
9th BIU Winter School on Cryptography

Compilers for Zero-Knowledge:
An Overview

Yuval Ishai
Technion

Broad Motivation

• ZK research is a big party

– Many motivating applications

– Many challenging questions

– Many exciting results

• Big party → Big mess ?

• This talk: advocating a modular approach

– Separate “information-theoretic” and “crypto” parts

– General cryptographic compilers (IT → crypto)

– General information-theoretic compilers (IT → IT)

Ligero

Hyrax Aurora

Bulletproofs Zether

ZKBoo

NP relation R(x,w)

Convenient Representation

Computational model

Information-Theoretic Proof System

“ZK-PCP”

ZK Proof/Argument

crypto compiler

Boolean circuit

Arithmetic circuit

RAM

QSP,QAP,SSP

R1CS

TinyRAM

Different kinds

(coming up)

Crypto assumptions /

Generic models

Information-Theoretic Proof System

“ZK-PCP”

NP relation R(x,w)

ZK Proof/Argument

Representation

Computational model

crypto compiler

IT

Compilers

Information-Theoretic Proof System

“ZK-PCP”

Information-Theoretic Proof System

“ZK-PCP”

crypto compilercrypto compilercrypto compiler

Information-Theoretic Proof System

“ZK-PCP”

MPC

protocols
Carmit’s

talk

Why?
• Simplicity

– Break complex tasks into simpler components

– Easier to analyze and optimize

– Potential for proving lower bounds

• Generality

– Apply same constructions in different settings

– Research deduplication, less papers to read/write

• Efficiency

– Port efficiency improvements between settings

– Mix & match different components

– Systematic exploration of design space

ZK Zoo
(ignoring assumptions for now…)

Qualitative features

• Interactive?

• Succinct?

• Fast verification?

• Public verification?

• Public input?

• NP vs. P?

• Trusted setup?

• Symmetric crypto only?

• Post quantum?

Quantitative features

• Communication

• Prover complexity

• Verifier complexity

Major commercialization efforts

Standardization process

zkproof.org

2nd workshop: April 10-12

Optimal ZKP protocol?

Food for thought…

• Which verifier is better?

– V1: SHA256 hash

– V2: PKE decryption

• V2 can be more obfuscation-friendly! [BISW17]

– Relevant complexity measure: branching program size

– Motivated “lattice-based” designated-verifier SNARKs

– Promising avenue for practical general-purpose obfuscation

• Similar: MPC-friendly prover, etc.

Back to 20th Century

Theorem [GMW86+Naor89+HILL99]:
One-way function → ZKP for all of NP

Theorem [OW93]:
ZKP for “hard on average” L in NP → i.o. one-way function

Theorem [GMW86]:
Bit-commitment → ZKP for all of NP

Are we done?

ZKP for 3-Colorability
[GMW86]

• Prover wants to prove that a given

graph is 3-colorable

ZKP for 3-Colorability

• Prover wants to prove that a given

graph is 3-colorable

– x=graph w=coloring

• Prover randomly permutes the 3 colors

(6 possibilities)

– Say,

ZKP for 3-Colorability

• Prover randomly permutes the 3 colors

(6 possibilities)

– Say,

ZKP for 3-Colorability

• Prover separately commits to color of each

node and sends commitments to Verifier

ZKP for 3-Colorability

• Verifier challenges Prover by selecting a

random edge

ZKP for 3-Colorability

• Prover sends decommitments for opening

the colors of the two nodes

ZKP for 3-Colorability

• Verifier accepts if both colors are valid and

are distinct (otherwise it rejects).

• Repeat O(|E|) times to amplify soundness

ZKP for 3-Colorability

• Security proof more subtle than it may seem

– Need to redo analysis of Hamiltonicity-based ZK?

