

Zero-Knowledge Proofs of Knowledge

Yehuda Lindell

Bar-Ilan University

Center for Research in Applied
Cryptography and Cyber Security

Knowledge – Motivation

- Prove that you know the shortest path from A to B
 - A shortest path exists, but who says that you know it?
- Prove identity:
 - For public key $h = g^x$ in a group where discrete log is hard, prove that I know x
 - This proves identity since it is my private key and only I know it
 - Attempt: prove in ZK that $h \in L$ for $L = \{h \mid \exists x: g^x = h\}$
 - Problem:
 - This statement is TRUE for all group elements (and so ZK is actually trivial – send YES)
 - Who says that I need to know a witness to prove a true statement

What is Knowledge?

- **Definition:** a student knows the material if she can output it
 - We approximate this by saying that a student knows the material if she can output the answers to the questions on the test
- **Definition:** a machine knows something if it can output it
 - Let R be an NP-relation
 - A machine knows the witness to a statement x if it can output w s.t. $(x, w) \in R$
- What does it mean for a machine to be able to output it?

Formalizing Knowledge (first attempt)

- Attempt 1: a machine M knows the witness to a statement x if there exists some M' who outputs w s.t. $(x, w) \in R$
- Questions:
 - How does this relate to the machine's actions (e.g., proving a proof)?
 - How is M' related to M ; if there is no connection then why does M know it?

Formalizing Knowledge (second attempt)

- Attempt 2:
 - We define a PPT oracle machine K , called a knowledge extractor
 - We say that M knows the witness to a statement x if $K^{M(\cdot)}(x)$ outputs w s.t. $(x, w) \in R$
 - K interacts with M and can use whatever it does to obtain w
 - Since K is generic, its ability to output w means that M knows w
- Questions:
 - This still doesn't relate to the machine's actions (e.g., proving a proof)?
 - K could still just know w independently of M

Formalizing Knowledge (third attempt)

- **Definition:**

- We define a PPT oracle machine K , called a knowledge extractor
- We say that a prover P^* knows the witness to a statement x if $K^{P^*(\cdot)}(x)$ outputs w s.t. $(x, w) \in R$ whenever P^* convinces V of x

- **Intuition:**

- K is generic and works for any x and any P^* : if P^* can convince V then K can output w and so M knows w

- **Question:** what does it mean: “whenever P^* convinces V of x ”?

- K should run in (expected) polynomial-time and output a witness w with the same probability that P^* convinces V of x

Formalizing Knowledge (final)

- One can always prove in ZK without knowing, with negligible prob
 - Run the zero-knowledge simulator and hope that the verifier's queries in the result match the real queries
- The definition is updated to allow a **knowledge error** κ , which takes this into account
 - If P^* convinces V of x with probability $> \kappa$, then K should run in (expected) polynomial-time and output a witness w with probability at most κ less than P^* convinces V of x
- This property is called **knowledge soundness**

The Definition

- **Definition (knowledge soundness):**
 - A proof system has **knowledge soundness** with error κ if there exists a PPT K s.t. for every prover P^* , if P^* convinces V of x with probability $\epsilon > \kappa$, then $K^{P^*(\cdot)}(x)$ outputs w s.t. $(x, w) \in R$ with probability at least $\epsilon(|x|) - \kappa(|x|)$

An Alternative Formulation

- **Motivation:** one can trade off running time and success probability
 - Definition says: run in PPT and output w.p. ϵ
 - Alternative definition: run in **expected** time $\frac{1}{\epsilon}$ and always output
- **Definition (knowledge soundness):**
 - A proof system has **knowledge soundness** with error κ if there exists a K s.t. for every prover P^* , if P^* convinces V of x with probability $\epsilon > \kappa$, then

$K^{P^*(\cdot)}(x)$ outputs w s.t. $(x, w) \in R$ in expected time $\frac{\text{poly}(|x|)}{\epsilon(|x|) - \kappa(|x|)}$

Equivalence of the Definitions

- **Original implies alternative:**

- We are given K that runs in PPT and outputs a witness w.p. ϵ
- We can run K many times until a witness is output
 - Since it is an **NP relation**, can verify when get correct result
 - Expected number of times needed is $1/\epsilon$

- **Alternative implies original:**

- We are given K that runs in time $1/\epsilon$ and outputs a witness
- For $i = 1, \dots, n$, run K for 2^{i+1} steps; if finish output witness; else proceed w.p. $\frac{1}{2}$
 - Let i be smallest s.t. $2^{i+1} > 1/\epsilon$: probability of getting here is at least $2^{-(i+1)} > \epsilon$
 - Expected running time is $\text{poly}(|x|)$

