

ZERO-KNOWLEDGE for NP

ALON ROSEN

IDC HERZLIYA

fact FOUNDATIONS & APPLICATIONS
of CRYPTOGRAPHIC THEORY

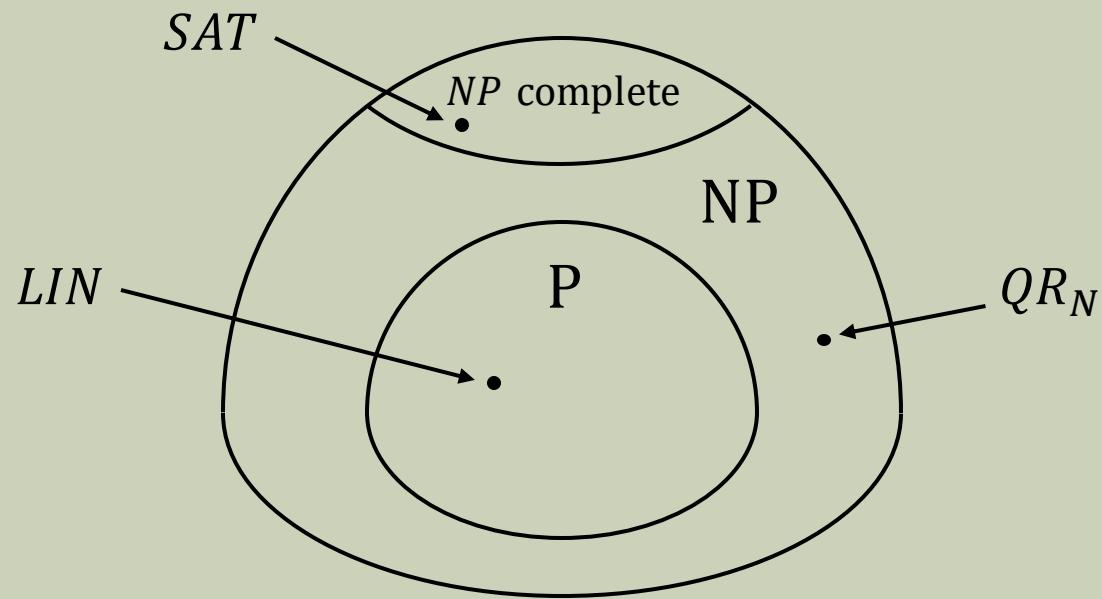
BIU WINTER SCHOOL | February 2019

Perfect ZK

Perfect ZK: $\forall \text{PPT } V^* \exists \text{PPT } S \forall x \in L \forall z$

$$S(x, z) \cong (P(w), V^*(z))(x)$$

Proposition: $QR_N \in \text{PZK}$



Can SAT be proved in ZK?

Why do we care?

- QR_N is specific
- SAT is NP-complete
- If $SAT \in \text{ZK}$ then every $L \in \text{NP}$ is provable in ZK

Theorem [F'87, BHZ'87]: If $SAT \in \text{PZK}$ then the polynomial-time hierarchy collapses to the second level

Possible relaxations:

- Computational indistinguishability (now)
- Computational soundness (later)

Statistical Zero-Knowledge

Statistical Indistinguishability

Let X and Y be random variables taking values in a set Ω

Perfect indistinguishability ($X \cong Y$): $\forall T \subseteq \Omega$

$$\Pr_X[X \in T] = \Pr_Y[Y \in T]$$

ε -indistinguishability ($X \cong_s Y$): $\forall T \subseteq \Omega$

$$|\Pr[X \in T] - \Pr[Y \in T]| \leq \varepsilon$$

- $X = X_n$ and $Y = Y_n$
- $\varepsilon = \varepsilon(n)$

Statistical Indistinguishability

Let X and Y be random variables taking values in a set Ω

Perfect indistinguishability ($X \cong Y$): $\forall T \subseteq \Omega$

$$\Pr_X[X \in T] = \Pr_Y[Y \in T]$$

ε -indistinguishability ($X \cong_s Y$): $\forall T \subseteq \Omega$

$$|\Pr[X \in T] - \Pr[Y \in T]| \leq \varepsilon$$

Triangle inequality: if

- X, Y are ε_1 -indistinguishable and
- Y, Z are ε_2 -indistinguishable then
- X, Z are $(\varepsilon_1 + \varepsilon_2)$ -indistinguishable

