

# Sigma Protocols

Benny Pinkas  
Bar-Ilan University

# Zero Knowledge

- Prover  $P$ , verifier  $V$ , language  $L$
- $P$  proves that  $x \in L$  without revealing anything
  - **Completeness:**  $V$  always accepts when honest  $P$  and  $V$  interact
  - **Soundness:**  $V$  accepts with negligible prob when  $x \notin L$ , for any  $P^*$ 
    - Computational soundness: only holds when  $P^*$  is polynomial-time
  - **Zero-knowledge:** There exists a simulator  $S$  such that  $S(x)$  is indistinguishable from a real proof execution

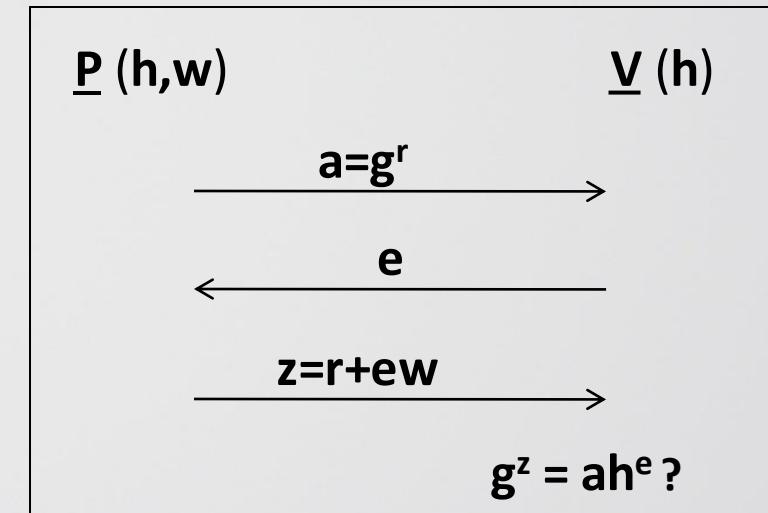
# ZK Proof of Knowledge

- Prover P, verifier V, relation R
- P proves that it **knows** a witness w for which  $(x, w) \in R$  without revealing anything
- How can one prove that is “knows” something?
- The approach used: A machine knows something if the machine can be used to efficiently compute it.

# ZK Proof of Knowledge

- Prover  $P$ , verifier  $V$ , relation  $R$
- $P$  proves that it **knows** a witness  $w$  for which  $(x, w) \in R$  without revealing anything
  - There exists an extractor  $K$  that can obtain from  $P$  a witness  $w$  such that  $(x, w) \in R$  (succeeds with the same prob that  $P^*$  convinces  $V$ )
- Equivalently: The protocol securely computes the functionality  $f_{zk}((x, w), x) = (-, R(x, w))$

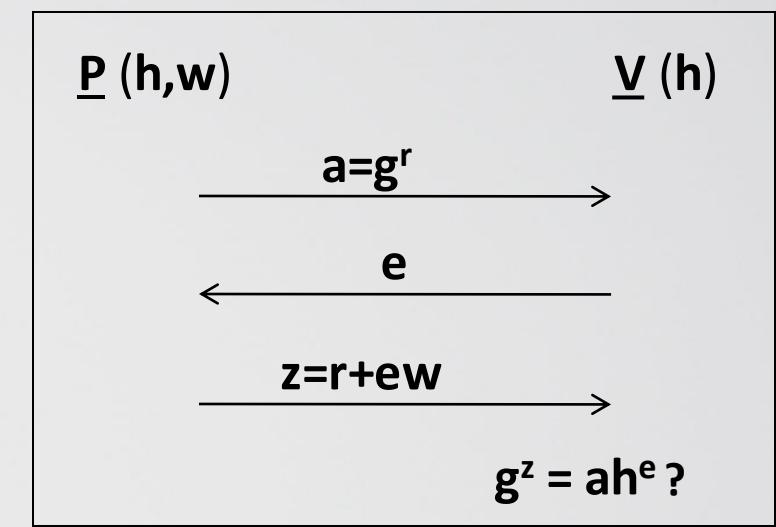
# Zero Knowledge


- An amazing concept; everything can be proven in zero knowledge
- Central to fundamental feasibility results of cryptography (e.g., the GMW compiler)
- But, can it be efficient?
  - It seems that zero-knowledge protocols for “interesting languages” are complicated and expensive
  - → Zero knowledge is often avoided

# Sigma Protocols

- A way to obtain efficient zero knowledge
  - Many general tools
  - Many interesting languages, especially for arithmetic relations, can be proven with a sigma protocol

# An Example – Schnorr's Protocol for Discrete Log

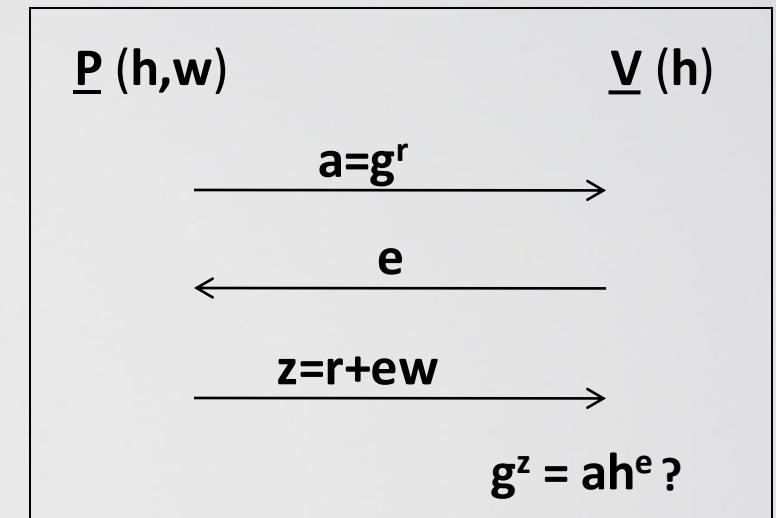

- Let  $G$  be a group of order  $q$ , with generator  $g$
- $P$  and  $V$  have input  $h \in G$ .  $P$  has  $w$  such that  $g^w = h$
- $P$  proves that to  $V$  that it knows  $\text{DLOG}_g(h)$ 
  - $P$  chooses a random  $r$  and sends  $a = g^r$  to  $V$
  - $V$  sends  $P$  a random  $e \in \{0,1\}^t$
  - $P$  sends  $z = r + ew \pmod{q}$  to  $V$
  - $V$  checks that  $g^z = ah^e$



# Schnorr's Protocol - Completeness

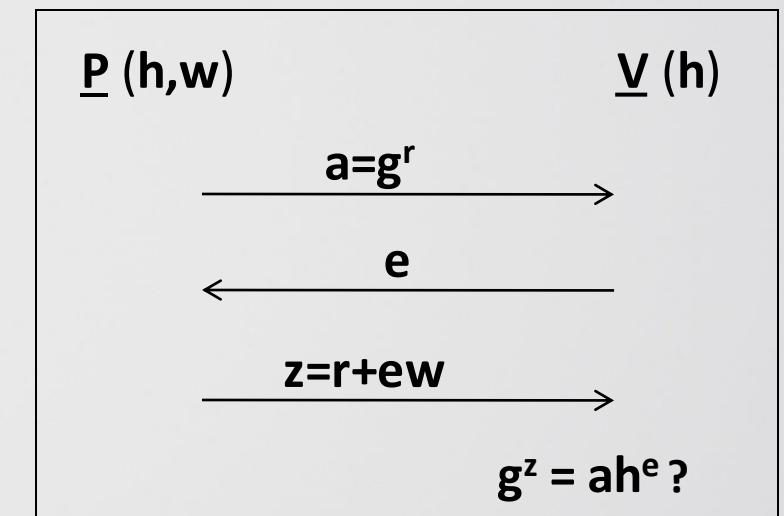
- Correctness:

