Sigma Protocols

Benny Pinkas
Bar-llan University

Zero Knowledge

*Prover P, verifier V, language L

*P proves that xelL without revealing anything
* Completeness: V always accepts when honest P and V interact
e Soundness: V accepts with negligible prob when xgL, for any P*
e Computational soundness: only holds when P” is polynomial-time

e Zero-knowledge: There exists a simulator S such that S(x) is
indistinguishable from a real proof execution

ZK Proof of Knowledge

*Prover P, verifier V, relation R

*P proves that it knows a witness w for which (x,w)eR without
revealing anything

*How can one prove that is “knows” something?

*The approach used: A machine knows something if the
machine can be used to efficiently compute it.

ZK Proof of Knowledge

*Prover P, verifier V, relation R
*P proves that it knows a witness w for which (x,w)eR without
revealing anything

* There exists an extractor K that can obtain from P a withess w such
that (x,w)eR (succeeds with the same prob that P* convinces V)

*Equivalently: The protocol securely computes the
functionality f,, ((x,w),x) = (-,R(x,w))

Zero Knowledge

* An amazing concept; everything can be proven in zero
knowledge

*Central to fundamental feasibility results of cryptography
(e.g., the GMW compiler)

*But, can it be efficient?

* |t seems that zero-knowledge protocols for “interesting languages”
are complicated and expensive

> Zero knowledge is often avoided

Sigma Protocols

* A way to obtain efficient zero knowledge
* Many general tools

* Many interesting languages, especially for arithmetic relations, can
be proven with a sigma protocol

An Example — Schnorr’s Protocol for Discrete Log

*Let G be a group of order g, with generator g

*P and V have input heG. P has w such that g¥ =h

*P proves that to V that it knows DLOG,(h)

* P chooses a random r and sends a=g" to V B (hw) Ll
*V sends P a random e€ {0,1} e >
* P sends z=r+ew mod q to V :
*V checks that g = ah® =l oW S
g? = ah®?

Schnorr’s Protocol - Completeness

*Correctness:
gz — gr+ew — gr(gw e — ahe

P (h,w)

a=g'

V(h)

Vv

N

Zz=r+ew

gz =ahe?

ZK Proof of Knowledge

*Prover P, verifier V, relation R

*P proves that it knows a witness w for which (x,w)eR without
revealing anything

* There exists an extractor K that obtains w such that (x,w)eR from
any P” with the same probability that P* convinces V

Schnorr’s Protocol — Proof of Knowledge

*Proof of knowledge

* Assume P can answer two queries e and e’
for the same a

*Then, it holds that gz = ahe, gZ=ah¢’

* Dividing the two equations gives gzZ=he=¢

* Therefore h = glzz)/(e-¢)

*That is: DLOG,(h) = (z-2)/(e-e’)
*Conclusion:

*If P can answer with probability greater than
1/2%, then it must know the discrete log

P (h,w)

a=g'

V(h)

Z=r+ew

gZ=ahe?

Schnorr’s Protocol — Zero Knowledge

*What about zero knowledge? This does not seem easy.
*ZK holds here if the verifier sends a random challenge e
* This property is called “Honest-verifier zero knowledge”

P (h,w)

a=g’

V(h)

Vv

Z=r+ew

g? = ah®?

Schnorr’s Protocol — Zero Knowledge

*What about zero knowledge? This does not seem easy.
*ZK holds here if the verifier sends a random challenge e
* This property is called “Honest-verifier zero knowledge”

*The simulation:

P (h,w) V (h)
* Choose a random z and e, and
compute a = gzh® - >
*Clearly, (a,e,z) have the same <
distribution as in a real run. z=r+ew
Namely, random values 22 = ahe

satisfying g?=a-h®

Schnorr’s Protocol — Zero Knowledge

*What about zero knowledge? This does not seem easy.
*ZK holds here if the verifier sends a random challenge e
* This property is called “Honest-verifier zero knowledge”

P (h,w) V (h)
* This is not a very strong guarantee, but we a=g’ >
will see that it yields efficient general ZK. e
Z=r+ew
* (Why does this only work for a verifier that g? = ;he?

chooses e at random?)

