

ZERO-KNOWLEDGE (INTRO)

ALON ROSEN

IDC HERZLIYA

fact FOUNDATIONS & APPLICATIONS
of CRYPTOGRAPHIC THEORY

Zero-knowledge proofs

Prover P

Verifier V

P interacts with V convincing him that a proposition is true

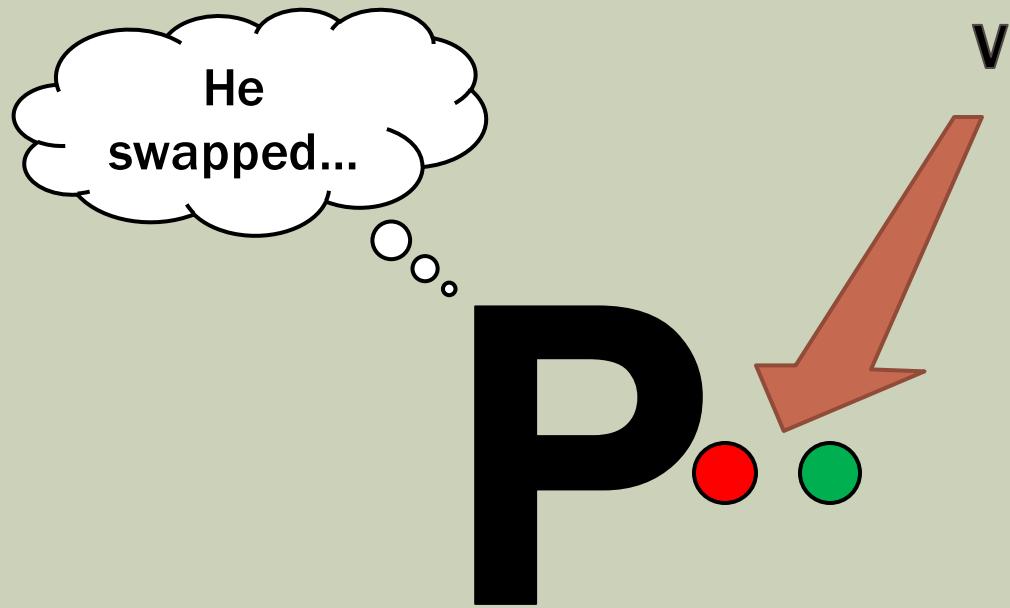
Interaction reveals nothing beyond validity of the proposition

If proposition is true, *any* V^* might as well have generated (simulated) the interaction on his own

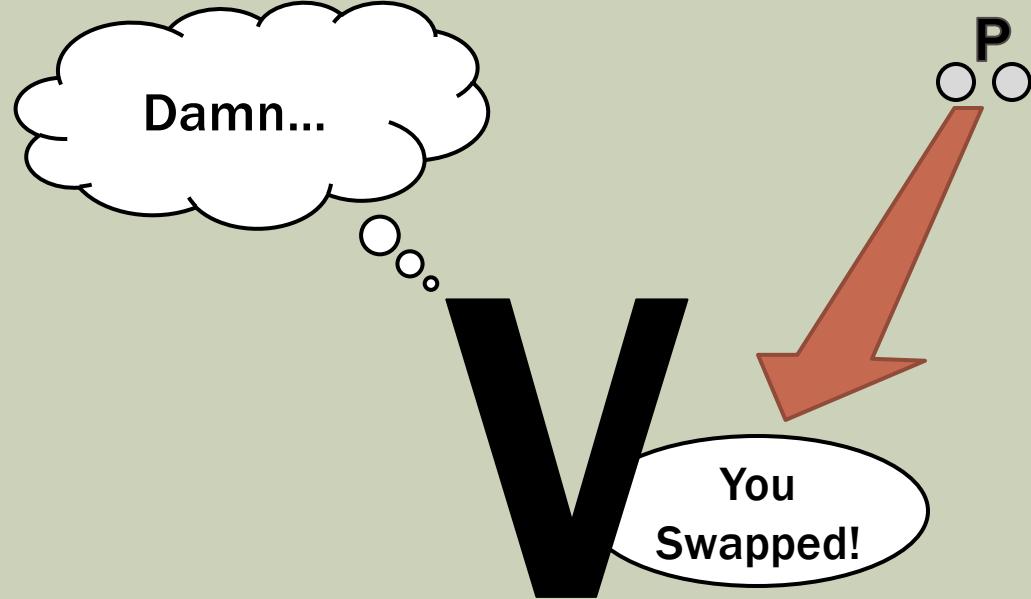
Avoids the question “what is knowledge?” altogether!

Example: color non-blindness

Example: color non-blindness



Example: color non-blindness



- V 's “view”: a *random bit that equals his “swap or not” bit*
- V could simulate view by picking random bit on his own!

What is zero-knowledge good for?

Can prove that I know a secret without having to reveal it

Identification:

1. Alice publishes $y = f(x)$
2. Alice proves to Bob in ZK that she knows $x' \in f^{-1}(y)$

Protocol design:

1. Design against parties that follow instructions
2. Use ZK proof to force honest behavior

“trusted party” → protocol

Why zero-knowledge?

Remarkable definitional framework:

- At the heart of protocol design and analysis
- Brings to light key concepts and issues

Right level of abstraction:

- Simple enough to be studied/realized
- Feasibility/limitations delineate what is attainable

ZK is just a means to an end

- Weaker definitions are also useful (WI/WH/NIZK)
- Tension between modularity and efficiency

Proof Systems

What is a proof?