$$g^z = g^{r+ew} = g^r(g^w)^e = ah^e$$



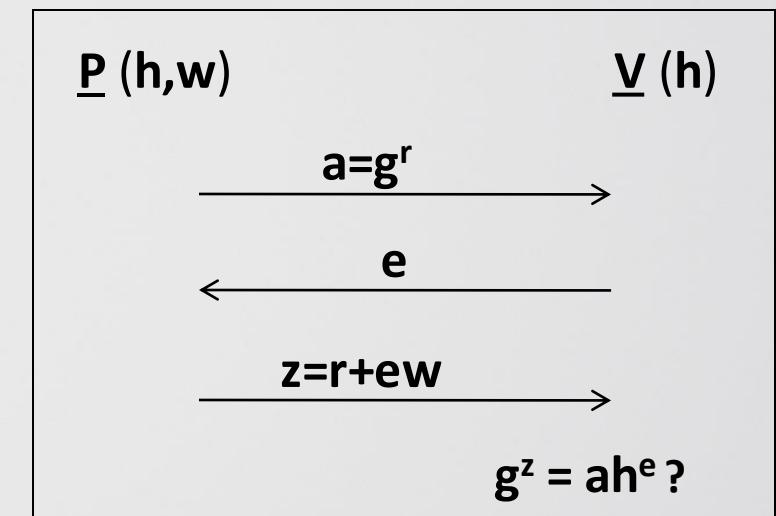

# ZK Proof of Knowledge

- Prover  $P$ , verifier  $V$ , relation  $R$
- $P$  proves that it **knows a witness  $w$**  for which  $(x,w) \in R$  without revealing anything
  - There exists an extractor  $K$  that obtains  $w$  such that  $(x,w) \in R$  from any  $P^*$  with the same probability that  $P^*$  convinces  $V$


# Schnorr's Protocol – Proof of Knowledge

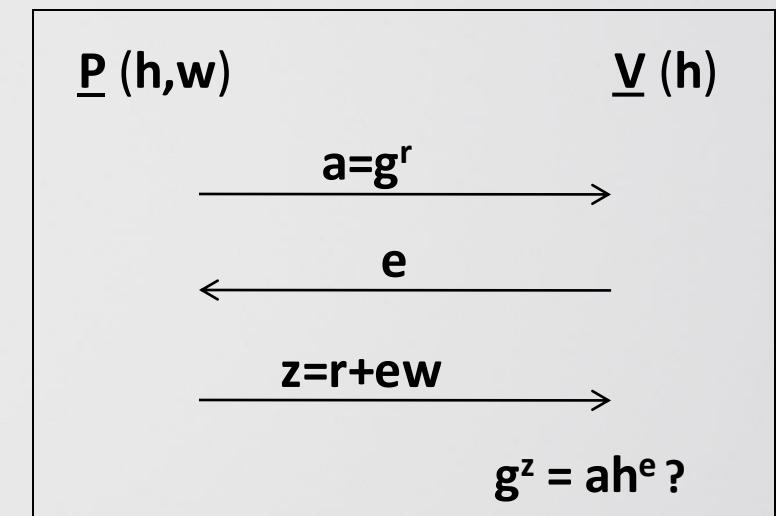
- Proof of knowledge
  - Assume  $P$  can answer **two** queries  $e$  and  $e'$  for the same  $a$
  - Then, it holds that  $g^z = ah^e$ ,  $g^{z'} = ah^{e'}$
  - Dividing the two equations gives  $g^{z-z'} = h^{e-e'}$
  - Therefore  $h = g^{(z-z')/(e-e')}$
  - That is:  $\text{DLOG}_g(h) = (z-z')/(e-e')$
- Conclusion:
  - If  $P$  can answer with probability greater than  $1/2^t$ , then it must know the discrete log




# Schnorr's Protocol – Zero Knowledge

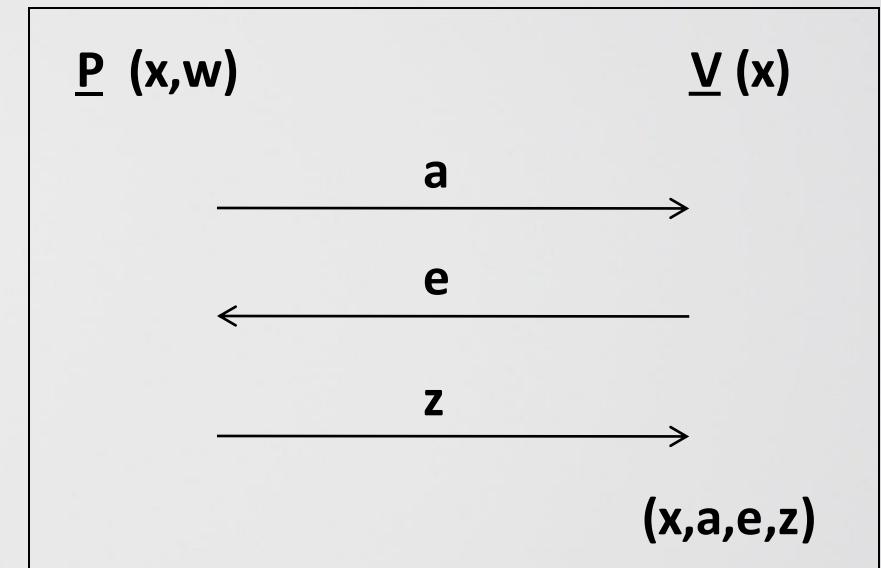
- What about zero knowledge? This does not seem easy.
  - ZK holds here if the verifier sends a random challenge **e**
  - This property is called “Honest-verifier zero knowledge”




# Schnorr's Protocol – Zero Knowledge

- What about zero knowledge? This does not seem easy.
  - ZK holds here if the verifier sends a random challenge  $e$
  - This property is called “Honest-verifier zero knowledge”
- The simulation:
  - Choose a random  $z$  and  $e$ , and compute  $a = g^z h^{-e}$
  - Clearly,  $(a, e, z)$  have the same distribution as in a real run. Namely, random values satisfying  $g^z = a \cdot h^e$




# Schnorr's Protocol – Zero Knowledge

- What about zero knowledge? This does not seem easy.
  - ZK holds here if the verifier sends a random challenge  $e$
  - This property is called “Honest-verifier zero knowledge”
- This is **not** a very strong guarantee, but we will see that it yields efficient general ZK.
- (Why does this only work for a verifier that chooses  $e$  at random?)



# Definitions

- Sigma protocol template
  - **Common input:**  $P$  and  $V$  both have  $x$
  - **Private input:**  $P$  has  $w$  such that  $(x,w) \in R$
- **Three-round protocol:**
  - $P$  sends a message  $a$
  - $V$  sends a random  $t$ -bit string  $e$
  - $P$  sends a reply  $z$
  - $V$  accepts based solely on  $(x,a,e,z)$



# Definitions

- **Completeness:** as usual in ZK
- **Special soundness:**
  - There exists an efficient extractor **A** that given any **x** and pair of transcripts  $(a, e, z), (a, e', z')$  with  $e \neq e'$  outputs **w** s.t.  $(x, w) \in R$
- **Special honest-verifier ZK**
  - There exists an efficient simulator **S** that given any **x** and **e** outputs an accepting transcript  $(a, e, z)$  which is distributed exactly like a real execution where **V** sends **e**

