
BIU WINTER SCHOOL | February 2019

ZERO-KNOWLEDGE (INTRO)

ALON ROSEN IDC HERZLIYA



Zero-knowledge proofs

Prover 𝑃 Verifier 𝑉

𝑃 interacts with 𝑉 convincing him that a proposition is true

Interaction reveals nothing beyond validity of the proposition

If proposition is true, any 𝑉∗ might as well have 

generated (simulated) the interaction on his own

Avoids the question “what is knowledge?” altogether!



Example: color non-bl indness

I can distinguish 

the balls

Did I 

swap?



Example: color non-bl indness

He 

swapped…



You

Swapped!

• 𝑉’s “view”: a random bit that equals his “swap or not” bit

• 𝑉 could simulate view by picking random bit on his own!

Example: color non-bl indness

Damn…



What is zero-knowledge good for?

Can prove that I know a secret without having to reveal it

Identification:

1. Alice publishes 𝑦 = 𝑓(𝑥)

2. Alice proves to Bob in ZK that she knows 𝑥′ ∈ 𝑓−1(𝑦)

Protocol design:

1. Design against parties that follow instructions

2. Use ZK proof to force honest behavior

“trusted party” → protocol



Why zero-knowledge?

Remarkable definitional framework:

• At the heart of protocol design and analysis

• Brings to light key concepts and issues

Right level of abstraction:

• Simple enough to be studied/realized

• Feasibility/limitations delineate what is attainable

ZK is just a means to an end

• Weaker definitions are also useful (WI/WH/NIZK)

• Tension between modularity and efficiency



Proof Systems



What is a proof?

A method for establishing truth:

1. legal

2. authoritative

3. scientific

4. philosophical

5. mathematical

Axioms →→ ⋯ → Propositions

6.   probabilistic, interactive

𝜋



V𝜋

Proof Systems

Want to prove: 𝑥 ∈ 𝐿 for some language 𝐿 ⊆ Σ∗

Definition: A proof system for membership in 𝐿 is an 

algorithm 𝑉 such that ∀𝑥:

Completeness: If 𝑥 ∈ 𝐿, then ∃𝜋, V(𝑥, 𝜋) = ACCEPT

Soundness: If 𝑥 ∉ 𝐿, then ∀𝜋, V(𝑥, 𝜋) = REJECT

𝐿 = 𝑥 | ∃𝜋, 𝑉(𝑥,𝜋) = ACCEPT



NP Proof Systems

efficient verification ⟺ poly-time verification

Definition: An NP proof system for membership in L is 

an algorithm 𝑉 such that ∀𝑥:

Completeness: If 𝑥 ∈ 𝐿, then ∃𝜋, V(𝑥, 𝜋) = ACCEPT

Soundness: If 𝑥 ∉ 𝐿, then ∀𝜋, V(𝑥, 𝜋) = REJECT

Efficiency: V(𝑥, 𝜋) halts after at most 𝑝𝑜𝑙𝑦(|𝑥|) steps

• 𝑉′s running time is measured in terms of 𝑥 , the length of 𝑥

• poly 𝑥 = 𝑥 𝑐 for some constant 𝑐

• Necessarily, 𝜋 = 𝑝𝑜𝑙𝑦 𝑥



Example I : Boolean Satisf iabi l i ty

𝑆𝐴𝑇 = 𝜙|𝜙 is a satisfiable Boolean formula

𝑆𝐴𝑇 = 𝜙 𝑤1, … , 𝑤𝑛 | ∃𝑤 ∈ 0,1 𝑛 , 𝜙 𝑤 = 1

𝜙 ∈ 𝑆𝐴𝑇:

Complete: every 𝐿 ∈ 𝑁𝑃 reduces to 𝑆𝐴𝑇

Unstructured: 𝑒𝑥𝑝(𝑂(𝑛)) time (worst case).

V𝜋 = 𝑤 𝜙 𝑤 = 1
?