Definitions

*Sigma protocol template

e Common input: P and V both have x
* Private input: P has w such that (x,w)eR

* Three-round protocol:
* P sends a message a
*V sends a random t-bit string e
*P sends a reply z
*V accepts based solely on (x,a,e,z)

P (x,w)

V (x)

(x,a,e,z)

Definitions

Completeness: as usual in ZK

*Special soundness:

* There exists an efficient extractor A that given any x and pair of
transcripts (a,e,z),(a,e’,z') with e#e’ outputs w s.t. (x,w)eR

*Special honest-verifier ZK

* There exists an efficient simulator S that given any x and e outputs
an accepting transcript (a,e,z) which is distributed exactly like a real

execution where V sends e

Another example: Sigma Protocol for a DH Tuple

* Relation R of Diffie-Hellman tuples

* (g,h,u,v) € Riff there exists w s.t. u=g¥ and v=h"
e Useful in many protocols

* This is a proof of membership, of equality of dlogs, not of knowledge

* Protocol
* P chooses a random r and sends a=g", b=h’
*V sends a random e
* P sends z=r+ew mod q
* V checks that gz=au®, h’=bv®

16

Sigma Protocol for Proving a DH Tuple

e Completeness: as in DLOG
: P ((g,h,u,v),w) v
*Special soundness:

a=g", b=h"

* (Like DLOG) Given (a,b,e,z),(a,b,e’,z’), we] i}
have gZz=au¢,g?=au®,h’=bve,h?=bve" and so

Ioggu = log,v = w = (z-2')/(e-€) In addition to proving DH, z=r+ew N
) \ also proves knowledge|of
° Speual HVZK the discrete log ﬁzz= ?ol‘:e??
* Given (g,h,u,v) and e, choose random z and
compute
P a — gZu-e
b = h?ve

Center for Research in Applied
Cryptography and Cyber Security 17

Basic Properties of Sigma Protocols

* Any sigma protocol is an interactive proof with soundness error 2t

* Properties of sigma protocols are invariant under parallel
composition

* Any sigma protocol is a proof of knowledge [BG92] with error 21

* The difference between the probability that P* convinces V and the
probability that an extractor K obtains a witness is at most 2

* Proof nheeds some work

Sigma Protocols

*Very efficient honest—verifier ZK three-round protocols

*Can be applied to many problems
* Almost all Dlog/DH statements (?)
* Proving that a commitment is for a specific value

* Proving that a Paillier encryption is of zero
e and many other applications...

Non-Interactivity using the Fiat-Shamir Paradigm

*To prove a statement x non-interactively
* Generate a
* (Instead of receiving e) compute e=H(a,x)
* Compute z
*Send (a,e,z)
*The challenge e must be long (128 bits or more)
*No need to worry anymore about honesty of the verifier

*But, only secure in the random oracle model

Tools for Sigma
=1=1 Protocols

Tools for Sigma Protocols

*Prove compound statements
* AND, OR, subset

/K from sigma protocols
* Can first make a compound sigma protocol and then compile it

*/KPOK from sigma protocols

Proving
Compound
Statements

AND of Sigma Protocols

*To prove the AND of multiple statements
* Run all in parallel
* Can use the same verifier challenge e in all

Sometimes it is possible to do better than this
e Statements can be batched

*E.g. proving knowledge of many discrete logs can be done
in much less time than running all proofs independently

e Batch all into one tuple and prove (how?)

OR of Sigma Protocols

*This is more complicated

* Given two statements and two appropriate Sigma protocols, wish to
prove that at least one is true, without revealing which

*The solution — an ingenious idea from [CDS]

* Using the simulator, if e is known ahead of time it is possible to
cheat

* We construct a protocol where the prover can cheat in one of the
two proofs

OR of Sigma Protocols

*The template for proving x, or x;:
* P sends two first messages (ag,,a,)
*V sends a single challenge e

* P replies with
* Two challenges e, e, s.t. e,®e, =¢€

* Two final messages z,,z,

*V accepts if e,Pe, = e and (ay,e(,2,),(2,,€4,2,) are both accepting

* How does this work?

