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Yvo Desmedt:Threshold cryptography. Eur. Trans. Telecommun. 5(4): 449-458 (1994)

Threshold Cryptography l\Y

Cryptographic
computations =
over shared keys o

o= — (M.Sig)

o Cryptographic computation:
o Decryption

o Signatures M

o Knowledge of the key is the security enabler )/)/ \\\ |
o The key is a single point of failure ~,°

o Distribute the key across many devices @% @5 @% & @r"

o Assume only a fraction can be
compromised
o Introduced by Yvo Desmedt in the early 90s
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Replication

Many Independent Keys

Can only
compute
sig4 and
sigb

At least 3
of the
sigs are

What we want:

a signature that looks like it was
produced by a single party, yet the
key is stored in shared form across
many devices

Issues:

e Inefficient (replication)

e Non-transparent security policy
Multisignatures address some of these issues

VERIFIER



Adi Shamir: How to Share a Secret. Commun. ACM 22(11): 612-613 (1979)

Secret Sharing 1

Shamir’s classic scheme

o A dealer holds a secret s and they want to share it among n players in a such a way that
® players have no information

® players can recover
o Let g be a prime and assume
o Choose a random polynomial of degree f such that:

Send to player P. the share
players can recover the secret by polynomial interpolation
players have no information about the secret in a strong information-theoretic sense
o For any possible secret s’ there is a polynomial ~’ which agrees with the secret and the
shares held by the adversary
o Interpolate F’ with and for the f indices i corresponding to the
adversary’s shares
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Sharing the key
We want the key to never be in one place
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Secret Sharing 2
Interpolation is a linear function

o Given a set S of values s. for we want to find the polynomial of degree f such that
® for
o Let be the Lagrangian polynomial of degree ¢ defined by
and for
©
o Then it must be that < Requires a field

©
o Since both sides of the equation are polynomials of degree ¢ agreeing on points

o Remember that in our case we want to find then
o Where the 0-Lagrangian coefficients associated with
< Requires a field

o Actually true for any
where the j-Lagrangian coefficients associated with



Our first example We have a cyclic group © of prime order
Efficient test ' to check if given

there exists such that and

BLS signatures

On input a message M,
we hash it to obtain >
and compute the signature

VERIFIER

Computes and uses
test | to check if there exists
such that and

D.Boneh, B.Lynn, H.Shacham: Short Signatures from the Weil Pairing. J. Cryptol. 17(4): 297-319 (2004)



Our first example

Threshold BLS signatures

o A dealer shares the secret key x among n parties using Shamir

o Let be the shares
o Remember there is a polynomial of degree f such that and
o Everything , the order of the group

o Oninput I every player outputs
o Given aset S of partial signatures
o Since and
o Then
o Interpolation in the exponent

A. Boldyreva. Efficient Threshold Signatures, Multisignatures and Blind Signatures based on the Gap-Diffie-Hellman-Group Signature Scheme.PKC 2003 LNCS 2567, pp. 31-46,



Threshold BLS Signatures

Why is this secure?

T
PE® S

The adversary learns nothing more than

o Given his own f partial signatures Given a signature it can simulate the
and entire view of the adversary

e They have a set S of points and can

interpolate in the exponent the other partial This implies that the adversary cannot

_ forge messages in the distributed
signatures scheme unless they can forge them in
o Since then the centralized one.




Threshold BLS Signatures

Simulator gives random
Unforgeability by Simulation e oo ot o ot

players

Assume the adversary
can forge controlling
only ¢ players

D @ @ iy
Wy WY v U

Simulator computes the adversary t partial signatures

SIMULATOR
and knows (forging centralized scheme)
e They can interpolate in the exponent the partial
signatures of the honest players
e Since then



Threshold BLS

Unforgeability vs Robustness

©

® shares of x (a polynomial of degree f such that and )
o Oninput M every player outputs the partial signature
o Given a set S of correct partial signatures s.then

Unforgeability proof holds for any
o Assumes semi-honest adversary (gathers information but follows protocol instructions)

What about a malicious adversary (deviates arbitrarily from the protocol)
Can we guarantee robustness

o The protocol always completes successfully with a valid signature (no denial of service)
First of all we need

o That's because 1 corrupted players can always refuse their partial signature

o But what about corrupted players giving incorrect partial signatures?



