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•Prover P, verifier V, language L

•P proves that xL without revealing anything
•Completeness: V always accepts when honest P and V interact

•Soundness: V accepts with negligible prob when xL, for any P*

•Computational soundness: only holds when P* is polynomial-time

•Zero-knowledge: There exists a simulator S such that S(x) is 
indistinguishable from a real proof execution
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Zero Knowledge



•Prover P, verifier V, relation R

•P proves that it knows a witness w for which (x,w)R without 
revealing anything

•How can one prove that is “knows” something?

•The approach used: A machine knows something if the 
machine can be used to efficiently compute it.  
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ZK Proof of Knowledge



•Prover P, verifier V, relation R

•P proves that it knows a witness w for which (x,w)R without 
revealing anything
•There exists an extractor K that can obtain from P a witness w such 

that (x,w)R (succeeds with the same prob that P* convinces V)

•Equivalently: The protocol securely computes the 
functionality fzk((x,w),x) = (-,R(x,w))
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ZK Proof of Knowledge



•An amazing concept; everything can be proven in zero 
knowledge

•Central to fundamental feasibility results of cryptography 
(e.g., the GMW compiler)

•But, can it be efficient?
• It seems that zero-knowledge protocols for “interesting languages” 

are complicated and expensive
•→  Zero knowledge is often avoided
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Zero Knowledge



•A way to obtain efficient zero knowledge
•Many general tools

•Many interesting languages, especially for arithmetic relations, can 
be proven with a sigma protocol
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Sigma Protocols



•Let G be a group of order q, with generator g

•P and V have input hG. P has w such that gw = h

•P proves that to V that it knows DLOGg(h)

• P chooses a random r and sends a=gr to V

•V sends P a random e0,1t

• P sends z=r+ew mod q to V

•V checks that gz = ahe
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An Example – Schnorr’s Protocol for Discrete Log

P (h,w) V (h)

a=gr

e

z=r+ew

gz = ahe ?



•Correctness:

gz = gr+ew = gr(gw)e = ahe
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Schnorr’s Protocol - Completeness

P (h,w) V (h)

a=gr

e

z=r+ew

gz = ahe ?



•Prover P, verifier V, relation R

•P proves that it knows a witness w for which (x,w)R without 
revealing anything
•There exists an extractor K that obtains w such that (x,w)R from 

any P* with the same probability that P* convinces V
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ZK Proof of Knowledge
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Schnorr’s Protocol – Proof of Knowledge

•Proof of knowledge
•Assume P can answer two queries e and e

for the same a
•Then, it holds that gz = ahe, gz=ahe

•Dividing the two equations gives gz-z=he-e

•Therefore h = g(z-z)/(e-e)

•That is: DLOGg(h) = (z-z)/(e-e)

•Conclusion:
• If P can answer with probability greater than 

1/2t, then it must know the discrete log

P (h,w) V (h)

a=gr

e

z=r+ew

gz = ahe ?



•What about zero knowledge? This does not seem easy.
•ZK holds here if the verifier sends a random challenge e
•This property is called “Honest-verifier zero knowledge”
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Schnorr’s Protocol – Zero Knowledge

P (h,w) V (h)

a=gr

e

z=r+ew

gz = ahe ?



•What about zero knowledge? This does not seem easy.
•ZK holds here if the verifier sends a random challenge e
•This property is called “Honest-verifier zero knowledge”
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Schnorr’s Protocol – Zero Knowledge

•The simulation:
•Choose a random z and e, and 

compute a = gzh-e

•Clearly, (a,e,z) have the same 
distribution as in a real run. 
Namely, random values 
satisfying gz=a·he

P (h,w) V (h)

a=gr

e

z=r+ew

gz = ahe ?



•What about zero knowledge? This does not seem easy.
•ZK holds here if the verifier sends a random challenge e
•This property is called “Honest-verifier zero knowledge”
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Schnorr’s Protocol – Zero Knowledge

•This is not a very strong guarantee, but we 
will see that it yields efficient general ZK.

• (Why does this only work for a verifier that 
chooses e at random?)

P (h,w) V (h)

a=gr

e

z=r+ew

gz = ahe ?