Center for Research in Applied
Cryptography and Cyber Security

26

OR of Sigma Protocols

*P sends two first messages (ay,a,)
* Suppose that P has a witness for x, (but not for x,)
*P chooses a random e, and runs SIM to get (a,,e,,2,)
*P sends (ag,a,)

*V sends a single challenge e

*P replies with e,,e; s.t. e;=e®e, and with z,,z,
* P already has z; and can compute z, using the witness

*Special soundness

*|f P doesn’t know a witness for x,, it can only answer for a single e,

* This means that for x,, the challenge e defines a random challenge
e,, like in a regular proof

OR of Sigma Protocols

*Special soundness

* Relative to first message (ay,a,), and two different verifier challenges
e,e’, it holds that either ey# €', or e,;# €',

* Thus, for at least one of the statements we can use the special soundness
of the single protocol to compute a witness for that statement, which is
also a witness for the OR statement.

* Honest verifier ZK
* The simulation can choose both e,,e,, so no problem.

* Note that it is possible to prove an OR of different statements
using different protocols

Center for Research in Applied
Cryptography and Cyber Security

OR of Many Statements

*Prove k out of n statements x,,...,x,

Main tool: k-out-of-n secret sharing

°Let F be a field.

*Basic facts from algerbra:
* Any d+1 pairs (a;, b,) define a unique polynomial P of degree d, s.t.
P(a,)=b;,. (assuming d < |F|)
* This polynomial can be found using interpolation

* Given a polynomial that was interpolated from random points, it is
impossible to identify the points which were used to interpolate it.

OR of Many Statements

*Sigma protocol for k out of n statements x,,...,x,
* A = set of indices that prover knows how to prove |A|=k
B = all other indices |B|=n-k
* Will use a polynomial with n-k+1 degrees of freedom
*Field elements 1,2,...,n. Polynomial f of degree n-k

*First step:
*For every ieB, prover generates (a, e, z;) using SIM
* For every jeA, prover generates a; as in protocol
* Prover sends (a,,...,a,)

OR of Many Statements

*Prover sent (a,,...,a,)
e\erifier sends a random field element ecF

*Prover finds the (only) polynomial f of degree n-k
passing through all (i,e,) and (0,e) (for ieB)
* For every jeA, the prover computes e;=f(j), and computes
z; as in the protocol, based on transcript a;,e;
*For every jeB, the prover uses e, (for which it already
prepared an answer using SIM)
*The verifier verifies that all e, values are on a
polynomial of degree n-k

OR of Many Statements

*Special soundness:
e Suppose that the prover can prove less than k statements

* So for more than n-k statements it can only answer a single

query (per query)
* These queries define a polynomial of degree n-k

* These queries will be asked only if the verifier chooses to
use e=f(0), which happens with probability 1/|F|

General Compound Statements

*These techniques can be generalized to any monotone
formula (meaning that the formula contains AND/OR but no
negations)

* See Cramer, Damgard, Schoenmakers, Proofs of partial knowledge
and simplified design of witness hiding protocols, CRYPTO'94.

ZK from Sigma
1=l Protocols

ZK from Sigma Protocols

*In ZK proofs the verifier is not necessarily honest

* The problem is that it might choose its challenge based on
the first message of the verifier

*The verifier might set its challenge based on the first
message it received from the prover

*The simulation for honest verifiers will no longer work

ZK from Sigma Protocols

* A tool: commitment schemes

* Enables to commit to a chosen value while keeping it secret,
with the ability to reveal the committed value later.

* A commitment has two properties:

*Binding: After sending the commitment, it is impossible for
the committing party to change the committed value.

* Hiding: By observing the commitment, it is impossible to learn
what is the committed value. (Therefore the commitment
process must be probabilistic.)

ZK from Sigma Protocols

*The basic idea

* Have V first commit to its challenge e using a perfectly-hiding
commitment

*The protocol
1. P sends the first message a of the commit protocol
2. Vsends a commitment c=Com_(e;r)
3. Psends a message a
4. V opens the commitment by sending (e,r)
5. P checks that c=Com_(e;r) and if so sends a reply z
6. V accepts based on (x,a,e,z)

ZK from Sigma Protocols

Soundness:

* The perfectly hiding commitment reveals nothing about e and so
soundness is preserved

eZero knowledge
* In order to simulate the transcript of the protocol:
* V commits.
e Send to V a message a’ generated by the simulator, for a random e€’.
* Receive V's decommitment to e

* Run the simulator again with e, rewind V and send a
* Repeat until V decommits to e again
* Conclude by sending z

Center for Research in Applied
Cryptography and Cyber Security

What happens if V refuses to decommit?