Statistical Indistinguishability

Let X and Y be random variables taking values in a set Ω

Perfect indistinguishability ($X \cong Y$): $\forall T \subseteq \Omega$

$$\Pr_X[X \in T] = \Pr_Y[Y \in T]$$

ε -indistinguishability ($X \cong_s Y$): $\forall T \subseteq \Omega$

$$|\Pr[X \in T] - \Pr[Y \in T]| \leq \varepsilon$$

Indistinguishability of multiple samples: if

- X, Y are ε -indistinguishable then
- X^q, Y^q are $q\varepsilon$ -indistinguishable

Hybrid argument: $X^{q-i}YY^{i-1} \cong_s X^{q-i}XY^{i-1}$

Hybrid Argument

$$X^{q-i}YY^{i-1} \cong_s X^{q-i}XY^{i-1}$$

$$\begin{aligned} (i = 0) \quad & X^q \rightarrow \boxed{XXXXXXXXXXXXXXXXXXXXXX} \\ (i = 1) \quad & \cong_s \boxed{YXXXXXX} \boxed{XXXXXXXXXXXXXX} \\ (i = 2) \quad & \cong_s \boxed{YYX} \boxed{XXXXXXXXXXXXXX} \\ (i = 3) \quad & \cong_s \boxed{YYY} \boxed{XXXXXXXXXXXXXX} \\ & \vdots \\ (i = q-1) \quad & \cong_s \boxed{YYYYYYYYYYYYYYYYYYYY} \boxed{X} \\ (i = q) \quad & \cong_s \boxed{YYYYYYYYYYYYYYYYYYYY} \boxed{Y} \rightarrow Y^q \end{aligned}$$

By triangle inequality: $\varepsilon + \varepsilon + \cdots + \varepsilon = q\varepsilon$

Statistical ZK

Statistical ZK: $\forall \text{PPT } V^* \exists \text{PPT } S \forall x \in L \forall z$

$$S(x, z) \cong_S (P, V^*(z))(x)$$

- SZK - all L that have a statistical ZK proof
- $S(x, z)$ and $(P, V^*(z))(x)$ are indexed by x, z
- Typically $n = |x|$ (actually, $n = |w|$)

Theorem [F'87, BHZ'87]: If $SAT \in \text{SZK}$ then the polynomial-time hierarchy collapses to the second level

Computational Zero-Knowledge

Computational Indistinguishability

ε -indistinguishability ($X \cong_s Y$): $\forall T \subseteq \Omega$

$$|Pr[X \in T] - Pr[Y \in T]| \leq \varepsilon$$

(t, ε) -indistinguishability ($X \cong_c Y$): $\forall T \subseteq \Omega$ that are “decidable in time t ”

$$|Pr[X \in T] - Pr[Y \in T]| \leq \varepsilon$$

$T \subseteq A$ is decidable in time t if \exists time- t D such that $\forall x \in A$

$$x \in T \leftrightarrow D(x) = 1$$

Computational Indistinguishability

ε -indistinguishability ($X \cong_s Y$): $\forall T \subseteq \Omega$

$$|Pr[X \in T] - Pr[Y \in T]| \leq \varepsilon$$

(t, ε) -indistinguishability ($X \cong_c Y$): \forall time- t D

$$|Pr[D(X) = 1] - Pr[D(Y) = 1]| \leq \varepsilon$$

Triangle inequality: if

- X, Y are (t_1, ε_1) -indistinguishable and
- Y, Z are (t_2, ε_2) -indistinguishable then
- X, Z are $(\min\{t_1, t_2\}, \varepsilon_1 + \varepsilon_2)$ -indistinguishable