# Another example: Sigma Protocol for a DH Tuple

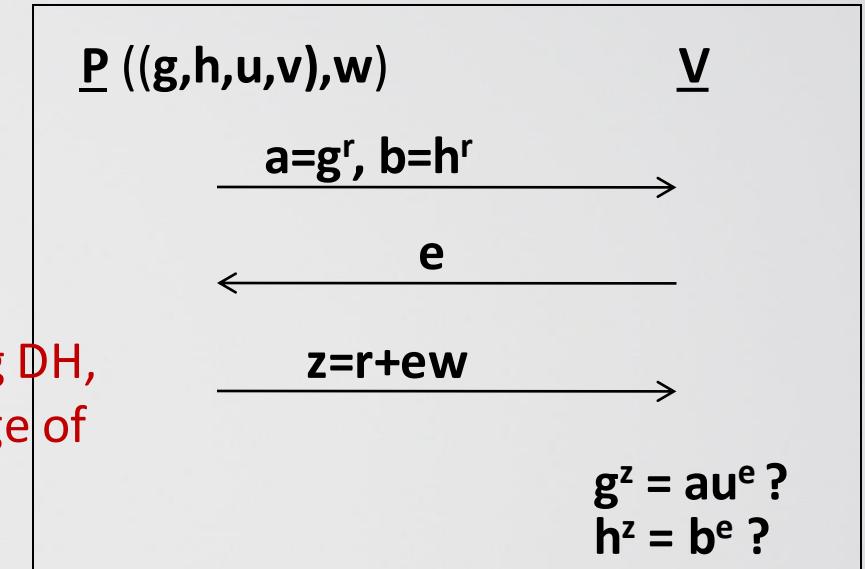
- Relation R of Diffie-Hellman tuples
  - $(g, h, u, v) \in R$  iff there exists  $w$  s.t.  $u = g^w$  and  $v = h^w$
  - Useful in many protocols
- This is a proof of membership, of equality of dlogs, not of knowledge
- Protocol
  - P chooses a random  $r$  and sends  $a=g^r, b=h^r$
  - V sends a random  $e$
  - P sends  $z=r+ew \bmod q$
  - V checks that  $g^z=au^e, h^z=bv^e$

# Sigma Protocol for Proving a DH Tuple

- Completeness: as in DLOG

- Special soundness:

- (Like DLOG) Given  $(a, b, e, z), (a, b, e', z')$ , we have  $g^z = au^e, g^{z'} = au^{e'}, h^z = bv^e, h^{z'} = bv^{e'}$  and so


$$\log_g u = \log_h v = w = (z - z')/(e - e')$$

In addition to proving DH,  
also proves knowledge of  
the discrete log

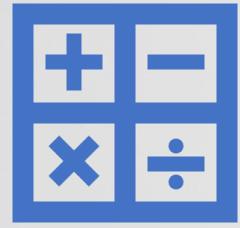
- Special HVZK

- Given  $(g, h, u, v)$  and  $e$ , choose random  $z$  and compute

- $a = g^z u^{-e}$
    - $b = h^z v^{-e}$



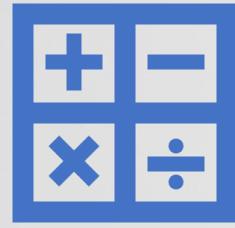
# Basic Properties of Sigma Protocols


- Any sigma protocol is an interactive proof with soundness error  $2^{-t}$
- Properties of sigma protocols are invariant under parallel composition
- Any sigma protocol is a proof of knowledge [BG92] with error  $2^{-t}$ 
  - The difference between the probability that  $P^*$  convinces  $V$  and the probability that an extractor  $K$  obtains a witness is at most  $2^{-t}$
  - Proof needs some work

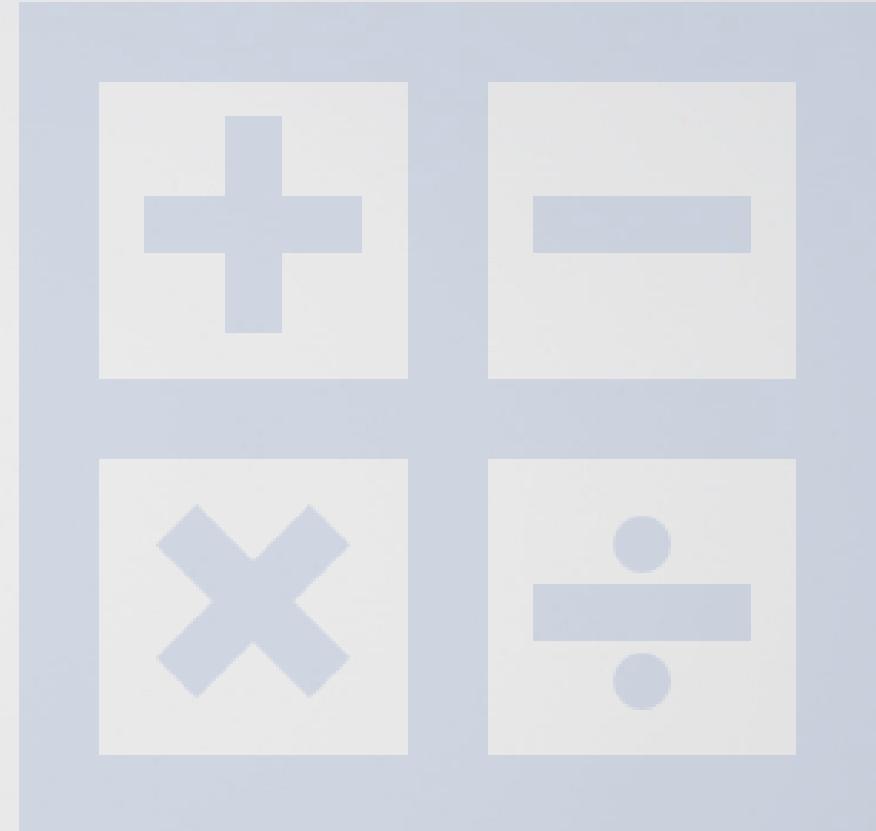
# Sigma Protocols

- Very efficient honest-verifier ZK three-round protocols
- Can be applied to many problems
  - Almost all Dlog/DH statements (?)
  - Proving that a commitment is for a specific value
  - Proving that a Paillier encryption is of zero
  - and many other applications...

# Non-Interactivity using the Fiat-Shamir Paradigm


- To prove a statement  $x$  **non-interactively**
  - Generate  $a$
  - (Instead of receiving  $e$ ) compute  $e=H(a,x)$
  - Compute  $z$
  - Send  $(a,e,z)$
- The challenge  $e$  must be long (128 bits or more)
- No need to worry anymore about honesty of the verifier
- But, only secure in the random oracle model




# Tools for Sigma Protocols

# Tools for Sigma Protocols

- Prove compound statements
  - AND, OR, subset
- ZK from sigma protocols
  - Can first make a compound sigma protocol and then compile it
- ZKPOK from sigma protocols



# Proving Compound Statements



# AND of Sigma Protocols

- To prove the AND of multiple statements
  - Run all in parallel
  - Can use the **same verifier challenge  $e$**  in all
- Sometimes it is possible to do better than this
  - Statements can be batched
  - E.g. proving knowledge of many discrete logs can be done in much less time than running all proofs independently
    - Batch all into one tuple and prove (how?)

# OR of Sigma Protocols

- This is more complicated
  - Given two statements and two appropriate Sigma protocols, wish to prove that at least one is true, without revealing which
- The solution – an ingenious idea from [CDS]
  - Using the simulator, if  $e$  is known ahead of time it is possible to cheat
  - We construct a protocol where the prover can cheat in one of the two proofs

# OR of Sigma Protocols

- The template for proving  $x_0$  or  $x_1$ :
  - P sends two first messages  $(a_0, a_1)$
  - V sends a single challenge  $e$
  - P replies with
    - Two challenges  $e_0, e_1$  s.t.  $e_0 \oplus e_1 = e$
    - Two final messages  $z_0, z_1$
  - V accepts if  $e_0 \oplus e_1 = e$  and  $(a_0, e_0, z_0), (a_1, e_1, z_1)$  are both accepting
- How does this work?