*VV might refuse, with probability p, to decommit to e.

*Since the simulation chooses a random a, we can get V to
open the commitment after 1/p attempts (in expectation)

pppppp

Implementing Commitments: Pedersen

*Highly efficient perfectly-hiding commitments (two exponentiations
for string commit)

* Parameters: generator g, order q
* Commit protocol (commit to x):

* Receiver chooses random k and sends h=gk
* Sender sends c=g'h*, for random r

* Perfectly hiding:
* For every y there exists s s.t. gshY = c =g'h*
* Computationally binding:

* If sender can open commitment in two ways, i.e. find (x,r),(y,s) s.t. g'h*=gshy,
then it can also compute the discrete log k = (r-s)/(y-x) mod q

Center for Research in Applied
Cryptography and Cyber Security

Efficiency of ZK

*Using Pedersen commitments, the entire DLOG proof costs
only 5 additional group exponentiations

ZKPoK from
==l Sigma Protocols

ZKPOK from Sigma Protocols

*|s the previous protocol a proof of knowledge?

* [t seems not to be

* The extractor for the Sigma protocol needs to obtain two transcripts with the
same a and different e

* The prover may choose its first message a differently for every commitment
string.
* But in this protocol the prover sees a commitment to e before sending a.

* So there might be a prover which chooses its message a based on the
commitment to e, and so when the extractor changes the commitment the
prover changes a

Center for Research in Applied
Cryptography and Cyber Security

ZKPOK from Sigma Protocols

*Solution: use a trapdoor (equivocal) commitment

* Namely, given a trapdoor, it is possible to open the
commitment to any value

*Pedersen has this property — given the discrete log k of
h, can decommit to any value
e Commit to x: ¢=g'h*
* To decommit to y, find s such that r+kx = s+ky mod q
* This is easy if k is known: compute s = r+k(x-y) mod q

ZKPOK from Sigma Protocols

*The basic idea

* Have V first commit to its challenge e using a perfectly-hiding
trapdoor (equivocal) commitment (such as Pedersen)

*The protocol

1. P sends the first message a of the commit protocol (e.g.,
including h in the case of Pedersen commitments).

V sends a commitment c=Com _(e;r)
P sends a message a
V sends (e,r)

P checks that c=Com_(e;r) and if correct sends z and also the
trapdoor for the commitment

V accepts if the trapdoor is correct and (x,a,e,z) is accepting

R 5 b

6.

ZKPOK from Sigma Protocols

P (x,w)

V (x)

=g". using randomk

c=grhe

N

Sigma msg a

(e,r)

&
™~

Verify c=g'h®

(z,k)

N

Verify h=g*
Verify (a,e,z)

a7

ZKPOK from Sigma Protocols

*Why does this help?

* Zero-knowledge remains the same

 Extraction: after verifying the proof once, the extractor obtains k
and can rewind back to the decommitment of ¢ and send any (e’,r')

* Efficiency:
* Just 6 exponentiations (very little)

Side note: Constructing Commitments from Sigma
Protocols

*Based on a hard relation R
* A generator G outputs (x,w)eR

* But for every PPT algorithm A it is hard to find w given x, namely
Pr[A(x)eR] is negligible

*Example
* The generator computes h=g" for a random r

The Commitment Scheme

 Commitment to a string ee{0,1}
* The receiver samples a hard (x,w), and sends x

 Committer runs the sigma protocol simulator on (x,e), gets (a,e,z) and
sends a as the commitment

* Decommitment:
« Committer sends (a,e,z)

* Decommitter verifies that is accepting proof for x
* Hiding: By HVZK, the commitment a is independent of e

* Binding: Decommitting to two e,e’ for the same a means finding w

Center for Research in Applied
Cryptography and Cyber Security

This is a Trapdoor Commitment

*The scheme is actually a trapdoor commitment scheme
*w is a trapdoor

* Given w, can decommit to any value by running the real prover and
not the simulator

63

Summary

*Don’t be afraid of using zero knowledge
* Using sigma protocols, we can get very efficient ZK

*Sigma protocols are very useful:
* Efficient ZK
e Efficient ZKPOK
e Efficient NIZK in the random oracle model
* Commitments and trapdoor commitments
* More...

