
Sigma Protocols

Benny Pinkas

Bar-Ilan University

1

•Prover P, verifier V, language L

•P proves that xL without revealing anything
•Completeness: V always accepts when honest P and V interact

•Soundness: V accepts with negligible prob when xL, for any P*

•Computational soundness: only holds when P* is polynomial-time

•Zero-knowledge: There exists a simulator S such that S(x) is
indistinguishable from a real proof execution

2

Zero Knowledge

•Prover P, verifier V, relation R

•P proves that it knows a witness w for which (x,w)R without
revealing anything

•How can one prove that is “knows” something?

•The approach used: A machine knows something if the
machine can be used to efficiently compute it.

3

ZK Proof of Knowledge

•Prover P, verifier V, relation R

•P proves that it knows a witness w for which (x,w)R without
revealing anything
•There exists an extractor K that can obtain from P a witness w such

that (x,w)R (succeeds with the same prob that P* convinces V)

•Equivalently: The protocol securely computes the
functionality fzk((x,w),x) = (-,R(x,w))

4

ZK Proof of Knowledge

•An amazing concept; everything can be proven in zero
knowledge

•Central to fundamental feasibility results of cryptography
(e.g., the GMW compiler)

•But, can it be efficient?
• It seems that zero-knowledge protocols for “interesting languages”

are complicated and expensive
•→ Zero knowledge is often avoided

5

Zero Knowledge

•A way to obtain efficient zero knowledge
•Many general tools

•Many interesting languages, especially for arithmetic relations, can
be proven with a sigma protocol

6

Sigma Protocols

•Let G be a group of order q, with generator g

•P and V have input hG. P has w such that gw = h

•P proves that to V that it knows DLOGg(h)

• P chooses a random r and sends a=gr to V

•V sends P a random e0,1t

• P sends z=r+ew mod q to V

•V checks that gz = ahe

7

An Example – Schnorr’s Protocol for Discrete Log

P (h,w) V (h)

a=gr

e

z=r+ew

gz = ahe ?

•Correctness:

gz = gr+ew = gr(gw)e = ahe

8

Schnorr’s Protocol - Completeness

P (h,w) V (h)

a=gr

e

z=r+ew

gz = ahe ?

•Prover P, verifier V, relation R

•P proves that it knows a witness w for which (x,w)R without
revealing anything
•There exists an extractor K that obtains w such that (x,w)R from

any P* with the same probability that P* convinces V

9

ZK Proof of Knowledge

10

Schnorr’s Protocol – Proof of Knowledge

•Proof of knowledge
•Assume P can answer two queries e and e

for the same a
•Then, it holds that gz = ahe, gz=ahe

•Dividing the two equations gives gz-z=he-e

•Therefore h = g(z-z)/(e-e)

•That is: DLOGg(h) = (z-z)/(e-e)

•Conclusion:
• If P can answer with probability greater than

1/2t, then it must know the discrete log

P (h,w) V (h)

a=gr

e

z=r+ew

gz = ahe ?

•What about zero knowledge? This does not seem easy.
•ZK holds here if the verifier sends a random challenge e
•This property is called “Honest-verifier zero knowledge”

11

Schnorr’s Protocol – Zero Knowledge

P (h,w) V (h)

a=gr

e

z=r+ew

gz = ahe ?

•What about zero knowledge? This does not seem easy.
•ZK holds here if the verifier sends a random challenge e
•This property is called “Honest-verifier zero knowledge”

12

Schnorr’s Protocol – Zero Knowledge

•The simulation:
•Choose a random z and e, and

compute a = gzh-e

•Clearly, (a,e,z) have the same
distribution as in a real run.
Namely, random values
satisfying gz=a·he

P (h,w) V (h)

a=gr

e

z=r+ew

gz = ahe ?

•What about zero knowledge? This does not seem easy.
•ZK holds here if the verifier sends a random challenge e
•This property is called “Honest-verifier zero knowledge”

13

Schnorr’s Protocol – Zero Knowledge

•This is not a very strong guarantee, but we
will see that it yields efficient general ZK.

• (Why does this only work for a verifier that
chooses e at random?)

P (h,w) V (h)

a=gr

e

z=r+ew

gz = ahe ?