A method for establishing truth:

1. legal
2. authoritative
3. scientific
4. philosophical
5. mathematical

π
Axioms \rightarrow \rightarrow \cdots \rightarrow Propositions

6. probabilistic, interactive

Proof Systems

Want to prove: $x \in L$ for some language $L \subseteq \Sigma^*$

$$L = \{x \mid \exists \pi, V(x, \pi) = \text{ACCEPT}\}$$

Definition: A proof system for membership in L is an algorithm V such that $\forall x$:

Completeness: If $x \in L$, then $\exists \pi, V(x, \pi) = \text{ACCEPT}$

Soundness: If $x \notin L$, then $\forall \pi, V(x, \pi) = \text{REJECT}$

efficient verification \Leftrightarrow poly-time verification

Definition: An NP proof system for membership in L is an algorithm V such that $\forall x$:

Completeness: If $x \in L$, then $\exists \pi, V(x, \pi) = \text{ACCEPT}$

Soundness: If $x \notin L$, then $\forall \pi, V(x, \pi) = \text{REJECT}$

Efficiency: $V(x, \pi)$ halts after at most $\text{poly}(|x|)$ steps

- V 's running time is measured in terms of $|x|$, the length of x
- $\text{poly}(|x|) = |x|^c$ for some constant c
- Necessarily, $|\pi| = \text{poly}(|x|)$

Example I: Boolean Satisfiability

$SAT = \{\phi \mid \phi \text{ is a satisfiable Boolean formula}\}$

$SAT = \{\phi(w_1, \dots, w_n) \mid \exists w \in \{0,1\}^n, \phi(w) = 1\}$

$\phi \in SAT:$ $\pi = w \longrightarrow \bigvee \phi(w) \stackrel{?}{=} 1$

Complete: every $L \in NP$ reduces to SAT

Unstructured: $exp(O(n))$ time (**worst case**).

Example II: Linear Equations

$LIN = \{(A, b) \mid Aw = b \text{ has a solution over } \mathbb{F}\}$

$(A, b) \in LIN:$

$$\pi = w$$

$$\nabla \quad Aw \stackrel{?}{=} b$$

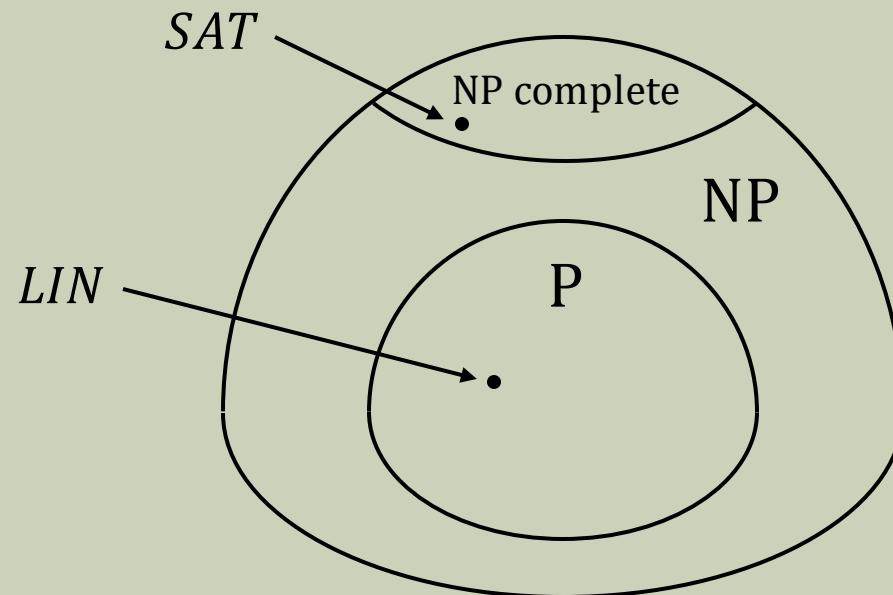
$\exp(n)$ many w 's

Structured: decidable in time $O(n^{2.373}) = \text{poly}(n)$

The class P

poly-time \Leftrightarrow efficient

Definition: $L \in P$ if there is a poly-time algorithm A such that $L = \{x \mid A(x) = \text{ACCEPT}\}$



BPP: A is probabilistic poly-time (PPT) and errs w.p. $\leq 1/3$

Example III: Quadratic Residuosity

$QR_N = \{x \mid x \text{ is a quadratic residue mod } N\}$

$x \in QR_N$:

$$\pi = w$$

V

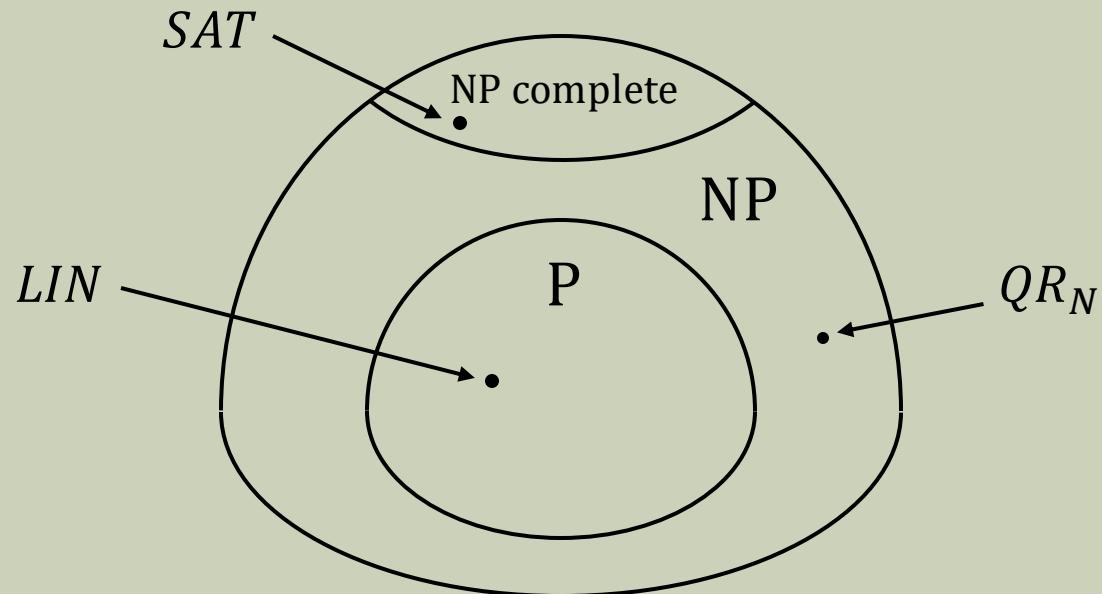
$$x \stackrel{?}{\equiv} w^2 \text{ mod } N$$

Structured: QR_N is a subgroup of \mathbb{Z}_N^*

$N = PQ$ ($|P| = |Q| = n$): $\exp\left(\tilde{O}(n^{1/3})\right)$ time (avg. case)

Summary so far

efficient verification \Leftrightarrow poly-time verification



Proving non-membership?