Definition of ZKPOK

- **A proof system is a zero-knowledge proof of knowledge if it has**
 - **Completeness:** honest prover convinces honest verifier
 - **Zero knowledge:** ensures verifier learns nothing
 - **Knowledge soundness:** ensures prover knows witness
- **Zero knowledge is a property of the prover**
 - Prover behavior is guaranteed to reveal nothing
 - Protect against a cheating verifier
- **Knowledge soundness is a property of the verifier**
 - Verifier behavior guarantees that prover knows witness
 - Protect against a cheating prover

Reducing Knowledge Error

- **Sequential composition reduces knowledge error exponentially**
- **Exponentially small error = zero error**
 - Assume knowledge error $\kappa < 2^{-|x|}$ and consider alternative definition
 - Run $K^{P^*(\cdot)}(x)$ in parallel to running a brute-force search on witness
 - Assume brute force in time $2^{|x|}$
 - Let P^* be s.t. it convinces V of x with probability ϵ
 - If $\epsilon > 2 \cdot \kappa$ then $\frac{poly(|x|)}{\epsilon - \kappa} < \frac{2 \cdot poly(|x|)}{\epsilon}$ and so succeed in time $\frac{poly'(|x|)}{\epsilon}$
 - If $\epsilon < 2 \cdot \kappa$ then $\frac{poly(|x|)}{\epsilon} > 2^{|x|} \cdot poly(|x|)$ and so brute force finishes

Constructing ZKPOKs

A Zero-Knowledge proof for QR_N

$$x = w^2 \bmod N$$

P

$$x \in QR_N$$

V

$$r \in_R \mathbb{Z}_N^*$$

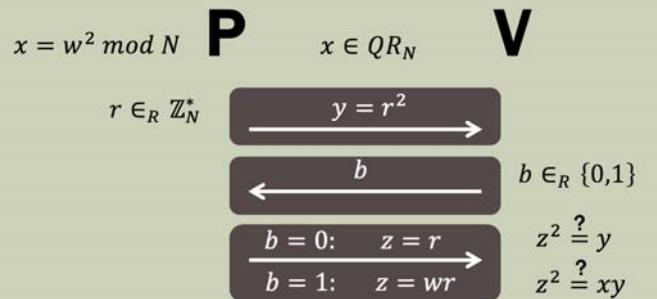
$$y = r^2$$

$$b \in_R \{0,1\}$$

$$\frac{b = 0: \quad z = r}{b = 1: \quad z = wr}$$

$$z^2 \stackrel{?}{=} y$$

$$z^2 \stackrel{?}{=} xy$$



Knowledge Extraction Idea

- K invokes P^* and “receives” some y
- K “sends” P^* the query $b = 0$ and receives z_0
- K **rewinds** and “sends” P^* the query $b = 1$ and receives z_1
- K outputs $w = \frac{z_1}{z_0} \bmod N$
- **Proof:**
 - If P^* convinces w.p. greater than $\kappa = \frac{1}{2}$ then $(z_0)^2 = y$ and $(z_1)^2 = xy$
 - I am assuming for deterministic P^* ; to discuss!
 - Thus $w^2 = \left(\frac{z_1}{z_0}\right)^2 = \frac{xy}{y} = x$ and so K outputs a square root

