

Sigma Protocols

Benny Pinkas
Bar-Ilan University

Zero Knowledge

- Prover P , verifier V , language L
- P proves that $x \in L$ without revealing anything
 - **Completeness:** V always accepts when honest P and V interact
 - **Soundness:** V accepts with negligible prob when $x \notin L$, for any P^*
 - Computational soundness: only holds when P^* is polynomial-time
 - **Zero-knowledge:** There exists a simulator S such that $S(x)$ is indistinguishable from a real proof execution

ZK Proof of Knowledge

- Prover P, verifier V, relation R
- P proves that it **knows** a witness w for which $(x,w) \in R$ without revealing anything
- How can one prove that is “knows” something?
- The approach used: A machine knows something if the machine can be used to efficiently compute it.

ZK Proof of Knowledge

- Prover P , verifier V , relation R
- P proves that it **knows** a witness w for which $(x, w) \in R$ without revealing anything
 - There exists an extractor K that can obtain from P a witness w such that $(x, w) \in R$ (succeeds with the same prob that P^* convinces V)
- Equivalently: The protocol securely computes the functionality $f_{zk}((x, w), x) = (-, R(x, w))$

Zero Knowledge

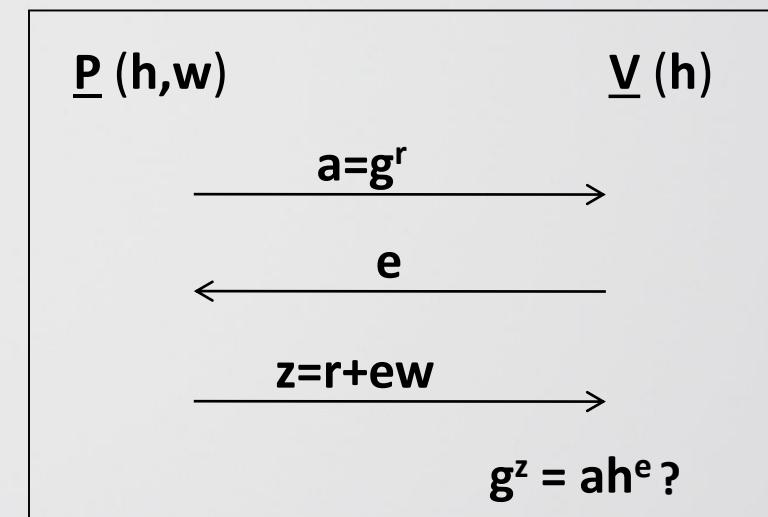
- An amazing concept; everything can be proven in zero knowledge
- Central to fundamental feasibility results of cryptography (e.g., the GMW compiler)
- But, can it be efficient?
 - It seems that zero-knowledge protocols for “interesting languages” are complicated and expensive
 - → Zero knowledge is often avoided

Sigma Protocols

- A way to obtain efficient zero knowledge
 - Many general tools
 - Many interesting languages, especially for arithmetic relations, can be proven with a sigma protocol

An Example – Schnorr's Protocol for Discrete Log

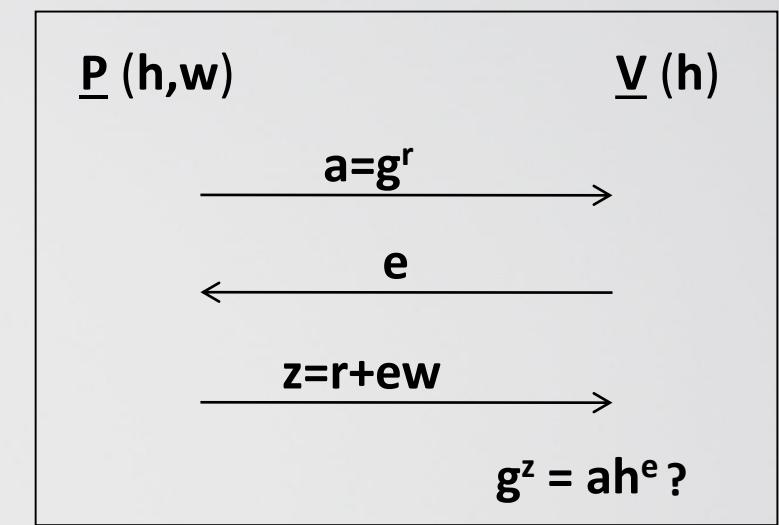
- Let G be a group of order q , with generator g
- P and V have input $h \in G$. P has w such that $g^w = h$
- P proves that to V that it knows $\text{DLOG}_g(h)$
 - P chooses a random r and sends $a = g^r$ to V
 - V sends P a random $e \in \{0,1\}^t$
 - P sends $z = r + ew \pmod{q}$ to V
 - V checks that $g^z = ah^e$



