

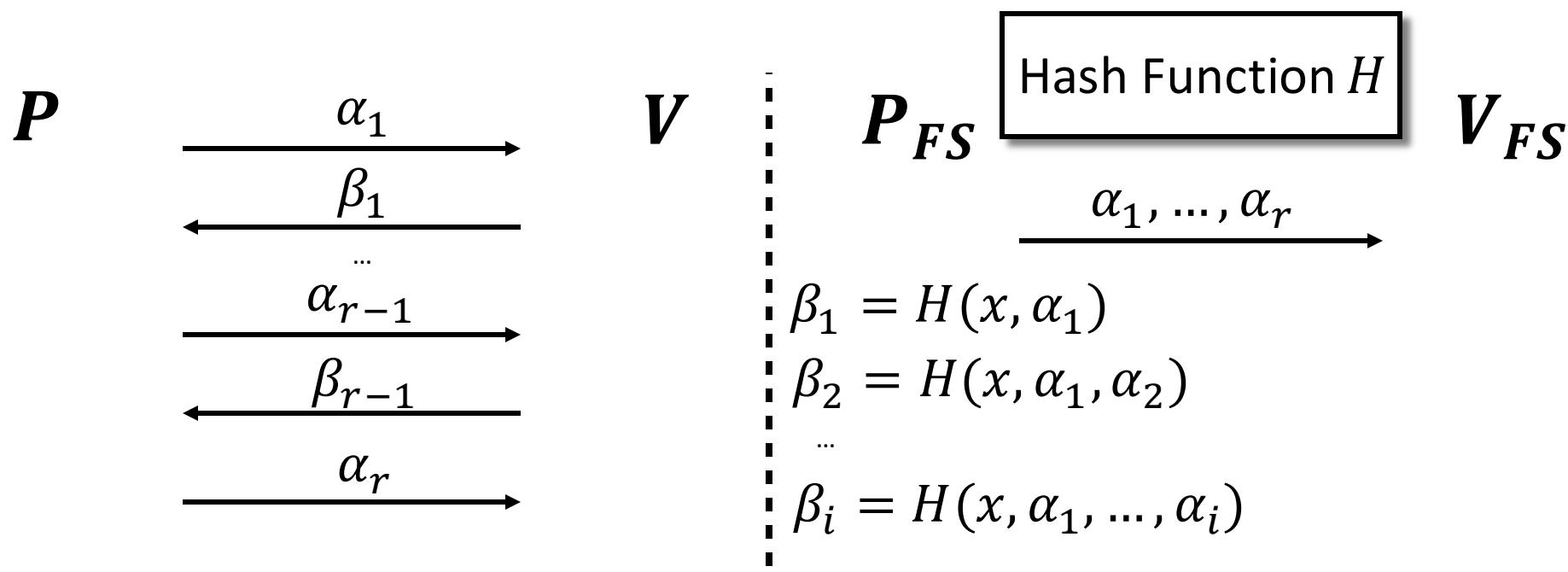
Fiat-Shamir: from Practice to Theory

Ron Rothblum
Technion

Based on joint works with: Ran Canetti, Yilei Chen, Justin Holmgren,
Yael Kalai, Alex Lombardi, Leo Reyzin and Guy Rothblum

The Fiat-Shamir Transform

Public-Coin
Interactive Protocol $\xrightarrow{\text{generically}}$ Non-Interactive
Argument



(Each β_i uniformly random)

Fiat Shamir – Security?

[PS96]: Fiat Shamir transform is secure in the random oracle model.

Can we instantiate the heuristic securely using an explicit hash family?

Fiat Shamir – Impossible?

Def: a hash family H is FS-compatible for a protocol Π if $FS_H(\Pi)$ is a sound argument-system.

Thm [B01, GK03]: \exists protocols which are not FS-compatible for any H .

Hope? Those counterexamples are arguments! Maybe sound if we start with a proof?

[BDGJKLW13]: no blackbox reduction to a falsifiable assumption, **even for proofs**.