$(A, b) \notin LIN?$

$\phi \notin SAT:$

$$w_1, \dots, w_{2^n} \rightarrow$$

$$\bigvee \forall i, \phi(w_i) \stackrel{?}{=} 0$$

$x \notin QR_N:$

$$w_1, \dots, w_{\varphi(N)} \rightarrow$$

$$\bigvee \forall i, x \stackrel{?}{\not\equiv} w_i^2 \bmod N$$

Naïve proof is exponentially large

[GMR'85]: allow proof to use

- Randomness (tolerate “error”)
- Interaction (add a “prover”)

Interactive Proofs

Interactive proof for $\overline{QR_N}$ [GMR'85]

P

$x \notin QR_N$

V

$$\frac{z = y^2 \quad b = 0}{z = xy^2 \quad b = 1}$$

$$\begin{aligned} b &\in_R \{0,1\} \\ y &\in_R \mathbb{Z}_N^* \end{aligned}$$

$$\frac{b'(z) = 0 \quad z \in QR_N}{b'(z) = 1 \quad z \notin QR_N}$$

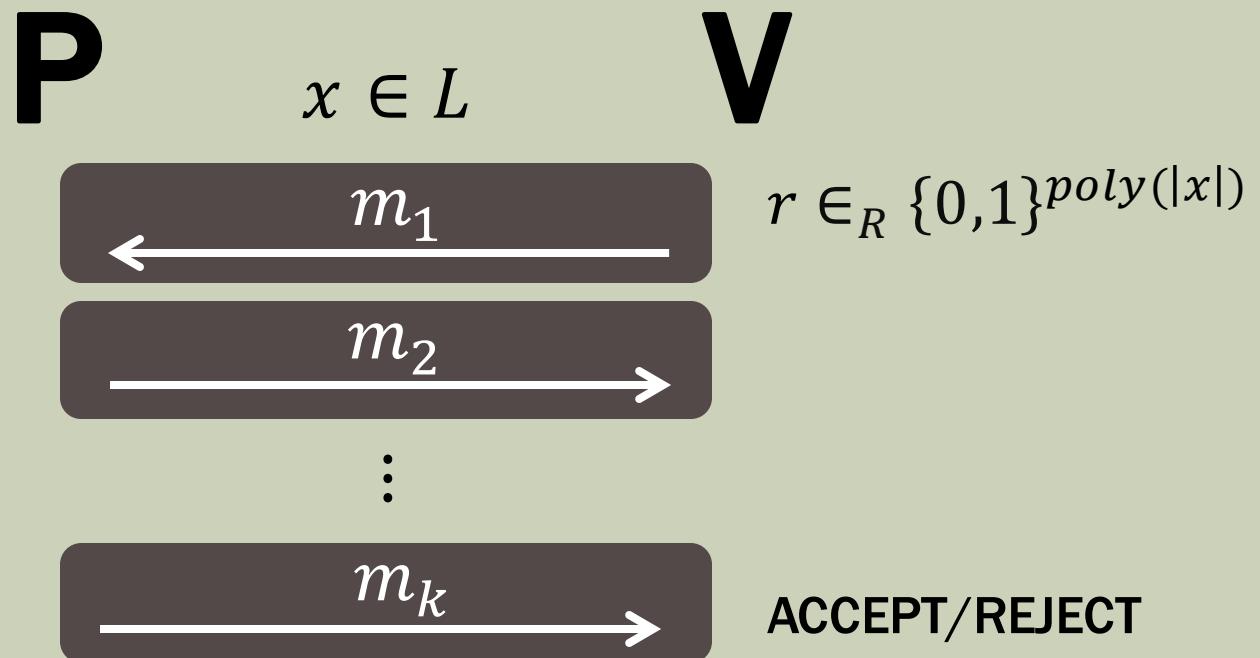
$$b' \stackrel{?}{=} b$$

Completeness: $x \notin QR_N \rightarrow y^2 \in QR_N$ **and** $xy^2 \notin QR_N$

Soundness: $x \in QR_N \rightarrow y^2 \in QR_N$ **and** $xy^2 \in QR_N$

$$\forall P^*, \Pr_b [P^*(z) = b] = 1/2$$

Interactive Proof



V is probabilistic polynomial time (PPT)

For any common input x , let:

$$\Pr[(P, V) \text{ accepts } x] \triangleq \Pr_r[(P, V)(x, r) = \text{ACCEPT}]$$

Interactive Proof Systems

Definition [GMR'85]: An interactive proof system for L is a PPT algorithm V and a function P such that $\forall x$:

Completeness: If $x \in L$, then $\Pr[(P, V) \text{ accepts } x] \geq 2/3$

Soundness: If $x \notin L$, then $\forall P^*, \Pr[(P^*, V) \text{ accepts } x] \leq 1/3$

- Completeness and soundness can be bounded by any $c: \mathbb{N} \rightarrow [0,1]$ and $s: \mathbb{N} \rightarrow [0,1]$ as long as
 - $c(|x|) \geq 1/2 + 1/\text{poly}(|x|)$
 - $s(|x|) \leq 1/2 - 1/\text{poly}(|x|)$
- $\text{poly}(|x|)$ independent repetitions $\rightarrow c(|x|) - s(|x|) \geq 1 - 2^{-\text{poly}(|x|)}$
- NP is a special case ($c(|x|) = 1$ and $s(|x|) = 0$)
- BPP is a special case (no interaction)