Schnorr's Protocol - Completeness

- Correctness:

$$g^z = g^{r+ew} = g^r(g^w)^e = ah^e$$

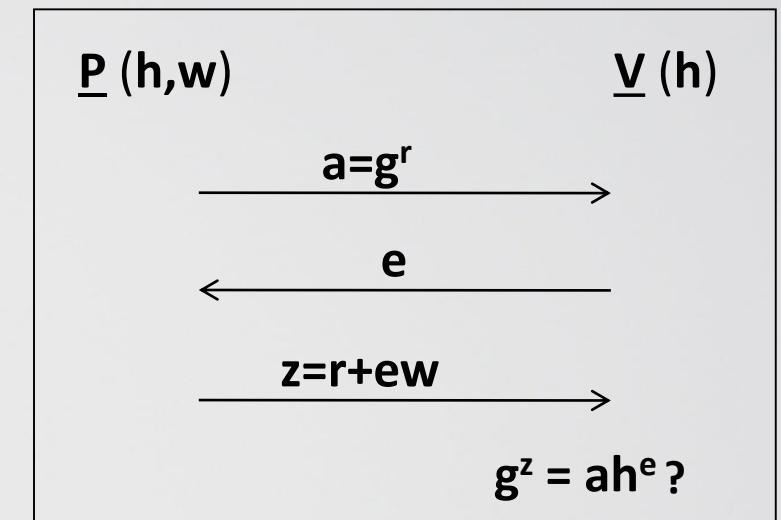


ZK Proof of Knowledge

- Prover P , verifier V , relation R
- P proves that it **knows a witness w** for which $(x,w) \in R$ without revealing anything
 - There exists an extractor K that obtains w such that $(x,w) \in R$ from any P^* with the same probability that P^* convinces V

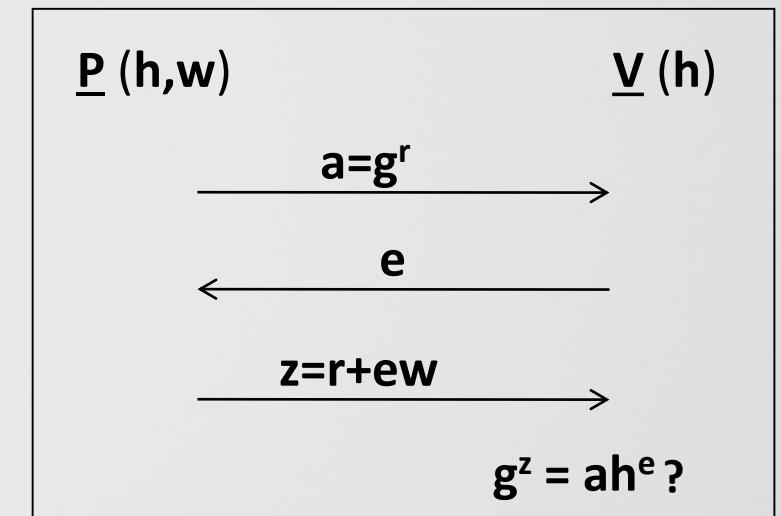
Schnorr's Protocol – Proof of Knowledge

- Proof of knowledge
 - Assume P can answer **two** queries e and e' for the same a
 - Then, it holds that $g^z = ah^e$, $g^{z'} = ah^{e'}$
 - Dividing the two equations gives $g^{z-z'} = h^{e-e'}$
 - Therefore $h = g^{(z-z')/(e-e')}$
 - That is: $\text{DLOG}_g(h) = (z-z')/(e-e')$
- Conclusion:
 - If P can answer with probability greater than $1/2^t$, then it must know the discrete log