•Sigma protocol template
•Common input: P and V both have x
•Private input: P has w such that (x,w)R

•Three-round protocol:
•P sends a message a
•V sends a random t-bit string e
•P sends a reply z
•V accepts based solely on (x,a,e,z)

14

Definitions

P (x,w) V (x)

a

e

z

(x,a,e,z)

•Completeness: as usual in ZK

•Special soundness:

•There exists an efficient extractor A that given any x and pair of

transcripts (a,e,z),(a,e,z) with ee outputs w s.t. (x,w)R

•Special honest-verifier ZK

•There exists an efficient simulator S that given any x and e outputs

an accepting transcript (a,e,z) which is distributed exactly like a real

execution where V sends e

15

Definitions

•Relation R of Diffie-Hellman tuples
• (g,h,u,v)  R iff there exists w s.t. u=gw and v = hw

• Useful in many protocols

• This is a proof of membership, of equality of dlogs, not of knowledge

•Protocol
• P chooses a random r and sends a=gr, b=hr

• V sends a random e
• P sends z=r+ew mod q
• V checks that gz=aue, hz=bve

16

Another example: Sigma Protocol for a DH Tuple

•Completeness: as in DLOG

•Special soundness:
• (Like DLOG) Given (a,b,e,z),(a,b,e,z), we

have gz=aue,gz=aue,hz=bve,hz=bve and so
loggu = loghv = w = (z-z)/(e-e)

•Special HVZK
•Given (g,h,u,v) and e, choose random z and

compute

• a = gzu-e

• b = hzv-e

17

Sigma Protocol for Proving a DH Tuple

P ((g,h,u,v),w) V

a=gr, b=hr

e

z=r+ew

gz = aue ?
hz = be ?

In addition to proving DH,
also proves knowledge of
the discrete log

•Any sigma protocol is an interactive proof with soundness error 2-t

•Properties of sigma protocols are invariant under parallel
composition

•Any sigma protocol is a proof of knowledge [BG92] with error 2-t

• The difference between the probability that P* convinces V and the
probability that an extractor K obtains a witness is at most 2-t

• Proof needs some work

18

Basic Properties of Sigma Protocols

Sigma Protocols

•Very efficient honest–verifier ZK three-round protocols

•Can be applied to many problems
•Almost all Dlog/DH statements (?)

•Proving that a commitment is for a specific value

•Proving that a Paillier encryption is of zero

•and many other applications…

19

•To prove a statement x non-interactively
•Generate a

• (Instead of receiving e) compute e=H(a,x)

•Compute z

•Send (a,e,z)

•The challenge e must be long (128 bits or more)

•No need to worry anymore about honesty of the verifier

•But, only secure in the random oracle model

20

Non-Interactivity using the Fiat-Shamir Paradigm

Tools for Sigma
Protocols

21

•Prove compound statements
•AND, OR, subset

•ZK from sigma protocols
•Can first make a compound sigma protocol and then compile it

•ZKPOK from sigma protocols

22

Tools for Sigma Protocols

Proving
Compound
Statements

23

•To prove the AND of multiple statements
•Run all in parallel
•Can use the same verifier challenge e in all

•Sometimes it is possible to do better than this
•Statements can be batched
•E.g. proving knowledge of many discrete logs can be done

in much less time than running all proofs independently
• Batch all into one tuple and prove (how?)

24

AND of Sigma Protocols

•This is more complicated
•Given two statements and two appropriate Sigma protocols, wish to

prove that at least one is true, without revealing which

•The solution – an ingenious idea from [CDS]
•Using the simulator, if e is known ahead of time it is possible to

cheat
•We construct a protocol where the prover can cheat in one of the

two proofs

25

OR of Sigma Protocols

•The template for proving x0 or x1:
• P sends two first messages (a0,a1)
•V sends a single challenge e

• P replies with
• Two challenges e0,e1 s.t. e0e1 = e
• Two final messages z0,z1

•V accepts if e0e1 = e and (a0,e0,z0),(a1,e1,z1) are both accepting

•How does this work?