The Power of IP

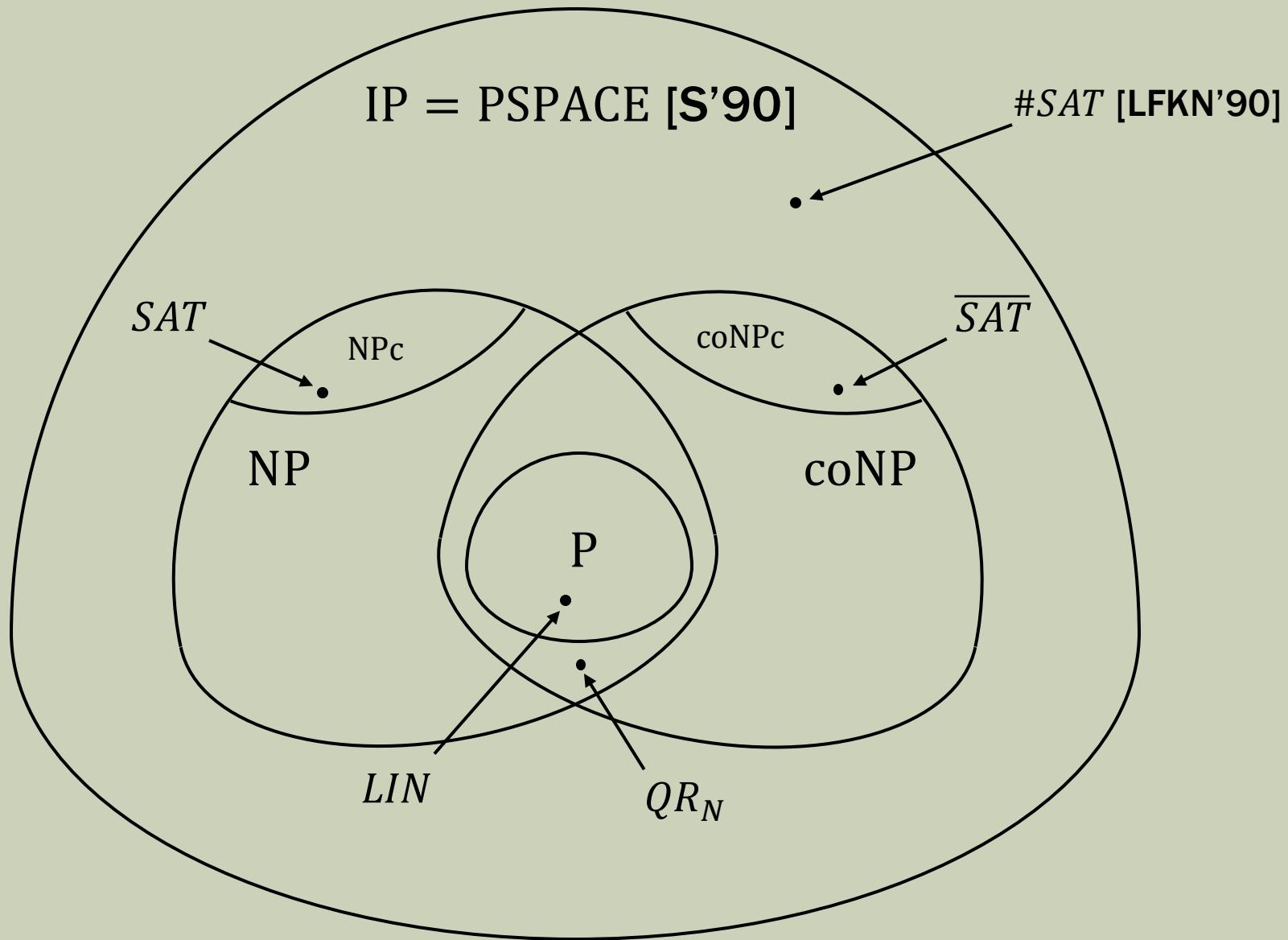
Proposition: $\overline{QR_N} \in \text{IP}$

- NP proof for $\overline{QR_N}$ not self-evident
- This suggests that maybe $\text{NP} \subset \text{IP}$
- Turns out that $\overline{SAT} \in \text{IP}$ (in fact $\#SAT$)

Theorem [LFKN'90]: $P^{\#P} \subseteq \text{IP}$

Theorem [Shamir'90]: $\text{IP} = \text{PSPACE}$

The power of IP



Zero-Knowledge

A Proof that (presumably) Does Leak Info

$QR_N = \{x \mid x \text{ is a quadratic residue mod } N\}$

$x \in QR_N$:

$$\pi = w$$

$\nabla \quad x \stackrel{?}{\equiv} w^2 \text{ mod } N$

- Generating π - $\exp(\tilde{O}(n^{1/3}))$ time
- Verifying - $O(n^2)$ time

V “got something for free” from seeing π

V may have not been able to find w on his own!

Defining that “no knowledge leaked”

Some attempts:

- V didn't learn w (sometimes good enough!)
- V didn't learn any symbol of w
- V didn't learn any information about w
- V didn't learn any *information at all* (beyond $x \in L$)

When would we say that V *did* learn something?

If following the interaction V could compute something he could have not computed without it!

Zero-knowledge: whatever is computed following interaction could have been computed without it

Zero-Knowledge (at last)

V 's view = V 's random coins and messages it receives

$\forall x \in L, V$'s view can be efficiently “simulated”

What does this mean?