•Sigma protocol template
•Common input: P and V both have x
•Private input: P has w such that (x,w)R

•Three-round protocol: 
•P sends a message a
•V sends a random t-bit string e
•P sends a reply z
•V accepts based solely on (x,a,e,z)

14

Definitions

P (x,w) V (x) 

a

e

z

(x,a,e,z)



•Completeness: as usual in ZK

•Special soundness:

•There exists an efficient extractor A that given any x and pair of 

transcripts (a,e,z),(a,e,z) with ee outputs w s.t. (x,w)R

•Special honest-verifier ZK

•There exists an efficient simulator S that given any x and e outputs 

an accepting transcript (a,e,z) which is distributed exactly like a real 

execution where V sends e
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Definitions



•Relation R of Diffie-Hellman tuples
• (g,h,u,v)  R iff there exists w s.t. u=gw and v = hw

• Useful in many protocols

• This is a proof of membership, of equality of dlogs, not of knowledge

•Protocol
• P chooses a random r and sends a=gr,  b=hr

• V sends a random e
• P sends z=r+ew mod q
• V checks that gz=aue, hz=bve
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Another example: Sigma Protocol for a DH Tuple



•Completeness: as in DLOG

•Special soundness:
• (Like DLOG)  Given (a,b,e,z),(a,b,e,z), we 

have gz=aue,gz=aue,hz=bve,hz=bve and so
loggu = loghv = w = (z-z)/(e-e)

•Special HVZK
•Given (g,h,u,v) and e, choose random z and 

compute

• a = gzu-e

• b = hzv-e

17

Sigma Protocol for Proving a DH Tuple

P ((g,h,u,v),w) V

a=gr, b=hr

e

z=r+ew

gz = aue ?
hz = be ?

In addition to proving DH, 
also proves knowledge of 
the discrete log



•Any sigma protocol is an interactive proof with soundness error 2-t

•Properties of sigma protocols are invariant under parallel 
composition

•Any sigma protocol is a proof of knowledge [BG92] with error 2-t

• The difference between the probability that P* convinces V and the 
probability that an extractor K obtains a witness is at most 2-t

• Proof needs some work
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Basic Properties of Sigma Protocols



Sigma Protocols

•Very efficient honest–verifier ZK three-round protocols

•Can be applied to many problems
•Almost all Dlog/DH statements (?)

•Proving that a commitment is for a specific value

•Proving that a Paillier encryption is of zero

•and many other applications…
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•To prove a statement x non-interactively
•Generate a

• (Instead of receiving e) compute e=H(a,x)

•Compute z

•Send (a,e,z)

•The challenge e must be long (128 bits or more)

•No need to worry anymore about honesty of the verifier

•But, only secure in the random oracle model 
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Non-Interactivity using the Fiat-Shamir Paradigm



Tools for Sigma 
Protocols

21



•Prove compound statements
•AND, OR, subset

•ZK from sigma protocols
•Can first make a compound sigma protocol and then compile it

•ZKPOK from sigma protocols
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Tools for Sigma Protocols



Proving 
Compound 
Statements

23



•To prove the AND of multiple statements
•Run all in parallel
•Can use the same verifier challenge e in all

•Sometimes it is possible to do better than this
•Statements can be batched
•E.g. proving knowledge of many discrete logs can be done 

in much less time than running all proofs independently
• Batch all into one tuple and prove (how?)
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AND of Sigma Protocols



•This is more complicated
•Given two statements and two appropriate Sigma protocols, wish to 

prove that at least one is true, without revealing which

•The solution – an ingenious idea from [CDS]
•Using the simulator, if e is known ahead of time it is possible to 

cheat
•We construct a protocol where the prover can cheat in one of the 

two proofs
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OR of Sigma Protocols



•The template for proving x0 or x1:
• P sends two first messages (a0,a1)
•V sends a single challenge e

• P replies with 
• Two challenges e0,e1 s.t. e0e1 = e
• Two final messages z0,z1

•V accepts if e0e1 = e and (a0,e0,z0),(a1,e1,z1) are both accepting

•How does this work?
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OR of Sigma Protocols



•P sends two first messages (a0,a1)
•Suppose that P has a witness for x0 (but not for x1) 
•P chooses a random e1 and runs SIM to get (a1,e1,z1)
•P sends (a0,a1)

•V sends a single challenge e
•P replies with e0,e1 s.t. e0 = ee1 and  with z0,z1
• P already has z1 and can compute z0 using the witness

•Special soundness
• If P doesn’t know a witness for x1, it can only answer for a single e1

•This means that for x0, the challenge e defines a random challenge 
e0, like in a regular proof
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OR of Sigma Protocols



•Special soundness
• Relative to first message (a0,a1), and two different verifier challenges 

e,e, it holds that either e0 e0 or e1 e1
• Thus, for at least one of the statements we can use the special soundness 

of the single protocol to compute a witness for that statement, which is 
also a witness for the OR statement.

•Honest verifier ZK
• The simulation can choose both e0,e1, so no problem.