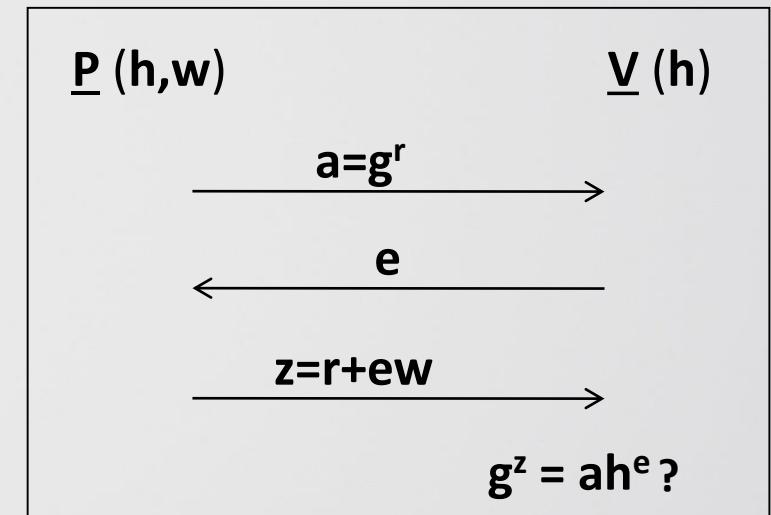
Schnorr's Protocol – Zero Knowledge

- What about zero knowledge? This does not seem easy.
 - ZK holds here if the verifier sends a random challenge e
 - This property is called “Honest-verifier zero knowledge”



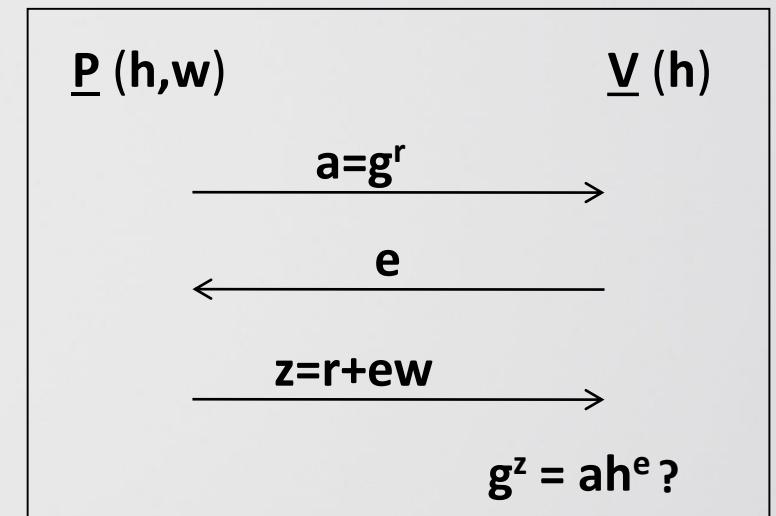
Schnorr's Protocol – Zero Knowledge

- What about zero knowledge? This does not seem easy.
 - ZK holds here if the verifier sends a random challenge e
 - This property is called “Honest-verifier zero knowledge”
- The simulation:
 - Choose a random z and e , and compute $a = g^z h^{-e}$
 - Clearly, (a, e, z) have the same distribution as in a real run. Namely, random values satisfying $g^z = a \cdot h^e$



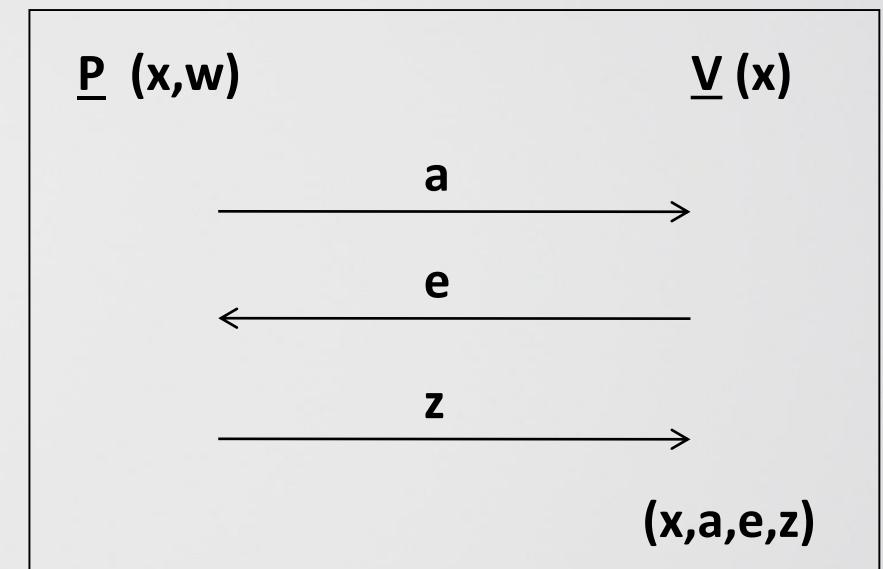
Schnorr's Protocol – Zero Knowledge

- What about zero knowledge? This does not seem easy.
 - ZK holds here if the verifier sends a random challenge e
 - This property is called “Honest-verifier zero knowledge”
- This is **not** a very strong guarantee, but we will see that it yields efficient general ZK.
- (Why does this only work for a verifier that chooses e at random?)