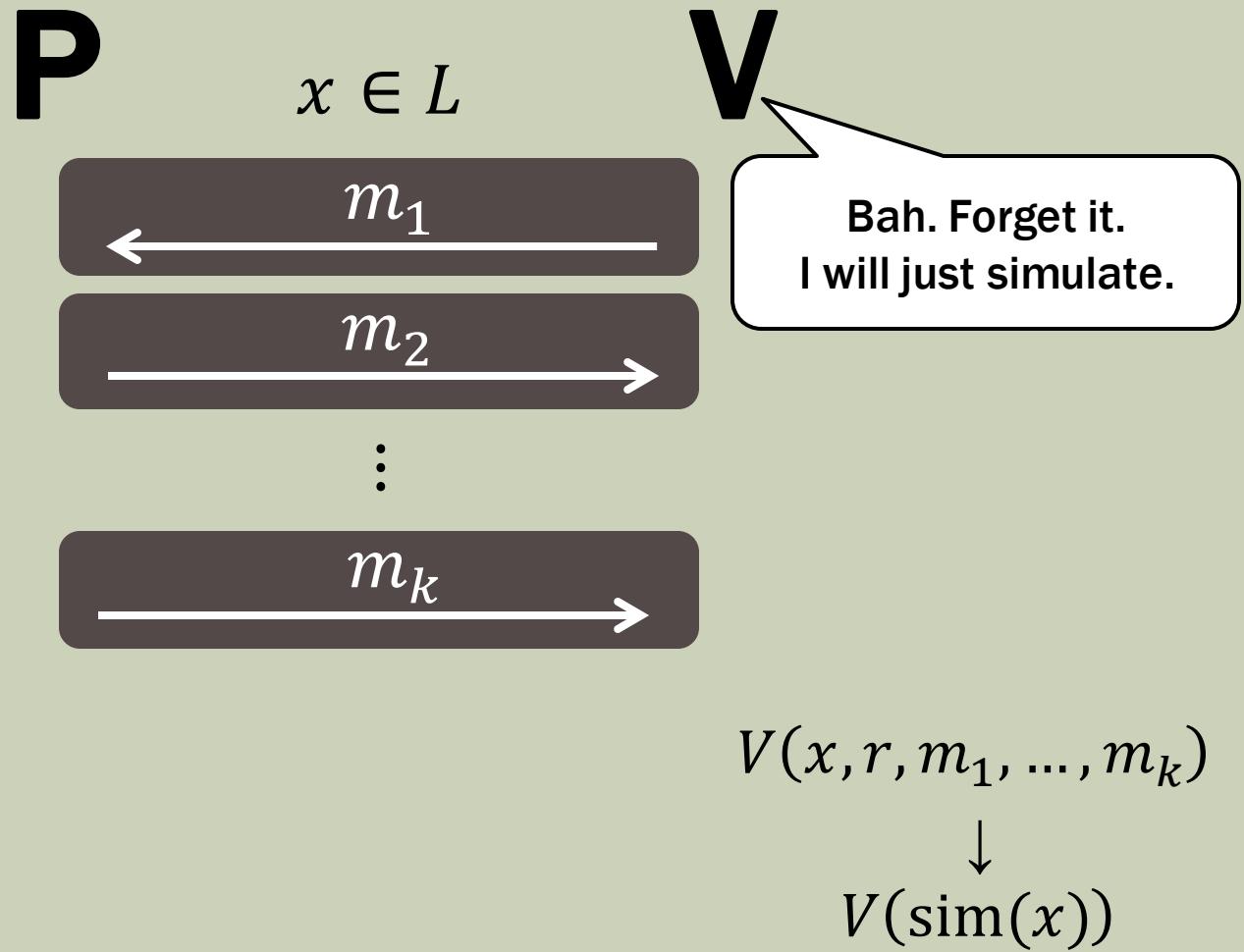
Philosophically: V is given the information that $x \in L$

Modulo this, V might as well have talked to himself

Technically: $V(\text{view}) \cong V(\text{simulation})$

Whatever V could compute following the interaction,
he could have computed even without talking to P ,
by running the simulator on his own

V might as well talk to himself



Honest Verifier Zero-Knowledge

V 's view distribution can be simulated in poly-time

- We will allow simulator S to be probabilistic (PPT)
- Efficient \Leftrightarrow Probabilistic poly-time (BPP instead of P)

Definition [GMR'85]: An interactive proof (P, V) for L is (honest-verifier) zero-knowledge if $\exists PPT S \forall x \in L$

$$S(x) \cong (P, V)(x)$$

- We use $(P, V)(x)$ to denote V 's view
- Usually $(P, V)(x) = V(\text{view})$ denotes V 's output
- Simulator for V 's view implies simulator for V 's output

Sanity check

$$x \in QR_N: \quad \pi = w \quad \longrightarrow \quad \mathbf{V} \quad x \stackrel{?}{\equiv} w^2 \bmod N$$

- $\forall x \in QR_N, S(x)^2 \equiv x \bmod N$
- $\forall x \notin QR_N, S(x)^2 \not\equiv x \bmod N$
- $QR_N \notin BPP \rightarrow S(x)^2 \not\equiv x \bmod N$ **for some** $x \in QR_N$

(P, V) for L is not (honest-verifier) zero-knowledge if
 $\forall PPT S \exists x \in L$ so that

$$S(x) \not\equiv (P, V)(x)$$

A Zero-Knowledge proof for QR_N

$x = w^2 \bmod N$

P

$x \in QR_N$

V

$r \in_R \mathbb{Z}_N^*$

$y = r^2$

b

$b \in_R \{0,1\}$

$b = 0: \quad z = r$

$z^2 \stackrel{?}{=} y$

$b = 1: \quad z = wr$

$z^2 \stackrel{?}{=} xy$

- **P is randomized and has auxiliary input w**
- **Distribution of V's "view" $(P(w), V)(x)$:**
uniformly random (y, b, z) such that $z^2 = x^b y$

A Zero-Knowledge proof for QR_N

Claim: (P, V) is an interactive proof for QR_N

P*

V

$y = r^2$

b

$\frac{b = 0: \quad z_0 = r}{b = 1: \quad z_1 = wr} \rightarrow$

$z_0^2 = y$
 $z_1^2 = xy$

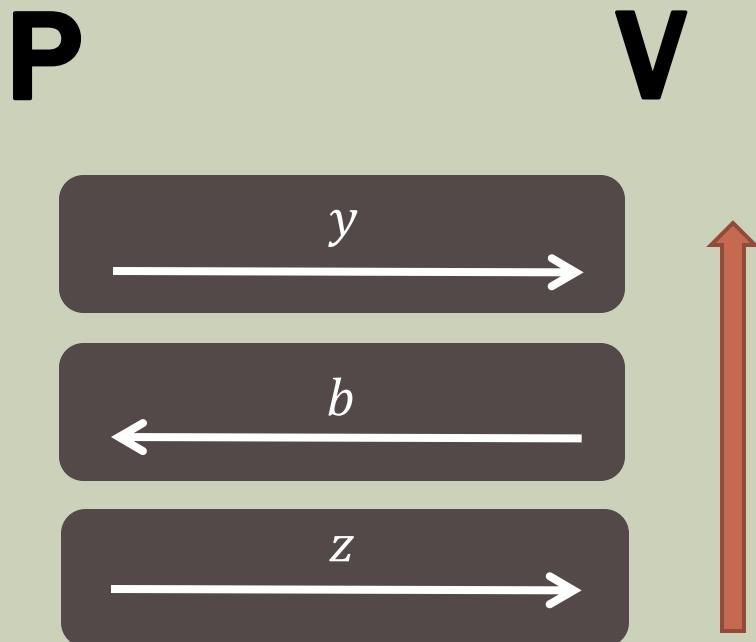
Soundness:

$x \in QR_N$
 \uparrow

$\exists y, y \in QR_N \text{ and } xy \in QR_N$

If $Pr_b[(P^*, V) \text{ accepts } x] > 1/2$
then both $z_0^2 = y$ and $z_1^2 = xy$

