with error 𝜅 if there
exists a PPT 𝐾 s.t. for every prover 𝑃∗, if 𝑃∗ convinces 𝑉 of 𝑥 with
probability 𝜖 ൐ 𝜅, then 𝐾௉∗ሺ⋅ሻሺ𝑥ሻ outputs 𝑤 s.t. 𝑥, 𝑤 ∈ 𝑅 with
probability at least 𝜖 𝑥 െ 𝜅ሺ 𝑥 ሻ

An Alternative Formulation

• Motivation: one can trade off running time and success probability
• Definition says: run in PPT and output w.p. 𝜖
• Alternative definition: run in expected time ଵ

ఢ
and always output

• Definition (knowledge soundness):
• A proof system has knowledge soundness with error 𝜅 if there exists a 𝐾 s.t.
for every prover 𝑃∗, if 𝑃∗ convinces 𝑉 of 𝑥 with probability 𝜖 ൐ 𝜅, then

𝐾௉∗ሺ⋅ሻሺ𝑥ሻ outputs 𝑤 s.t. 𝑥, 𝑤 ∈ 𝑅 in expected time ௣௢௟௬ ௫
ఢሺ ௫ ሻି఑ሺ|௫ሻ

Equivalence of the Definitions

• Original implies alternative:
• We are given K that runs in PPT and outputs a witness w.p. ϵ
• We can run K many times until a witness is output

• Since it is an NP relation, can verify when get correct result
• Expected number of times needed is 1/𝜖

• Alternative implies original:
• We are given K that runs in time 1/𝜖 and outputs a witness
• For 𝑖 ൌ 1, … , 𝑛, run K for 2௜ାଵ steps; if finish output witness; else proceed w.p. ଵ

ଶ
• Let 𝑖 be smallest s.t. 2௜ାଵ ൐ 1/𝜖: probability of getting here is at least 2ିሺ௜ାଵሻ ൐ 𝜖
• Expected running time is 𝑝𝑜𝑙𝑦ሺ 𝑥 ሻ

Definition of ZKPOK

• A proof system is a zero‐knowledge proof of knowledge if it has
• Completeness: honest prover convinces honest verifier
• Zero knowledge: ensures verifier learns nothing
• Knowledge soundness: ensures prover knows witness

• Zero knowledge is a property of the prover
• Prover behavior is guaranteed to reveal nothing
• Protect against a cheating verifier

• Knowledge soundness is a property of the verifier
• Verifier behavior guarantees that prover knows witness
• Protect against a cheating prover

Reducing Knowledge Error

• Sequential composition reduces knowledge error exponentially

• Exponentially small error = zero error
• Assume knowledge error 𝜅 ൏ 2ି|௫| and consider alternative definition

• Run 𝐾௉∗ሺ⋅ሻሺ𝑥ሻ in parallel to running a brute‐force search on witness
• Assume brute force in time 2|௫|

• Let 𝑃∗ be s.t. it convinces 𝑉 of 𝑥 with probability 𝜖

• If 𝜖 ൐ 2 ⋅ 𝜅 then ௣௢௟௬ ௫
ఢି఑

൏ ଶ⋅௣௢௟௬ ௫
ఢ

and so succeed in time ௣௢௟௬ᇲ ௫
ఢ

• If 𝜖 ൏ 2 ⋅ 𝜅 then ௣௢௟௬ ௫
ఢ

൐ 2 ௫ ⋅ 𝑝𝑜𝑙𝑦ሺ 𝑥 ሻ and so brute force finishes

Constructing ZKPOKs

Knowledge Extraction Idea

• 𝐾 invokes 𝑃∗ and “receives” some 𝑦
• 𝐾 “sends” 𝑃∗ the query 𝑏 ൌ 0 and receives 𝑧଴
• 𝐾 rewinds and “sends” 𝑃∗ the query 𝑏 ൌ 1 and receives 𝑧ଵ
• 𝐾 outputs 𝑤 ൌ ௭భ

௭బ
 mod 𝑁

• Proof:
• If 𝑃∗ convinces w.p. greater than 𝜅 ൌ ଵ

ଶ
then 𝑧଴

ଶ ൌ 𝑦 and 𝑧ଵ
ଶ ൌ 𝑥𝑦

• I am assuming for deterministic 𝑃∗; to discuss!