# OR of Sigma Protocols

- **P** sends two first messages  $(a_0, a_1)$ 
  - Suppose that **P** has a witness for  $x_0$  (but not for  $x_1$ )
    - **P** chooses a random  $e_1$  and runs SIM to get  $(a_1, e_1, z_1)$
    - **P** sends  $(a_0, a_1)$
  - **V** sends a single challenge  $e$
  - **P** replies with  $e_0, e_1$  s.t.  $e_0 = e \oplus e_1$  and with  $z_0, z_1$ 
    - **P** already has  $z_1$  and can compute  $z_0$  using the witness
  - Special soundness
    - If **P** doesn't know a witness for  $x_1$ , it can only answer for a single  $e_1$
    - This means that for  $x_0$ , the challenge  $e$  defines a random challenge  $e_0$ , like in a regular proof

# OR of Sigma Protocols

- Special soundness
  - Relative to first message  $(a_0, a_1)$ , and two different verifier challenges  $e, e'$ , it holds that either  $e_0 \neq e'_0$  or  $e_1 \neq e'_1$
  - Thus, for **at least** one of the statements we can use the special soundness of the single protocol to compute a witness for that statement, which is also a witness for the OR statement.
- Honest verifier ZK
  - The simulation can choose both  $e_0, e_1$ , so no problem.
  - Note that it is possible to prove an **OR of different statements using different protocols**

# OR of Many Statements

- Prove  $k$  out of  $n$  statements  $x_1, \dots, x_n$

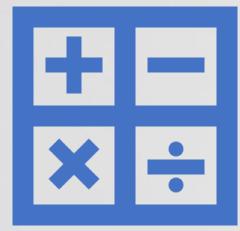
# Main tool: k-out-of-n secret sharing

- Let  $F$  be a field.
- Basic facts from algebra:
  - Any  $d+1$  pairs  $(a_i, b_i)$  define a **unique polynomial  $P$  of degree  $d$** , s.t.  $P(a_i) = b_i$ . (assuming  $d < |F|$ )
  - This polynomial can be found using interpolation
  - Given a polynomial that was interpolated from random points, it is impossible to identify the points which were used to interpolate it.

# OR of Many Statements

- Sigma protocol for  $k$  out of  $n$  statements  $x_1, \dots, x_n$ 
  - $A$  = set of indices that prover knows how to prove  $|A|=k$
  - $B$  = all other indices  $|B|=n-k$
  - Will use a polynomial with  $n-k+1$  degrees of freedom
  - Field elements  $1, 2, \dots, n$ . Polynomial  $f$  of degree  $n-k$
- First step:
  - For every  $i \in B$ , prover generates  $(a_i, e_i, z_i)$  using SIM
  - For every  $j \in A$ , prover generates  $a_j$  as in protocol
  - Prover sends  $(a_1, \dots, a_n)$

# OR of Many Statements


- Prover sent  $(a_1, \dots, a_n)$
- Verifier sends a random field element  $e \in F$
- Prover finds the (only) **polynomial  $f$  of degree  $n-k$**  passing through all  $(i, e_i)$  and  $(0, e)$  (for  $i \in B$ )
  - For every  $j \in A$ , the prover computes  $e_j = f(j)$ , and computes  $z_j$  as in the protocol, based on transcript  $a_j, e_j$
  - For every  $j \in B$ , the prover uses  $e_j$  (for which it already prepared an answer using SIM)
- The verifier verifies that all  $e_i$  values are on a polynomial of degree  $n-k$

# OR of Many Statements

- Special soundness:
  - Suppose that the prover can prove **less than  $k$**  statements
  - So for **more than  $n-k$**  statements it can only answer a single query (per query)
  - These queries define a polynomial of degree  $n-k$
  - These queries will be asked only if the verifier chooses to use  **$e=f(0)$** , which happens with probability  $1/|F|$

# General Compound Statements

- These techniques can be generalized to any monotone formula (meaning that the formula contains AND/OR but no negations)
  - See Cramer, Damgård, Schoenmakers, Proofs of partial knowledge and simplified design of witness hiding protocols, CRYPTO'94.



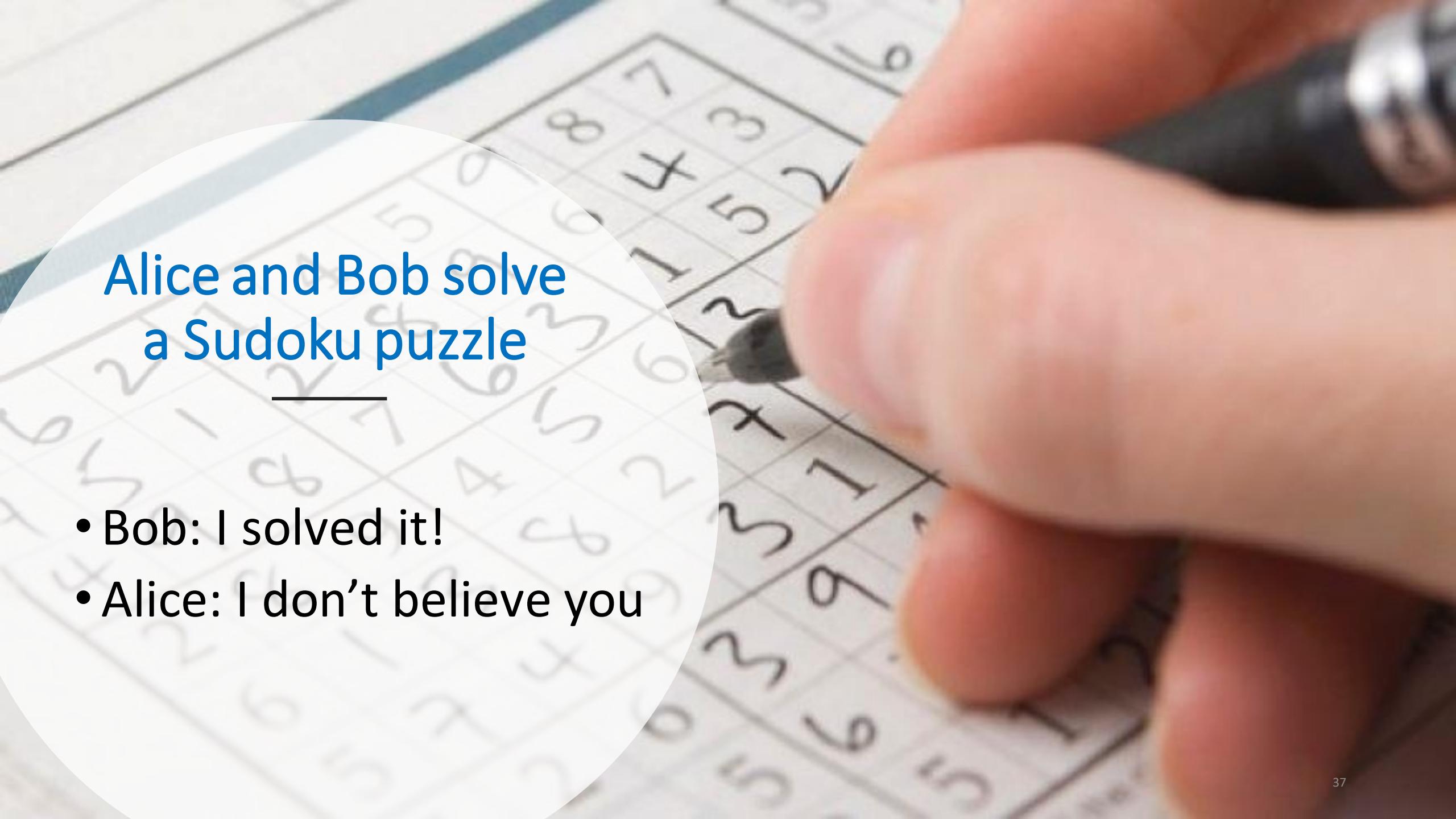
# Interlude

# Sudoku

|          |          |          |          |          |          |
|----------|----------|----------|----------|----------|----------|
| <b>9</b> |          |          |          | <b>2</b> | <b>7</b> |
|          | <b>1</b> |          | <b>2</b> | <b>8</b> |          |
| <b>7</b> | <b>4</b> |          |          | <b>1</b> |          |
|          |          |          |          | <b>6</b> | <b>9</b> |
| <b>3</b> |          | <b>6</b> | <b>8</b> | <b>7</b> | <b>4</b> |
| <b>2</b> | <b>4</b> |          |          |          |          |
|          |          | <b>3</b> |          | <b>9</b> | <b>8</b> |
|          |          | <b>8</b> | <b>1</b> |          | <b>5</b> |
| <b>1</b> | <b>9</b> |          |          |          | <b>6</b> |