Simulating V 's view



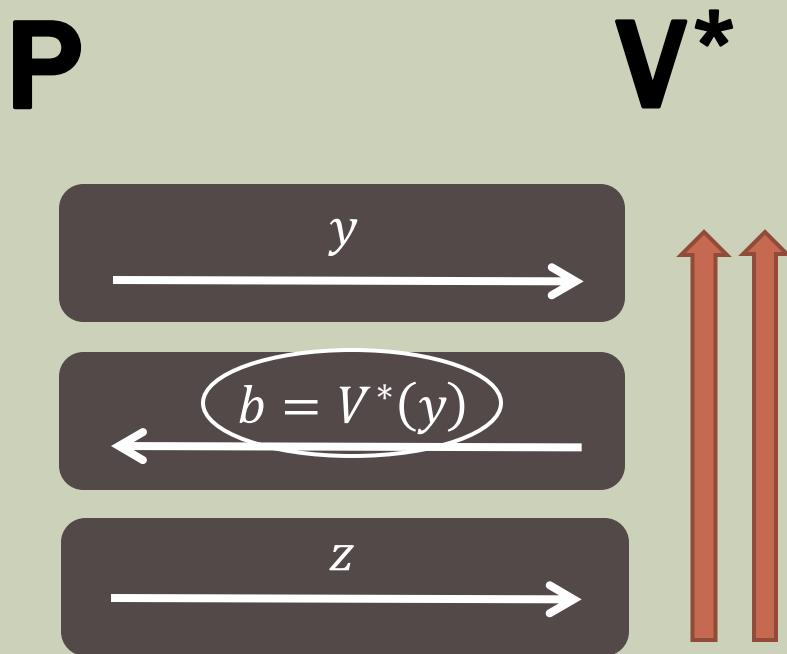
Simulator $S(x)$

1. **Sample** $z \in_R \mathbb{Z}_N^*$
2. **Sample** $b \in_R \{0,1\}$
3. **Set** $y = z^2/x^b$
4. **Output** (y, b, z)

random (y, b, z) such that $z^2 = x^b y \cong \text{random } (y, b, z)$ such that $z^2 = x^b y$

Proposition: $QR_N \in \text{HVZK}$

Simulating malicious V^* 's view



Simulator $S(x)$

1. **Sample** $z \in_R \mathbb{Z}_N^*$
2. **Sample** $b \in_R \mathbb{Z}_N^*$
3. **Set** $y = z^2/x^b$
4. **If** $V^*(y) = b$ **output** (y, b, z)
5. **Otherwise repeat**

$$x \in QR_N$$
$$\downarrow$$

$$\mathbb{E}[\#\text{repetitions}] = 2$$

random (y, b, z) such that
 $z^2 = x^b y$ and $b = V^*(y)$

\approx

random (y, b, z) such that
 $z^2 = x^b y$ and $b = V^*(y)$

Perfect Zero-Knowledge

Definition: An interactive proof system (P, V) for L is **perfect zero-knowledge** if $\forall PPT V^* \exists PPT S \forall x \in L$

$$S(x) \cong (P, V^*)(x)$$

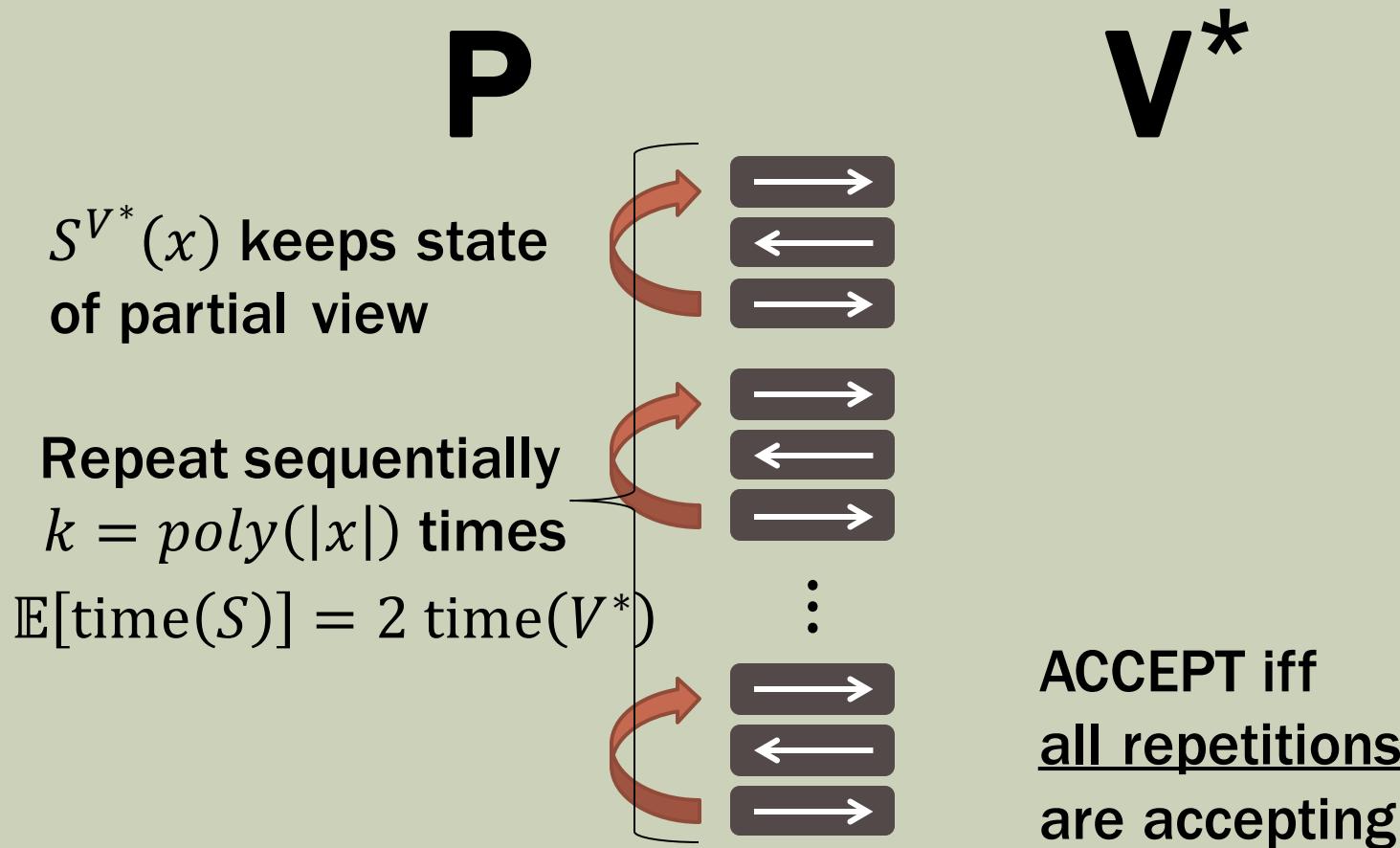
Proposition: $QR_N \in \text{PZK}$

- Actually showed “black-box” ZK: $\exists PPT S \forall PPT V^* \forall x \in L$

