Sigma Protocols

Benny Pinkas
Bar-llan University

Zero Knowledge

*Prover P, verifier V, language L

*P proves that xelL without revealing anything
e Completeness: V always accepts when honest P and V interact
* Soundness: V accepts with negligible prob when xgL, for any P”
e Computational soundness: only holds when P™ is polynomial-time

e Zero-knowledge: There exists a simulator S such that S(x) is
indistinguishable from a real proof execution

ZK Proof of Knowledge

*Prover P, verifier V, relation R

*P proves that it knows a witness w for which (x,w)eR without
revealing anything

*How can one prove that is “knows” something?

*The approach used: A machine knows something if the
machine can be used to efficiently compute it.

ZK Proof of Knowledge

*Prover P, verifier V, relation R

*P proves that it knows a witness w for which (x,w)eR without
revealing anything

* There exists an extractor K that can obtain from P a witness w such
that (x,w)eR (succeeds with the same prob that P* convinces V)

*Equivalently: The protocol securely computes the
functionality f,,((x,w),x) = (-,R(x,w))

Zero Knowledge

* An amazing concept; everything can be proven in zero
knowledge

*Central to fundamental feasibility results of cryptography
(e.g., the GMW compiler)

*But, can it be efficient?

* |t seems that zero-knowledge protocols for “interesting languages”
are complicated and expensive

> Zero knowledge is often avoided

Sigma Protocols

* A way to obtain efficient zero knowledge
* Many general tools

* Many interesting languages, especially for arithmetic relations, can
be proven with a sigma protocol

An Example — Schnorr’s Protocol for Discrete Log

*Let G be a group of order g, with generator g
P and V have input heG. P has w such that g¥ =h
*P proves that to V that it knows DLOG,(h)

e P chooses a random r and sends a=g" to V il vV (h)
V sends P arandom ee {0,1} L
* P sends z=r+ew mod q to V :
*V checks that gz = ah® z=r+ew
gZ=ahe?

Schnorr’s Protocol - Completeness

*Correctness:
gz — gr+ew — gr(gw)e — ahe

P (h,w)

a=g'

V(h)

Vv

N

z=r+ew

gZ=ahe?

ZK Proof of Knowledge

*Prover P, verifier V, relation R

*P proves that it knows a witness w for which (x,w)eR without
revealing anything

* There exists an extractor K that obtains w such that (x,w)eR from
any P* with the same probability that P* convinces V

Schnorr’s Protocol — Proof of Knowledge

*Proof of knowledge

* Assume P can answer two queries e and e’
for the same a

*Then, it holds that g = ah¢, gZ=ah¢’

* Dividing the two equations gives gzZ=he-¢
* Therefore h = glzZ)/(e-¢)

*That is: DLOG,(h) = (z-z")/(e-€’)

*Conclusion:

*If P can answer with probability greater than
1/2%, then it must know the discrete log

P (h,w)

a=g'

V(h)

z=r+ew

gz=ah®?

Schnorr’s Protocol — Zero Knowledge

*What about zero knowledge? This does not seem easy.
* /K holds here if the verifier sends a random challenge e
* This property is called “Honest-verifier zero knowledge”

P (h,w)

a=g'

z=r+ew

Schnorr’s Protocol — Zero Knowledge

*What about zero knowledge? This does not seem easy.
* /K holds here if the verifier sends a random challenge e
* This property is called “Honest-verifier zero knowledge”

*The simulation:

* Choose a random z and e, and
compute a = gzh®

P (h,w)

a=g'

V(h)

*Clearly, (a,e,z) have the same
distribution as in a real run. z=r+ew

Namely, random values

gz=ah®?

satisfying g=a-h°®

Schnorr’s Protocol — Zero Knowledge

*What about zero knowledge? This does not seem easy.
* /K holds here if the verifier sends a random challenge e
* This property is called “Honest-verifier zero knowledge”

P (h,w) V (h)
* This is not a very strong guarantee, but we a=g’
will see that it yields efficient general ZK. e
Z=r+ew
* (Why does this only work for a verifier that gz=;he?

chooses e at random?)