ZKPOK for NP

An interactive proof for HAM

Ham cycle w **P** $G \in HAM$ **V**

$\pi \in_R S_n$

$c = Com(\pi(G))$

b

$b \in_R \{0,1\}$

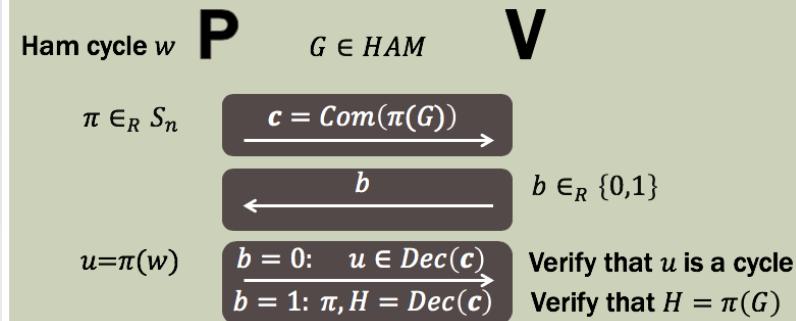
$u = \pi(w)$

$b = 0: u \in Dec(c)$
 $b = 1: \pi, H = Dec(c)$

Verify that u is a cycle
Verify that $H = \pi(G)$

ZKPOK for NP

An interactive proof for HAM



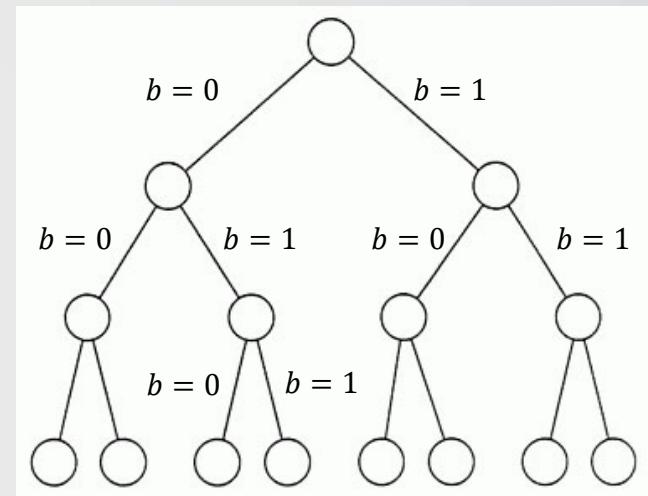
- K invokes P^* and receives a commitment c
- K sends P^* the query $b = 0$ and receives a cycle w
- K rewinds and sends P^* the query $b = 1$ and receives π, \tilde{G}

• Proof:

- If P^* convinces w.p. greater than $\kappa = \frac{1}{2}$ then w is a cycle in $\tilde{G} = \pi(G)$
- Thus, $\pi^{-1}(w)$ is a Hamiltonian cycle in G

ZKPOK for NP with Negligible Error

- Run Hamiltonicity $n = |x|$ times sequentially
- Extractor strategy:
 - Consider binary tree of execution
 - Attempt to extract in i th execution
 - If P^* answers both queries, get Hamiltonian cycle
 - If P^* answers neither query, V always rejects
 - If P^* answers exactly one query, go down that edge
 - Repeat with next execution
- Extraction fails iff P^* answers **exactly one** query in each execution
- Thus, extraction works with probability 1 if $\epsilon > 2^{-n}$



Strong Proofs of Knowledge

- **Definition – strong knowledge soundness**
 - A proof system has **strong knowledge soundness** if there exists a negligible function μ and a PPT K s.t. for every prover P^* , if P^* convinces V of x with probability $\epsilon > \mu$, then $K^{P^*(\cdot)}(x)$ outputs w s.t. $(x, w) \in R$ with probability at least $1 - \mu(|x|)$
- **Theorem:** sequential Hamiltonicity is a strong proof of knowledge

Using the Alternative Definition

- **Definition (knowledge soundness):**
 - A proof system has **knowledge soundness** with error κ if there exists a K s.t. for every prover P^* , if P^* convinces V of x with probability $\epsilon > \kappa$, then $K^{P^*(\cdot)}(x)$ outputs w s.t. $(x, w) \in R$ in expected time $\frac{\text{poly}(|x|)}{\epsilon(|x|) - \kappa(|x|)}$
- What does it help to run in time $\frac{\text{poly}(|x|)}{\epsilon(|x|)}$ when this may not be polynomial time?

Using the Alternative Definition

- **A classic use of zero-knowledge proofs of knowledge:**
 - Within a protocol, prover proves the proof
 - To prove security, a simulator (or reduction) needs the witness
 - Unless verifier would reject, in which case it doesn't matter
- **Using ZKPOKs in proofs of security – simulator (or reduction) plays verifier with prover:**
 - If the verifier rejects, then the simulator can halt, since a real verifier would
 - If the verifier accepts, then the simulator now has to extract the witness

ZKPOK Inside a Protocol

- **Recall simulator (reduction) strategy:**
 - Verify, then halt if reject and extract if accept
- What is the expected running time of this simulator (reduction)?
 - Probability that prover convinces verifier is $\epsilon(|x|)$
 - Assuming that the knowledge error κ is 0:
$$E[\text{Time}] = (1 - \epsilon(|x|)) \cdot \text{poly}(|x|) + \epsilon(|x|) \cdot \frac{\text{poly}(|x|)}{\epsilon(|x|)} = \text{poly}(|x|)$$
 - Assuming that the knowledge error κ is negligible:
$$E[\text{Time}] = (1 - \epsilon(|x|)) \cdot \text{poly}(|x|) + \epsilon(|x|) \cdot \frac{\text{poly}(|x|)}{\epsilon(|x|) - \kappa(|x|)} = \text{poly}(|x|) + \frac{\epsilon(|x|)}{\epsilon(|x|) - \kappa(|x|)}$$
 - Actually not polynomial, but can be fixed...

