
Zero-Knowledge from 
MPC-in-the-Head:
Constructions and 

Applications 

Carmit Hazay
Faculty of Engineering, 

Bar-Ilan University

..…

Party P1 Party Pn



Taxonomy of Proofs

1.  P vs NP

2.  Interactive vs Non-interactive

3.  Trusted setup vs No setup (transparent)

4.  ZK vs (only) Soundness

5.  Succinct vs Non-succinct

6.  Public-Key Crypto vs (only) Symmetric-Key Crypto



Taxonomy of Proofs

1.  P vs NP

2.  Interactive vs Non-interactive

3.  Trusted setup vs No setup (transparent)

4.  ZK vs (only) Soundness

5.  Succinct vs Non-succinct

6.  Public-Key Crypto vs (only) Symmetric-Key Crypto



Taxonomy of Proofs

1.  P vs NP

2.  Interactive vs Non-interactive

3.  Trusted setup vs No setup (transparent)

4.  ZK vs (only) Soundness

5.  Succinct vs Non-succinct

6.  Public-Key Crypto vs (only) Symmetric-Key Crypto



Taxonomy of Proofs

1.  P vs NP

2.  Interactive vs Non-interactive

3.  Trusted setup vs No setup (transparent)

4.  ZK vs (only) Soundness

5.  Succinct vs Non-succinct

6.  Public-Key Crypto vs (only) Symmetric-Key Crypto



Taxonomy of Proofs

1.  P vs NP

2.  Interactive vs Non-interactive

3.  Trusted setup vs No setup (transparent)

4.  ZK vs (only) Soundness

5.  Succinct vs Non-succinct

6.  Public-Key Crypto vs (only) Symmetric-Key Crypto



Taxonomy of Proofs

1.  P vs NP

2.  Interactive vs Non-interactive

3.  Trusted setup vs No setup (transparent)

4.  ZK vs (only) Soundness

5.  Succinct vs Non-succinct

6.  Public-Key Crypto vs (only) Symmetric-Key Crypto



Taxonomy of Proofs

1.  P vs NP

2.  Interactive vs Non-interactive

3.  Trusted setup vs No setup (transparent)

4.  ZK vs (only) Soundness

5.  Succinct vs Non-succinct

6.  Public-Key Crypto vs (only) Symmetric-Key Crypto



1. Probabilistically Checkable Proofs (PCPs) [BFLS91,
Kil92, Mic94, ALMSS98, AS98, DL08, GLR11, CMT12, BC12, DFH12,
BCCT12, IMS12, Tha13, VSBW13], Interactive PCPs [KR08], Interactive 
Oracle PCPs [BCGT13, BCS16, RRR16, BCGRS16, 
BBCGGHPRSTV17,BBHR17]

2. Linear PCPs [IKO07, Gro10, GGPR13, BCIOP13, Gro10, Lip12,
SMBW12, Lip13, PGHR13, BCGTV13, FLZ13, SBBPW13, Lip14, DFGK14,
KPPSST14, ZPK14, CFHKKNPZ15, WSRBW15, BCTV14, BBFR15, Groth16,
FFGKOP16, BFS16, BISW17, GM17,BBBPWM18]

3.     Interactive Proofs (IP) [GKR08, ZGKPP17-18, WTSTW18]

4.    Multiparty Computation (MPC) [IKOS07, GMO16, 
CDGORRSZ17, AHIV17,KKW18]

Prior Approaches to “Practical” ZK

No setup
High prover’s complexity

Short Proofs
Fast Verification

Heavy Public-Key Crypto 
Trusted Setup

Quantum Insecure

No setup
Moderate Public-Key Crypto



Zero-Knowledge from MPC [IKOS07]

• Goal: ZK proof for an NP-relation R(x,w)

• Towards using MPC: 
• Define n-party functionality

g(x; w1,...,wn) = R(x, w1... wn)

• Use OT-based MPC
• Security in semi-honest model



Zero-Knowledge from MPC [IKOS07]

Prover Verifier

w=w1... wn

P1 P2

P3

P4P5

Pn

w1 w2

w3
w4w5

wn

V1 V2

V3
V4V5

Vn views

random i,j

open views Vi, Vj

w

accept iff output=1 
&  

Vi,Vj are consistent

Given MPC protocol  for 
g(x; w1,...,wn) = R(x, w1... wn)

commit to views V1,...,Vn



Analysis

• Completeness: 
• Zero-knowledge: by 2-security of  and randomness of wi, wj

commit to views V1,...,Vn

random i,j

open views Vi, Vj

accept iff output=1 
&

Vi,Vj are consistent

w=w1... wn

Prover Verifier



Analysis

• Soundness: Suppose R(x,w)=0 for all w
either (1)  V1,...,Vn consistent with protocol 
or  (2)  V1,...,Vn not consistent with 

commit to views V1,...,Vn

random i,j

open views Vi, Vj

accept iff output=1 
&

Vi,Vj are consistent

w=w1... wn

(2) for some (i,j), Vi,Vj are inconsistent

     verifier rejects with prob.  
n
2

(1) outputs=0 (perfect correctness)
     verifier rejects

In fact, proof of 
knowledge

Prover Verifier



Analysis

commit to views V1,...,Vn

random i,j

open views Vi, Vj

accept iff output=1 
&

Vi,Vj are consistent

w=w1... wn

Communication complexity:   
 (comm. complexity + rand. complexity + input size) of 