• Thus 𝑤ଶ ൌ ௭భ
௭బ

ଶ
ൌ ௫௬

௬
ൌ 𝑥 and so 𝐾 outputs a square root

ZKPOK for NP

ZKPOK for NP

• 𝐾 invokes 𝑃∗ and receives a commitment 𝑐
• 𝐾 sends 𝑃∗ the query 𝑏 ൌ 0 and receives a cycle 𝑤
• 𝐾 rewinds and sends 𝑃∗ the query 𝑏 ൌ 1 and receives 𝜋, 𝐺෨

• Proof:
• If 𝑃∗ convinces w.p. greater than 𝜅 ൌ ଵ

ଶ
then 𝑤 is a cycle in 𝐺෨ ൌ 𝜋ሺ𝐺ሻ

• Thus, 𝜋ିଵሺ𝑤ሻ is a Hamiltonian cycle in 𝐺

ZKPOK for NP with Negligible Error

• Run Hamiltonicity 𝑛 ൌ 𝑥 times sequentially
• Extractor strategy:

• Consider binary tree of execution
• Attempt to extract in 𝑖th execution

• If 𝑃∗ answers both queries, get Hamiltonian cycle
• If 𝑃∗ answers neither query, 𝑉 always rejects
• If 𝑃∗ answers exactly one query, go down that edge

• Repeat with next execution
• Extraction fails iff 𝑃∗ answers exactly one query in each execution
• Thus, extraction works with probability 1 if 𝜖 ൐ 2ି௡

𝑏 ൌ 0 𝑏 ൌ 1

𝑏 ൌ 0 𝑏 ൌ 1 𝑏 ൌ 0 𝑏 ൌ 1

𝑏 ൌ 0 𝑏 ൌ 1

Strong Proofs of Knowledge

• Definition – strong knowledge soundness
• A proof system has strong knowledge soundness if there exists a negligible
function 𝜇 and a PPT 𝐾 s.t. for every prover 𝑃∗, if 𝑃∗ convinces 𝑉 of 𝑥 with
probability 𝜖 ൐ 𝜇, then 𝐾௉∗ሺ⋅ሻሺ𝑥ሻ outputs 𝑤 s.t. 𝑥, 𝑤 ∈ 𝑅 with probability at
least 1 െ 𝜇ሺ 𝑥 ሻ

• Theorem: sequential Hamiltonicity is a strong proof of knowledge

Using the Alternative Definition

• Definition (knowledge soundness):
• A proof system has knowledge soundness with error 𝜅 if there exists a 𝐾 s.t.
for every prover 𝑃∗, if 𝑃∗ convinces 𝑉 of 𝑥 with probability 𝜖 ൐ 𝜅, then

𝐾௉∗ሺ⋅ሻሺ𝑥ሻ outputs 𝑤 s.t. 𝑥, 𝑤 ∈ 𝑅 in expected time ௣௢௟௬ ௫
ఢሺ ௫ ሻି఑ሺ|௫ሻ

• What does it help to run in time ௣௢௟௬ ௫
ఢ ௫

when this may not be

polynomial time?

Using the Alternative Definition

• A classic use of zero‐knowledge proofs of knowledge:
• Within a protocol, prover proves the proof
• To prove security, a simulator (or reduction) needs the witness

• Unless verifier would reject, in which case it doesn’t matter

• Using ZKPOKs in proofs of security – simulator (or reduction) plays
verifier with prover:
• If the verifier rejects, then the simulator can halt, since a real verifier would
• If the verifier accepts, then the simulator now has to extract the witness

ZKPOK Inside a Protocol

• Recall simulator (reduction) strategy:
• Verify, then halt if reject and extract if accept

• What is the expected running time of this simulator (reduction)?
• Probability that prover convinces verifier is 𝜖 𝑥
• Assuming that the knowledge error 𝜅 is 0:

𝐸 Time ൌ 1 െ 𝜖 𝑥 ⋅ 𝑝𝑜𝑙𝑦 𝑥 ൅ 𝜖 𝑥 ⋅ ௣௢௟௬ ௫
ఢሺ ௫ ሻ

ൌ 𝑝𝑜𝑙𝑦ሺ 𝑥 ሻ
• Assuming that the knowledge error 𝜅 is negligible:

𝐸 Time ൌ 1 െ 𝜖 𝑥 ⋅ 𝑝𝑜𝑙𝑦 𝑥 ൅ 𝜖 𝑥 ⋅ ௣௢௟௬ ௫
ఢሺ ௫ ሻି఑ሺ|௫ሻ

ൌ 𝑝𝑜𝑙𝑦 𝑥 ൅ ఢ ௫
ఢሺ ௫ ି఑ ௫

• Actually not polynomial, but can be fixed…

ZKPOK in a Protocol

• The issue that arises is that need to both
• Simulate the view of the prover in the execution, and
• Extract a witness

• This is called “witness‐extended emulation”
• A witness‐extended emulator 𝐸௉∗ ⋅ ሺ𝑥ሻ outputs a VIEW and some 𝑤:

• The view output is indistinguishable from a real execution
• The probability that the view is accepting and yet 𝑥, 𝑤 ∉ 𝑅 is negligible
• 𝐸 runs in expected polynomial‐time

Witness‐Extended Emulation

• Lemma: If ሺ𝑃, 𝑉ሻ is a ZKPOK, then there exists a witness extended
emulator for ሺ𝑃, 𝑉ሻ.
• Very useful when use ZKPOK inside proofs of security (and greatly simplifies)

• Can also formalize an ideal ZK functionality:
ℱ୸୩ 𝑥, 𝑤 , 𝑥 ൌ 𝜆, 𝑅 𝑥, 𝑤

• Lemma: If ሺ𝑃, 𝑉ሻ is a ZKPOK, then it securely computes the ideal ZK
functionality (in the secure computation sense).

Other Applications

• A zero‐knowledge proof for 𝑁𝑄𝑅ே

• Non‐oblivious encryption
• Prove that committed value has a property, for statistically hiding
• Identification schemes

A zero‐knowledge proof for

A ZK proof for

• Why is the proof not ZK?
• The verifier may have some 𝑧 and wants to know if is QR or not

• How can we make this proof ZK?
• The verifier sends 𝑧 and proves that it knows 𝑦 s.t. 𝑧 ൌ 𝑥𝑦 or 𝑧 ൌ 𝑥𝑦ଶ

• Why is ZK not enough and why is a ZKPOK needed?
• Intuitively: for every 𝑧, there exists a 𝑦 s.t. 𝑧 ൌ 𝑥𝑦 or 𝑧 ൌ 𝑥𝑦ଶ, so statement is
always true

• Formally: simulation strategy

A ZK proof for

• Simulation Strategy
• Simulator 𝑆 runs 𝑉∗ and gets 𝑧
• Simulator doesn’t know whether it should answer 𝑏 ൌ 0 or 𝑏 ൌ 1
• Simulator runs the knowledge extractor on the proof from 𝑉∗ and gets 𝑦
• Simulator checks if 𝑧 ൌ 𝑥𝑦 or 𝑧 ൌ 𝑥𝑦ଶ, and so knows if 𝑏 ൌ 0 or 𝑏 ൌ 1

Non‐Oblivious Encryption

• Provide an encryption and prove that you know what’s encrypted
• Motivation:

• Prevent copying (e.g., in auction)
• Guarantee non‐malleability (did not take a previous ciphertext and maul)

Prove Property of Statistical Committed Value

• Consider a statistically‐hiding commitment scheme
• A commitment value 𝑐 can be a commitment to any message

• Committer wishes to prove that it committed to a value in a certain
range (or any other property)

• Statement is almost always true for any given 𝑐
• The question is whether the committer knows a decommitment to a
message with this property

• Rule: whenever ZK is used with statistical hiding, ZKPOK is needed

Identification Schemes

• Alice has a public key ℎ ൌ 𝑔௫

• In order to authenticate, she proves that she knows the dlog of ℎ

• This must be a ZKPOK, since ZK for the language of DLOG is trivial

Questions?