Chris Peikert:On Error Correction in the Exponent. TCC 2006: 167-183

Small Detour

Error correction?

If are n points on a polynomial of degree f (e.g. )
o We know that if then we can interpolate F[X] even if given the vector
o) for at least indices

o Reed-Solomon codes

o But we are interpolating in the exponent
o Given partial signatures
® of the form and t arbitrary
o Can we find

o [Peikert05] shows that this is a problem as hard as CDH (
@ So how can we deal with incorrect partial signatures?
o Try all possible subsets of partial signatures and only accept the one that yields a valid
signature
) solution so OK only for small



BLS robustness

Check partial signatures

o When the dealer shares the secret key x among n parties using Shamir
o Let be the shares ( of degree f such that and )
o Also publishes

o When a player outputs =. (which should be )
o For BLS signature use the efficient test T to check
o For groups without such a test there are efficient ZK proofs for the statement



Wait a minute

DEALER?

o We have assumed a dealer who shares the secret key
o Isn’t this a single point of failure?
e YES
o | thought we didn’t want single points of failure?
o This is already an improvement
o Sharing is a one-time event, the dealer can destroy all information about
once the sharing is done
o Can we do without a dealer
o YES
o But you have to wait :)
o Distributed Key Generation coming up later in the course.



C.P.Schnorr (1991), "Efficient Signature Generation by Smart Cards", Journal of Cryptology 4(3), 161-174

Our second example

Schnorr’s signatures

We have a cyclic group ¢ of prime order

On input a message

e Choose at >

random and
compute Computes and
e Compute checks
e Set

e Output



Our second example

Threshold Schnorr signatures

o A dealer shares the secret key x among n parties using Shamir
o Let be the shares (polynomial of degree f such that and )

o A dealer shares the secret nonce kK among n parties using Shamir
o Let be the shares (polynomial of degree t such that and )

o Oninput M every player outputs

o Given aset S of partial nonces <. we have that
o The players can now compute m and set

o Again this only works for semi-honest adversaries



Our second example

Robust Threshold Schnorr
signatures

o A dealer shares the secret key x among n parties using Shamir
o Let be the shares (polynomial of degree 1 such that
o T'he dealer also publishes

o A dealer shares the secret nonce kK among n parties using Shamir
o Let be the shares (polynomial of degree t such that
o T'he dealer also publishes and

o Oninput M every player outputs
o A partial signature is correct if
o Given aset S of partial signatures

and

and




Wait a minute

DEALER AGAIN?

o A dealer who shares the secret key x is a single point of failure limited in time
e Sharing is a one-time event, the dealer can destroy all information about x once
the sharing is done

o A dealer who shares the secret nonce k for each signature is a single point of failure all

the time
o Knowledge of the secret nonce k is equivalent to knowledge of x once a signature
is issued

o Can we do without a dealer
e YES
o Distributed Key Generation can be used to generate the nonce as well.



Simulator with
e gives random x. to the
adversary and

Unforgeability by Simulation  * Deresesnte

the honest players

Threshold Schnorr Signatures

Assume the adversary
can forge controlling
only ¢ players

D @ @ iy
WY WY W v U

Simulator with

SIMULATOR
® gives random k. to the adversary and (forging centralized scheme)
o Interpolates in the exponents the of the honest
players
o Now SIM knows s. of the corrupted players

With s they can interpolate the s. of the honest players



Distributed Key Generation

What properties do we need

o The n players should jointly generate a sharing of secret key
o Let be the private shares
o The public key
o The partial public keys

o This protocol is repeated for each signature to generate the nonce

o Let be the private shares, the public nonce and the partial public keys

o We should have a simulator that on input
e Produces an indistinguishable view for the adversary on an execution that outputs



P.Feldman: A Practical Scheme for Non-interactive Verifiable Secret Sharing. FOCS 1987: 427-437

Verifiable Secret Sharing (VSS)

Feldman’s VSS

o In VSS the players have a guarantee that there is a unique secret shared and that their shares
interpolate to the correct secret

o The dealer on input the secret
o Chooses a polynomial of degree f such that
o Let be the coefficients of ( )
o Broadcasts
o Sends to player i/ the share

o Player i checks that their share x. lies on the polynomial defined by
e Evaluation in the exponent
o Ifit does not they lodge a complaint

o If more than t complaints the dealer is bad and is disqualified
o Otherwise complaints are resolved by broadcasting the correct share



Distributed Key Generation

Pedersen’s DKG

o Player i perform a Feldman’s VSS of

o The value is public from the Feldman VSS
o [Each player j receives share z_ from player
o The value is also public from the Feldman VSS

o Let O be the set of players who are not disqualified
o The key x is defined as

Player i share is defined as

T.P. Pedersen: A Threshold Cryptosystem without a Trusted Party EUROCRYPT 1991: 522-526



G, S.Jarecki, H.Krawczyk, T. Rabin: Secure Distributed Key Generation for Discrete-Log Based Cryptosystems. J. Cryptol. 20(1)

There’s an issue ...