$$S^{V^*}(x) \cong (P, V^*)(x)$$

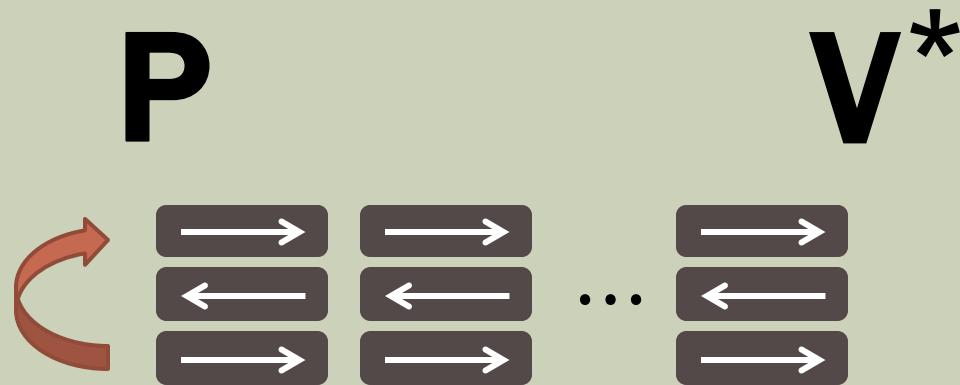
- We allowed S to run in expected polynomial time
- Can we build S with strict polynomial running time?

Amplifying soundness



Proposition: $QR_N \in \text{PZK}$ w/ soundness error $2^{-\text{poly}(|x|)}$

Parallel repetition



$$\mathbb{E}[\text{time}(S^{V^*})] = 2^k \text{ time}(V^*)$$

Later:

- Black-box impossibility
- V^* whose view cannot be efficiently simulated

**Auxiliary input
and
Composition**

IP for $\overline{QR_N}$ is not ZK

P

$x \notin QR_N$

V

$$\begin{array}{ccc} z = y^2 & & b = 0 \\ \xleftarrow{ } & & \\ z = xy^2 & & b = 1 \end{array}$$

$$\begin{array}{ccc} b' = 0 & & z \in QR_N \\ \xrightarrow{ } & & \\ b' = 1 & & z \notin QR_N \end{array}$$

Not ZK wrt “auxiliary input”

$V^*(z)$: use P to decide if
 $z \in QR_N$

z is V^* ’s auxiliary input

Proposition: $\overline{QR_N} \in \text{HVZK}$

Claim: (P, V) is not ZK (wrt auxiliary input)

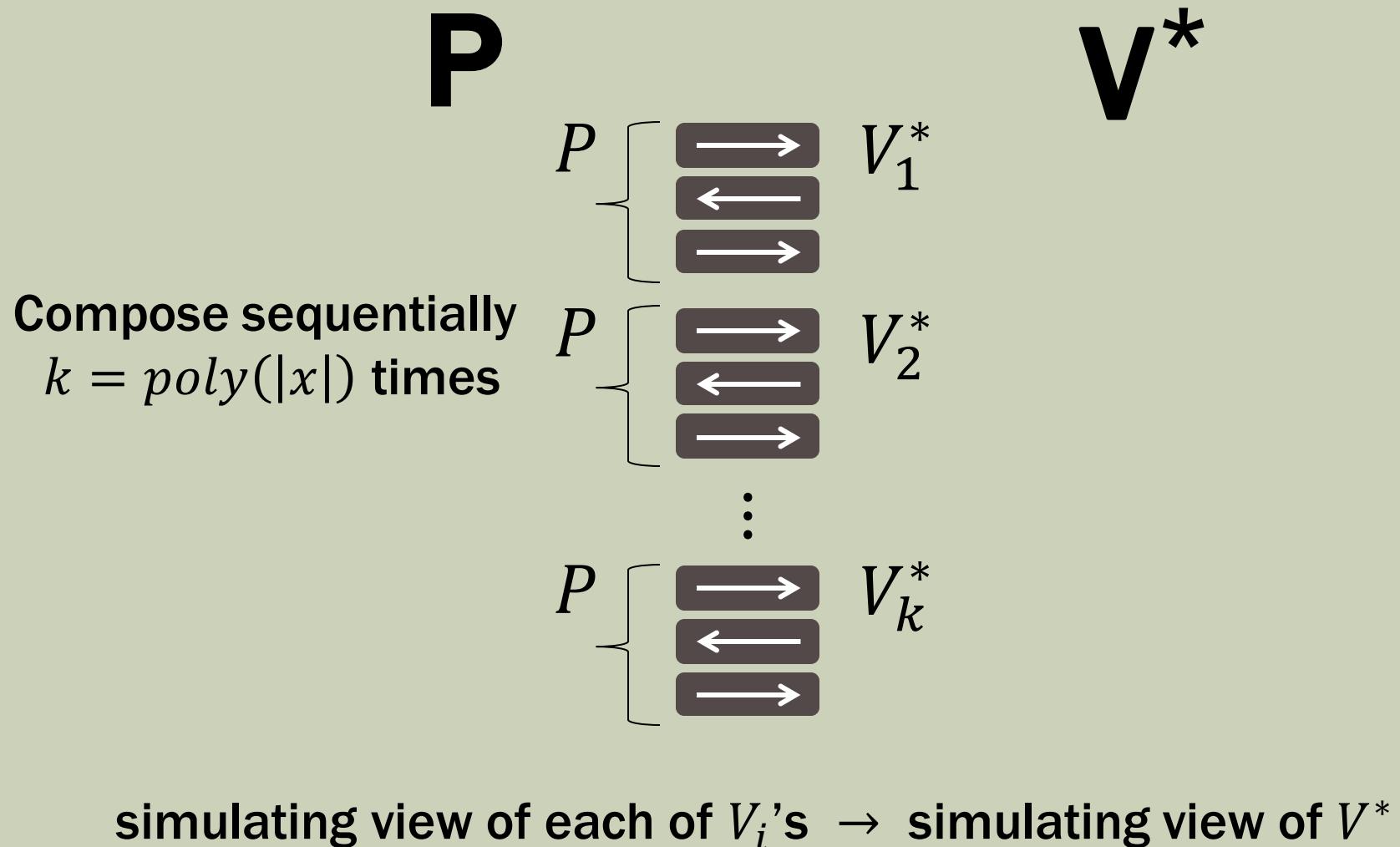
ZK wrt auxiliary input

Definition: An interactive proof (P, V) for L is (perfect) ZK wrt auxiliary input if $\forall \text{PPT } V^* \exists \text{PPT } S \forall x \in L \forall z$