Example I I : Linear Equations

𝐿𝐼𝑁 = 𝐴, 𝑏 |𝐴𝑤 = 𝑏 ℎ𝑎𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝔽

𝐴, 𝑏 ∈ 𝐿𝐼𝑁 :

𝑒𝑥𝑝 𝑛 many 𝑤’s

Structured: decidable in time O 𝑛2.373 = 𝑝𝑜𝑙𝑦(𝑛)

V 𝐴𝑤 = 𝑏
?𝜋 = 𝑤



The class P

poly-time ⟺ efficient

Definition: 𝐿 ∈ P if there is a poly-time algorithm 𝐴
such that 𝐿 = 𝑥 | 𝐴(𝑥) = ACCEPT

BPP: 𝐴 is probabilistic poly-time (𝑃𝑃𝑇) and errs w.p. ≤ 1/3

NP complete

𝑆𝐴𝑇

𝐿𝐼𝑁 P

NP



Example I I I : Quadratic Residuosity

𝑄𝑅𝑁 = 𝑥| 𝑥 𝑖𝑠 𝑎 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑚𝑜𝑑 𝑁

𝑥 ∈ 𝑄𝑅𝑁 :

Structured: 𝑄𝑅𝑁 is a subgroup of ℤ𝑁
∗

𝑁 = 𝑃𝑄 𝑃 = 𝑄 = 𝑛 : 𝑒𝑥𝑝 ෨𝑂 𝑛1/3 time (avg. case)

V 𝑥 ≡ 𝑤2𝑚𝑜𝑑 𝑁
?𝜋 = 𝑤



Summary so far

efficient verification ⟺ poly-time verification

NP complete

𝑆𝐴𝑇

𝐿𝐼𝑁 P

NP

𝑄𝑅𝑁



Proving non-membership?

𝐴, 𝑏 ∉ 𝐿𝐼𝑁? decidable in time poly(𝑛)

𝜙 ∉ 𝑆𝐴𝑇:

𝑥 ∉ 𝑄𝑅𝑁 :

Naïve proof is exponentially large

[GMR’85]: allow proof to use

• Randomness (tolerate “error”)

• Interaction (add a “prover”)

V
𝑤1, … , 𝑤φ(𝑁)

∀𝑖, 𝑥 ≢ 𝑤𝑖
2𝑚𝑜𝑑𝑁

?

V𝑤1, … , 𝑤2𝑛 ∀𝑖, 𝜙 𝑤𝑖 = 0
?



Interactive Proofs



Interactive proof for 𝑄𝑅𝑁 [GMR’85]

Completeness: 𝑥 ∉ 𝑄𝑅𝑁 → 𝑦2∈ 𝑄𝑅𝑁 and 𝑥𝑦2 ∉ 𝑄𝑅𝑁

Soundness: 𝑥 ∈ 𝑄𝑅𝑁 → 𝑦2∈ 𝑄𝑅𝑁 and 𝑥𝑦2 ∈ 𝑄𝑅𝑁

∀𝑃∗, 𝑃𝑟𝑏 𝑃∗ 𝑧 = 𝑏 = 1/2

VP
𝑧 = 𝑦2 𝑏 = 0

𝑏′ = 𝑏

𝑥 ∉ 𝑄𝑅𝑁

𝑏 ∈𝑅 0,1
𝑦 ∈𝑅 ℤ𝑁

∗

?

𝑧 = 𝑥𝑦2 𝑏 = 1

𝑏′ 𝑧 = 1 𝑧 ∉ 𝑄𝑅𝑁

𝑏′ 𝑧 = 0 𝑧 ∈ 𝑄𝑅𝑁



Interactive Proof

𝑉 is probabilistic polynomial time (𝑃𝑃𝑇)

For any common input 𝑥, let:

𝑃𝑟 𝑃,𝑉 accepts 𝑥 ≜ 𝑃𝑟𝑟 𝑃, 𝑉 𝑥, 𝑟 = ACCEPT

VP
𝑚1

𝑥 ∈ 𝐿

𝑚2

𝑚𝑘 ACCEPT/REJECT

𝑟 ∈𝑅 0,1 𝑝𝑜𝑙𝑦( 𝑥 )