Definitions

*Sigma protocol template

e Common input: P and V both have x
: : P (x,w) V (x)
* Private input: P has w such that (x,w)eR
d
* Three-round protocol: . €
* P sends a message a 2
*V sends a random t-bit string e
(x,a,e,2)

*P sends areply z
V accepts based solely on (x,a,e,z)

Definitions

Completeness: as usual in ZK

*Special soundness:

* There exists an efficient extractor A that given any x and pair of
transcripts (a,e,z),(a,e’,z') with e#e’ outputs w s.t. (x,w)eR

*Special honest-verifier ZK

* There exists an efficient simulator S that given any x and e outputs
an accepting transcript (a,e,z) which is distributed exactly like a real
execution where V sends e

Another example: Sigma Protocol for a DH Tuple

* Relation R of Diffie-Hellman tuples

* (g,h,u,v) € Riff there exists w s.t. u=g% and v = h%
e Useful in many protocols

* This is a proof of membership, of equality of dlogs, not of knowledge

* Protocol
* P chooses a random r and sends a=g", b=h"
*V sends a random e
* P sends z=r+ew mod q
* V checks that g=au®, h*=bv*

16

Sigma Protocol for Proving a DH Tuple

e Completeness: as in DLOG

: P ((g,h,u,v),w) v
*Special soundness: .
* (Like DLOG) Given (a,b,e,z),(a,b,e’,z'), we] g
have gZz=au¢,g?=au¢,h?=bve,h?=bv¢ and so >
log,u = log,v = w = (z-2')/(e-¢') In addition to proving DH, Z=r+ew N
° w_ also proves knowledge| of
° Special HVZK the discrete log ﬁz = ?oue??
* Given (g,h,u,v) and e, choose random z and '
compute
°® a — gZu'e
*b=h?ve

Center for Research in Applied
Cryptography and Cyber Security 17

Basic Properties of Sigma Protocols

* Any sigma protocol is an interactive proof with soundness error 2T

* Properties of sigma protocols are invariant under parallel
composition

* Any sigma protocol is a proof of knowledge [BG92] with error 21

* The difference between the probability that P* convinces V and the
probability that an extractor K obtains a witness is at most 2t

* Proof needs some work

Sigma Protocols

*Very efficient honest—verifier ZK three-round protocols

*Can be applied to many problems
* Almost all Dlog/DH statements (?)
* Proving that a commitment is for a specific value

* Proving that a Paillier encryption is of zero
e and many other applications...

Non-Interactivity using the Fiat-Shamir Paradigm

*To prove a statement x non-interactively
* Generate a
* (Instead of receiving e) compute e=H(a,x)
* Compute z
*Send (a,e,z)
*The challenge e must be long (128 bits or more)
*No need to worry anymore about honesty of the verifier

*But, only secure in the random oracle model

Tools for Sigma
X1l Protocols

Tools for Sigma Protocols

*Prove compound statements
* AND, OR, subset

*ZK from sigma protocols
* Can first make a compound sigma protocol and then compile it

*/KPOK from sigma protocols

Proving
Compound
Statements

AND of Sigma Protocols

*To prove the AND of multiple statements
* Run all in parallel
* Can use the same verifier challenge e in all

Sometimes it is possible to do better than this

e Statements can be batched

*E.g. proving knowledge of many discrete logs can be done
in much less time than running all proofs independently

* Batch all into one tuple and prove (how?)

OR of Sigma Protocols

*This is more complicated

* Given two statements and two appropriate Sigma protocols, wish to
prove that at least one is true, without revealing which

*The solution —an ingenious idea from [CDS]

e Using the simulator, if e is known ahead of time it is possible to
cheat

* We construct a protocol where the prover can cheat in one of the
two proofs

OR of Sigma Protocols

*The template for proving x, or x;:
* P sends two first messages (a,,a,)

*V sends a single challenge e

* P replies with
* Two challenges ey, e, s.t. e,Pe,=e
* Two final messages z,,z,

*V accepts if e,e, = e and (ay,e4,2,),(2,,€4,21) are both accepting

* How does this work?