Definitions

- Sigma protocol template
 - **Common input:** P and V both have x
 - **Private input:** P has w such that $(x,w) \in R$
- **Three-round protocol:**
 - P sends a message a
 - V sends a random t -bit string e
 - P sends a reply z
 - V accepts based solely on (x,a,e,z)



Definitions

- **Completeness:** as usual in ZK
- **Special soundness:**
 - There exists an efficient extractor **A** that given any **x** and pair of transcripts $(a, e, z), (a, e', z')$ with $e \neq e'$ outputs **w** s.t. $(x, w) \in R$
- **Special honest-verifier ZK**
 - There exists an efficient simulator **S** that given any **x** and **e** outputs an accepting transcript (a, e, z) which is distributed exactly like a real execution where **V** sends **e**

Another example: Sigma Protocol for a DH Tuple

- Relation R of Diffie-Hellman tuples
 - $(g, h, u, v) \in R$ iff there exists w s.t. $u = g^w$ and $v = h^w$
 - Useful in many protocols
- This is a proof of membership, of equality of dlogs, not of knowledge
- Protocol
 - P chooses a random r and sends $a = g^r$, $b = h^r$
 - V sends a random e
 - P sends $z = r + ew \bmod q$
 - V checks that $g^z = au^e$, $h^z = bv^e$

Sigma Protocol for Proving a DH Tuple

- Completeness: as in DLOG

- Special soundness:

- (Like DLOG) Given $(a, b, e, z), (a, b, e', z')$, we have $g^z = au^e, g^{z'} = au^{e'}, h^z = bv^e, h^{z'} = bv^{e'}$ and so

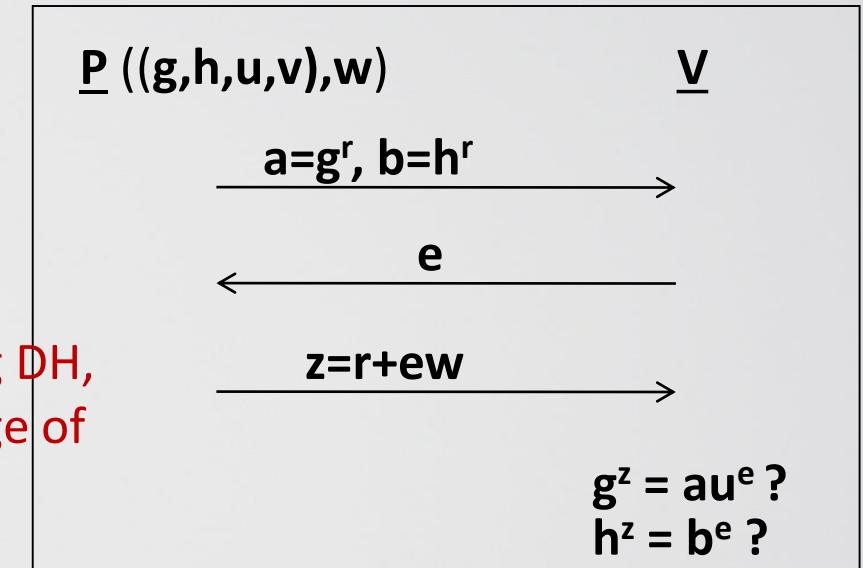
$$\log_g u = \log_h v = w = (z - z')/(e - e')$$

In addition to proving DH,
also proves knowledge of
the discrete log

- Special HVZK

- Given (g, h, u, v) and e , choose random z and compute

- $a = g^z u^{-e}$
 - $b = h^z v^{-e}$



Basic Properties of Sigma Protocols

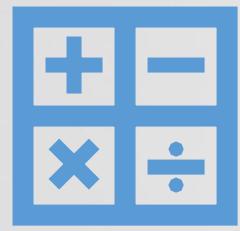
- Any sigma protocol is an interactive proof with soundness error 2^{-t}
- Properties of sigma protocols are invariant under parallel composition
- Any sigma protocol is a proof of knowledge [BG92] with error 2^{-t}
 - The difference between the probability that P^* convinces V and the probability that an extractor K obtains a witness is at most 2^{-t}
 - Proof needs some work

Sigma Protocols

- Very efficient honest-verifier ZK three-round protocols
- Can be applied to many problems
 - Almost all Dlog/DH statements (?)
 - Proving that a commitment is for a specific value
 - Proving that a Paillier encryption is of zero
 - and many other applications...