(Non)-Simulation of Pedersen’s DKG

The adversary controls
only ¢ players

W v W v

?? ??

Simulator with y:
o Performs Feldman’s VSS for good players without SIMULATOR
knowing the contribution of the adversary
o Thereis noway SIM can hit the right distribution (the target
value y)
o SIM needs to see the contribution of the adversary before
committing to the contribution of the honest players




G, S.Goldfeder:Fast Multiparty Threshold ECDSA with Fast Trustless Setup. CCS 2018: 1179-1194

Distributed Key Generation

Committed Pedersen’s DKG

o Player i commits to with a non-malleable trapdoor commitment
o Player /i perform a Feldman’s VSS of
o The value is public from the Feldman VSS

o And is checked against the commitment
o [Each player j receives share z_.from player
o The value is also public from the Feldman VSS

o Let O be the set of players who are not disqualified
o The key x is defined as

Player i share is defined as



Fixing the issue

Simulating Committed Pedersen’s DKG

Z,

Such that
Y=2Z ;

Z,2,

Rewind

SIMULATOR

Can’t be changed
due to non-malleability



Giving up Robustness

Adversary can always abort

o Inthe Committed Pedersen’s DKG the adversary can always refuse to

decommit

o Simulation gets stuck again

o The guarantee is that conditioned to the protocol successfully completing

we can hit the right distribution of public keys

o So the adversary can create a denial of service attack

o But cannot forge

o Since if the protocol completes we can turn a forgery in the
distributed system into one in the centralized one



G, S.Jarecki, H.Krawczyk, T. Rabin: Secure Distributed Key Generation for Discrete-Log Based Cryptosystems. J. Cryptol. 20(1)

Restoring Robustness

Prevent the adversary from aborting

o We need a “recoverable commitment”
o If the adversary refuses to open the honest parties can recover it
o That's exactly what VSS is!
o But remember that we need a “non-malleability” condition
o Preventing the adversary from committing to something related to the
honest players
o We are going to use an information—theoretically private VSS to commit
o The adversary has no information at all about the good players secrets
o Then we use Feldman’s VSS to compute the public key
o Enforcing that Feldman’s VSS is consistent with the information-theoretic
VSS used to commit



T.P. Pedersen: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. CRYPTO 1991: 129-140

Information-Theoretically Private Verifiable Secret Sharing

Pedersen’s VSS

The dealer on input the secret

o Chooses a random polynomial of degree f such that
o Let be the coefficients of ( )

o Chooses another random polynomial of degree
o Let be the coefficients of

o Broadcasts
e Sends to player i/ the share

o Player i checks that their shares lies on the polynomial defined by
e Evaluation in the exponent
o Ifit does not they lodge a complaint

o If more than f complaints the dealer is bad and is disqualified
o Otherwise complaints are resolved by broadcasting the correct share



Distributed Key Generation

Joint-Pedersen’s DKG

o Player i perform a Pedersen’s VSS of

o Player i perform a Feldman’s VSS of
o Only the public commitment part
o Uses the same polynomial F used to share
o Players already have the shares

o As before if @ is the set of players who are not disqualified

o The key x is defined as and
Player / share is defined as and

G, S.Jarecki, H.Krawczyk, T. Rabin: Secure Distributed Key Generation for Discrete-Log Based Cryptosystems. J. Cryptol. 20(1)



Solution with Robustness

Simulating Joint Pedersen’s DKG

Assuming honest majority SIM knows the values of the adversary
By interpolating the shares