Computational Indistinguishability

ε -indistinguishability ($X \cong_s Y$): $\forall T \subseteq \Omega$

$$|Pr[X \in T] - Pr[Y \in T]| \leq \varepsilon$$

(t, ε) -indistinguishability ($X \cong_c Y$): \forall time- t D

$$|Pr[D(X) = 1] - Pr[D(Y) = 1]| \leq \varepsilon$$

Indistinguishability of multiple samples: if

- X, Y are (t, ε) -indistinguishable then
- X^q, Y^q are $(t, q\varepsilon)$ -indistinguishable

Hybrid argument (non-uniform):

$$X^{q-i}YY^{i-1} \cong_s X^{q-i}XY^{i-1}$$

Computational Indistinguishability

Typically:

- $t = \text{poly}(n)$
- $\varepsilon = \text{neg}(n)$

Definition: $\varepsilon = \varepsilon(n)$ is negligible if it is eventually smaller than $1/p(n)$ for every polynomial p

$$\varepsilon = \text{neg}(n), q = \text{poly}(n) \rightarrow q\varepsilon = \text{neg}(n)$$

$$X^1 \cong_{\varepsilon} X^2 \dots \cong_{\varepsilon} X^q \rightarrow X^1 \cong_{q\varepsilon} X^q$$

In practice: concrete choices of t, q and ε

Computational ZK

Computational ZK: $\forall \text{PPT } V^* \exists \text{PPT } S \forall x \in L \forall z$

$$S(x, z) \cong_c (P, V^*(z))(x)$$

$$\text{PZK} \subseteq \text{SZK} \subseteq \text{CZK}$$

Theorem [GMW'86]: Suppose one-way functions exist.

Then $\text{NP} \subseteq \text{CZK}$

One-way Functions

Definition: $f: \{0,1\}^* \rightarrow \{0,1\}^*$ is (t, ε) -**one-way** if \forall time- t A

$$\Pr_X[A \text{ inverts } f(X)] \leq \varepsilon$$

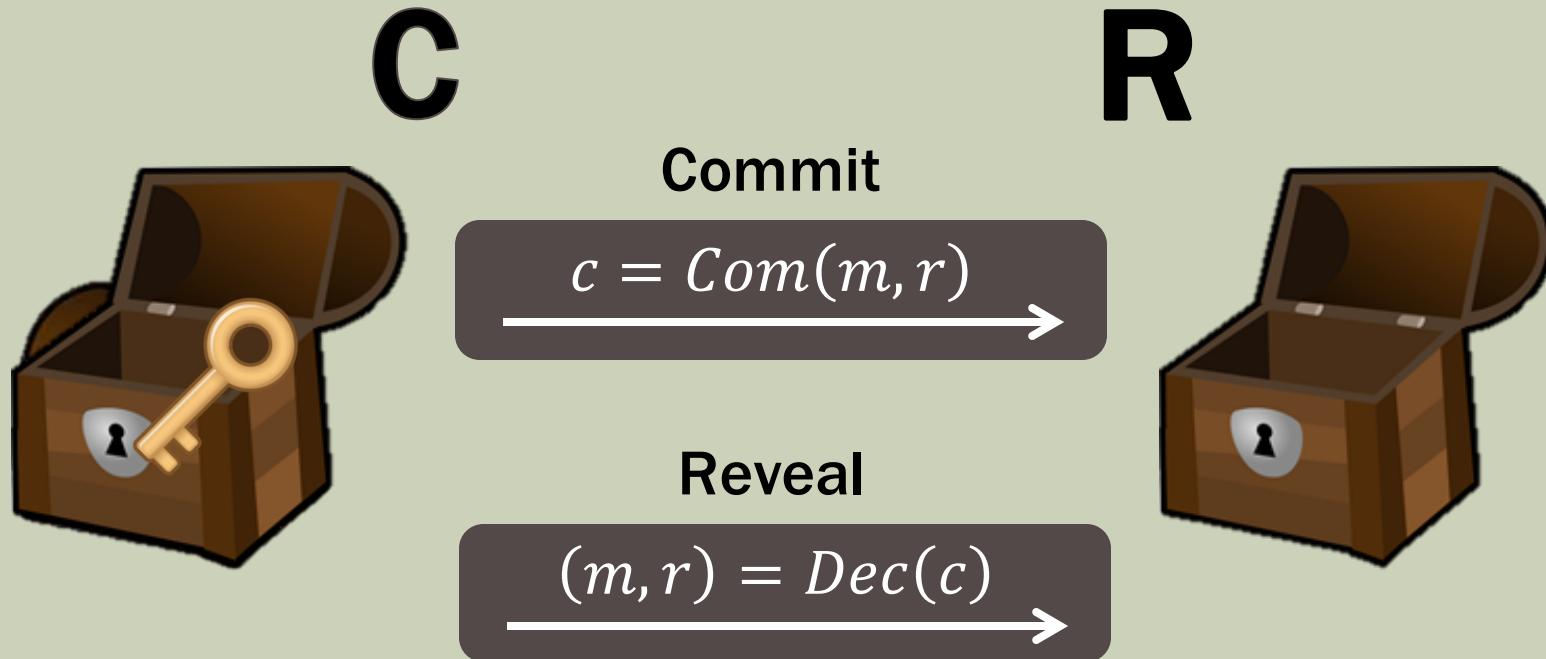
Candidate OWFs:

- **Rabin/RSA:** $x^2 \bmod N$ $x^e \bmod N$
- **Discrete exponentiation:** $g^x \bmod P$
- **SIS/LWE:** $Ax \bmod q$ $Ax + e \bmod q$
- **AES:** $AES_x(0^n)$
- **SHA:** $h(x)$

Commitment Schemes

Commitment Scheme

- Two-stage protocol between *Committer* and *Receiver*

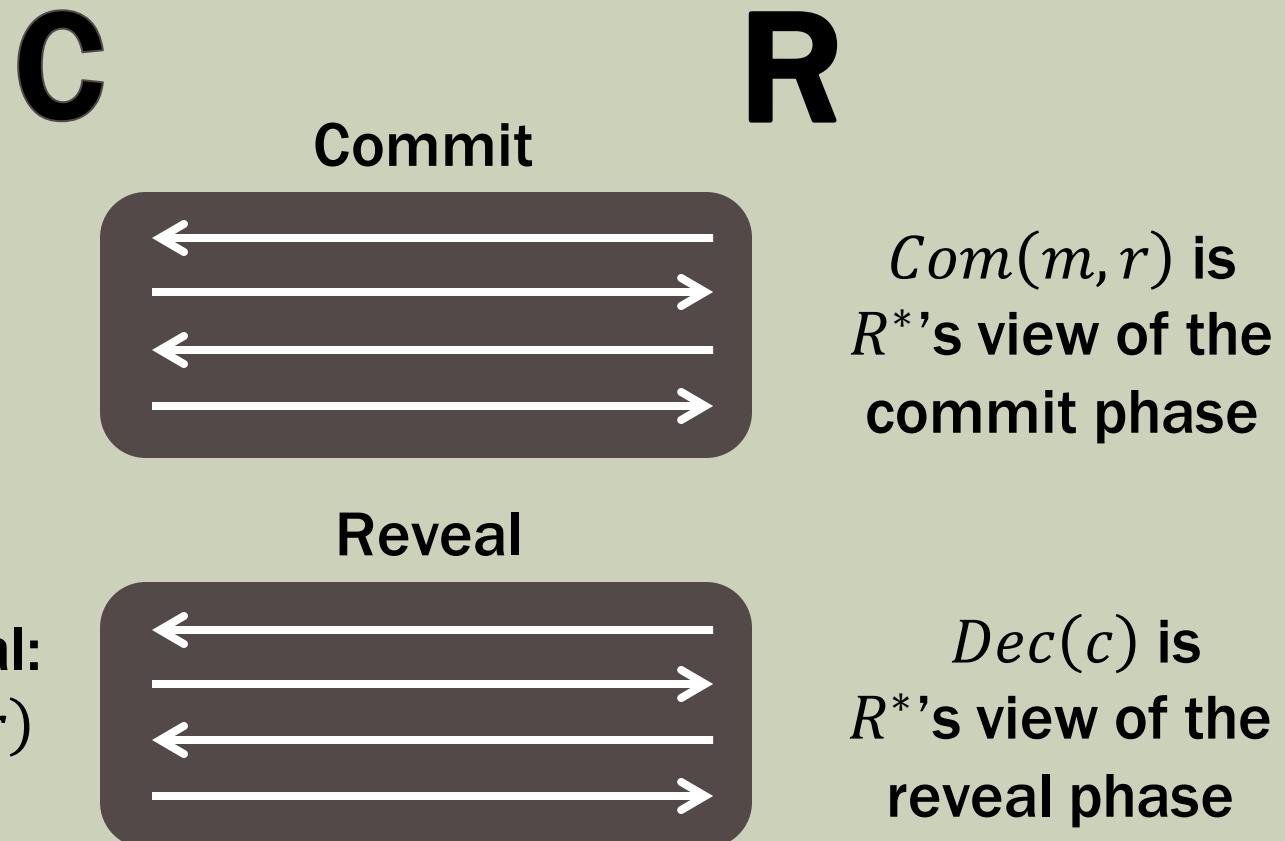


Completeness: C can always generate valid

$$c = Com(m, r)$$

Commitment Scheme

- Two-stage protocol between *Committer* and *Receiver*



Statistically-binding Commitments

Definition: A **statistically-binding** (Com, Dec) **satisfies:**

Computational hiding: $\forall PPT R^* \forall m_1, m_2$

$$Com(m_1) \cong_c Com(m_2)$$

Statistical binding: $\forall C^* \forall m_1 \neq m_2$

$$Pr[C^* \text{ wins the binding game}] \leq neg(n)$$

C^* **wins the binding game** if it generates c along with

- $(m_1, r_1) = Dec(c)$
 - $(m_2, r_2) = Dec(c)$
-
- **Note:** hiding holds even if m_1, m_2 are known
 - **Later:** statistically-hiding commitments

Examples (statistically-binding)

- El-Gamal (assuming DDH):

$$Com_{g,h}(m, r) = (g^r, h^r \cdot g^m)$$

- Any OWP:

$$Com(m, r) = (f(r), b(r) \oplus m)$$

- Any PRG (and hence OWF):

$$Com_r(b, s) = \begin{cases} G(s) & b = 0 \\ G(s) \oplus r & b = 1 \end{cases}$$

$$\text{NP} \subseteq \text{CZK}$$

$HAM \in \text{CZK}$

Theorem [GMW'86]: If statistically-binding commitments exist then $\text{NP} \subseteq \text{CZK}$

Theorem [B'86]: If statistically-binding commitments exist then $HAM \in \text{CZK}$