26

OR of Sigma Protocols

•P sends two first messages (a0,a1)
•Suppose that P has a witness for x0 (but not for x1)
•P chooses a random e1 and runs SIM to get (a1,e1,z1)
•P sends (a0,a1)

•V sends a single challenge e
•P replies with e0,e1 s.t. e0 = ee1 and with z0,z1
• P already has z1 and can compute z0 using the witness

•Special soundness
• If P doesn’t know a witness for x1, it can only answer for a single e1

•This means that for x0, the challenge e defines a random challenge
e0, like in a regular proof

27

OR of Sigma Protocols

•Special soundness
• Relative to first message (a0,a1), and two different verifier challenges

e,e, it holds that either e0 e0 or e1 e1
• Thus, for at least one of the statements we can use the special soundness

of the single protocol to compute a witness for that statement, which is
also a witness for the OR statement.

•Honest verifier ZK
• The simulation can choose both e0,e1, so no problem.

•Note that it is possible to prove an OR of different statements
using different protocols

28

OR of Sigma Protocols

•Prove k out of n statements x1,…,xn

29

OR of Many Statements

•Let F be a field.

•Basic facts from algerbra:
•Any d+1 pairs (ai , bi) define a unique polynomial P of degree d, s.t.

P(ai)=bi. (assuming d < |F|)

•This polynomial can be found using interpolation

•Given a polynomial that was interpolated from random points, it is
impossible to identify the points which were used to interpolate it.

30

Main tool: k-out-of-n secret sharing

•Sigma protocol for k out of n statements x1,…,xn

•A = set of indices that prover knows how to prove |A|=k
•B = all other indices |B|=n-k
•Will use a polynomial with n-k+1 degrees of freedom
•Field elements 1,2,…,n. Polynomial f of degree n-k

•First step:
•For every iB, prover generates (ai,ei,zi) using SIM
•For every jA, prover generates aj as in protocol
•Prover sends (a1,…,an)

31

OR of Many Statements

•Prover sent (a1,…,an)

•Verifier sends a random field element eF

•Prover finds the (only) polynomial f of degree n-k
passing through all (i,ei) and (0,e) (for iB)
•For every jA, the prover computes ej=f(j), and computes

zj as in the protocol, based on transcript aj,ej

•For every jB, the prover uses ei (for which it already
prepared an answer using SIM)

•The verifier verifies that all ei values are on a
polynomial of degree n-k

32

OR of Many Statements

•Special soundness:
•Suppose that the prover can prove less than k statements

•So for more than n-k statements it can only answer a single
query (per query)

• These queries define a polynomial of degree n-k

•These queries will be asked only if the verifier chooses to
use e=f(0), which happens with probability 1/|F|

33

OR of Many Statements

•These techniques can be generalized to any monotone
formula (meaning that the formula contains AND/OR but no
negations)
•See Cramer, Damgård, Schoenmakers, Proofs of partial knowledge

and simplified design of witness hiding protocols, CRYPTO'94.

34

General Compound Statements

ZK from Sigma
Protocols

35

•In ZK proofs the verifier is not necessarily honest
•The problem is that it might choose its challenge based on

the first message of the verifier

•The verifier might set its challenge based on the first
message it received from the prover

•The simulation for honest verifiers will no longer work

36

ZK from Sigma Protocols

•A tool: commitment schemes
•Enables to commit to a chosen value while keeping it secret,

with the ability to reveal the committed value later.

•A commitment has two properties:
•Binding: After sending the commitment, it is impossible for

the committing party to change the committed value.

•Hiding: By observing the commitment, it is impossible to learn
what is the committed value. (Therefore the commitment
process must be probabilistic.)

37

ZK from Sigma Protocols

•The basic idea
•Have V first commit to its challenge e using a perfectly-hiding

commitment

•The protocol
1. P sends the first message  of the commit protocol
2. V sends a commitment c=Com(e;r)
3. P sends a message a
4. V opens the commitment by sending (e,r)
5. P checks that c=Com(e;r) and if so sends a reply z
6. V accepts based on (x,a,e,z)

38

ZK from Sigma Protocols

•Soundness:
•The perfectly hiding commitment reveals nothing about e and so

soundness is preserved

•Zero knowledge
• In order to simulate the transcript of the protocol:

• V commits.
• Send to V a message a generated by the simulator, for a random e.
• Receive V’s decommitment to e
• Run the simulator again with e, rewind V and send a

• Repeat until V decommits to e again
• Conclude by sending z

39

ZK from Sigma Protocols

What happens if V refuses to decommit?