Non-Interactivity using the Fiat-Shamir Paradigm

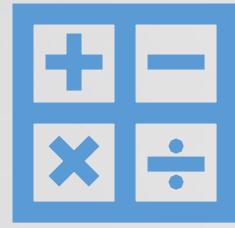
- To prove a statement x **non-interactively**
 - Generate a
 - (Instead of receiving e) compute $e=H(a,x)$
 - Compute z
 - Send (a,e,z)
- The challenge e must be long (128 bits or more)
- No need to worry anymore about honesty of the verifier
- But, only secure in the random oracle model



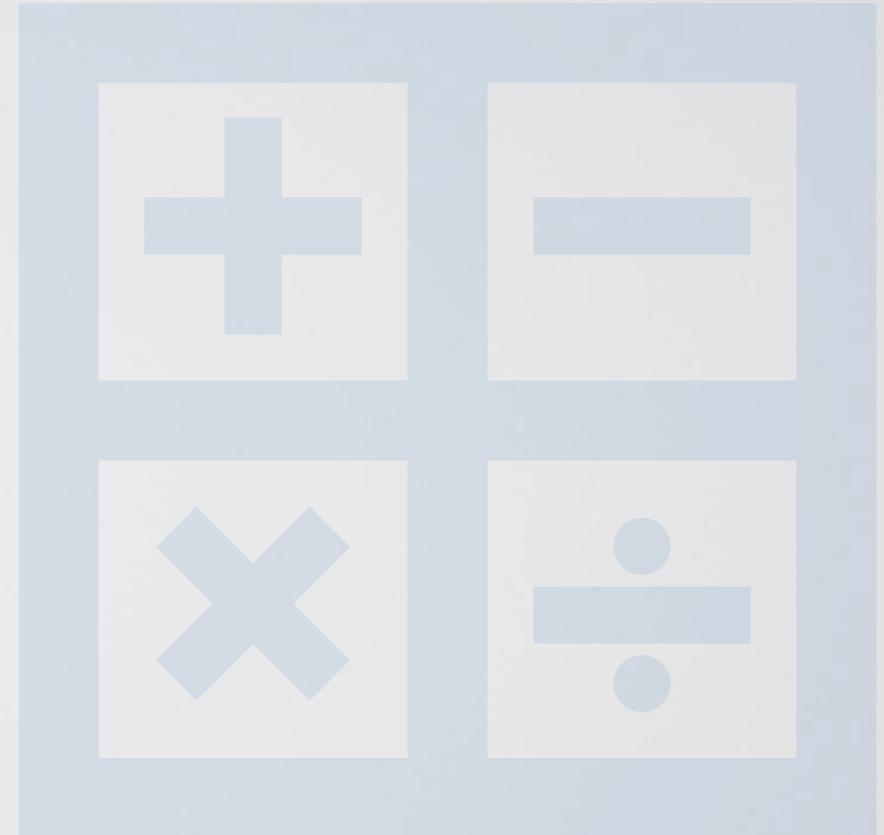
Tools for Sigma Protocols

Tools for Sigma Protocols

- Prove compound statements
 - AND, OR, subset
- ZK from sigma protocols
 - Can first make a compound sigma protocol and then compile it
- ZKPOK from sigma protocols



Proving Compound Statements



AND of Sigma Protocols

- To prove the AND of multiple statements
 - Run all in parallel
 - Can use the **same verifier challenge e** in all
- Sometimes it is possible to do better than this
 - Statements can be batched
 - E.g. proving knowledge of many discrete logs can be done in much less time than running all proofs independently
 - Batch all into one tuple and prove (how?)