This Talk: New Positive Results

First positive indications: Hash functions that are

FS or
Very recent followups make progress on
longstanding open problems:

Bypassing the FS conjecture

- 1. NIZK from LWE [CLW19,PS19]
- 2. PPAD hardness [CHKPRR19]

- Complexity

STRONG ASSUMPTIONS AHEAD

A Detour: Optimal Hardness

- For this talk: optimal hardness means *PPT* algorithm can only break with $\text{poly}(\lambda)/2^\lambda$ probability.
- Holds in ROM, whereas optimal-size hardness does not.
- When challenge is re-randomizable:
 - Weaker than optimal-size hardness.
 - Implies a polynomial-space attack.

FS for Proofs: Recent Positive Results

[KRR16]: subexponential IO+OWF, optimal input-hiding Obf.

IPs that we care about are nice.

[CCRR17]: optimal KDM secure encryption* for a scheme, for **unbounded** KDM functions

[CCHLRR18]: optimal KDM secure encryption* for bounded KDM functions, but only for “nice” IPs.

Applications

Thm [CCHLRR18]: public
arguments for NC , assuming
optimally hard (for key)

1. Statistical ZK.
2. Uniform CRS.
3. Adaptive soundness

Thm [CCHLRR18]: NIZKs for
search LWE is optimally hard

[PS19]: same conclusion but
only assuming LWE!

Corollary (via [DNR03]): assuming LWE is
optimally hard, parallel rep. of QR protocol is not
zero-knowledge.

Proof Idea

Recent Positive Results

[KRR17]: subexponential IO+OWF, optimal input-hiding Obf.

[CCRR18]: optimal KDM secure encryption* scheme, for **unbounded** KDM functions.

[CCHLRR18]: optimal KDM secure encryption* for bounded KDM functions, but only for “nice” IPs.

[CCRR17] Assumption

Symmetric-key encryption scheme (E, D) s.t.:

1. (Optimal KDM sec.): $\forall f \ \forall \text{PPT } A,$

$$\Pr[A(E_k(f(k)) = k] \leq \text{poly}(\lambda)/2^\lambda$$

2. (Universal Ciphertexts): for any fixed key k^* :

$$E_{k^*}(M) \equiv E_K(M')$$

Correlation Intractability

[CHG04]

A hash family H is *correlation intractable* for a sparse relation R if:

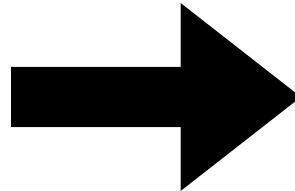
Given $h \in_R H$, infeasible to find x s.t. $(x, h(x)) \in R$.

\forall PPT A ,

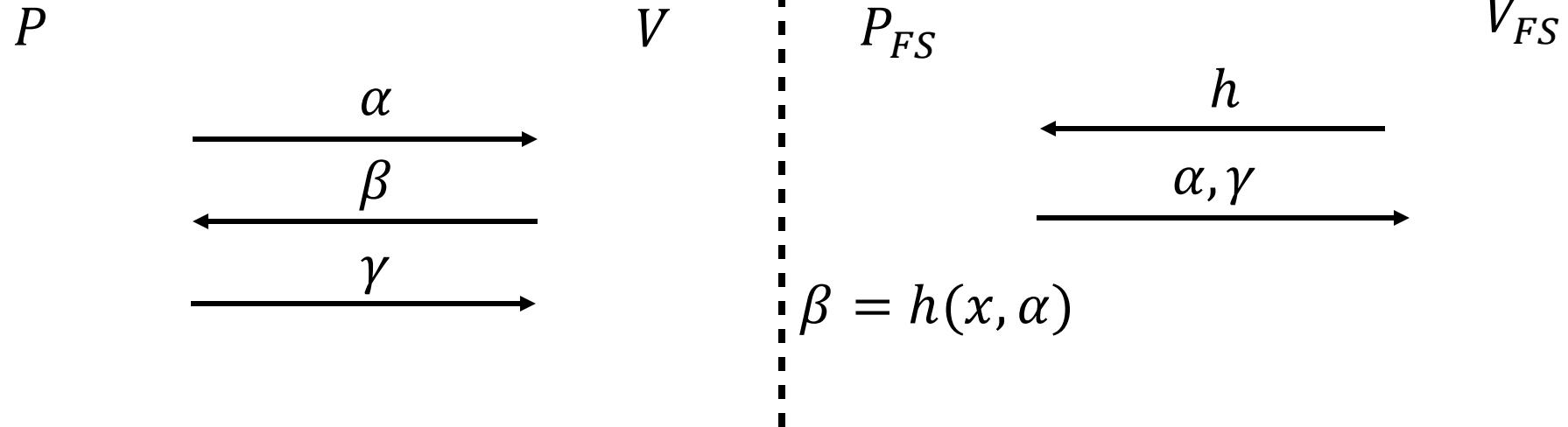
$$\Pr_{\substack{h \leftarrow H \\ x \leftarrow A(h)}} [(x, h(x)) \in R] = \text{negl}$$