$HAM = \{G \mid G \text{ has a Hamiltonian cycle}\}$

Ham cycle: passes via each vertex exactly once

HAM is NP -complete

Every $L \in \text{NP}$ is poly-time reducible to HAM

\exists poly-time computable f such that $\forall x$

$$x \in L \Leftrightarrow f(x) \in HAM$$

To prove $L \in \text{CZK}$, sufficient to prove $HAM \in \text{CZK}$

w for $x \in L$
 \Downarrow
 $g(w)$ for $f(x) \in HAM$

P

$x \in L$
 \Downarrow
 $f(x) \in HAM$

V

Adjacency Matrix Representation

Graph G

0	1	0	0	1	1
1	0	1	1	0	0
1	1	0	0	1	0
0	0	1	0	1	1
1	0	1	1	0	1
1	1	0	1	1	0

Ham cycle w

	1				
			1		
				1	
		1			
					1
1					

Committing to G and opening cycle w

Graph G

0	1	0	0	1	1
1	0	1	1	0	0
1	1	0	0	1	0
0	0	1	0	1	1
1	0	1	1	0	1
1	1	0	1	1	0

$G = Dec(c)$

0	1	0	0	1	1
1	0	1	1	0	0
1	1	0	0	1	0
0	0	1	0	1	1
1	0	1	1	0	1
1	1	0	1	1	0

An interactive proof for HAM

Ham cycle w **P**

$G \in HAM$

V

$\pi \in_R S_n$

$c = Com(\pi(G))$

b

$b \in_R \{0,1\}$

$u = \pi(w)$

$b = 0: u \in Dec(c)$

$b = 1: \pi, H = Dec(c)$

Verify that u is a cycle

Verify that $H = \pi(G)$

In either case,
verify that Dec are valid

When $b = 0$

$b = 0$

$c = Com(\pi(G))$

$u \in Dec(c)$

	1				
			1		
					1
		1			
1					

Verify :

- That Dec is valid
- That u is a cycle

When $b = 1$

$b = 1$

$c = Com(\pi(G))$

$H = Dec(c)$

0	1	0	0	1	1
1	0	1	1	0	0
1	1	0	0	1	0
0	0	1	0	1	1
1	0	1	1	0	1
1	1	0	1	1	0

Verify :

- That Dec is valid
- That $H = \pi(G)$

π

6	1	3	2	5	4
---	---	---	---	---	---

Soundness

Claim: If (Com, Dec) is statistically binding then (P, V) is an interactive proof for HAM

P*

V

$Com(\pi(G))$

b

$b = 0: u$

$b = 1: (\pi, H)$

u is a cycle
 $H = \pi(G)$

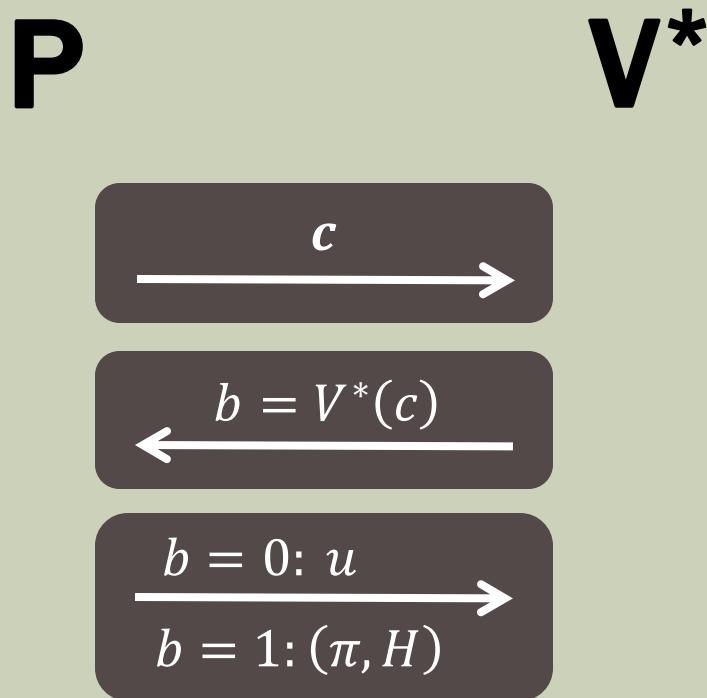
Soundness:

If $Pr_b[(P^*, V) \text{ accepts } x] > 1/2$ then both

- u is a cycle in H
- and $H = \pi(G)$

So $\pi^{-1}(u)$ is a cycle in G

Computational ZK



Simulator $S^{V^*}(G)$:

1. **Set** $G_0 = u$ **for** $u \in_R \text{cycle}_n$
2. **Set** $G_1 = \pi(G)$ **for** $\pi \in_R S_n$
3. **Sample** $b \in_R \mathbb{Z}_N^*$
 - $b = 0$: **Set** $c = \text{Com}(G_0)$
 - $b = 1$: **Set** $c = \text{Com}(G_1)$
4. **If** $V^*(c) = b$
 - $b = 0$: **Output** (c, b, u)
 - $b = 1$: **Output** $(c, b, (\pi, G_1))$
5. **Otherwise repeat**

Computational ZK

$b = 0$

G_0

0	1	0	0	0	0
0	0	0	1	0	0
0	0	0	0	1	0
0	0	1	0	0	0
0	0	0	0	0	1
1	0	0	0	0	0

$b = 1$

G_1

0	1	0	0	1	1
1	0	1	1	0	0
1	1	0	0	1	0
0	0	1	0	1	1
1	0	1	1	0	1
1	1	0	1	1	0

π

6	1	3	2	5	4
---	---	---	---	---	---

Computational ZK

$b = 0$

$c = Com(G_0)$

$b = 1$

$c = Com(G_1)$

\approx_c

Computational ZK

If $V^*(c) = 0$
(otherwise repeat)

$$G_0 = u$$

	1				
			1		
				1	
		1			
					1
1					

If $V^*(c) = 1$
(otherwise repeat)

$$G_1 = \pi(G)$$

0	1	0	0	1	1
1	0	1	1	0	0
1	1	0	0	1	0
0	0	1	0	1	1
1	0	1	1	0	1
1	1	0	1	1	0

$$\pi$$

6	1	3	2	5	4
---	---	---	---	---	---

Computational ZK

Claim: If Com is computationally hiding then $S^{V^*}(G)$ runs in polynomial time

1. From hiding of Com and the fact that V^* is PPT:

$$\Pr_{c,b} [V^*(Com(G_b)) = b] \approx 1/2$$

Exercise: otherwise V^* distinguishes between

$Com(G_0)$ and $Com(G_1)$

2. This implies: $\mathbb{E}[\#\text{repetitions}] \approx 2$

Computational ZK

Claim: If Com is computationally hiding then $\forall G \in HAM$

$$S^{V^*}(G) \cong_c (P(w), V^*)(G)$$

1. Let $H^{V^*}(G, w)$ act identically to $S^{V^*}(G)$ except that:

- **H commits to G_1 instead of G_0**
- **When $V^*(c) = 0$, H outputs $\pi(w)$ instead of u**

2. **Exercise:**

$$S^{V^*}(G) \cong_c H^{V^*}(G, w) \cong (P(w), V^*)(G)$$

Hint: $Com(G_0) \cong_c Com(G_1)$ even if G, w, π are known.

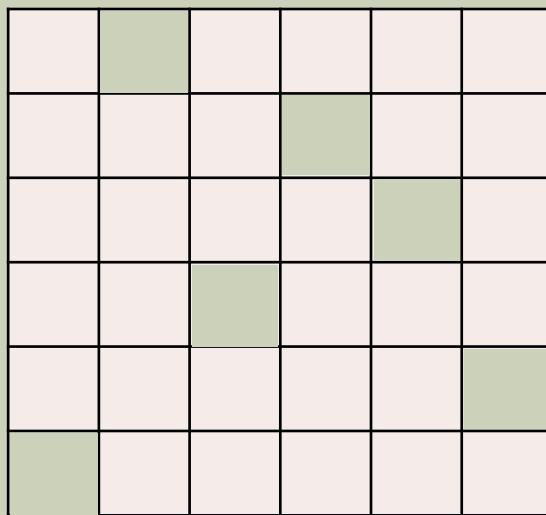
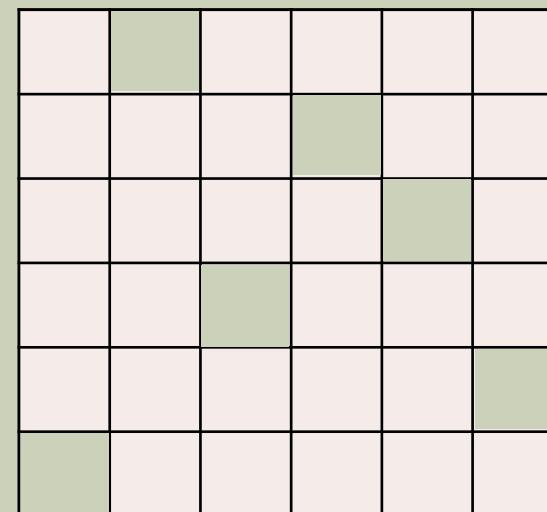
Computational ZK