•Note that it is possible to prove an OR of different statements 
using different protocols
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OR of Sigma Protocols



•Prove k out of n statements x1,…,xn
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OR of Many Statements



•Let F be a field.

•Basic facts from algerbra:
•Any d+1 pairs (ai , bi ) define a unique polynomial P of degree d, s.t.

P(ai )=bi.  (assuming d < |F|)

•This polynomial can be found using interpolation

•Given a polynomial that was interpolated from random points, it is 
impossible to identify the points which were used to interpolate it. 
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Main tool: k-out-of-n secret sharing



•Sigma protocol for k out of n statements x1,…,xn

•A = set of indices that prover knows how to prove |A|=k
•B = all other indices |B|=n-k
•Will use a polynomial with n-k+1 degrees of freedom
•Field elements 1,2,…,n. Polynomial f of degree n-k

•First step:
•For every iB, prover generates (ai,ei,zi) using SIM
•For every jA, prover generates aj as in protocol
•Prover sends (a1,…,an) 
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OR of Many Statements



•Prover sent (a1,…,an)

•Verifier sends a random field element eF

•Prover finds the (only) polynomial f of degree n-k
passing through all (i,ei) and (0,e) (for iB)
•For every jA, the prover computes ej=f(j), and computes 

zj as in the protocol, based on transcript aj,ej

•For every jB, the prover uses ei (for which it already 
prepared an answer using SIM) 

•The verifier verifies that all ei values are on a 
polynomial of degree n-k
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OR of Many Statements



•Special soundness:
•Suppose that the prover can prove less than k statements 

•So for more than n-k statements it can only answer a single 
query (per query)

• These queries define a polynomial of degree n-k

•These queries will be asked only if the verifier chooses to 
use e=f(0), which happens with probability 1/|F|
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OR of Many Statements



•These techniques can be generalized to any monotone 
formula (meaning that the formula contains AND/OR but no 
negations)
•See Cramer, Damgård, Schoenmakers, Proofs of partial knowledge 

and simplified design of witness hiding protocols, CRYPTO'94. 
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General Compound Statements



Interlude
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Sudoku

“Cryptographic and Physical Zero-
Knowledge Proof Systems for 
Solutions of Sudoku Puzzles”

Ronen Gradwohl, Moni Naor, Benny Pinkas, 
Guy N. Rothblum

(we will talk about an nxn puzzle)
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Alice and Bob solve 
a Sudoku puzzle

•Bob: I solved it!

•Alice: I don’t believe you
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A cryptographic protocol for Sudoku based on coloring

•An adaptation of a known protocol for 3-colorability

•The protocol:
•P chooses a random permutation :{1,…,n}  {1,…,n}
• entry with value v, P sends to V a commitment to (v)
•V chooses at random one of 3n+1 options:
•a specific row, column or subgrid
•or “filled-in entries”

•P opens the commitments corresponding to V’s choice.

•Completeness is trivial



Example puzzle

page 39

x (x)

1 4

2 8

3 3

4 5

5 1

6 9

7 6

8 7

9 2
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Soundness

• If P can answer all 3n+1 challenges then there must be a solution to 
the puzzle

•Therefore if there is no solution to the puzzle, there must be at 
least one challenge which P cannot answer.

•V therefore rejects with probability  1/(3n+1)   

This soundness error (1-1/(3n+1)) seems a bit high…  (there is a 
better cryptographic protocol with a constant soundness error)
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Zero-knowledge

•Zero-knowledge follows a standard argument:
•The distribution of P’s answer is efficiently computable given the 

puzzle and the challenge.

•The number of possible challenges is only 3n+1.

•Simulator guesses challenge and prepares commitments which 
answer challenge. If V asks this challenge, the simulator can answer. 
Otherwise, try again.
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Knowledge Extraction
•Given P’s commitments ask it to open one challenge, 
then rewind the protocol, ask it to open to another 
challenge, and so on.
•This reveals the solution.
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Physical protocols ? 

•Commitments can be implemented physically (using 
envelopes)

•Therefore the cryptographic protocol can be physically 
implemented

•But this is not easy for humans (compute a permutation ? repeat 
O(nlog(1/))  times? )
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First protocol using cards  (“one card per cell”)

•The protocol
1. Prepare an nn board.
2. P assigns a card with the right value to every cell.
3. P puts the card face up if the cell value is “filled-in”, and face 

down if the cell is part of the solution.
4. V chooses one of “Rows” / “Columns” / “Sub-grids”.
5. P arranges the cards in n sets according to V’s choice.
6. P shuffles the cards in each of the n sets, and shows that each set 

contains the values 1…n.
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Analysis

•Completeness: perfect.
•Soundness: If P does not know a solution, then it cannot 
answer at least one of V’s 3 choices.
•Soundness error: 2/3  (might be too high)

•Zero-knowledge: the simulator
•Puts arbitrary cards face down
•Follows V’s instructions, but before opening the packets it replaces 

the cards with cards with the right values.