297-5240 - [www.Sudoweb.com](http://www.Sudoweb.com) - Free Sudoku and ebook

“Cryptographic and Physical Zero-Knowledge Proof Systems for Solutions of Sudoku Puzzles”


Ronen Gradwohl, Moni Naor, Benny Pinkas, Guy N. Rothblum

(we will talk about an  $n \times n$  puzzle)

## Alice and Bob solve a Sudoku puzzle

---

- Bob: I solved it!
- Alice: I don't believe you



# A cryptographic protocol for Sudoku based on coloring

- An adaptation of a known protocol for 3-colorability
- The protocol:
  - P chooses a random permutation  $\sigma: \{1, \dots, n\} \rightarrow \{1, \dots, n\}$
  - $\forall$  entry with value v, P sends to V a commitment to  $\sigma(v)$
  - V chooses at random one of  $3n+1$  options:
    - a specific row, column or subgrid
    - or “filled-in entries”
  - P opens the commitments corresponding to V's choice.
- Completeness is trivial

# Example puzzle



| x | $\sigma(x)$ |
|---|-------------|
| 1 | 4           |
| 2 | 8           |
| 3 | 3           |
| 4 | 5           |
| 5 | 1           |
| 6 | 9           |
| 7 | 6           |
| 8 | 7           |
| 9 | 2           |

# Soundness

- If  $P$  can answer all  $3n+1$  challenges then there must be a solution to the puzzle
- Therefore if there is no solution to the puzzle, there must be at least one challenge which  $P$  cannot answer.
- $V$  therefore rejects with probability  $\geq 1/(3n+1)$

This soundness error ( $1-1/(3n+1)$ ) seems a bit high... (there is a better cryptographic protocol with a constant soundness error)

# Zero-knowledge

- Zero-knowledge follows a standard argument:
  - The distribution of P's answer is efficiently computable given the puzzle and the challenge.
  - The number of possible challenges is only  $3n+1$ .
  - Simulator guesses challenge and prepares commitments which answer challenge. If V asks this challenge, the simulator can answer. Otherwise, try again.

# Knowledge Extraction

- Given P's commitments ask it to open one challenge, then rewind the protocol, ask it to open to another challenge, and so on.
  - This reveals the solution.

# Physical protocols ?

- Commitments can be implemented physically (using envelopes)
- Therefore the cryptographic protocol can be physically implemented
- But this is not easy for humans (compute a permutation  $\sigma$ ? repeat  $O(n \log(1/\varepsilon))$  times? )

# First protocol using cards (“one card per cell”)

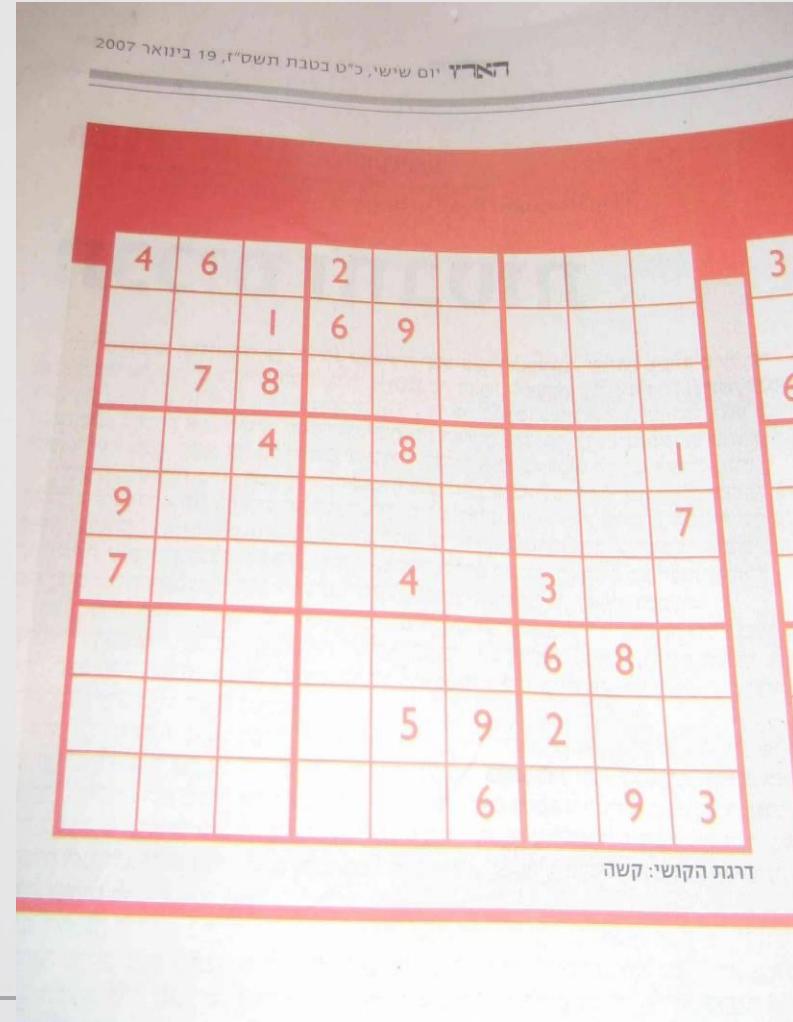
- The protocol
  1. Prepare an  $n \times n$  board.
  2. P assigns a card with the right value to every cell.
  3. P puts the card *face up* if the cell value is “filled-in”, and *face down* if the cell is part of the solution.
  4. V chooses one of “Rows” / “Columns” / “Sub-grids”.
  5. P arranges the cards in  $n$  sets according to V’s choice.
  6. P shuffles the cards in each of the  $n$  sets, and shows that each set contains the values 1... $n$ .

# Analysis

- **Completeness:** perfect.
- **Soundness:** If  $P$  does not know a solution, then it cannot answer at least one of  $V$ 's 3 choices.
  - Soundness error:  $2/3$  (*might be too high*)
- **Zero-knowledge:** the simulator
  - Puts arbitrary cards face down
  - Follows  $V$ 's instructions, but before opening the packets it replaces the cards with cards with the right values.
- **Proof of knowledge:**
  - $P$  puts the cards face down. The knowledge extractor opens them.

