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๏ Cryptographic computation: 
๏ Decryption
๏ Signatures

๏ Knowledge of the key is the security enabler
๏ The key is a single point of failure

๏ Distribute the key across many devices
๏ Assume only a fraction can be 

compromised 
๏ Introduced by Yvo Desmedt in the early 90s

Threshold Cryptography

Cryptographic 
computations 
over shared keys
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Yvo Desmedt:Threshold cryptography. Eur. Trans. Telecommun. 5(4): 449-458 (1994)



Replication

Many Independent Keys
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Can only 
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VERIFIER

At least 3 
of the 
sigs are 
valid

Issues:
● Inefficient (replication)
● Non-transparent security policy

Multisignatures address some of these issues 

What we want: 
a signature that looks like it was 
produced by a single party, yet the 
key is stored in shared form across 
many devices



๏ A dealer holds a secret s and they want to share it among n players in a such a way that 
๏ t players have no information s
๏ t+1 players can recover s 

๏ Let q be a prime and assume s∊Zq
๏ Choose a random polynomial F(x) ∊Zq[X] of degree t such that: 

๏ F(0)=s
๏ Send to player Pi  the share si=F(i) mod q 
๏ t+1 players can recover the secret by polynomial interpolation
๏ t players have no information about the secret in a strong information-theoretic sense

๏ For any possible secret s’ there is a polynomial F’ which agrees with the secret and the 
shares held by the adversary

๏ Interpolate F’ with F’(0)=s’ and F’(i)=si for the t indices i corresponding to the 
adversary’s shares

Secret Sharing 1

Shamir’s classic scheme

Adi Shamir: How to Share a Secret. Commun. ACM 22(11): 612-613 (1979)



Sharing the key

We want the key to never be in one place

M
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M Sig



๏ Given a set S of t+1 values si for i∊S we want to find the polynomial F[X] of degree t such that
๏ F(i)=  si for i∊S

๏ Let Λi,S[X] be the Lagrangian polynomial of degree t defined by
๏ Λi,S[i]=1 and Λi,S[j]=0 for j∊S, j≠i
๏ Λi,S[X] = [ ∏j∊S, j≠i (X-j) ] /  [ ∏j∊S, j≠i (i-j) ] 
๏ Then it must be that 

๏ F[X] =  ⅀i∊S Λi,S[X] si
๏ Since both sides of the equation are polynomials of degree t agreeing on t+1 points

๏ Remember that in our case we want to find s=F(0) then
๏ s= ⅀i∊S λi,S si
๏ where λi,S = Λi,S[0] the 0-Lagrangian coefficients associated with S
๏ λi,S =  [ ∏j∊S, j≠i j ] /  [ ∏j∊S, j≠i  (j-i)] 

๏ Actually true for any sj =F(j)
๏ sj = ⅀i∊S λj,i,S si  where λj,i,S = Λi,S[j] the j-Lagrangian coefficients associated with S

Secret Sharing 2

Interpolation is a linear function

Requires a field

Requires a field



Our first example

BLS signatures

VERIFIER

We have a cyclic group G of prime order q
Efficient test T to check if given y,g,s,m ∊ G 
there exists x∊Zq such that y=gx and s=mx

PK=y=gx

SK=x

On input a message M, 
we hash it to obtain m∊G 
and compute the signature 
s=mx

M,s

Computes m=H(M) and uses 
test T to check if there exists 
x∊Zq such that y=gx and s=mx

D.Boneh, B.Lynn, H.Shacham: Short Signatures from the Weil Pairing. J. Cryptol. 17(4): 297-319 (2004)



Our first example

Threshold BLS signatures

PK=y=gx

SK=x

M,s=mx

๏ A dealer shares the secret key x among n parties using Shamir
๏ Let [x1 … xn] be the shares
๏ Remember there is a polynomial F[X] of degree t such that F(0)=x and F(i)=xi
๏ Everything mod q, the order of the group G

๏ On input M every player outputs si = m xi

๏ Given a set S of t+1 partial signatures 
๏ Since x= ⅀i∊S λi,S xi  and s=mx 
๏ Then s= ∏i∊S,si 

λi,S 

๏ Interpolation in the exponent
A. Boldyreva. Efficient Threshold Signatures, Multisignatures and Blind Signatures based on the Gap-Diffie-Hellman-Group Signature Scheme.PKC 2003 LNCS 2567, pp. 31-46,



Threshold BLS Signatures

Why is this secure?

PK=y=gx

SK=x
s=mx

The adversary learns nothing more than s = m x

๏ Given his own t partial signatures si = m xi 

and s = m x

๏ They have a set S of t+1 points and can 
interpolate in the exponent the other partial 
signatures

๏ Since xj= ⅀i∊S λj,i,S xi  then sj= ∏i∊S,si 
λj,i,S 

M

M
s

x1 x2 x3 x4 x5 
s1 = m x1 s2 = m x2 s3 = m x3

Simulator:
Given a signature it can simulate the 
entire view of the adversary

This implies that the adversary cannot 
forge messages in the distributed 
scheme unless they can forge them in 
the centralized one. 