CI \Rightarrow FS

Public-Coin
Interactive Protocol Π



Non-Interactive
Argument Π_{FS}



Consider $R_\Pi = \{(\alpha, \beta) : \exists \gamma \text{ s.t. Verifier accepts } (x, \alpha, \beta, \gamma)\}$.

Cheating P_{FS}^* finds α^* s.t. $(\alpha^*, h(x, \alpha^*)) \in R_\Pi \Rightarrow$ breaks CI.

Our Hash Function

- Hash function described by a ciphertext c .
- Messages are enc/dec keys.

$$h_c(k) = D_k(c)$$

Want to show: CI for all sparse relations.

Today: for simplicity consider relations R that are functions ($\forall x \exists ! y$ s.t. $(x, y) \in R$).

Our Hash Function

$$h_c(k) = D_k(c)$$

Intuition: breaking CI for R means

$$c \Rightarrow k \text{ s.t. } D_c(k) = R(k)$$

In words, from c we can find k s.t. $c = E_k(R(k))$.

Smells like KDM game, but order is wrong.

Analysis

Experiment

$$K, \\ C = E_K(M)$$

$$K, K^* \\ C = E_K(M)$$

$$K^*, \\ C = E_{K^*}(M)$$

$$K^*, M = R(K^*) \\ C = E_{K^*}(M)$$

Event

$$\Pr \left[\left(A(C) \rightarrow k^*, (k^*, \text{Dec}_{k^*}(C)) \in R \right) \geq \epsilon \right]$$

$$\Pr \left[\left(A(C) = K^* \right) \rightarrow \epsilon/2^\lambda \right]$$

$$\Pr \left[\left(A(C) = K^* \right) \rightarrow \epsilon/2^\lambda \right]$$

Sparsity of R

Recent Positive Results

[KRR17]: subexponential IO+OWF, optimal input-hiding Obf.

[CCRR18]: optimal KDM secure encryption* scheme, for **unbounded** KDM functions.

[CCHLRR18]: optimal KDM secure encryption* for bounded KDM functions, but only for “nice” IPs.

Recent Positive Results

[KRR17]: subexponential IO+OWF, optimal input-hiding Obf.

[CCRR18]: optimal KDM secure encryption* scheme, for **unbounded** KDM functions.

[CCHLRR18]: optimal KDM secure encryption* for bounded KDM functions, but only for “nice” IPs.

[CCHLRR18] Improvement

Optimal KDM security for $R \Rightarrow$ CI for R .

Q1: Are there interesting interactive proofs for which R is an efficient function?

Q2: Can we get (optimal) KDM security for bounded KDM functions from better assumptions?

A1: Yes! Delegation schemes [GKR08] & ZKPs [GMW89].

A2: Yes! Garbled Circuits or FHE [BHHI10,A11].