⋮



Interactive Proof Systems

Definition [GMR’85]: An interactive proof system for 𝐿 is a 

𝑃𝑃𝑇 algorithm 𝑉 and a function 𝑃 such that ∀𝑥:

Completeness: If 𝑥 ∈ 𝐿, then 𝑃𝑟 𝑃, 𝑉 accepts 𝑥 ≥ 2/3

Soundness: If 𝑥 ∉ 𝐿, then ∀𝑃∗, 𝑃𝑟 𝑃∗, 𝑉 accepts 𝑥 ≤ 1/3

• Completeness and soundness can be bounded by any 𝑐: ℕ → [0,1]
and 𝑠:ℕ → [0,1] as long as

• 𝑐 𝑥 ≥ 1/2 + 1/𝑝𝑜𝑙𝑦( 𝑥 )

• 𝑠 𝑥 ≤ 1/2 − 1/𝑝𝑜𝑙𝑦( 𝑥 )

• 𝑝𝑜𝑙𝑦( 𝑥 ) independent repetitions → 𝑐 𝑥 − 𝑠 𝑥 ≥ 1− 2−𝑝𝑜𝑙𝑦 𝑥

• NP is a special case (𝑐 𝑥 = 1 and 𝑠 𝑥 = 0)

• BPP is a special case (no interaction)



The Power of IP

Proposition: 𝑄𝑅𝑁 ∈ IP

• NP proof for 𝑄𝑅𝑁 not self-evident 

• This suggests that maybe NP ⊂ IP

• Turns out that 𝑆𝐴𝑇 ∈ IP (in fact #𝑆𝐴𝑇)

Theorem [LFKN’90]: 𝑃#P ⊆ IP

Theorem [Shamir’90]: IP = PSPACE



The power of IP

𝑆𝐴𝑇

𝐿𝐼𝑁

NPc

P

NP

𝑄𝑅𝑁

coNP

𝑆𝐴𝑇

IP = PSPACE [S’90]

coNPc

#𝑆𝐴𝑇 [LFKN’90]



Zero-Knowledge



𝑄𝑅𝑁 = 𝑥| 𝑥 𝑖𝑠 𝑎 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑚𝑜𝑑 𝑁

𝑥 ∈ 𝑄𝑅𝑁 :

• Generating 𝜋 - 𝑒𝑥𝑝( ෨𝑂 𝑛1/3 time 

• Verifying - O 𝑛2 time

𝑉 “got something for free” from seeing 𝜋

𝑉 may have not been able to find 𝑤 on his own!

A Proof that (presumably) Does Leak Info

V 𝑥 ≡ 𝑤2𝑚𝑜𝑑 𝑁
?𝜋 = 𝑤



Some attempts:

• 𝑉 didn’t learn 𝑤 (sometimes good enough!)

• 𝑉 didn’t learn any symbol of 𝑤

• 𝑉 didn’t learn any information about 𝑤

• 𝑉 didn’t learn any information at all (beyond 𝑥 ∈ 𝐿) 

When would we say that 𝑉 did learn something?

If following the interaction 𝑉 could compute something he 

could have not computed without it!

Zero-knowledge: whatever is computed following interaction 

could have been computed without it

Defining that “no knowledge leaked”



Zero-Knowledge (at last)

𝑉’s view = 𝑉’s random coins and messages it receives

∀𝑥 ∈ 𝐿, 𝑉’s view can be efficiently “simulated”

What does this mean?

Philosophically: 𝑉 is given the information that 𝑥 ∈ 𝐿

Modulo this, 𝑉 might as well have talked to himself 

Technically: 𝑉 view ≅ 𝑉 simulation

Whatever 𝑉 could compute following the interaction, 

he could have computed even without talking to 𝑃,    

by running the simulator on his own



𝑉 might as well talk to himself

VP
𝑚1

𝑥 ∈ 𝐿

𝑚2

𝑚𝑘

𝑉 𝑥, 𝑟,𝑚1, … ,𝑚𝑘

𝑟 ∈𝑅 0,1 𝑝𝑜𝑙𝑦( 𝑥 )

⋮

Bah. Forget it.              