$$\underline{S^V}^*(G) \mid b = 0$$

$$\underline{H^V}^*(G, w) \mid b = 0$$

$$c = Com(G_0) - Com(\pi(w))$$

$$c = Com(G_1) - Com(\pi(w))$$



\approx

Computational ZK – some more

One-way functions (or rather some weak form of them) are necessary for non-trivial ZK

Theorem [OW'90]: If \exists ZK proofs for languages outside of BPP then there exist functions with one-way instances

Theorem [OW'90]: If \exists ZK proofs for languages that are hard on average then there exist one-way functions

Unconditional characterization of ZK [Vad'06]:

- HVZK = ZK
- ZK is closed under union
- Public-coin ZK equals private-coin ZK
- ZK w/ imperfect compl. equals ZK w/ perfect compl.

Techniques borrowed from the study of SZK [SV'90's]

Summary

$$\text{BPP} \subseteq \text{PZK} \subseteq \text{SZK} \subset \text{CZK} = \text{IP}$$

Defined:

- Statistical indistinguishability
- Computational indistinguishability
- SZK, CZK
- One way-functions
- Statistically-binding commitments

Saw:

- Examples of statistically-binding commitments
- $\text{NP} \subseteq \text{CZK}$ via $HAM \in \text{CZK}$

Food for Thought

Other considerations

- **Efficiency of reduction to HAM**
 - Classic reduction from SAT to HAM has quadratic blowup
 - Ideally: linear blowup (with small constants)
- **Communication complexity**
 - Statistically-binding commitments imply linear communication
 - Next lecture: statistically-hiding commitments
 - Open up the possibility of sublinear communication
- **Efficiency of prover and/or verifier**
 - May have to optimize P, V even if sublinear communication
 - Both time and space complexities – tradeoff between P, V
- **Round complexity**
 - Much research devoted to minimizing rounds (see next lecture)

Modern Crypto Methodology

Define

- what it means to break the system
- Adversary's access/resources

Build

- In ZK first there were protocols, only then defs

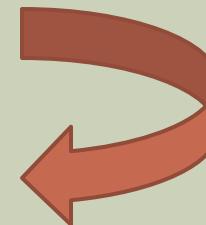
Prove

- We still do not have good “language” for proofs
- ML theory vs Crypto theory (crypto theory is *essential*)

First feasibility then efficiency

- *Optimize (round/comm. complexity, verifier time/space)*

Relax definition (Argument/WI/WH/NIZK)



Auxiliary input to D and Non-uniform V^*

Computational ZK: $\forall \text{PPT } V^* \exists \text{PPT } S \forall \text{PPT } D \forall x \in L \forall z$

$$|Pr[D(x, z, S(x, z)) = 1] - Pr[D(x, z, (P, V^*(z))(x), z) = 1]| \leq neg(|x|)$$

Advanced comment:

- D is also given z
- If z is sufficiently long, D can make use of its suffix
- V^* and S cannot (D is determined after them)
- implies indistinguishability against non-uniform circuits D
- Making V^* also non uniform yields “weaker” security reduction (from V^* to S)

History

Oded Goldreich

Avi Wigderson

Manuel Blum

Moni Naor

Rafail Ostrovsky

Amit Sahai

Salil Vadhan

The End

Questions?