$$S(x, z) \cong (P, V^*(z))(x)$$

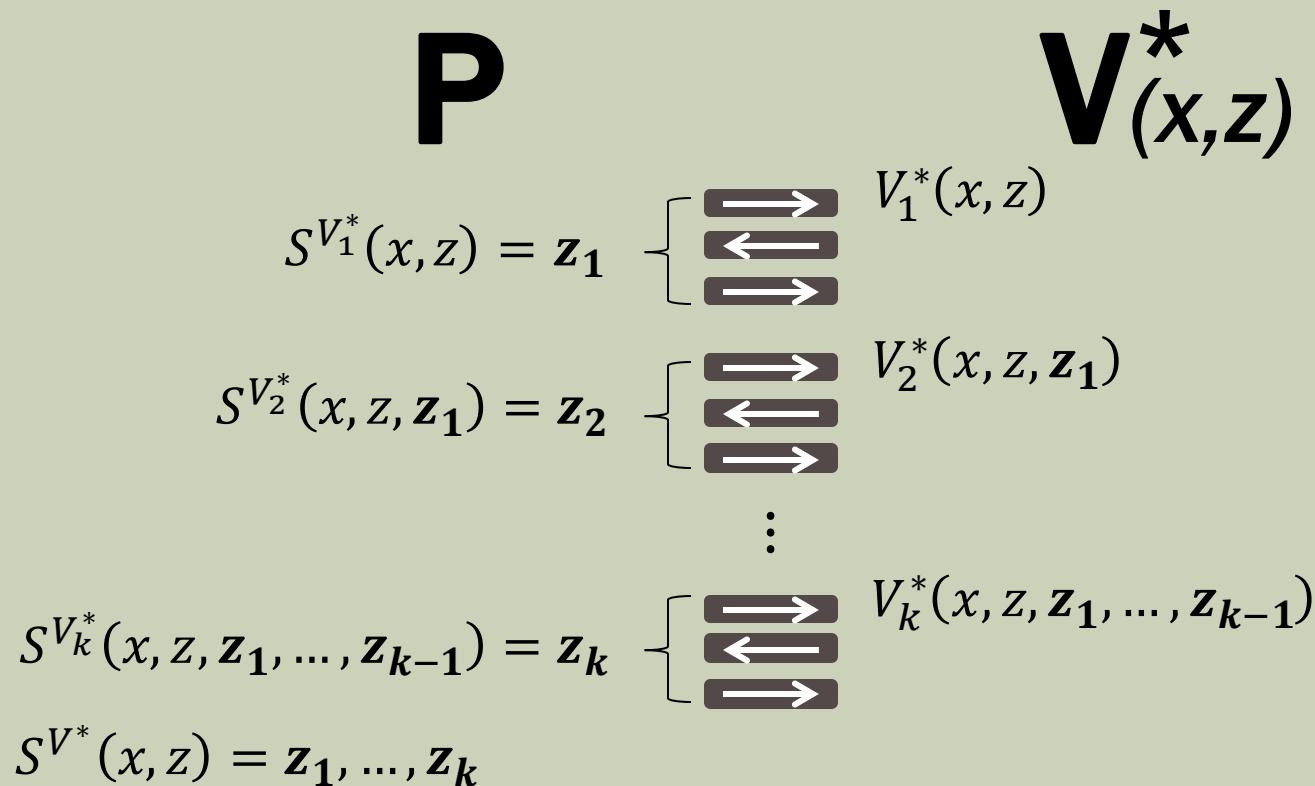
- z captures “context” in which protocol is executed
 - Other protocol executions (“environment”)
 - A-priori information (in particular about w)
- Simulator is also given the auxiliary input z
- Simulator runs in time $\text{poly}(|x|)$
- Auxiliary input z is essential for composition

Sequential composition of ZK



Sequential composition of ZK

Theorem: ZK is closed under sequential composition



$$\forall i, z_i \cong (P, V_i^*(z, z_1, \dots, z_{i-1})) (x)$$

Summary

Defined:

- NP, P, BPP, IP (= PSPACE)
- PZK, HVZK

Saw:

- $LIN, QR_N, SAT \in \text{NP}$
- $QR_N \in \text{HVZK}$
- $QR_N \in \text{PZK}$
- $\overline{QR_N} \in \text{HVZK}$
- **auxiliary input for ZK protocols**
- **sequential composition of ZK protocols**

Food for Thought

What if P=NP?

- If $P = NP$ then all $L \in NP$ can be proved in PZK
- P sends nothing to V , who decides $x \in L$ on his own
- But what about ZK within P?
- For instance against quadratic time verifiers?

Exercise: Suppose $\omega > 2$. Construct an interactive proof for LIN that is PZK for quadratic time verifiers

- An issue: composition. What about say n executions?
- In contrast, $poly(n)$ is closed under composition

History

Shafi Goldwasser

Silvio Micali

Charlie Rackoff

The End

Definition: An interactive proof system for L is a PPT algorithm V and a function P such that $\forall x$:

Completeness: If $x \in L$, then $\Pr[(P, V) \text{ accepts } x] \geq 2/3$

Soundness: If $x \notin L$, then $\forall P^*, \Pr[(P^*, V) \text{ accepts } x] \leq 1/3$

Definition: (P, V) for L is (perfect) ZK wrt auxiliary input if $\forall PPT V^* \exists PPT S \forall x \in L \forall z$

$$S(x, z) \cong (P(w), V^*(z))(x)$$