I will just simulate.

↓

𝑉 sim(𝑥)



Honest Veri f ier Zero-Knowledge

𝑉’s view distribution can be simulated in poly-time

• We will allow simulator 𝑆 to be probabilistic (𝑃𝑃𝑇)

• Efficient ⟺ Probabilistic poly-time (BPP instead of P)

Definition [GMR’85]: An interactive proof 𝑃, 𝑉 for 𝐿 is 

(honest-verifier) zero-knowledge if ∃𝑃𝑃𝑇 𝑆 ∀𝑥 ∈ 𝐿

𝑆 𝑥 ≅ 𝑃, 𝑉 𝑥

• We use 𝑃, 𝑉 𝑥 to denote 𝑉’s view

• Usually 𝑃, 𝑉 𝑥 = 𝑉 view denotes 𝑉’s output

• Simulator for 𝑉’s view implies simulator for 𝑉’s output



Sanity check

𝑥 ∈ 𝑄𝑅𝑁 :

• ∀𝑥 ∈ 𝑄𝑅𝑁 , 𝑆 𝑥 2 ≡ 𝑥 𝑚𝑜𝑑 𝑁

• ∀𝑥 ∉ 𝑄𝑅𝑁 , 𝑆 𝑥 2 ≢ 𝑥 𝑚𝑜𝑑 𝑁

• 𝑄𝑅𝑁 ∉ 𝐵𝑃𝑃 → 𝑆 𝑥 2 ≢ 𝑥 𝑚𝑜𝑑𝑁 for some 𝑥 ∈ 𝑄𝑅𝑁

𝑃, 𝑉 for 𝐿 is not (honest-verifier) zero-knowledge if

∀ 𝑃𝑃𝑇 𝑆 ∃𝑥 ∈ 𝐿 so that

𝑆 𝑥 ≇ 𝑃, 𝑉 𝑥

V 𝑥 ≡ 𝑤2𝑚𝑜𝑑 𝑁
?𝜋 = 𝑤



A Zero-Knowledge proof for 𝑄𝑅𝑁

• 𝑃 is randomized and has auxiliary input 𝑤

• Distribution of V’s “view” 𝑃 𝑤 ,𝑉 𝑥 : 

uniformly random 𝑦, 𝑏, 𝑧 such that 𝑧2 = 𝑥𝑏𝑦

VP

𝑏 = 0: 𝑧 = 𝑟

𝑏

𝑧2 = 𝑦

𝑥 ∈ 𝑄𝑅𝑁

𝑏 ∈𝑅 0,1

?

𝑦 = 𝑟2𝑟 ∈𝑅 ℤ𝑁
∗

𝑥 = 𝑤2𝑚𝑜𝑑 𝑁

𝑏 = 1: 𝑧 = 𝑤𝑟 𝑧2 = 𝑥𝑦
?



A Zero-Knowledge proof for 𝑄𝑅𝑁

Claim: 𝑃, 𝑉 is an interactive proof for 𝑄𝑅𝑁

Soundness:

𝑥 ∈ 𝑄𝑅𝑁
↕

∃𝑦, 𝑦 ∈ 𝑄𝑅𝑁 and 𝑥𝑦 ∈ 𝑄𝑅𝑁

If 𝑃𝑟𝑏 𝑃∗, 𝑉 accepts 𝑥 > 1/2 

then both 𝑧0
2 = 𝑦 and 𝑧1

2 = 𝑥𝑦

VP*

𝑏 = 0: 𝑧0 = 𝑟

𝑏

𝑦 = 𝑟2

𝑏 = 1: 𝑧1 = 𝑤𝑟

𝑧0
2 = 𝑦

𝑧1
2 = 𝑥𝑦



Simulating 𝑉’s view

VP

random 𝑦,𝑏, 𝑧 such that 𝑧2 = 𝑥𝑏𝑦

Simulator 𝑆 𝑥

1. Sample 𝑧 ∈𝑅 ℤ𝑁
∗

2. Sample 𝑏 ∈𝑅 0,1

3. Set 𝑦 = 𝑧2/𝑥𝑏

4. Output 𝑦, 𝑏, 𝑧

random 𝑦,𝑏, 𝑧 such that 𝑧2 = 𝑥𝑏𝑦≅

Proposition: 𝑄𝑅𝑁 ∈ HVZK

𝑧

𝑏

𝑦



Simulating malicious 𝑉 ∗ ’s view

V*P

𝑧

𝑏 = 𝑉∗ 𝑦

𝑦

random 𝑦,𝑏, 𝑧 such that

𝑧2 = 𝑥𝑏𝑦 and 𝑏 = 𝑉∗ 𝑦

Simulator 𝑆 𝑥

1. Sample 𝑧 ∈𝑅 ℤ𝑁
∗

2. Sample 𝑏 ∈𝑅 ℤ𝑁
∗

3. Set 𝑦 = 𝑧2/𝑥𝑏

4. If 𝑉∗ 𝑦 = 𝑏 output 𝑦, 𝑏, 𝑧

5. Otherwise repeat

𝑥 ∈ 𝑄𝑅𝑁
↓

𝔼 #repetitions = 2

random 𝑦,𝑏, 𝑧 such that

𝑧2 = 𝑥𝑏𝑦 and 𝑏 = 𝑉∗ 𝑦
≅



Perfect Zero-Knowledge

Definition: An interactive proof system 𝑃, 𝑉 for 𝐿 is 

perfect zero-knowledge if ∀𝑃𝑃𝑇 𝑉∗ ∃𝑃𝑃𝑇 𝑆 ∀𝑥 ∈ 𝐿

𝑆 𝑥 ≅ 𝑃, 𝑉∗ 𝑥

Proposition: 𝑄𝑅𝑁 ∈ PZK

• Actually showed “black-box” ZK: ∃𝑃𝑃𝑇 𝑆 ∀𝑃𝑃𝑇 𝑉∗ ∀𝑥 ∈ 𝐿

𝑆𝑉
∗
𝑥 ≅ 𝑃, 𝑉∗ 𝑥

• We allowed 𝑆 to run in expected polynomial time

• Can we build 𝑆 with strict polynomial running time?



Amplifying soundness

Proposition: 𝑄𝑅𝑁 ∈ PZK w/ soundness error 2−𝑝𝑜𝑙𝑦 𝑥

VP

⋮
ACCEPT iff

all repetitions 

are accepting

𝑆𝑉
∗
𝑥 keeps state

of partial view

*

Repeat sequentially

𝑘 = 𝑝𝑜𝑙𝑦 𝑥 times

𝔼 time 𝑆 = 2 time 𝑉∗



Paral lel  repetition

𝔼 time 𝑆𝑉
∗

= 2𝑘 time 𝑉∗

Later: 

• Black-box impossibility

• 𝑉∗ whose view cannot be efficiently simulated

V

⋯

*



Auxiliary input 

and 

Composition



I P for 𝑄𝑅𝑁 i s not ZK

VP 𝑥 ∉ 𝑄𝑅𝑁

Proposition: 𝑄𝑅𝑁 ∈ HVZK

Not ZK wrt “auxiliary input”

𝑉∗ 𝑧 : use 𝑃 to decide if

𝑧 ∈ 𝑄𝑅𝑁

𝑧 is 𝑉∗‘s auxiliary input

𝑧 = 𝑦2 𝑏 = 0

𝑧 = 𝑥𝑦2 𝑏 = 1

𝑏′ = 1 𝑧 ∉ 𝑄𝑅𝑁

𝑏′ = 0 𝑧 ∈ 𝑄𝑅𝑁

Claim: 𝑃, 𝑉 is not 𝑍𝐾 (wrt auxiliary input)



ZK wrt auxi l iary input

Definition: An interactive proof 𝑃,𝑉 for 𝐿 is (perfect)