[CCHLRR18] Improvement

Optimal KDM security for $R \Rightarrow$ CI for R .

Q1: Are there interesting interactive proofs for which R is an efficient function?

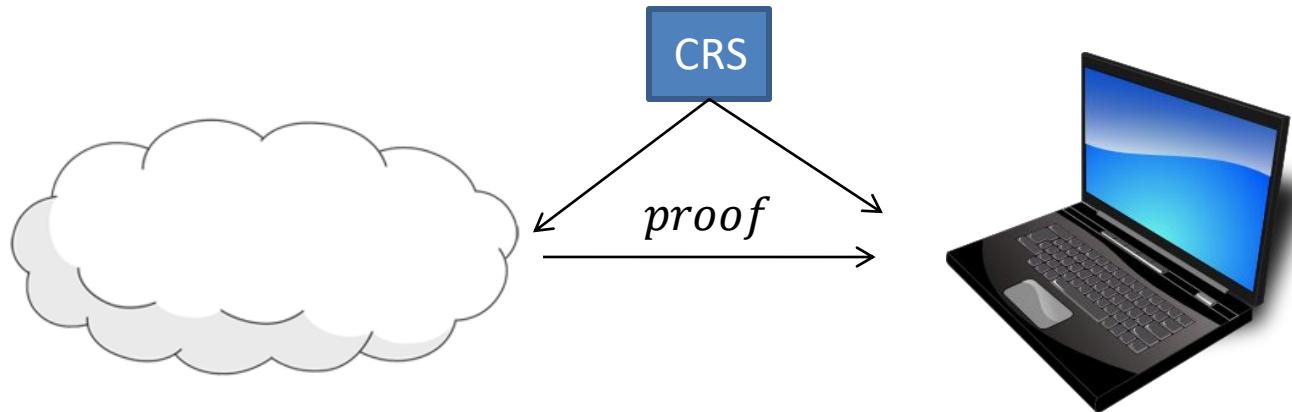
Q2: Can we get (optimal) KDM security for bounded KDM functions from better assumptions?

A1: Yes! Delegation schemes [GKR08] & ZKPs [GMW89].

A2: Yes! Garbled Circuits or FHE [BHHI10,A11].

Publicly-Verifiable Non-Interactive Delegation

Weak client wants to check whether $x \in L$.



Publicly verifiable \rightarrow can re-use CRS and *anyone* can verify.

PV Delegation: Prior Work

Known under strong assumptions:

- Knowledge assumptions [Groth10,...] (even NP).
- iO [SW13].
- Zero testable homomorphic enc [PR17].

Independent work [KPY18]: from new (falsifiable) assumptions on bilinear maps. CRS is long (and non-uniform).

PV Delegation: Our Result

Thm: assume optimal hardness of key-recovery attacks for [BV11/GSW13/BV14...] *FHE* scheme.

Then, $\forall L \in NC$ has a publicly verifiable non-interactive argument-system where verifier is $\tilde{O}(n)$ time and prover is $\text{poly}(n)$ time.

Fiat-Shamir for GKR

[GKR08]: very efficient, but highly interactive, public-coin interactive proof for NC .

Want to apply FS but face two challenges:

1. Need to show that R is efficient.
2. Not constant-round!

Fiat-Shamir for GKR

[GKR08]: very efficient, but highly interactive, public-coin interactive proof for NC .

Want to apply FS but face two challenges:

1. Need to show that R is efficient.
2. Not constant-round!

FS for $\omega(1)$ Rounds

FS is not secure (even in ROM) for $\omega(1)$ -round interactive proofs.

[BCS16]: FS is secure for **resetably** sound interactive proofs in ROM.

Open: show that *CI* suffices for FS of resetably sound proofs.

Round-by-Round Soundness

Def: Π has RBR soundness if \exists predicate *doomed* defined on any partial transcript s.t. $\forall x \notin L$:

1. Empty transcript is *doomed*.
2. Given a *doomed* transcript τ , whp (τ, β) is *doomed*.
3. If full transcript is doomed then verifier rejects.