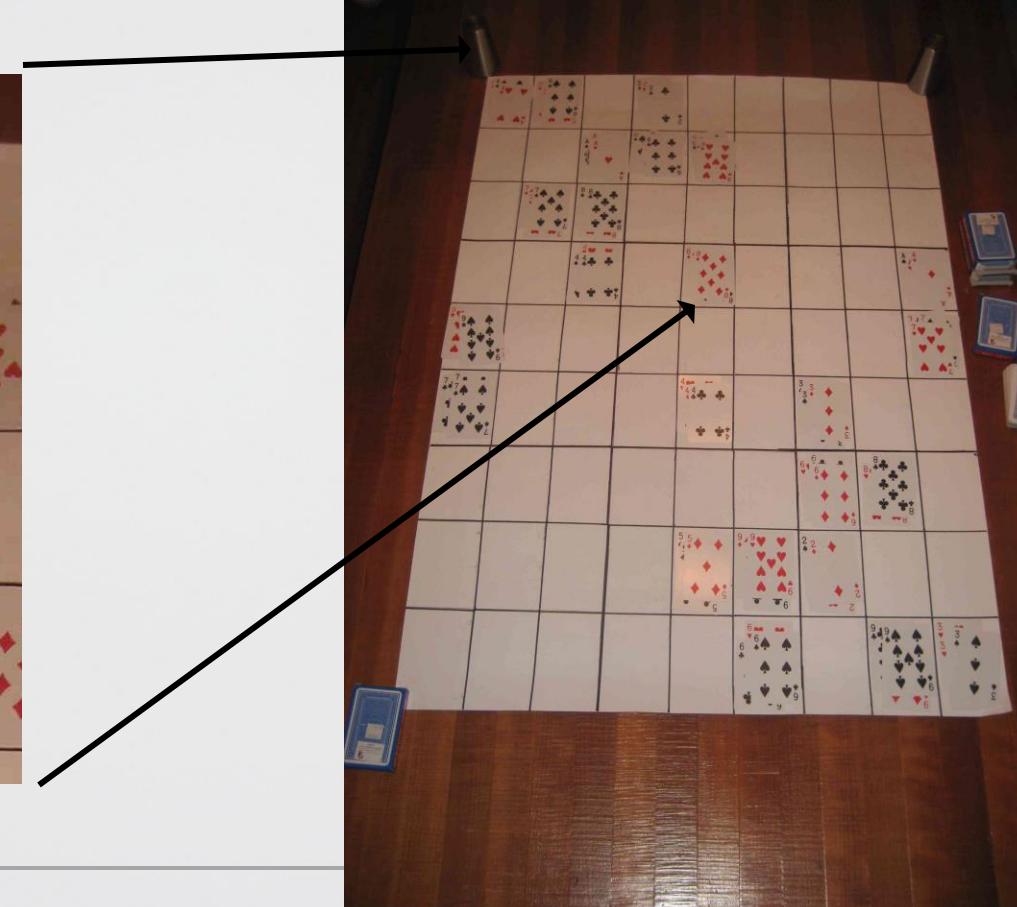
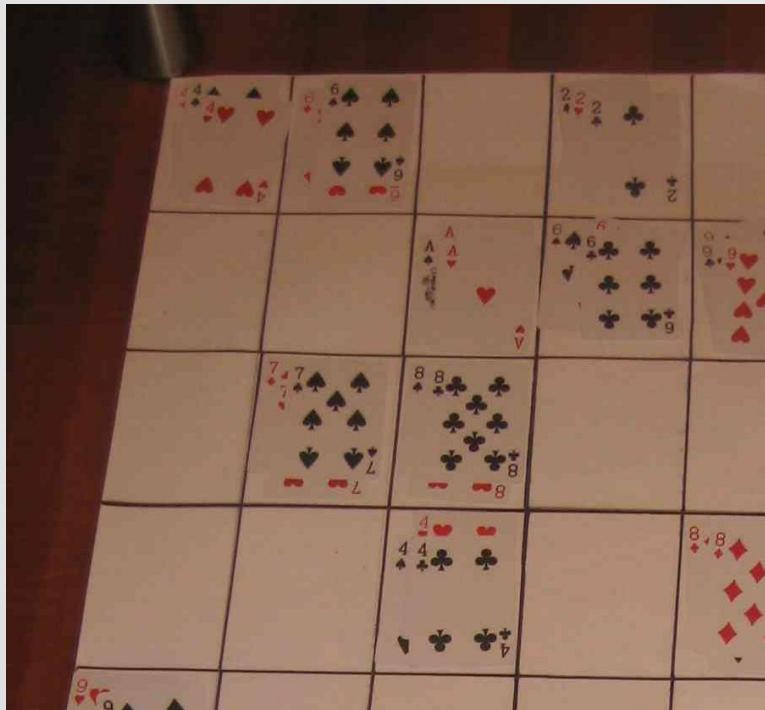
# Comparing different physical protocols

- Possible criteria:
  - Number of cards
  - Number of shuffles
  - Soundness error


|                                 | # of cards | shuffles | soundness error |
|---------------------------------|------------|----------|-----------------|
| Protocol 1: “one card per cell” | $n^2$      | $n$      | $2/3$           |
| Protocol 2: “all packets”       | $3n^2$     | $3n$     | $1/9$           |
| Protocol 3: “aggregate packets” | $3n^2$     | $c-1$    | $1/9+8/(9c)$    |

## Protocol 2: “all packets”

- Equipment:  $n \times n$  grid, playing cards.


# The puzzle



# Step 1

P places **three** faced up cards on filled-in cells



## Step 2

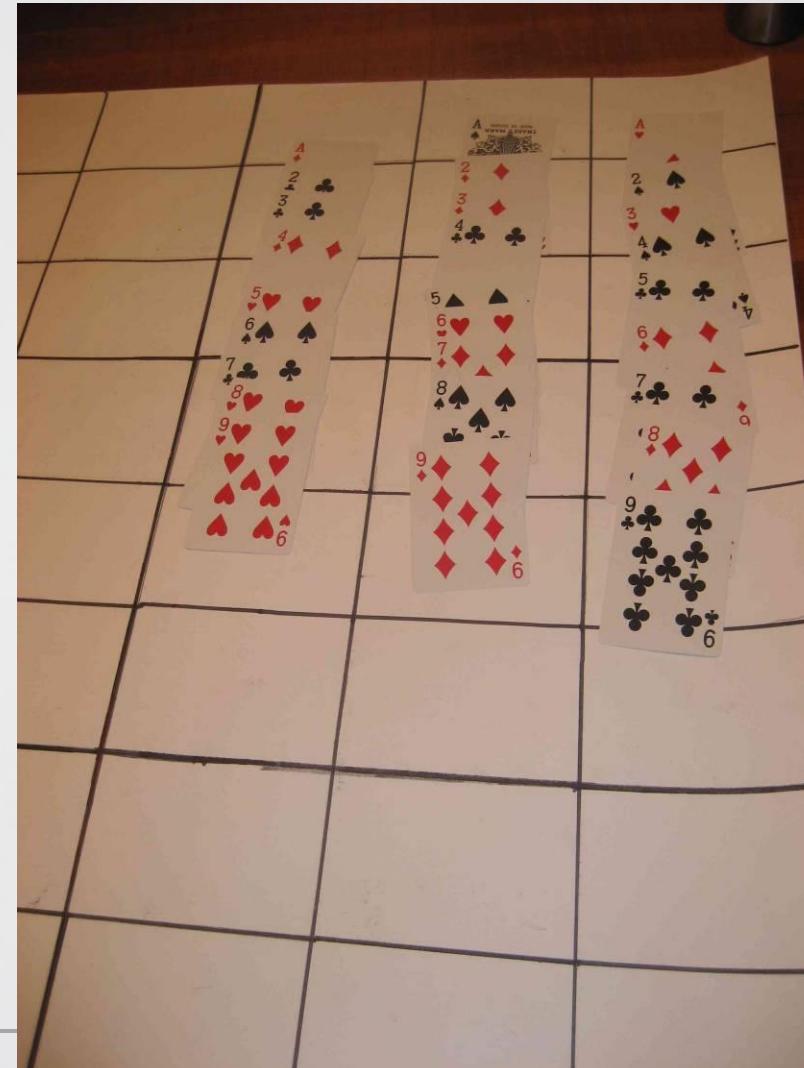
P places three identical cards (according to his solution), face down, on the remaining cells.



## Step 3

- V generates packets for columns by picking a random card from every cell
- She then generates similar packets for rows




## Step 4

- There are now packets for every row, column and sub-grid.
- P turns the cards upside down and shuffles them

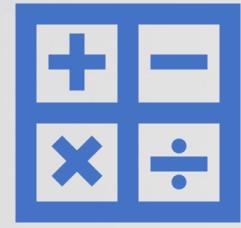


# Final step

- V opens the packets and verifies that each contains the numbers 1...9.
  - If not, V rejects.