OR of Sigma Protocols

- This is more complicated
 - Given two statements and two appropriate Sigma protocols, wish to prove that at least one is true, without revealing which
- The solution – an ingenious idea from [CDS]
 - Using the simulator, if e is known ahead of time it is possible to cheat
 - We construct a protocol where the prover can cheat in one of the two proofs

OR of Sigma Protocols

- The template for proving x_0 or x_1 :
 - P sends two first messages (a_0, a_1)
 - V sends a single challenge e
 - P replies with
 - Two challenges e_0, e_1 s.t. $e_0 \oplus e_1 = e$
 - Two final messages z_0, z_1
 - V accepts if $e_0 \oplus e_1 = e$ and $(a_0, e_0, z_0), (a_1, e_1, z_1)$ are both accepting
- How does this work?

OR of Sigma Protocols

- **P** sends two first messages (a_0, a_1)
 - Suppose that **P** has a witness for x_0 (but not for x_1)
 - **P** chooses a random e_1 and runs SIM to get (a_1, e_1, z_1)
 - **P** sends (a_0, a_1)
 - **V** sends a single challenge e
 - **P** replies with e_0, e_1 s.t. $e_0 = e \oplus e_1$ and with z_0, z_1
 - **P** already has z_1 and can compute z_0 using the witness
 - Special soundness
 - If **P** doesn't know a witness for x_1 , it can only answer for a single e_1
 - This means that for x_0 , the challenge e defines a random challenge e_0 , like in a regular proof

OR of Sigma Protocols

- Special soundness
 - Relative to first message (a_0, a_1) , and two different verifier challenges e, e' , it holds that either $e_0 \neq e'_0$ or $e_1 \neq e'_1$
 - Thus, for **at least** one of the statements we can use the special soundness of the single protocol to compute a witness for that statement, which is also a witness for the OR statement.
- Honest verifier ZK
 - The simulation can choose both e_0, e_1 , so no problem.
 - Note that it is possible to prove an **OR of different statements using different protocols**

OR of Many Statements

- Prove k out of n statements x_1, \dots, x_n

Main tool: k-out-of-n secret sharing

- Let F be a field.
- Basic facts from algebra:
 - Any $d+1$ pairs (a_i, b_i) define a **unique polynomial P of degree d** , s.t. $P(a_i) = b_i$. (assuming $d < |F|$)
 - This polynomial can be found using interpolation
 - Given a polynomial that was interpolated from random points, it is impossible to identify the points which were used to interpolate it.

OR of Many Statements

- Sigma protocol for k out of n statements x_1, \dots, x_n
 - A = set of indices that prover knows how to prove $|A|=k$
 - B = all other indices $|B|=n-k$
 - Will use a polynomial with $n-k+1$ degrees of freedom
 - Field elements $1, 2, \dots, n$. Polynomial f of degree $n-k$
- First step:
 - For every $i \in B$, prover generates (a_i, e_i, z_i) using SIM
 - For every $j \in A$, prover generates a_j as in protocol
 - Prover sends (a_1, \dots, a_n)

OR of Many Statements

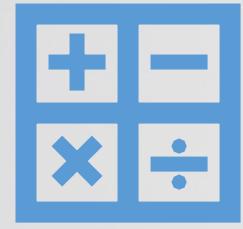
- Prover sent (a_1, \dots, a_n)
- Verifier sends a random field element $e \in F$
- Prover finds the (only) **polynomial f of degree $n-k$** passing through all (i, e_i) and $(0, e)$ (for $i \in B$)
 - For every $j \in A$, the prover computes $e_j = f(j)$, and computes z_j as in the protocol, based on transcript a_j, e_j
 - For every $j \in B$, the prover uses e_j (for which it already prepared an answer using SIM)
- The verifier verifies that all e_i values are on a polynomial of degree $n-k$

OR of Many Statements

- Special soundness:
 - Suppose that the prover can prove **less than k** statements
 - So for **more than $n-k$** statements it can only answer a single query (per query)
 - These queries define a polynomial of degree $n-k$
 - These queries will be asked only if the verifier chooses to use **$e=f(0)$** , which happens with probability $1/|F|$

General Compound Statements

- These techniques can be generalized to any monotone formula (meaning that the formula contains AND/OR but no negations)
 - See Cramer, Damgård, Schoenmakers, Proofs of partial knowledge and simplified design of witness hiding protocols, CRYPTO'94.