•V might refuse, with probability p, to decommit to e.

•Since the simulation chooses a random a, we can get V to
open the commitment after 1/p attempts (in expectation)

page 40

•Highly efficient perfectly-hiding commitments (two exponentiations
for string commit)

•Parameters: generator g, order q
•Commit protocol (commit to x):

• Receiver chooses random k and sends h=gk

• Sender sends c=grhx, for random r

•Perfectly hiding:
• For every y there exists s s.t. gshy = c = grhx

•Computationally binding:
• If sender can open commitment in two ways, i.e. find (x,r),(y,s) s.t. grhx=gshy,

then it can also compute the discrete log k = (r-s)/(y-x) mod q

41

Implementing Commitments: Pedersen

•Using Pedersen commitments, the entire DLOG proof costs
only 5 additional group exponentiations

42

Efficiency of ZK

ZKPoK from
Sigma Protocols

43

•Is the previous protocol a proof of knowledge?
• It seems not to be

• The extractor for the Sigma protocol needs to obtain two transcripts with the
same a and different e

• The prover may choose its first message a differently for every commitment
string.

• But in this protocol the prover sees a commitment to e before sending a.

• So there might be a prover which chooses its message a based on the
commitment to e, and so when the extractor changes the commitment the
prover changes a

44

ZKPOK from Sigma Protocols

•Solution: use a trapdoor (equivocal) commitment
•Namely, given a trapdoor, it is possible to open the

commitment to any value

•Pedersen has this property – given the discrete log k of
h, can decommit to any value
•Commit to x: c = grhx

•To decommit to y, find s such that r+kx = s+ky mod q

•This is easy if k is known: compute s = r+k(x-y) mod q

45

ZKPOK from Sigma Protocols

•The basic idea
•Have V first commit to its challenge e using a perfectly-hiding

trapdoor (equivocal) commitment (such as Pedersen)

•The protocol
1. P sends the first message  of the commit protocol (e.g.,

including h in the case of Pedersen commitments).
2. V sends a commitment c=Com(e;r)
3. P sends a message a
4. V sends (e,r)
5. P checks that c=Com(e;r) and if correct sends z and also the

trapdoor for the commitment
6. V accepts if the trapdoor is correct and (x,a,e,z) is accepting

46

ZKPOK from Sigma Protocols

47

ZKPOK from Sigma Protocols

P (x,w) V (x)

Sigma msg a

(e,r)

(z,k)

Verify h=gk

Verify (a,e,z)

h=gk, using random k

c=grhe

Verify c=grhe

•Why does this help?
•Zero-knowledge remains the same
•Extraction: after verifying the proof once, the extractor obtains k

and can rewind back to the decommitment of c and send any (e,r)

•Efficiency:
• Just 6 exponentiations (very little)

48

ZKPOK from Sigma Protocols

•Based on a hard relation R
•A generator G outputs (x,w)R

•But for every PPT algorithm A it is hard to find w given x, namely
Pr[A(x)R] is negligible

•Example
•The generator computes h=gr for a random r

61

Side note: Constructing Commitments from Sigma
Protocols

• Commitment to a string e{0,1}t

• The receiver samples a hard (x,w), and sends x

• Committer runs the sigma protocol simulator on (x,e), gets (a,e,z) and

sends a as the commitment

•Decommitment:

• Committer sends (a,e,z)

•Decommitter verifies that is accepting proof for x

•Hiding: By HVZK, the commitment a is independent of e

• Binding: Decommitting to two e,e for the same a means finding w

62

The Commitment Scheme

•The scheme is actually a trapdoor commitment scheme
•w is a trapdoor

•Given w, can decommit to any value by running the real prover and
not the simulator

63

This is a Trapdoor Commitment

•Don’t be afraid of using zero knowledge
•Using sigma protocols, we can get very efficient ZK

•Sigma protocols are very useful:
•Efficient ZK
•Efficient ZKPOK
•Efficient NIZK in the random oracle model
•Commitments and trapdoor commitments
•More…

64

Summary