Z

1
Such that

Y=2

Ped-VSS

SIMULATOR

\ If the adversary does not
reveal them, the honest

parties can recover them
via the Ped-VSS



Let’s stop for a second

Summary slide so far

o With a simulatable DKG we can construct Threshold Signatures for
discrete-log based schemes such as BLS and Schnorr
o Honest Majority with robustness
e Joint-Pedersen DKG
o Dishonest Majority with abort
e Committed Pedersen DKG

o Proof follows a simulation argument
o If you can forge in the threshold setting you can forge in the centralized
setting



What about DSA

DSA: The Digital Signature Standard

We have a cyclic group ¢ of prime order

On input a message

e Choose at random
and compute
o Set >
e Output Computes

and checks



What about DSA

DSA vs Schnorr

Inversion

On input a message On input a message
e Choose at e Choose at random
random and and compute
compute e Set - Multiplication of two

secret shared values
e Compute

e Output
e Set
e Output



Robust Threshold DSA

Threshold DSA DKG

o Joint-Pedersen DKG

G, S.Jarecki, H.Krawczyk, T. Rabin: Robust Threshold DSS Signatures. Inf.Comput. 164(1)



Robust Threshold DSA

Threshold DSA nonce

o Players perform two Joint-Pedersen DKG
o Let be the random values generated
o Only for a the Feldman phase is performed, so the value is public

o Players reconstruct the value
o By broadcasting the product shares
o Requires randomization with a 0-polynomial of degree

o The players and compute
o The players already have shares of
o Bar-llan & Beaver’91



Robust Threshold DSA

Threshold DSA s-value

o Players have shares of k and
o [Each party broadcasts
o Which interpolates to
o Requires randomization with a 0-polynomial of degree

o In both reconstructions how to weed out bad shares?
o With error correction codes (requires )
o Or with ZK-proofs of correctness with respect to the public values generated
by the VSSs (requires )



A little prehistoric detour

Multiplication of secrets shared additively

o Assume n players have additive shares of secrets
and
o Playeriholds a.and

o The parties want to compute an additive sharing of
o Note that c=

o If Parties /i and j could turn into two values d.. and e.. such that
©

o Then Player /could set c.to
©

(O]

0.Goldreich, S.Micali, A.Wigderson: How to Play any Mental Game or A Completeness Theorem for Protocols with Honest Majority. STOC 1987: 218-229



N.Gilboa:Two Party RSA Key Generation. CRYPTO 1999: 116-129

A little less prehistoric detour

Multiplicative to additive shares

o An MtA protocol allow two players Alice and Bob
o Who hold secrets respectively
o To turn them into secret respectively such that

o Let E be an additively homomorphic encryption scheme
o With message space and homomorphism over

%jm >
&

Knows D
Ll

Uses homomorphism to
compute B




P.MacKenzie, M.K.Reiter: Two-party generation of DSA signatures. Int. J. Inf. Sec. 2(3-4): 218-239 (2004)

What encryption scheme?

Can we use Palillier?

In our case g will be determined by the DSA parameters
o) with message space and homomorphism over Z exists under assumption over
class groups
o What about Paillier?
o Homomorphism is over ~  where 'V is an RSA modulus.
o Parties need to add a range ZK-proof that their values are “small”
o Prevent reduction
o Important for both privacy and correctness

Uses homomorphism to
compute B

Knows D

t @



Threshold DSA with abort

Threshold DSA DKG

o Committed Pedersen DKG
o FEach player has a share of xin a Shamir scheme

o When players want to sign we think of their shares as additive shares of
o Scaling them with the appropriate Lagrangian coefficient

R.Canetti, G, S.Goldfeder, N.Makriyannis, U.Peled: UC Non-Interactive, Proactive, Threshold ECDSA with Identifiable Aborts. CCS 2020: 1769-1787



Threshold DSA with abort

Threshold DSA

Simplified Version

© players perform two additive sharings of random values
and
o The values are committed with a non-malleable commitment
o Players performs 2 MtA protocols to get additive shares of and
o [Each player decommits A and players compute
o Players reconstruct b, compute and
o Players broadcast to interpolate

o Protocol aborts if the signature is not correct



Threshold DSA with abort

Aborting should not reveal info

We need to make sure that if the protocol aborts no information about the secrets of the
honest parties is revealed

o Reductions during the MtA protocols
o Avoided by enforcing range proofs

o Adversary using inconsistent values between the MtA protocols and the
reconstructions of
o Before outputting s the players check that and
o Via interpolation in the exponent
o And use ZK proof to enforce that those values are the same as the ones
used in the MtA protocols and in the reconstruction of