VerifierProver



ZKBoo: Faster Zero-Knowledge for Boolean Circuits 
[GMO16]

Post-Quantum Zero-Knowledge and Signatures from 
Symmetric-Key Primitives (ZKB++) 
[CDGORRSZ17]



Zero-Knowledge from 3-Party GMW [IKOS07,GMO16]

Prover Verifier
w=w1 w2  w3

P1

P2

P3

w1 w2

w3

V
1

V2

V3

views
OT

commit to views V1,V2,V3

random i,j

open views Vi, Vj

w

accept iff output=1 
&

Vi,Vj are consistent
soundness error ൑ 2/3

Use 3-party GMW protocol OT for 
g(x; w1,w2,w3) = R(x, w1 w2 w3)



Extensions

• Variant 1: Use 1-secure MPC
• Commit to views of parties + channels
• Open one view and incident channels

• Variant 2: Directly get 2-k soundness error via security in malicious model
• n=O(k) parties
• (n)-security with abort
• Broadcast is “free”

• Handle MPC with error via coin-flipping



1. Probabilistically Checkable Proofs (PCPs) [BFLS91,
Kil92, Mic94, ALMSS98, AS98, DL08, GLR11, CMT12, BC12, DFH12,
BCCT12, IMS12, Tha13, VSBW13], Interactive PCPs [KR08], Interactive 
Oracle PCPs [BCGT13, BCS16, RRR16, BCGRS16, 
BBCGGHPRSTV17,BBHR17]

2. Linear PCPs [IKO07, Gro10, GGPR13, BCIOP13, Gro10, Lip12,
SMBW12, Lip13, PGHR13, BCGTV13, FLZ13, SBBPW13, Lip14, DFGK14,
KPPSST14, ZPK14, CFHKKNPZ15, WSRBW15, BCTV14, BBFR15, Groth16,
FFGKOP16, BFS16, BISW17, GM17,BBBPWM18]

3.     Interactive Proofs (IP) [GKR08, ZGKPP17-18, WTSTW18]

4.    Multiparty Computation (MPC) [IKOS07, GMO16, 
CDGORRSZ17, AHIV17,KKW18]

No setup
High prover’s complexity

Short Proofs
Fast Verification

Heavy Public-Key Crypto 
Trusted Setup

Quantum Insecure

Prior Approaches to “Practical” ZK

No setup
Moderate Public-Key Crypto

No Setup
Fast Prover 

Post Quantum Secure
Everything Linear



Ligero: Lightweight Sublinear 
Arguments Without a Trusted Setup 
[AHIV17]



High level approach: use MPC in the head [IKOS07]
• Transform Honest-majority MPC to ZK
• Optimized and implemented in [GMO16,CDGORRSZ17]

Can the communication be sublinear? 
Communication complexity of (i.t.) MPC > circuit size

Key insight: Communication per party can be 
sublinear [DI06,IPS09]

High-Level Overview



High level approach: use MPC in the head [IKOS07]
• Transform Honest-majority MPC to ZK
• Optimized and implemented in [GMO16,CDGORRSZ17]

Can the communication be sublinear? 
Communication complexity of (i.t.) MPC > circuit size

Key insight: Communication per party can be 
sublinear [DI06,IPS09]

High-Level Overview

MPC          Interactive PCP[KR08]           ZK[BCS16]



Sublinear ZK arguments without trusted setup
o Simple, concretely efficient
o Symmetric-crypto only (eg, SHA256)
o Post-quantum secure

First “sublinear” arguments for NP that avoid both complex
PCP machinery and public-key crypto

First “sublinear” arguments for NP that avoid both complex
PCP machinery and public-key crypto

Main Result



Concretely: 

o 40-bit security: comm. is 0.5 |C| kb in the Boolean case

o Can be made non-interactive via Fiat-Shamir
o Can handle Boolean or arithmetic circuits

o Prover computation: Merkle Tree (O |C| leaves) +

O |C|  FFT’s of O |C|  evaluations

Main Result

Sublinear ZK arguments without trusted setup



Eg, SHA256 certification with 40-bit security:
i.e. For statement y, prover proves knowledge of x such that SHA256(x) = y

Linear PCP
[Pinocchio]

ZKBoo/++
[CDGORRSZ17]