• Two sources of inefficiency

– Karp reduction

– Soundness amplification (+ many rounds)

Issues

Abstraction to the rescue…

Information-Theoretic Proof System: ZK-PCP

1 3 1 2 1 3 1 2 1 1 3 1 3 1 2 1𝜋 =

Prover: (x,w) → 𝜋

Verifier

Information-Theoretic Proof System: ZK-PCP

1 3 1 2 1 3 1 2 1 1 3 1 3 1 2 1𝜋 =

Prover: (x,w) → 𝜋

Verifier

• Simple security definition

• Completeness

• Perfect (public-coin) ZK

• Soundness error 𝜖
(amplified via parallel repetition)

• Clean efficiency measures

• Alphabet size

• Query complexity

• Prover computation

• Verifier computation

Information-Theoretic Proof System: ZK-PCP

1 3 1 2 1 3 1 2 1 1 3 1 3 1 2 1𝜋 =

Prover: (x,w) → 𝜋

Verifier

Crypto compilers

ZK in plain model NIZK in ROM

[FS86,Mic00][GK96][GMW86,

PW99]

+Stat-binding

commit

+Stat-hiding

commit
+Random

oracle

Information-Theoretic Proof System: ZK-PCP

1 3 1 2 1 3 1 2 1 1 3 1 3 1 2 1𝜋 =

Prover: (x,w) → 𝜋

Verifier

Crypto compilers

ZK in plain model NIZK in CRS model

[FLS90][GK96][GMW86,

PW99]

+Stat-binding

commit

+Stat-hiding

commit
+Trapdoor

permutation

Ron’s talk:

NIZK in

Hidden Bits Model

Information-Theoretic Proof System: ZK-PCP

1 3 1 2 1 3 1 2 1 1 3 1 3 1 2 1𝜋 =

Prover: (x,w) → 𝜋

Verifier

Less “magical”?

Better parameters?

Simpler?

IT Compilers:

MPC → ZK-PCP

Given MPC protocol for f(w1,...,wn) = R(w1...wn)

Prover

w=w1...wn

P1 P2

P3

P4P5

Pn

w1 w2

w3
w4w5

wn

V1 V2

V3
V4V5

Vn
viewsMPCw

MPC  ZK-PCP
[IKOS07]

V1

V2

V3

V4

Vn

…



Verifier

accept iff

output=1

&

Vi,Vj are

consistent

i

j

Applications

• Simple ZK proofs using:
– (2,5) or (1,3) semi-honest MPC [BGW88,CCD88,Maurer02]

– (2,3) or (1,2) semi-honest MPCOT [Yao86,GMW87,GV87,GHY87]

– Practical! [GMO16,CDG+17,KKW18]  post-quantum signatures!

• ZK proofs with O(|R|)+poly(k) communication
– MPC from AG codes [CC05,DI05]

• Many good ZK protocols implied by MPC literature
– MPC for linear algebra [CD01,…]

– MPC over rings [CFIK03] or groups [DPSW07,CDI+13]

• Going (somewhat) sublinear! [AHIV17] – Carmit’s talk

Going fully sublinear

Traditional PCPs



• xL   Pr[Verifier accepts ] =1

• xL  * Pr[Verifier accepts *]≤1/2

• PCP Theorem [AS,ALMSS,Dinur]:
NP statements have polynomial-size PCPs in which the
verifier reads only O(1) bits.
– Can be made ZK with small overhead [KPT97,IW04]

Verifier

x

Still need crypto compiler…

Verifier Prover

ZK-PCP {0,1}poly(|x,w|)Input x

q1,q2,q3

q1, q2, q3

ACC/REJ

Crypto Compiler
[Kil93,Mic94]

Prover

PCP {0,1}poly(|x,w|)Input x

r

Commitr()

Open (q1, q2, q3)

Merkle Tree construction

H = collision resistant hash function

H:{0,1}*{0,1}k

1 2 3 4 ….

m

H H H H

H H

H

com

witness

PCP Encoding

Cryptographic

Hashing

Limitations

+ opening PCP queries

Computationally

Heavy!