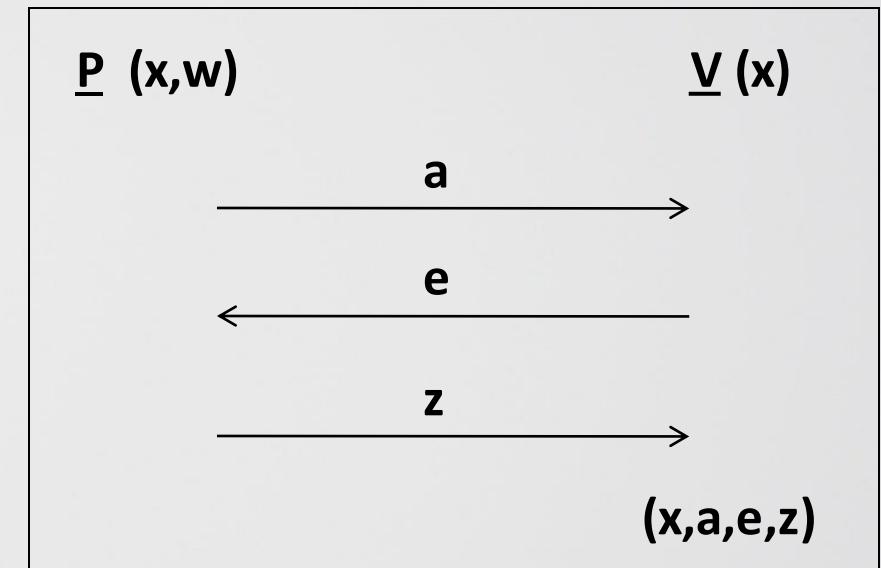
# Properties


- **Completeness:** trivial
- **Zero-knowledge:**
  - The simulator places arbitrary cards on the board. It follows the protocol but before handing the shuffled packets to V it replaces them with packets containing 1...9.
- **Knowledge extractor:**
  - Simply open the cards which were placed on the board.
- **Overhead:**
  - $3n^2$  cards (243 cards)
  - $3n$  shuffles (27 shuffles)

# Soundness

- A simple proof that the soundness error  $\leq 1/3$ 
  - Assume P does not know a solution.
  - If P places 3 identical cards on each cell, he is caught with probability 1.
- There is therefore a cell  $C$  in which not all cards are equal: one card (“y”) must be different than the two other cards.
- Suppose that V assigned the cards of all other cells *but C* to rows/columns/sub-grids.
- V will only accept if there is only a single packet that needs the card “y”, and “y” is indeed assigned to it.
- This happens with probability  $\leq 1/3$ .

# Soundness


- It is possible to show that the **soundness error**  $\leq 1/9$ :
  - The total number of cards from each value must be the same.
  - Therefore there must be at least **two** such cells in which P puts one card which is different than the others.
- The proof uses this fact
  - It assumes that all cards, except for these two cells, were assigned to packets.
  - It shows that the probability of generating balanced decks is  $\leq 1/9$ .



# ZK from Sigma Protocols

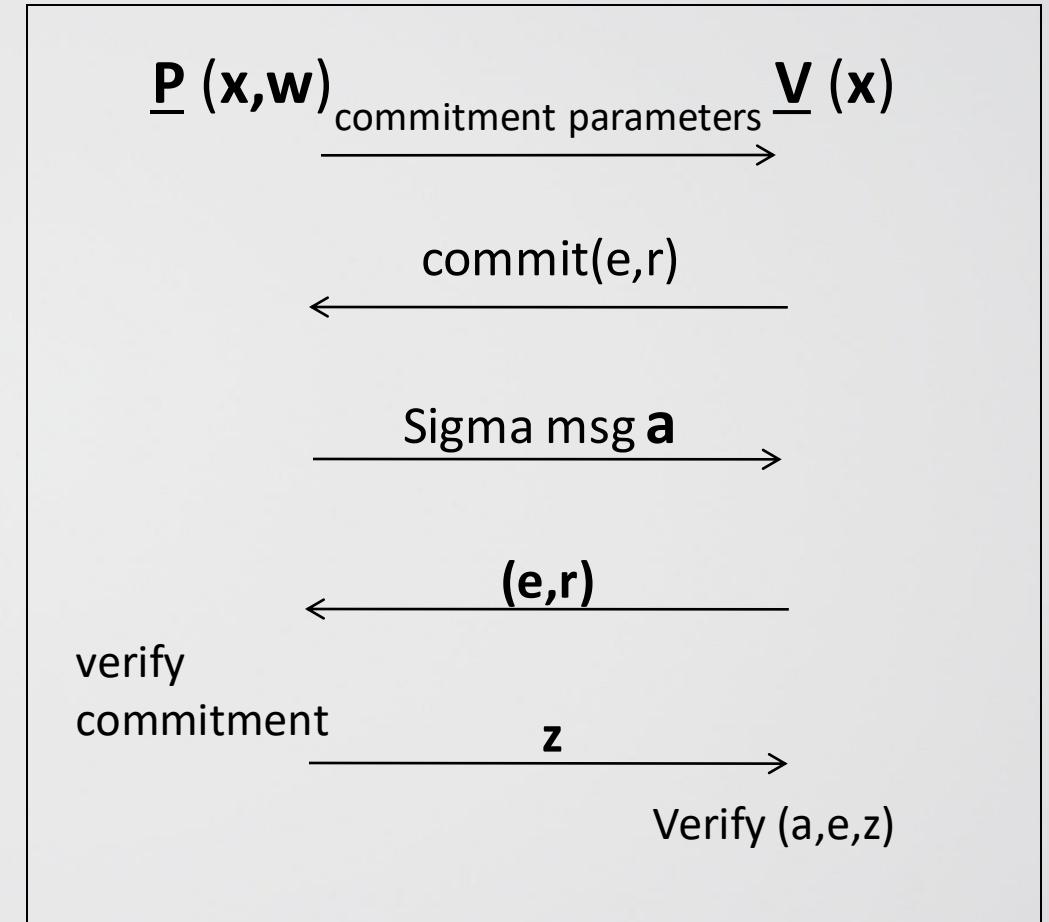
# Sigma Protocols

- Sigma protocol template
  - **Common input:**  $P$  and  $V$  both have  $x$
  - **Private input:**  $P$  has  $w$  such that  $(x,w) \in R$
- **Three-round protocol:**
  - $P$  sends a message  $a$
  - $V$  sends a random  $t$ -bit string  $e$
  - $P$  sends a reply  $z$
  - $V$  accepts based solely on  $(x,a,e,z)$



# ZK from Sigma Protocols

- In ZK proofs the verifier is not necessarily honest
- The problem is that it might choose its challenge based on the first message of the prover
- The simulation for honest verifiers will no longer work


# ZK from Sigma Protocols

- A tool: **commitment schemes**
  - Enables to commit to a chosen value while keeping it secret, with the ability to reveal the committed value later.
- A commitment has two properties:
  - **Binding:** After sending the commitment, it is impossible for the committing party to change the committed value.
  - **Hiding:** By observing the commitment, it is impossible to learn what is the committed value. (Therefore the commitment process must be probabilistic.)

# ZK from Sigma Protocols

The basic idea:

Have  $V$  first commit to its challenge  $e$  using a perfectly-hiding commitment



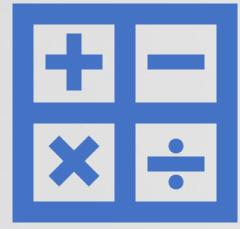
# ZK from Sigma Protocols

- The basic idea
  - Have  $V$  first commit to its challenge  $e$  using a perfectly-hiding commitment
- The protocol
  1.  $P$  sends the first message  $\alpha$  of the commit protocol
  2.  $V$  sends a commitment  $c = \text{Com}_\alpha(e; r)$
  3.  $P$  sends a message  $a$
  4.  $V$  opens the commitment by sending  $(e, r)$
  5.  $P$  checks that  $c = \text{Com}_\alpha(e; r)$  and if so sends a reply  $z$
  6.  $V$  accepts based on  $(x, a, e, z)$

# ZK from Sigma Protocols

- Soundness:
  - The perfectly hiding commitment reveals nothing about  $e$
- Zero knowledge
  - In order to simulate the transcript of the protocol:
    - $V$  commits.
    - Send to  $V$  a message  $a'$  generated by the simulator, for a random  $e'$ .
    - Receive  $V$ 's decommitment to  $e$
    - Run the simulator again with  $e$ , rewind  $V$  and send  $a$ 
      - Repeat until  $V$  decommits to  $e$  again
    - Conclude by sending  $z$

# What happens if $V$ refuses to decommit?


- $V$  might refuse, with probability  $p$ , to decommit to  $e$ .
- Since the simulation chooses a random  $a$ , we can get  $V$  to open the commitment after  $1/p$  attempts (in expectation)