Ligero

Communication ~ bytes 200 KB 34 KB

Prover time mins ~33ms 140ms

Verifier time <10ms ~38ms 60ms

Asymptotic 
Communication ~ bytes

Trusted Setup YES NO NO

Amortization NA NO YES

O(|C|) O( |C|)



Proof 
Schematic

Prover Verifier







a
Boolean: X ൌ 2, AND/XOR
Arithmetic: X ൌ 3, AND



ENCODE

Prover Verifier



Root(    )

Prover Verifier



fଵ, fଶ, fଷ, …

Root(    )

Prover Verifier



Row-wise

Prover Verifier

fଵ, fଶ, fଷ, …

Root(    )



Row-wise

iଵ, iଶ, iଷ, …

Prover Verifier

fଵ, fଶ, fଷ, …

Root(    )



Prover Verifier

iଵ, iଶ, iଷ, …

fଵ, fଶ, fଷ, …

Root(    )



Proof Length:
O 𝐛 ൅ 𝛋 · 𝐚
Computation:
O 𝐚 FFTs of O 𝐛

Prover Verifier

iଵ, iଶ, iଷ, …

fଵ, fଶ, fଷ, …

Root(    )



The Underlying MPC Protocol

..…

Server S1 Server S2 Server Sn

Client C

1. Input sharing phase
• Sharing of extended witness
• Server’s view is a matrix column

2. Local computation
• Proofs of correctness

..…



Pick a random t-degree
polynomial p such that
p(0) is secret
Distribute p(1), …, p(n)
t shares do not reveal the secrets
n-t/2 modified shares do not affect 

correctness 

Idea 1: Shamir Secret Sharing [S79]



Pick a random t+ℓ-degree
polynomial p such that
p(0), p(-1), …, p(-ℓ) are secrets
Distribute p(1), …, p(n)
t+ℓ shares do not reveal the secrets

Idea 1: Packed Secret Sharing [FY92]

ℓ=3



Prover Verifier

Idea 2: Testing Interleaved RS Codes



Prover

Idea 2: Testing Interleaved RS Codes

Verifier

Root(    )



Prover

Idea 2: Testing Interleaved RS Codes

Verifier

fଵ, fଶ, fଷ, …



z x ൌ ෍ f୧p୧ሺxሻ
୧

iଵ, iଶ, iଷ, …
Prover

Idea 2: Testing Interleaved RS Codes

Verifier

fଵ, fଶ, fଷ, …



Check
• z x is of degree t+ℓ
• z i ൌ ∑ f୧p୧ሺiሻ୧

Prover

Idea 2: Testing Interleaved RS Codes

z x ൌ ෍ f୧p୧ሺxሻ
୧

iଵ, iଶ, iଷ, …

fଵ, fଶ, fଷ, …

Verifier



Prover Verifier

Idea 3: Testing Quadratic Constraints 



Prover Verifier

Idea 3: Testing Quadratic Constraints



z x ൌ ෍ f୧ p୧ x q୧ x െ r୧ሺxሻ
୧

Prover Verifier

Idea 3: Testing Quadratic Constraints

fଵ, fଶ, fଷ, …



Check

z i ൌ ෍ f୧ p୧ i q୧ i െ r୧ሺiሻ
୧

Prover Verifier

Idea 3: Testing Quadratic Constraints

z x ൌ ෍ f୧ p୧ x q୧ x െ r୧ሺxሻ
୧

fଵ, fଶ, fଷ, …

iଵ, iଶ, iଷ, …



Post-Quantum Signatures from NIZK 
[CDGORRSZ17,KKW18]



The signature scheme:
PK: y=PRFk(0k) where PRF is a block cipher
Sig(m): a proof for (y,k) on a challenge H(a,m)

Obtaining (Post Quantum) Signatures from NIZK 

Advantages:
• Based on symmetric-key primitives
• Easily extendable to ring and group signatures



..…

Party P1 Party Pn

High-Level Overview [KKW18]

Use MPC-in-the-head in the preprocessing model
• Check consistency of preprocessing using cut-and-choose

..…
Party P1 Party Pn



MPC-in-the-head can be instantiated with dishonest majority protocols
• Semi-honest instances for generating correlated randomness 
• Implies two versions of 5/3 rounds

High-Level Overview [KKW18]

..…

Party P1 Party Pn

..…
Party P1 Party Pn



Removing Interaction via the Fiat-Shamir Transform

Prover Verifier

a

c

z

Prover Verifier

a, z

c=H(x,a)c=H(x,a)

Analysis can be 
extended to any 
constant round 

public-coin 
protocol and 

beyond [BCS16]



Scalable Transparent Proofs (STARK,Aurora)

• Proof length and round complexity scale with log |C|
[BBHR18,BCRSVW18]

• Prover’s running time better in Ligero



54

Prover Verifier

Thank you!
That’s a 
true 

statement!