Sub-optimally

succinct

Potential

workaround
[LM18,BBF18]

Relaxing PCP model 1: Interaction

1 3 1 2 1 3 1 2 1 1 3 1 3 1 2 1𝜋1 =

Prover

Verifier

Challenge

1 3 1 2 1 3 1 2 1 1 3 1 3 1 2 1𝜋2 =

Challenge

Verifier

Interactive PCP [KR08,GIMS10]

IOP [BCS16,RRR16]

Relaxing PCP model 2: Linear PCP
[ALMSS98,IKO07,BCIOP13]

4 3 1 2 8 3 1 2 1 9 3 1 6 1 2 1𝜋 =

Prover

Verifier

5 3 6 2 1 3 1 2 1 1 6 1 3 1 8 1𝑞1 =
7 3 1 2 4 3 1 2 7 1 3 1 7 1 2 1𝑞2 =
1 2 1 2 1 9 1 2 5 1 4 1 3 1 3 1𝑞3 =

inner product

over a (large)

finite field F

a1

a2

a3

ACC / REJ

x

Advantages of Linear PCPs

• Simple!

– Hadamard PCP: 𝜋 = (W, W x W)

• Short, efficiently computable

– O(|C|)-size, quasi-linear time via QSP/QAP [GGPR13, …]

• Negligible soundness error with O(1) queries

– Reusable soundness

Pr[𝜋∗ is accepted] is either 1 or O(1/|F|)

– Maximal succinctness

– In fact, 1 query is enough! [BCIOP13]

Crypto Compilers for Linear PCPs

• First generation [IKO07,GI10,Gro10,SMBW12,…]

– Standard assumptions

• Linearly homomorphic encryption, discrete log

– Interactive, one-way-succinct/somewhat succinct

– Idea: use succinct vector-commitment with linear opening

• Second generation [Gro10, Lip12,GGPR13, BCIOP13,…]

– Strong “knowledge” or “targeted malleability” assumptions

– Non-interactive using a (long, structured) CRS

– Publicly verifiable via pairings

– Idea: include “encrypted queries” in CRS

Crypto Compiler: First Attempt

4 3 1 2 8 3 1 2 1 9 3 1 6 1 2 1𝜋 =

Prover

Verifier

5 3 6 2 1 3 1 2 1 1 6 1 3 1 8 1𝑞1 =
7 3 1 2 4 3 1 2 7 1 3 1 7 1 2 1𝑞2 =
1 2 1 2 1 9 1 2 5 1 4 1 3 1 3 1𝑞3 =

a1

a2

a3

ACC / REJ

x

Crypto Compiler: First Attempt

4 3 1 2 8 3 1 2 1 9 3 1 6 1 2 1𝜋 =

Prover

Verifier

5 3 6 2 1 3 1 2 1 1 6 1 3 1 8 1𝑞1 =
7 3 1 2 4 3 1 2 7 1 3 1 7 1 2 1𝑞2 =
1 2 1 2 1 9 1 2 5 1 4 1 3 1 3 1𝑞3 =

a1

a2

a3

ACC / REJ

x

CRS

Crypto Compiler: First Attempt

4 3 1 2 8 3 1 2 1 9 3 1 6 1 2 1𝜋 =

Prover

Verifier

5 3 6 2 1 3 1 2 1 1 6 1 3 1 8 1𝑞1 =
7 3 1 2 4 3 1 2 7 1 3 1 7 1 2 1𝑞2 =
1 2 1 2 1 9 1 2 5 1 4 1 3 1 3 1𝑞3 =

ACC / REJ

x

CRS

linearly homomorphic encryption

a1

a2

a3

a1

a2

a3

Crypto Compiler: First Attempt

4 3 1 2 8 3 1 2 1 9 3 1 6 1 2 1𝜋 =

Prover

Verifier

5 3 6 2 1 3 1 2 1 1 6 1 3 1 8 1𝑞1 =
7 3 1 2 4 3 1 2 7 1 3 1 7 1 2 1𝑞2 =
1 2 1 2 1 9 1 2 5 1 4 1 3 1 3 1𝑞3 =

ACC / REJ

x

CRS

linearly homomorphic encryption

a1

a2

a3

a1

a2

a3

Problem 1: May allow more than just linear functions!