•Proof of knowledge:
•P puts the cards face down. The knowledge extractor opens them.
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Comparing different physical protocols

•Possible criteria:
•Number of cards
•Number of shuffles
•Soundness error

# of cards shuffles
soundness 

error

Protocol 1: “one card per cell” n2 n 2/3

Protocol 2: “all packets” 3n2 3n 1/9

Protocol 3: “aggregate packets” 3n2 c-1 1/9+8/(9c)
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Protocol 2: “all packets”
•Equipment: nn grid, playing cards.
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The puzzle
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Step 1
P places three faced up cards on filled-in cells
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Step 2
P places three identical cards (according to his solution), 
face down, on the remaining cells.
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Step 3
•V generates packets for columns by picking a random card 
from every cell

•She then generates similar packets for rows
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Step 4

•There are now packets 
for every row, column 
and sub-grid.

•P turns the cards upside 
down and shuffles them
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Final step

•V opens the packets 
and verifies that 
each contains the 
numbers 1…9.
• If not, V rejects.
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Properties
•Completeness: trivial

•Zero-knowledge:
• The simulator places arbitrary cards on the board. It 

follows the protocol but before handing the shuffled 
packets to V is replaces them with packets containing 1…9.

•Knowledge extractor:
• Simply open the cards which were placed on the board.

•Overhead:
• 3n2 cards (243 cards)
• 3n shuffles (27 shuffles)
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Soundness
•A simple proof that the soundness error  1/3
•Assume P does not know a solution.
• If P places 3 identical cards on each cell, he is caught with probability 1.

• There is therefore a cell C in which not all cards are equal: one card (“y”) 
must be different than the two other cards.

• Suppose that V assigned the cards of all other cells but C to 
rows/columns/sub-grids.
•V will only accept if there is only a single packet that needs the card “y”, 

and “y” is indeed assigned to it.
• This happens with probability  1/3.
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Soundness

•It is possible to show that the soundness error  1/9:
•The total number of cards from each value must be the same.
•Therefore there must be at least two such cells in which P puts one 

card which is different than the others.

•The proof uses this fact
• It assumes that all cards, except for these two cells, were assigned 

to packets.
• It shows that the probability of generating balanced decks is  1/9.



ZK from Sigma 
Protocols
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• Sigma protocol template
•Common input: P and V both have x
•Private input: P has w such that (x,w)R

•Three-round protocol: 
•P sends a message a
•V sends a random t-bit string e
•P sends a reply z
•V accepts based solely on (x,a,e,z)
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Sigma Protocols

P (x,w) V (x) 

a

e

z

(x,a,e,z)



•In ZK proofs the verifier is not necessarily honest

•The problem is that it might choose its challenge based 
on the first message of the prover

•The simulation for honest verifiers will no longer work
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ZK from Sigma Protocols



•A tool: commitment schemes
•Enables to commit to a chosen value while keeping it secret, 

with the ability to reveal the committed value later.

•A commitment has two properties:
•Binding: After sending the commitment, it is impossible for 

the committing party to change the committed value.

•Hiding: By observing the commitment, it is impossible to learn 
what is the committed value. (Therefore the commitment 
process must be probabilistic.)
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ZK from Sigma Protocols
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ZK from Sigma Protocols

P (x,w) V (x)

Sigma msg a

(e,r)

z

Verify (a,e,z)

commitment parameters

commit(e,r)

verify 
commitment

The basic idea:
Have V first commit to its 
challenge e using a perfectly-
hiding commitment



•The basic idea
•Have V first commit to its challenge e using a perfectly-hiding 

commitment

•The protocol
1. P sends the first message  of the commit protocol
2. V sends a commitment c=Com(e;r)
3. P sends a message a
4. V opens the commitment by sending (e,r)
5. P checks that c=Com(e;r)  and if so sends a reply z
6. V accepts based on (x,a,e,z)
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ZK from Sigma Protocols



•Soundness:
•The perfectly hiding commitment reveals nothing about e

•Zero knowledge
• In order to simulate the transcript of the protocol:

• V commits.
• Send to V a message a generated by the simulator, for a random e.
• Receive V’s decommitment to e

• Run the simulator again with e, rewind V and send a
• Repeat until V decommits to e again

• Conclude by sending z
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ZK from Sigma Protocols



What happens if V refuses to decommit?