Center for Research in Applied
Cryptography and Cyber Security

26

OR of Sigma Protocols

*P sends two first messages (agy,a,)
* Suppose that P has a witness for x, (but not for x,)
*P chooses a random e; and runs SIM to get (a,,e4,2,)
*P sends (ag,a,)

*V sends a single challenge e

*P replies with e,,e; s.t. e;=e®e, and with z,,z,
* P already has z, and can compute z, using the witness

*Special soundness

*|If P doesn’t know a withess for Xy, it can only answer for a single e,

* This means that for x,, the challenge e defines a random challenge
ey, like in a regular proof

OR of Sigma Protocols

*Special soundness

* Relative to first message (ay,a,), and two different verifier challenges
e,e’, it holds that either ey e’y or e, # e’

* Thus, for at least one of the statements we can use the special soundness
of the single protocol to compute a witness for that statement, which is
also a witness for the OR statement.

* Honest verifier ZK
* The simulation can choose both ey,e,, so no problem.

* Note that it is possible to prove an OR of different statements
using different protocols

Center for Research in Applied
Cryptography and Cyber Security

OR of Many Statements

*Prove k out of n statements x,,...,X,

Main tool: k-out-of-n secret sharing

eLet F be a field.

*Basic facts from algerbra:
* Any d+1 pairs (a;, b,) define a unique polynomial P of degree d, s.t.
P(a;)=b.. (assuming d < |F|)
* This polynomial can be found using interpolation

* Given a polynomial that was interpolated from random points, it is
impossible to identify the points which were used to interpolate it.

OR of Many Statements

*Sigma protocol for k out of n statements x,...,x,
* A = set of indices that prover knows how to prove |A|=k
* B = all other indices |B|=n-k
* Will use a polynomial with n-k+1 degrees of freedom
* Field elements 1,2,...,n. Polynomial f of degree n-k

*First step:
*For every ieB, prover generates (a;e;,z;) using SIM
* For every jeA, prover generates a; as in protocol
* Prover sends (ay,...,a,)

OR of Many Statements

*Prover sent (a,,...,a,)
*\erifier sends a random field element eeF

*Prover finds the (only) polynomial f of degree n-k
passing through all (i,e,) and (0,e) (for ieB)
* For every jeA, the prover computes e;=f(j), and computes
z; as in the protocol, based on transcript a;,e;
* For every jeB, the prover uses e;(for which it already
prepared an answer using SIM)
*The verifier verifies that all e, values are on a
polynomial of degree n-k

OR of Many Statements

*Special soundness:
e Suppose that the prover can prove less than k statements

*So for more than n-k statements it can only answer a single

query (per query)
* These queries define a polynomial of degree n-k

* These queries will be asked only if the verifier chooses to
use e=f(0), which happens with probability 1/|F]

General Compound Statements

*These techniques can be generalized to any monotone
formula (meaning that the formula contains AND/OR but no
negations)

* See Cramer, Damgard, Schoenmakers, Proofs of partial knowledge
and simplified design of witness hiding protocols, CRYPTO'94.

= Interlude

& BiU

Center for Research in Applied
Cryptography and Cyber Security

35

“Cryptographic and Physical Zero-
Knowledge Proof Systems for
Solutions of Sudoku Puzzles”

Ronen Gradwohl, Moni Naor, Benny Pinkas,
Guy N. Rothblum

(we will talk about an nxn puzzle)

&

/

¢ Aliceand Bob solve \/
a Sudoku puzzle

* Bob: | solved it!
* Alice: | don’t believe you

A cryptographic protocol for Sudoku based on coloring

* An adaptation of a known protocol for 3-colorability

*The protocol:
* P chooses a random permutation o:{1,...,n} > {1,...,n}
Y entry with value v, P sends to Va commitment to o(v)
*\/ chooses at random one of 3n+1 options:
* a specific row, column or subgrid
e or “filled-in entries”
* P opens the commitments corresponding to V’s choice.