Lemma: parallel rep. of any IP has RBR soundness.

RBR + CI \Rightarrow FS

Suppose Π has RBR soundness.

Define $R_\Pi = \left\{ (\tau, \beta) : \begin{array}{l} \tau \text{ is doomed} \\ \text{but } (\tau, \beta) \text{ is not} \end{array} \right\}$

RBR soundness $\Rightarrow R_\Pi$ is sparse.

Breaking RBR soundness \Rightarrow breaking CI of R_Π .

[CCHLRR18] Improvement

Optimal KDM security for $R \Rightarrow$ CI for R .

Q1: Are there interesting interactive proofs for which R is an efficient function?

Q2: Can we get (optimal) KDM security for bounded KDM functions from better assumptions.

A1: Yes! Delegation schemes [GKR08] & ZKPs [GMW89].

A2: Yes! Garbled Circuits or FHE [BHHI10, A11]

NIZK from Strong LWE

Thm: assume that search-LWE (with suitable parameters) is optimally hard.

Then $\forall L \in NP$ has a non-interactive statistical zero-knowledge argument in uniform CRS model.

Note: NIZK from LWE is (still) wide open.

[GMW89] Reminder

$P(G, \chi)$

$\pi \in_R S_n$

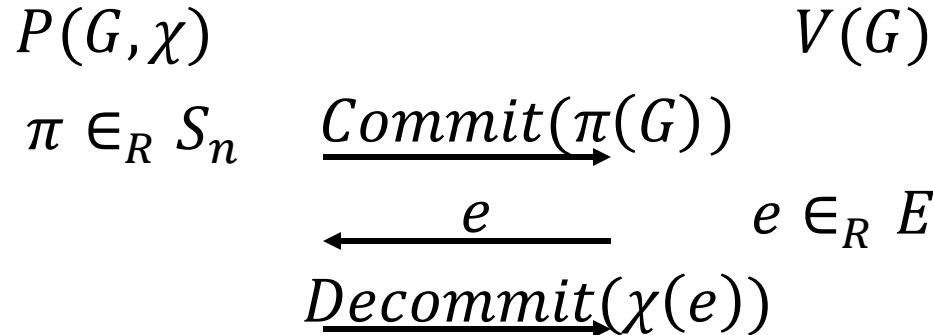
$Commit(\pi(G))$

$V(G)$

$e \in_R E$

$Decommit(\chi(e))$

NIZK: FS for GMW



Would like to apply FS to (parallel rep) of GMW.

Difficulty: relation $R = \{\text{commitment}, e\}$ not clear given commitment how to sample e .

Solution (using [HL18]): use a trapdoor commitment scheme, trapdoor is hard-wired in the relation.

NIZK: FS for GMW

Perfectly correct $PKE \Rightarrow$ trapdoor commitment scheme.

Further:

1. If public-keys are random \Rightarrow uniform CRS.
2. Lossy PKE \Rightarrow statistically ZK.

Can obtain both from LWE .

[CCHLRR18] Improvement

Optimal KDM security for $R \Rightarrow$ CI for R .

Q1: Are there interesting interactive proofs for which R is an efficient function?

Q2: Can we get (optimal) KDM security for bounded KDM functions from better assumptions.

A1: Yes! Delegation schemes [GKR08] & ZKPs [GMW89].

A2: Yes! Garbled Circuits or FHE [BHHI10,A11].

Optimal Bounded KDM Security

Need enc. with KDM security for bounded functions.

Known [BHHI10,BGK11,A11] but face two challenges:

1. Universal ciphertexts.
2. Preserving optimal hardness.

Garbled circuits a la [A11] \Rightarrow non-compact (good enough for NIZKs).

FHE a la [BHHI10] \Rightarrow compact, good for delegation.

Summary

Fiat Shamir for proofs can be realized!

Striking improvement in assumptions in just 2 years.

Open: what other random oracle properties can we get? Using these techniques?