ZK wrt auxiliary input if ∀𝑃𝑃𝑇 𝑉∗ ∃𝑃𝑃𝑇 𝑆 ∀𝑥 ∈ 𝐿 ∀𝑧

𝑆 𝑥, 𝑧 ≅ 𝑃, 𝑉∗ 𝑧 𝑥

• 𝑧 captures “context” in which protocol is executed

• Other protocol executions (“environment”)

• A-priori information (in particular about 𝑤)

• Simulator is also given the auxiliary input 𝑧

• Simulator runs in time 𝑝𝑜𝑙𝑦 𝑥

• Auxiliary input 𝑧 is essential for composition



Sequential  composition of ZK

simulating view of each of 𝑉𝑖’s  → simulating view of 𝑉∗

P

⋮

V*

Compose sequentially

𝑘 = 𝑝𝑜𝑙𝑦 𝑥 times

𝑉1
∗

𝑉2
∗

𝑉𝑘
∗

𝑃

𝑃

𝑃



𝑆𝑉
∗
𝑥, 𝑧 = 𝒛𝟏, … , 𝒛𝒌

∀𝑖, 𝒛𝒊 ≅ 𝑃, 𝑉𝑖
∗ 𝑧, 𝒛𝟏,… , 𝒛𝒊−𝟏 𝑥

Sequential  composition of ZK

Theorem: ZK is closed under sequential composition

P

⋮

V(x,z)
*

𝑉1
∗ 𝑥, 𝑧

𝑉2
∗ 𝑥, 𝑧, 𝒛𝟏

𝑉𝑘
∗ 𝑥, 𝑧, 𝒛𝟏,… , 𝒛𝒌−𝟏

𝑆𝑉1
∗
𝑥, 𝑧 = 𝒛𝟏

𝑆𝑉2
∗
𝑥, 𝑧, 𝒛𝟏 = 𝒛𝟐

𝑆𝑉𝑘
∗
𝑥, 𝑧, 𝒛𝟏,… , 𝒛𝒌−𝟏 = 𝒛𝒌



Summary

Defined:

• NP, P, BPP, IP = PSPACE

• PZK, HVZK

Saw:

• 𝐿𝐼𝑁, 𝑄𝑅𝑁 , 𝑆𝐴𝑇 ∈ NP

• 𝑄𝑅𝑁 ∈ HVZK

• 𝑄𝑅𝑁 ∈ PZK

• 𝑄𝑅𝑁 ∈ HVZK

• auxiliary input for ZK protocols

• sequential composition of ZK protocols



Food for Thought



What i f  P=NP?

• If P = NP then all 𝐿 ∈ NP can be proved in PZK

• 𝑃 sends nothing to 𝑉, who decides 𝑥 ∈ 𝐿 on his own

• But what about ZK within P? 

• For instance against quadratic time verifiers?

Exercise: Suppose 𝜔 > 2. Construct an interactive proof 

for 𝐿𝐼𝑁 that is PZK for quadratic time verifiers

• An issue: composition. What about say 𝑛 executions?

• In contrast, 𝑝𝑜𝑙𝑦(𝑛) is closed under composition



History

Shafi Goldwasser Silvio Micali Charlie Rackoff



The End

Definition: An interactive proof system for 𝐿 is a 𝑃𝑃𝑇
algorithm 𝑉 and a function 𝑃 such that ∀𝑥:

Completeness: If 𝑥 ∈ 𝐿, then 𝑃𝑟 𝑃, 𝑉 accepts 𝑥 ≥ 2/3

Soundness: If 𝑥 ∉ 𝐿, then ∀𝑃∗, 𝑃𝑟 𝑃∗, 𝑉 accepts 𝑥 ≤ 1/3

Definition: 𝑃, 𝑉 for 𝐿 is (perfect) ZK wrt auxiliary input if 

∀𝑃𝑃𝑇 𝑉∗ ∃𝑃𝑃𝑇 𝑆 ∀𝑥 ∈ 𝐿 ∀𝑧

𝑆 𝑥, 𝑧 ≅ 𝑃 𝑤 , 𝑉∗ 𝑧 𝑥