ZK from Sigma Protocols

ZK from Sigma Protocols

- In ZK proofs the verifier is not necessarily honest
 - The problem is that it might choose its challenge based on the first message of the verifier
 - The verifier might set its challenge based on the first message it received from the prover
 - The simulation for honest verifiers will no longer work

ZK from Sigma Protocols

- A tool: **commitment schemes**
 - Enables to commit to a chosen value while keeping it secret, with the ability to reveal the committed value later.
- A commitment has two properties:
 - **Binding:** After sending the commitment, it is impossible for the committing party to change the committed value.
 - **Hiding:** By observing the commitment, it is impossible to learn what is the committed value. (Therefore the commitment process must be probabilistic.)

ZK from Sigma Protocols

- The basic idea
 - Have V first commit to its challenge e using a perfectly-hiding commitment
- The protocol
 1. P sends the first message α of the commit protocol
 2. V sends a commitment $c = \text{Com}_\alpha(e; r)$
 3. P sends a message a
 4. V opens the commitment by sending (e, r)
 5. P checks that $c = \text{Com}_\alpha(e; r)$ and if so sends a reply z
 6. V accepts based on (x, a, e, z)

ZK from Sigma Protocols

- Soundness:
 - The perfectly hiding commitment reveals nothing about e and so soundness is preserved
- Zero knowledge
 - In order to simulate the transcript of the protocol:
 - V commits.
 - Send to V a message a' generated by the simulator, for a random e' .
 - Receive V 's decommitment to e
 - Run the simulator again with e , rewind V and send a
 - Repeat until V decommits to e again
 - Conclude by sending z

What happens if V refuses to decommit?

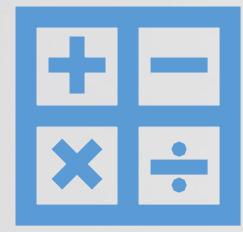
- V might refuse, with probability p , to decommit to e .
- Since the simulation chooses a random a , we can get V to open the commitment after $1/p$ attempts (in expectation)

Implementing Commitments: Pedersen

- Highly efficient perfectly-hiding commitments (two exponentiations for string commit)
 - **Parameters:** generator g , order q
 - **Commit protocol** (commit to x):
 - Receiver chooses random k and sends $h=g^k$
 - Sender sends $c=g^r h^x$, for random r
 - **Perfectly hiding:**
 - For every y there exists s s.t. $g^s h^y = c = g^r h^x$
 - **Computationally binding:**
 - If sender can open commitment in two ways, i.e. find $(x,r),(y,s)$ s.t. $g^r h^x = g^s h^y$, then it can also compute the discrete log $k = (r-s)/(y-x) \bmod q$

Efficiency of ZK

- Using Pedersen commitments, the entire DLOG proof costs only 5 additional group exponentiations



ZKPoK from Sigma Protocols

ZKPOK from Sigma Protocols

- Is the previous protocol a **proof of knowledge**?
 - It seems not to be
 - The extractor for the Sigma protocol needs to obtain two transcripts with the same **a** and different **e**
 - The prover may choose its first message **a** differently for every commitment string.
 - But in this protocol the prover sees a commitment to **e** before sending **a**.
 - So there might be a prover which chooses its message **a** based on the commitment to **e**, and so when the extractor changes the commitment the prover changes **a**