Additional References

More references on Threshold DSA with abort

Dishonest Majority:

(O]

(O]

Similar techniques to the ones described above

) Y.Lindell, A.Nof: Fast Secure Multiparty ECDSA. CCS 2018

Using an oblivious-transfer based MtA protocol (avoids introducing additional
assumptions)

° J.Doerner, Y.Kondi, E.Lee, a.shelat: Secure Two-party Threshold ECDSA from ECDSA Assumptions. IEEE Symposium on Security and Privacy 2018

Using class groups in the MtA protocol (no range proofs)

) G.Castagnos, D.Catalano, F.Laguillaumie, F.Savasta, . Tucker:Bandwidth-efficient threshold EC-DSA revisited: Online/Offline Extensions, Identifiable Aborts, Proactivity and
Adaptive Security. IACR ePrint 2021/291

Two-party case

) P.MacKenzie, M.K.Reiter: Two-party generation of DSA signatures. Int. J. Inf. Sec. 2(3-4): 218-239 (2004)
) Y.Lindell: Fast Secure Two-Party ECDSA Signing. CRYPTO (2) 2017: 613-644

Using MPC techniques
o The protocols we discussed are just traditional MPC protocols tailored to the
computation of the DSA function: here are other ways using e.g. precomputation of
Beaver’s triplets
D.Abram, A.Nof, C.Orlandi, P.Scholl, 0.Shlomovits: Low-Bandwidth Threshold ECDSA via Pseudorandom Correlation Generators. IACR ePrint 2021/1587

A.P. K.Dalskov, C.Orlandi, M.Keller, K.Shrishak, H. Shulman: Securing DNSSEC Keys via Threshold ECDSA from Generic MPC. ESORICS (2) 2020: 654-673



Additional References

More references on Threshold DSA with abort

Honest Majority:
o Assumes n>2t+1 but also aborts
o Trade-off is better efficiency and round complexity
o Also no need for a reliable broadcast channel
o Required by a robust and fair protocol

® l.Damgard, T.P.Jakobsen, J.B.Nielsen, J.l.Pagter, M.B.@stergard: Fast Threshold ECDSA with Honest Majority. SCN 2020: 382-400



Let’s revisit simulation

Unforgeability by Simulation

Assume the adversary
SO0 2o

can forge controlling
only ¢ players

Simulator: SIMULATOR
o Oninput simulates the DKG to hit (forging centralized scheme)
o Does not know secret keys for at least one
honest party
o Oninput M simulates signature protocol to hit

e Threshold scheme as secure as centralized one



But there is another strategy

Reduction to a hard problem

/ Embeds v somehow

REDUCTION

)
=

»

Consider Schnorr’s signature scheme:
o We know that forgery can be reduced to the

computation of discrete logs over the group Note that no such reduction is

® D.Pointcheval, J.Stern:Security Arguments for Digital Signatures and Blind
Signatures. J. Cryptol. 13(3): 361-396 (2000) known for DSA



Another strategy

Unforgeability by Reduction

Assume the adversary

can forge controlling
only 7 players ﬁ

REDUCTION

D @D @D \y
&al® & Eal® \&J \&J

Reduction:
o Oninput y runs a DKG with output
o Oninput M runs a signature protocol that outputs a
valid signature

The challenge z is embedded in the above transcripts Note that the reduction does
not have to hit any specific

:/r\]/herr\] alijversary forges it uses the forgery to solve value. Just be able to embed
e challenge. the challenge.



Back to the basics

Let’s go back to Pedersen’s DKG

©

©

A joint parallel execution of Feldman’s VSS of random values
It may be sufficient for a proof by reduction
o Unfortunately not for DSA
If the reduction is able to embed a specific challenge into the parameters of the
distributed scheme
o And extract the solution from a forgery
Then we can prove that the scheme is secure
o Interms of unforgeability

Note that this may not be sufficient for universal-composability
o Simulation guarantees that no information at all is leaked
o Allowing for arbitrary compositions



G, S.Jarecki, H.Krawczyk, T. Rabin: Secure Distributed Key Generation for Discrete-Log Based Cryptosystems. J. Cryptol. 20(1)