# Implementing Commitments: Pedersen

- Efficient perfectly-hiding commitments
  - **Parameters:** generator  $g$ , order  $q$
  - **Commit protocol** (commit to  $x$ ):
    - Receiver chooses random  $k$  and sends  $h=g^k$
    - Sender sends  $c=g^r h^x$ , for random  $r$
  - **Perfectly hiding:**
    - For every  $y$  there exists  $s$  s.t.  $g^s h^y = c = g^r h^x$
  - **Computationally binding:**
    - If sender can open commitment in two ways, i.e. find  $(x,r),(y,s)$  s.t.  $g^r h^x = g^s h^y$ , then it can also compute the discrete log  $k = (r-s)/(y-x) \bmod q$

# Efficiency of ZK

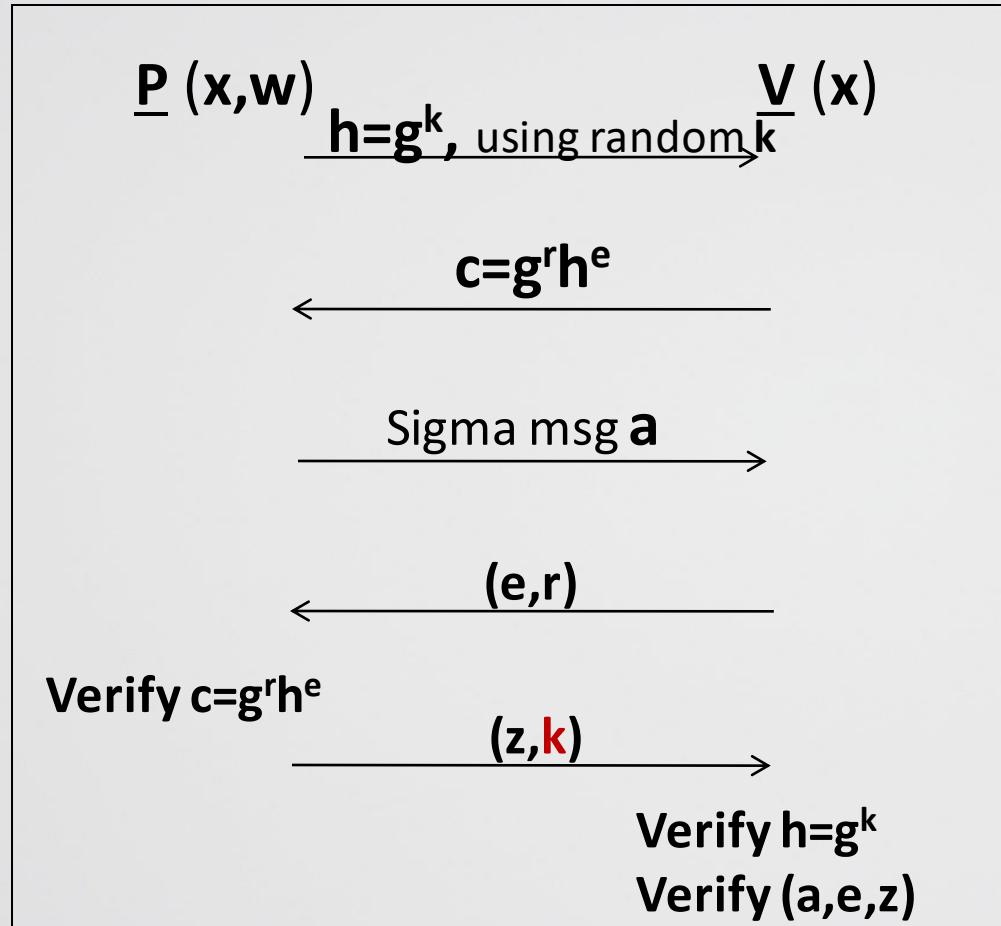
- Using Pedersen commitments, the entire DLOG proof costs only 5 additional group exponentiations



# ZKPoK from Sigma Protocols

# ZKPOK from Sigma Protocols

- Is the previous protocol a **proof of knowledge**?
  - It seems not to be
  - The extractor for the Sigma protocol needs to obtain two transcripts with the same **a** and different **e**
    - The prover may choose a different first message **a** for every commitment string
    - So there might be a prover which chooses its message **a** based on the commitment to **e**, and so when the extractor changes the commitment the prover changes **a**


# ZKPOK from Sigma Protocols

- Solution: use a **trapdoor (equivocal) commitment**
  - Namely, given a trapdoor, it is possible to open the commitment to any value
- Pedersen has this property – given the discrete log  $k$  of  $h$ , can decommit to any value
  - Commit to  $x$ :  $c = g^r h^x$
  - To decommit to  $y$ , find  $s$  such that  $r+kx = s+ky \bmod q$
  - This is easy if  $k$  is known: compute  $s = r+k(x-y) \bmod q$

# ZKPOK from Sigma Protocols

- The basic idea
  - Have  $V$  first commit to its challenge  $e$  using a **perfectly-hiding trapdoor (equivocal) commitment** (such as Pedersen)
- The protocol
  1.  $P$  sends the first message  $\alpha$  of the commit protocol (e.g., including  $h$  in the case of Pedersen commitments).
  2.  $V$  sends a commitment  $c = \text{Com}_\alpha(e; r)$
  3.  $P$  sends a message  $a$
  4.  $V$  sends  $(e, r)$
  5.  $P$  checks that  $c = \text{Com}_\alpha(e; r)$  and if correct sends  $z$  and **also sends the trapdoor for the commitment**
  6.  $V$  accepts if the **trapdoor** is correct and  $(x, a, e, z)$  is accepting

# ZKPOK from Sigma Protocols



- The trapdoor  $k$  enables  $V$  to open the commitment to any value.
- But this does not help  $V$  since it receives  $k$  after it already opened the commitment.

# ZKPOK from Sigma Protocols

- Why does this help?
  - **Zero-knowledge** remains the same
  - **Extraction:** after verifying the proof once, the extractor obtains  $k$  and can rewind back to the decommitment of  $c$  and send any  $(e', r')$
- Efficiency:
  - Just 6 exponentiations

# ZK and Sigma Protocols

- We typically want zero knowledge, so why bother with sigma protocols?
  - There are many useful general transformations
    - E.g., parallel composition, compound statements
    - The ZK and ZKPOK transformations can be applied on top of the above, so obtain transformed ZK
  - It is **much harder** to prove ZK than Sigma
    - ZK – distributions and simulation
    - Sigma: only HVZK and special soundness

# Side note: Constructing Commitments from Sigma Protocols

- Based on a hard relation  $R$ 
  - A generator  $G$  outputs  $(x, w) \in R$
  - But for every PPT algorithm  $A$  it is hard to find  $w$  given  $x$ , namely  $\Pr[A(x) \in R]$  is negligible
- Example
  - The generator computes  $h = g^r$  for a random  $r$

# The Commitment Scheme

- Commitment to a string  $e \in \{0,1\}^t$ 
  - The **receiver** samples a hard  $(x, w)$ , and sends  $x$
  - **Committer** runs the sigma protocol simulator on  $(x, e)$ , gets  $(a, e, z)$  and sends  $a$  as the commitment
- Decommitment:
  - Committer sends  $(a, e, z)$
  - Decommitter verifies that is accepting proof for  $x$
- Hiding: By HVZK, the commitment  $a$  is independent of  $e$
- Binding: Decommitting to two  $e, e'$  for the same  $a$  means finding  $w$

# This is a Trapdoor Commitment

- The scheme is actually a trapdoor commitment scheme
  - $w$  is a trapdoor
  - Given  $w$ , can decommit to any value by running the **real** prover and not the simulator

# Summary

- Don't be afraid of using zero knowledge
  - Using sigma protocols, we can get very efficient ZK
- Sigma protocols are very useful:
  - Efficient ZK
  - Efficient ZKPOK
  - Efficient NIZK in the random oracle model
  - Commitments and trapdoor commitments
  - More...