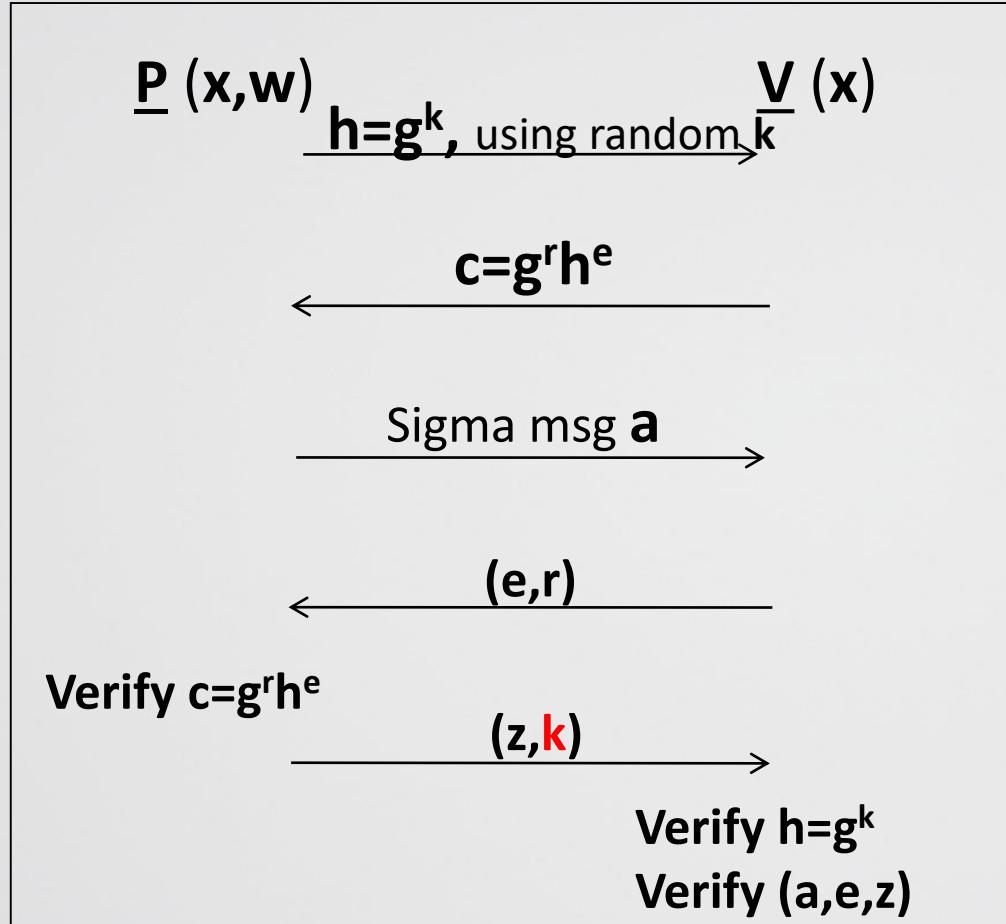
ZKPOK from Sigma Protocols

- Solution: use a **trapdoor (equivocal) commitment**
 - Namely, given a trapdoor, it is possible to open the commitment to any value
- Pedersen has this property – given the discrete log k of h , can decommit to any value
 - Commit to x : $c = g^r h^x$
 - To decommit to y , find s such that $r+kx = s+ky \bmod q$
 - This is easy if k is known: compute $s = r+k(x-y) \bmod q$

ZKPOK from Sigma Protocols

- The basic idea
 - Have V first commit to its challenge e using a **perfectly-hiding trapdoor (equivocal) commitment** (such as Pedersen)
- The protocol
 1. P sends the first message α of the commit protocol (e.g., including h in the case of Pedersen commitments).
 2. V sends a commitment $c = \text{Com}_\alpha(e; r)$
 3. P sends a message a
 4. V sends (e, r)
 5. P checks that $c = \text{Com}_\alpha(e; r)$ and if correct sends z and **also the trapdoor for the commitment**
 6. V accepts if the **trapdoor** is correct and (x, a, e, z) is accepting

ZKPOK from Sigma Protocols



ZKPOK from Sigma Protocols

- Why does this help?
 - **Zero-knowledge** remains the same
 - **Extraction:** after verifying the proof once, the extractor obtains k and can rewind back to the decommitment of c and send any (e', r')
- Efficiency:
 - Just 6 exponentiations (very little)

Side note: Constructing Commitments from Sigma Protocols

- Based on a hard relation R
 - A generator G outputs $(x, w) \in R$
 - But for every PPT algorithm A it is hard to find w given x , namely $\Pr[A(x) \in R]$ is negligible
- Example
 - The generator computes $h = g^r$ for a random r

The Commitment Scheme

- Commitment to a string $e \in \{0,1\}^t$
 - The **receiver** samples a hard (x, w) , and sends x
 - **Committer** runs the sigma protocol simulator on (x, e) , gets (a, e, z) and sends a as the commitment
- Decommitment:
 - Committer sends (a, e, z)
 - Decommitter verifies that is accepting proof for x
- Hiding: By HVZK, the commitment a is independent of e
- Binding: Decommitting to two e, e' for the same a means finding w

This is a Trapdoor Commitment

- The scheme is actually a trapdoor commitment scheme
 - w is a trapdoor
 - Given w , can decommit to any value by running the **real** prover and not the simulator

Summary

- Don't be afraid of using zero knowledge
 - Using sigma protocols, we can get very efficient ZK
- Sigma protocols are very useful:
 - Efficient ZK
 - Efficient ZKPOK
 - Efficient NIZK in the random oracle model
 - Commitments and trapdoor commitments
 - More...