Simplifying Schnorr

Threshold Schnorr with Pedersen's DKG

We use Pedersen’s DKG both for the key and nonce generation

o Atthe end of the DKG the secret key is
o Where x, is the contribution of the honest players
e and is the contribution of the corrupted ones
e Andx,and may be related
o This is why the adversary can bias the resulting key

o Assuming honest majority
® Is known to the reduction
o From the VSS since it controls the majority of players
o This allows the reduction to embed the challenge in the contribution of one of the honest
players



Proving the simplified Schnorr

How the reduction works

The reduction runs on input and needs to compute
o During the DKG one honest player uses as their contribution for their Feldman’s VSS
o The reduction needs to simulate Feldman’s VSS for this player
o Remember we can simulate Feldman’s VSS to hit a particular
e The resulting secret key is
o Where x,, is the contribution of the other honest players
o Known to the reduction since it choose it for them
e and is the contribution of the corrupted ones
e Known to the reduction from the VSS and honest majority assumption
o Now adapt the standard reduction for the centralized Schnorr to the distributed case
o When the adversary queries a message
o Use the regular Schnorr reduction to produce a valid partial signature for the player who used
o Since we don’t know u the discrete log
o Uses programmability of the random oracle
o When the adversary produces the forgery
o Use the regular Schnorr reduction to obtain
o  Which in turns yields u (since the reduction knows x,, and x_.)



C.Komlo, I.Goldberg: FROST: Flexible Round-Optimized Schnorr Threshold Signatures. SAC 2020: 34-65

The state of the art

FROST

Two major improvements over the previous Schnorr threshold scheme

o Assume dishonest majority
o Atthe end of the DKG the secret key is
o We can’'t assume that is known to the reduction anymore

o Modifies Pedersen’s DKG: each party provides a proof of knowledge of their contribution
o Using Schnorr’s :)
o  Which makes available to the reduction

o Uses a different idea to generate nonces

© Each party i generates e. and d and publishes and
o Let M be the message and S the set of players signing
o Set as your additive share of the nonce
o Where

o This binds the nonces to the message and the set of players signing making them
effectively random across all executions



Let’s talk DKG

The challenge of a good DKG

The DKG protocols we discussed so far have the following drawbacks
o Requires synchronous networks
o Have quadratic communication
o Require several rounds to resolve complaints

Open problem: Design a truly scalable DKG!



Publicly Verifiable DKG
Reducing Rounds via public verification

In Feldman’s VSS parties check that their share match the public commitments
o If they don’t we require communication rounds to lodge and resolve complaints
o Orthere is an immediate abort

Using Verifiable Encryption the correctness of shares vs. public commitment can be verified directly
o Dealer performs Feldman’s VSS but does not send the shares privately to the parties
o Instead it encrypts them under their public keys and proves in ZK that they are correct values
o With respect to the public Feldman’s VSS commitments

An efficient implementation of this can be achieved with Paillier’s encryption
Pierre-Alain Fouque, Jacques Stern: One Round Threshold Discrete-Log Key Generation without Private Channels. Public Key Cryptography 2001: 300-316



Aggregatable DKG
Reducing Communication via aggregation

If the VSS is publicly verifiable (as in the previous slide) then it is not necessary that each party verifies
everybody else’s VSS
o Instead of broadcasting its VSS to everybody a party gossips the VSS to a small group
o Ifthe VSS is aggregatable each party aggregates all the VSS’s it receives into a single one and gossips it
again
o Eventually the DKG is the aggregation of all the VSSs with a large reduction in communication

A recent work constructs such a DKG where however the secret key is a group element, not a field
o Not usable for a “standard” signature scheme
o But they build a new Threshold Verifiable Unpredictable Function

Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, Alin Tomescu:Aggregatable Distributed Key Generation. EUROCRYPT (1) 2021: 147-176



Succinct Polynomial Commitments

Reducing Communication via trusted setup

Feldman’s VSS is an example of a polynomial commitment:

o The dealer commits to a polynomial with coefficients by publishing
o The value can be checked by Evaluation in the exponent
Is there a way to commit to a polynomial with a short (i.e. ) string?

o Yes! We know polynomial commitments where the public information and proof of correctness are constant

o However they require a trusted setup
) A.Kate, G.M.Zaverucha, |.Goldberg: Constant-Size Commitments to Polynomials and Their Applications. ASIACRYPT 2010: 177-194

There are other polynomial commitments with sub-linear (non constant) parameters without trusted setup
o Very important in SNARKSs
o Have not seen them used in DKGs