ZKPOK in a Protocol

- **The issue that arises is that need to both**
 - Simulate the view of the prover in the execution, **and**
 - Extract a witness
- This is called “**witness-extended emulation**”
- A witness-extended emulator $E^{P^*(\cdot)}(x)$ outputs a **VIEW** and some w :
 - The view output is indistinguishable from a real execution
 - The probability that the view is accepting and yet $(x, w) \notin R$ is negligible
 - E runs in expected polynomial-time

Witness-Extended Emulation

- **Lemma:** If (P, V) is a ZKPOK, then there exists a witness extended emulator for (P, V) .
 - Very useful when use ZKPOK inside proofs of security (and greatly simplifies)
- Can also formalize an ideal ZK functionality:
$$\mathcal{F}_{\text{zk}}((x, w), x) = (\lambda, R(x, w))$$
- **Lemma:** If (P, V) is a ZKPOK, then it securely computes the ideal ZK functionality (in the secure computation sense).

Other Applications

- A zero-knowledge proof for NQR_N
- Non-oblivious encryption
- Prove that committed value has a property, for statistically hiding
- Identification schemes

A zero-knowledge proof for \overline{QR}_N

Interactive proof for \overline{QR}_N [GMR'85]

P

$x \notin QR_N$

V

$$\frac{z = y^2 \quad b = 0}{z = xy^2 \quad b = 1}$$

$$\begin{aligned} b &\in_R \{0,1\} \\ y &\in_R \mathbb{Z}_N^* \end{aligned}$$

$$\frac{b'(z) = 0 \quad z \in QR_N}{b'(z) = 1 \quad z \notin QR_N}$$

$$b' \stackrel{?}{=} b$$

A ZK proof for \overline{QR}_N

- **Why is the proof not ZK?**

- The verifier may have some z and wants to know if is QR or not

- **How can we make this proof ZK?**

- The verifier sends z and proves that it **knows** y s.t. $z = xy$ or $z = xy^2$

- **Why is ZK not enough and why is a ZKPOK needed?**

- Intuitively: for every z , there exists a y s.t. $z = xy$ or $z = xy^2$, so statement is always true
- Formally: simulation strategy

Interactive proof for \overline{QR}_N [GMR'85]

P $x \notin QR_N$ **V**

$$\xleftarrow{\quad z = y^2 \quad \quad b = 0 \quad} \quad \xrightarrow{\quad z = xy^2 \quad \quad b = 1 \quad}$$

$$\begin{aligned} b \in_R \{0,1\} \\ y \in_R \mathbb{Z}_N^* \end{aligned}$$

$$\frac{b'(z) = 0 \quad z \in QR_N}{b'(z) = 1 \quad z \notin QR_N} \quad \xrightarrow{\quad b' \stackrel{?}{=} b \quad}$$

$$b' \stackrel{?}{=} b$$

A ZK proof for \overline{QR}_N

- **Simulation Strategy**

- Simulator S runs V^* and gets z
- Simulator doesn't know whether it should answer $b = 0$ or $b = 1$
- Simulator runs the **knowledge extractor** on the proof from V^* and gets y
- Simulator checks if $z = xy$ or $z = xy^2$, and so knows if $b = 0$ or $b = 1$

Interactive proof for \overline{QR}_N [GMR'85]

P $x \notin QR_N$ **V**

$$\xleftarrow{\begin{array}{ll} z = y^2 & b = 0 \\ z = xy^2 & b = 1 \end{array}} \quad \begin{array}{l} b \in_R \{0,1\} \\ y \in_R \mathbb{Z}_N^* \end{array}$$

$$\xrightarrow{\begin{array}{ll} b'(z) = 0 & z \in QR_N \\ b'(z) = 1 & z \notin QR_N \end{array}} \quad b' \stackrel{?}{=} b$$

Non-Oblivious Encryption

- Provide an encryption and prove that you know what's encrypted
- Motivation:
 - Prevent copying (e.g., in auction)
 - Guarantee non-malleability (did not take a previous ciphertext and maul)

Prove Property of Statistical Committed Value

- Consider a statistically-hiding commitment scheme
 - A commitment value c can be a commitment to any message
- Committer wishes to prove that it committed to a value in a certain range (or any other property)
- Statement is almost always true for any given c
- The question is whether the committer **knows** a decommitment to a message with this property
- **Rule:** whenever ZK is used with statistical hiding, ZKPOK is needed

Identification Schemes

- Alice has a public key $h = g^x$
- In order to authenticate, she proves that she knows the dlog of h
- This must be a ZKPOK, since ZK for the language of DLOG is trivial

Questions?

Center for Research in Applied
Cryptography and Cyber Security