Solution 1: Assume it away: “linear-only encryption”
• A natural instance of targeted malleability [BSW12]

• Plausible for most natural public-key encryption schemes

… including post-quantum ones [Reg05,BISW17]
• Win-win flavor

Crypto Compiler

4 3 1 2 8 3 1 2 1 9 3 1 6 1 2 1𝜋 =

Prover

Verifier

5 3 6 2 1 3 1 2 1 1 6 1 3 1 8 1𝑞1 =
7 3 1 2 4 3 1 2 7 1 3 1 7 1 2 1𝑞2 =
1 2 1 2 1 9 1 2 5 1 4 1 3 1 3 1𝑞3 =

ACC / REJ

x

CRS

linearly homomorphic encryption

a1

a2

a3

a1

a2

a3

Problem 2: Prover can apply different 𝜋𝑖 to each 𝑞𝑖 or even combine 𝑞𝑖

Solution 2: Compile LPCP into a proof system that resists this attack
• Linear Interactive Proof (LIP): 2-message IP with “linear-bounded” Prover
• IT compiler: LPCP  LIP via a random consistency check [BCIOP13]

Crypto Compiler

4 3 1 2 8 3 1 2 1 9 3 1 6 1 2 1𝜋 =

Prover

Verifier

5 3 6 2 1 3 1 2 1 1 6 1 3 1 8 1𝑞1 =
7 3 1 2 4 3 1 2 7 1 3 1 7 1 2 1𝑞2 =
1 2 1 2 1 9 1 2 5 1 4 1 3 1 3 1𝑞3 =

ACC / REJ

x

CRS

linearly homomorphic encryption

a1

a2

a3

a1

a2

a3

Problem 3: Only works in a designated-verifier setting

Solutions 3:
• Look for designated verifiers around your neighborhood
• LPCP with deg-2 decision + “bilinear groups”  public verification [Gro00,BCIOP03]

Combining the Two Relaxations: Linear IOP

1 3 1 2 1 3 1 2 1 1 3 1 3 1 2 1𝜋1 =

Prover

Verifier

Challenge

1 3 1 2 1 3 1 2 1 1 3 1 3 1 2 1𝜋2 =

Challenge
Implicit in interactive proofs for P

[GKR08,RRR16]

5 3 6 2 1 3 1 2 1 1 6 1 3 1 8 1𝑞1 =

7 3 1 2 4 3 1 2 7 1 3 1 7 1 2 1𝑞2 =

Variant: ILC model

[BCGGHJ17]

• Suppose statement x is known to prover but is

– Secret-shared between two or more verifiers

– Partitioned between two or more verifiers

• Goal: strong ZK, hiding x as well

• Tool: fully linear ZK proof systems

– Only allow linear access to x: 𝑞𝑖 applies jointly to 𝑥, 𝜋

– Can be naturally compiled to ZK in above settings

• Also with linearly encrypted or committed input

• Implicitly used in previous systems [BGI16,CB17]

Fully Linear PCP/IOP
[BBCGI19]

• Constructions: NP languages

– Standard LPCPs for NP are fully linear, but big proofs

– Meaningful also for “simple” languages in P!

• Sublinear-size proofs for “simple” languages

– Implicit in interactive proofs [GKR08,RRR16,NPY18]

– New constructions for low-degree polynomials

• E.g., test that 𝑥 ∈ 𝐹𝑛 is in 0,1 𝑛

Fully Linear PCP/IOP
[BBCGI19]

• Modular approach to efficient ZKP design

– Information-theoretic ZK-PCP + crypto compiler

• point queries vs. linear queries

• non-interactive vs. interactive

• Applies to most efficient ZKP from the literature

– In a sense inherent to “black-box” constructions [RV09]

– but not to non-bb constructions [Val09,BCCT13,BCTV14]

• Lots of room for further progress

– Better PCPs (and lower bounds)

– Better crypto compilers

– Better IT compilers

Conclusions

The research leading to these results has received

funding from the European Union's Horizon 2020

Research and Innovation Program under grant

agreement

no. 742754 – ERC – NTSC