*Completenessis trivial

page 38

Example puzzle

O 00 N o un A W N B
N N OO OO, W00 B

i) Daily Swdolw Lid 2007, All rghte reserved.

page 39

Soundness

*|If P can answer all 3n+1 challenges then there must be a solution to
the puzzle

* Therefore if there is no solution to the puzzle, there must be at
least one challenge which P cannot answer.

*\/ therefore rejects with probability > 1/(3n+1)

This soundness error (1-1/(3n+1)) seems a bit high... (there is a
better cryptographic protocol with a constant soundness error)

Zero-knowledge

e/ero-knowledge follows a standard argument:

* The distribution of P’s answer is efficiently computable given the
puzzle and the challenge.

* The number of possible challenges is only 3n+1.

e Simulator guesses challenge and prepares commitments which
answer challenge. If V asks this challenge, the simulator can answer.
Otherwise, try again.

Knowledge Extraction

*Given P’s commitments ask it to open one challenge,
then rewind the protocol, ask it to open to another
challenge, and so on.

* This reveals the solution.

page 42

Physical protocols ?

Commitments can be implemented physically (using
envelopes)

* Therefore the cryptographic protocol can be physically
implemented

 But this is not easy for humans (compute a permutation c? repeat
O(nlog(1/g)) times?)

page 43

First protocol using cards (“one card per cell”)

*The protocol
1.
2.
3.

Prepare an nxn board.
P assigns a card with the right value to every cell.

P puts the card face up if the cell value is “filled-in”, and face
down if the cell is part of the solution.

V chooses one of “Rows” / “Columns” / “Sub-grids”.
P arranges the cards in n sets according to V’s choice.

P shuffles the cards in each of the n sets, and shows that each set
contains the values 1...n.

Analysis

Completeness: perfect.

eSoundness: If P does not know a solution, then it cannot
answer at least one of V’s 3 choices.

* Soundness error: 2/3 (might be too high)

*Zero-knowledge: the simulator
* Puts arbitrary cards face down

* Follows V’s instructions, but before opening the packets it replaces
the cards with cards with the right values.

*Proof of knowledge:
* P puts the cards face down. The knowledge extractor opens them.

Comparing different physical protocols

* Possible criteria:
* Number of cards
* Number of shuffles
e Soundness error

of cards shuffles soundness
error
Protocol 1: “one card per cell” n2 n 2/3
Protocol 2: “all packets” 3n? 3n 1/9
Protocol 3: “aggregate packets” 3n? c-1 1/9+8/(9c)

age

Protocol 2: “all packets”
*Equipment: nxn grid, playing cards.

The puzzle

F :

[

4 2007 WM 18 pipy gy na

P LI B

3, wrw o1 TR

\

Center for Research in Applied
Cryptography and Cyber Security

AW wTn manT

page 49

L 2

Step1

P places three faced up cards on filled-in cells

page 50

Center for Research in Applied
Cryptography and Cyber Security

Step 2
P places three identical cards (according to his solution),
face down, on the remaining cells.

; 7:)4 .0‘ "“’
s—— = —

]

E@ —

% 4
1k
i
5 — ——
1§
.8 Ay
———
< T
P »HE
S
i~

><ce

.‘
‘“>3<c¢
<

©

5
e ¥
""“0_0-.‘ Gl 3

T
T
|

1l i‘ ;
‘ﬁ‘ y i
enter ror Research in Applie N R —
Cryptography and Cyber Security
page 51

Step 3

*V generates packets for columns by picking a random card
from every cell

*She then generates similar packets for rows

: + el —
=& \Cad
X8 BT
" v r”“ ! . T LI
‘ *
e i / i
R vy
+ v + e
{SEaAl v |,
A +
LR % |10 o

v
v]
¥ .. E
4 X 2
e o>
Center for Research in Applied v : :. & *
Cryptography and Cyber Security) '4. A

Step 4

*There are now packets
for every row, column
and sub-grid.

*P turns the cards upside
down and shuffles them

page 53

Final step

*\/ opens the packets
and verifies that
each contains the
numbers 1...9.

*If not, V rejects.