•V might refuse, with probability p, to decommit to e.

•Since the simulation chooses a random a, we can get V to 
open the commitment after 1/p attempts (in expectation)
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•Efficient perfectly-hiding commitments
•Parameters: generator g, order q
•Commit protocol (commit to x):

• Receiver chooses random k and sends h=gk

• Sender sends c=grhx, for random r

•Perfectly hiding: 
• For every y there exists s s.t. gshy = c = grhx

•Computationally binding:
• If sender can open commitment in two ways, i.e. find (x,r),(y,s) s.t. grhx=gshy, 

then it can also compute the discrete log k = (r-s)/(y-x) mod q
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Implementing Commitments: Pedersen



•Using Pedersen commitments, the entire DLOG proof costs 
only 5 additional group exponentiations
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Efficiency of ZK



ZKPoK from 
Sigma Protocols
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•Is the previous protocol a proof of knowledge?
• It seems not to be 

• The extractor for the Sigma protocol needs to obtain two transcripts with 
the same a and different e

• The prover may choose a different first message a for every 
commitment string

• So there might be a prover which chooses its message a based on the 
commitment to e, and so when the extractor changes the 
commitment the prover changes a
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ZKPOK from Sigma Protocols



•Solution: use a trapdoor (equivocal) commitment
•Namely, given a trapdoor, it is possible to open the 

commitment to any value

•Pedersen has this property – given the discrete log k of 
h, can decommit to any value
•Commit to x:  c = grhx

•To decommit to y, find s such that r+kx = s+ky mod q

•This is easy if k is known: compute s = r+k(x-y) mod q
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ZKPOK from Sigma Protocols



•The basic idea
•Have V first commit to its challenge e using a perfectly-hiding 

trapdoor (equivocal) commitment (such as Pedersen)

•The protocol
1. P sends the first message  of the commit protocol (e.g., 

including h in the case of Pedersen commitments).
2. V sends a commitment c=Com(e;r)
3. P sends a message a
4. V sends (e,r)
5. P checks that c=Com(e;r)  and  if correct sends z and also 

sends the trapdoor for the commitment
6. V accepts if the trapdoor is correct and (x,a,e,z) is accepting
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ZKPOK from Sigma Protocols
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ZKPOK from Sigma Protocols

P (x,w) V (x)

Sigma msg a

(e,r)

(z,k)

Verify h=gk

Verify (a,e,z)

h=gk, using random k

c=grhe

Verify c=grhe

• The trapdoor k enables V to open 
the commitment to any value. 

• But this does not help v since it 
receives k after it already opened 
the commitment.  



•Why does this help?
•Zero-knowledge remains the same
•Extraction: after verifying the proof once, the extractor obtains k

and can rewind back to the decommitment of c and send any (e,r)

•Efficiency:
• Just 6 exponentiations
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ZKPOK from Sigma Protocols



•We typically want zero knowledge, so why bother with sigma 
protocols?
•There are many useful general transformations

• E.g., parallel composition, compound statements

• The ZK and ZKPOK transformations can be applied on top of the above, so 
obtain transformed ZK

• It is much harder to prove ZK than Sigma
• ZK – distributions and simulation
• Sigma: only HVZK and special soundness
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ZK and Sigma Protocols



•Based on a hard relation R
•A generator G outputs (x,w)R 

•But for every PPT algorithm A it is hard to find w given x, namely  
Pr[A(x)R] is negligible

•Example
•The generator computes h=gr for a random r
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Side note: Constructing Commitments from Sigma 
Protocols



• Commitment to a string e{0,1}t

• The receiver samples a hard (x,w), and sends x

• Committer runs the sigma protocol simulator on (x,e), gets (a,e,z) and 

sends a as the commitment

•Decommitment: 

• Committer sends (a,e,z)

•Decommitter verifies that is accepting proof for x

•Hiding: By HVZK, the commitment a is independent of e

• Binding: Decommitting to two e,e for the same a means finding w
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The Commitment Scheme



•The scheme is actually a trapdoor commitment scheme
•w is a trapdoor 

•Given w, can decommit to any value by running the real prover and 
not the simulator
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This is a Trapdoor Commitment



•Don’t be afraid of using zero knowledge
•Using sigma protocols, we can get very efficient ZK

•Sigma protocols are very useful:
•Efficient ZK
•Efficient ZKPOK
•Efficient NIZK in the random oracle model
•Commitments and trapdoor commitments
•More…
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Summary