Center for Research in Applied
Cryptography and Cyber Security

page 54

Properties
* Completeness: trivial

*Zero-knowledge:

* The simulator places arbitrary cards on the board. It
follows the protocol but before handing the shuffled
packets to V is replaces them with packets containing 1...9.

* Knowledge extractor:
* Simply open the cards which were placed on the board.

*Overhead:
* 3n2 cards (243 cards)
* 3n shuffles (27 shuffles)

Soundness

* A simple proof that the soundness error < 1/3
* Assume P does not know a solution.
* |If P places 3 identical cards on each cell, he is caught with probability 1.

* There is therefore a cell Cin which not all cards are equal: one card (“y”)
must be different than the two other cards.

* Suppose that V assigned the cards of all other cells but C to
rows/columns/sub-grids.

* V will only accept if there is only a single packet that needs the card “y”,
and “y” is indeed assigned to it.

* This happens with probability < 1/3.

Soundness

*|t is possible to show that the soundness error < 1/9:
* The total number of cards from each value must be the same.

* Therefore there must be at least two such cells in which P puts one
card which is different than the others.

*The proof uses this fact

* It assumes that all cards, except for these two cells, were assigned
to packets.

* [t shows that the probability of generating balanced decks is < 1/9.

ZK from Sigma
XI5l Protocols

Sigma Protocols

* Sigma protocol template

e Common input: P and V both have x
: : P (x,w) V (x)
* Private input: P has w such that (x,w)eR
d
* Three-round protocol: . €
* P sends a message a 2
*V sends a random t-bit string e
(x,a,e,2)

*P sends areply z
V accepts based solely on (x,a,e,z)

ZK from Sigma Protocols

*In ZK proofs the verifier is not necessarily honest

*The problem is that it might choose its challenge based
on the first message of the prover

*The simulation for honest verifiers will no longer work

ZK from Sigma Protocols

e A tool: commitment schemes

* Enables to commit to a chosen value while keeping it secret,
with the ability to reveal the committed value later.

* A commitment has two properties:

* Binding: After sending the commitment, it is impossible for
the committing party to change the committed value.

* Hiding: By observing the commitment, it is impossible to learn
what is the committed value. (Therefore the commitment
process must be probabilistic.)

ZK from Sigma Protocols

The basic idea:

H : : E (x'w)commitment arameters\—l (X)
Have V first commit to its P 3
cljaollenge e u§|ng a perfectly- commit(e.r)
hiding commitment .
Sigmamsga
(e,r)
verify
commitment 7
Verify (a,e,z)

Center for Research in Applied
Cryptography and Cyber Security

ZK from Sigma Protocols

*The basic idea

* Have V first commit to its challenge e using a perfectly-hiding
commitment

*The protocol
1. P sends the first message o of the commit protocol
2. Vsends a commitment c=Com_(e;r)
3. Psends a message a
4. V opens the commitment by sending (e,r)
5. P checks that c=Com_(e;r) and if so sends a reply z
6. V accepts based on (x,a,e,z)

ZK from Sigma Protocols

*Soundness:
* The perfectly hiding commitment reveals nothing about e

*Zero knowledge

* In order to simulate the transcript of the protocol:
* V commits.
* Send to V a message a’ generated by the simulator, for a random e’.
* Receive V's decommitmentto e

* Run the simulator again with e, rewind V and send a
* Repeat until V decommits to e again

* Conclude by sending z

Center for Research in Applied
Cryptography and Cyber Security

What happens if V refuses to decommit?

*V might refuse, with probability p, to decommit to e.

*Since the simulation chooses a random a, we can get V to
open the commitment after 1/p attempts (in expectation)

Implementing Commitments: Pedersen

* Efficient perfectly-hiding commitments
* Parameters: generator g, order q

 Commit protocol (commit to x):
* Receiver chooses random k and sends h=gk
* Sender sends c=g'h*, for random r
* Perfectly hiding:
* Forevery y there existss s.t. g°hY =c =g'h*
* Computationally binding:

* |f sender can open commitment in two ways, i.e. find (x,r),(y,s) s.t. g'h*=gshY,
then it can also compute the discrete log k = (r-s)/(y-x) mod q

Efficiency of ZK

*Using Pedersen commitments, the entire DLOG proof costs
only 5 additional group exponentiations

ZKPoK from
==l Sigma Protocols

ZKPOK from Sigma Protocols

*|s the previous protocol a proof of knowledge?
* |t seems not to be

* The extractor for the Sigma protocol needs to obtain two transcripts with
the same a and different e

* The prover may choose a different first message a for every
commitment string

* So there might be a prover which chooses its message a based on the
commitment to e, and so when the extractor changes the
commitment the prover changes a

Center for Research in Applied
Cryptography and Cyber Security 69

ZKPOK from Sigma Protocols

eSolution: use a trapdoor (equivocal) commitment

* Namely, given a trapdoor, it is possible to open the
commitment to any value

*Pedersen has this property — given the discrete log k of
h, can decommit to any value
e Commit to x: ¢ =g'h*
* To decommit to y, find s such that r+kx = s+ky mod q
* This is easy if k is known: compute s = r+k(x-y) mod ¢

ZKPOK from Sigma Protocols

*The basic idea

* Have V first commit to its challenge e using a perfectly-hiding
trapdoor (equivocal) commitment (such as Pedersen)

*The protocol

1. P sends the first message a of the commit protocol (e.g.,
including h in the case of Pedersen commitments).

V sends a commitment c=Com_(e;r)
P sends a message a
V sends (e,r)

P checks that c=Com,(e;r) and if correct sends z and also
sends the trapdoor for the commitment

V accepts if the trapdoor is correct and (x,a,e,z) is accepting

S 6 e

6.

ZKPOK from Sigma Protocols

P(xw) V (x)
=g, using randomk
c=g'he
Sigmamsga
. (e,r) * The trapdoor k enables V to open
Verify c=g'he the commitment to any value.
(z,k) e But this does not help v since it
Verify h=gk receives k after it already opened
Verify (a,e,z) the commitment.

Center for Research in Applied
Cryptography and Cyber Security

72

ZKPOK from Sigma Protocols

*Why does this help?

e Zero-knowledge remains the same

 Extraction: after verifying the proof once, the extractor obtains k
and can rewind back to the decommitment of ¢ and send any (e’,r’)

e Efficiency:
* Just 6 exponentiations

/K and Sigma Protocols

*We typically want zero knowledge, so why bother with sigma
protocols?

* There are many useful general transformations
* E.g., parallel composition, compound statements

* The ZK and ZKPOK transformations can be applied on top of the above, so
obtain transformed ZK

* It is much harder to prove ZK than Sigma

e ZK — distributions and simulation
* Sigma: only HVZK and special soundness

Center for Research in Applied
Cryptography and Cyber Security

Side note: Constructing Commitments from Sigma
Protocols

*Based on a hard relation R
* A generator G outputs (x,w)eR

* But for every PPT algorithm A it is hard to find w given x, namely
Pr[A(x)eR] is negligible

*Example
* The generator computes h=g" for a random r

The Commitment Scheme

 Commitment to a string ee{0,1}!
* The receiver samples a hard (x,w), and sends x

 Committer runs the sigma protocol simulator on (x,e), gets (a,e,z) and
sends a as the commitment

* Decommitment:
e Committer sends (a,e,z)

* Decommitter verifies that is accepting proof for x
* Hiding: By HVZK, the commitment a is independent of e

* Binding: Decommitting to two e,e’ for the same a means finding w

Center for Research in Applied
Cryptography and Cyber Security

This is a Trapdoor Commitment

*The scheme is actually a trapdoor commitment scheme
*Ww is a trapdoor

* Given w, can decommit to any value by running the real prover and
not the simulator

88

Summary

*Don’t be afraid of using zero knowledge
e Using sigma protocols, we can get very efficient ZK

*Sigma protocols are very useful:
e Efficient ZK
e Efficient ZKPOK
e Efficient NIZK in the random oracle model
e Commitments and trapdoor commitments
* More...