Threshold BLS Signatures

Unforgeability by Simulation

PK=y=gx

s=mx

Simulator computes the adversary t partial signatures 
si = m xi and knows s = m x

๏ They can interpolate in the exponent the partial 
signatures of the honest players

๏ Since xj= ⅀i∊S λj,i,S xi  then sj= ∏i∊S,si 
λj,i,S 

MM
s

x4 x5 
s1 s2 s3 

Assume the adversary 
can forge controlling 
only t players

SIMULATOR
(forging centralized scheme)

Simulator gives random xi  
to the adversary and plays 

the role of the honest 
players

M

M
s



Threshold BLS

Unforgeability vs Robustness
๏ PK=y=gx   SK=x

๏ [x1 … xn] shares of x (a polynomial F[X] of degree t such that F(0)=x and F(i)=xi )
๏ On input M every player outputs the partial signature si = m xi

๏ Given a set S of t+1 correct partial signatures si then s= ∏i∊S,si 
λi,S 

๏ Unforgeability proof holds for any t<n
๏ Assumes semi-honest adversary (gathers information but follows protocol instructions)

๏ What about a malicious adversary (deviates arbitrarily from the protocol)
๏ Can we guarantee robustness

๏ The protocol always completes successfully with a valid signature (no denial of service)
๏ First of all we need n>2t

๏ That’s because  t corrupted players can always refuse their partial signature 
๏ But what about corrupted players giving incorrect partial signatures?



Small Detour

Error correction?
If [x1 … xn] are n points on a polynomial F[X] of degree t (e.g. F(i)=xi )
๏ We know that if n>3t then we can interpolate F[X] even if given the vector [y1 … yn] 

๏ yi=xi for at least n-t indices 
๏ Reed-Solomon codes

๏ But we are interpolating in the exponent
๏ Given n>3t  partial signatures si 
๏ n-t of the form mF(i)  and t arbitrary

๏ Can we find s= mF(0)

๏ [Peikert05] shows that this is a problem as hard as CDH :(
๏ So how can we deal with incorrect partial signatures?
๏ Try all possible subsets of t+1 partial signatures and only accept the one that yields a valid 

signature s
๏ O(nt) solution so OK only for small n,t

Chris Peikert:On Error Correction in the Exponent. TCC 2006: 167-183



BLS robustness

Check partial signatures

๏ When the dealer shares the secret key x among n parties using Shamir
๏ Let [x1 … xn] be the shares (F[X] of degree t such that F(0)=x and F(i)=xi )
๏ Also publishes PKi=yi=gxi

๏ When a player outputs si (which should be m xi )
๏ For BLS signature use the efficient test T to check DLogm si = DLogg yi
๏ For groups without such a test there are efficient ZK proofs for the statement 

DLogm si = DLogg yi



Wait a minute

DEALER?
๏ We have assumed a dealer who shares the secret key x 
๏ Isn’t this a single point of failure?

๏ YES
๏ I thought we didn’t want single points of failure?

๏ This is already an improvement
๏ Sharing is a one-time event, the dealer can destroy all information about x 

once the sharing is done
๏ Can we do without a dealer

๏ YES
๏ But you have to wait :)
๏ Distributed Key Generation coming up later in the course. 



Our second example

Schnorr’s signatures

VERIFIER

We have a cyclic group G of prime order q

PK=y=gx

SK=x

On input a message M
● Choose k∊Zq at 

random and 
compute R=gk

● Compute 
m=H(M,y,R)∊Zq

● Set s=k+mx mod q
● Output (R,s)

M,R,s

Computes m=H(M,y,a) and 
checks 

Rym?=gs

C.P.Schnorr (1991), "Efficient Signature Generation by Smart Cards", Journal of Cryptology 4(3), 161–174



Our second example

Threshold Schnorr signatures

PK=y=gxSK=x

M,R,s

๏ A dealer shares the secret key x among n parties using Shamir
๏ Let [x1 … xn] be the shares (polynomial F[X] of degree t such that F(0)=x and F(i)=xi )

๏ A dealer shares the secret nonce k among n parties using Shamir
๏ Let [k1 … kn] be the shares (polynomial K[X] of degree t such that K(0)=k and K(i)=ki )

๏ On input M every player outputs Ri = g ki 
๏ Given a set S of t+1 partial nonces Ri we have that R= ∏i∊S,Ri 

λi,S 

๏ The players can now compute m and set si = ki +m xi mod q 

๏ s= ⅀i∊S λi,S si  

๏ Again this only works for semi-honest adversaries

● $ k∊Zq : R=gk

● s=k+mx mod q



Our second example

Robust Threshold Schnorr 
signatures

PK=y=gxSK=x

M,R,s

๏ A dealer shares the secret key x among n parties using Shamir
๏ Let [x1 … xn] be the shares (polynomial F[X] of degree t such that F(0)=x and F(i)=xi )
๏ The dealer also publishes PKi=yi=gxi

๏ A dealer shares the secret nonce k among n parties using Shamir
๏ Let [k1 … kn] be the shares (polynomial K[X] of degree t such that K(0)=k and K(i)=ki )
๏ The dealer also publishes R=gk  and Ri = g ki 

๏ On input M every player outputs si = ki +m xi mod q 

๏ A partial signature is correct if Ri yi 
m = gsi

๏ Given a set S of t+1 correct partial signatures 
๏ s= ⅀i∊S λi,S si  

● $ k∊Zq : R=gk

● s=k+mx mod q



Wait a minute

DEALER AGAIN?
๏ A dealer who shares the secret key x is a single point of failure limited in time

๏ Sharing is a one-time event, the dealer can destroy all information about x once 
the sharing is done

๏ A dealer who shares the secret nonce k for each signature is a single point of failure all 
the time
๏ Knowledge of the secret nonce k is equivalent to knowledge of x once a signature 

is issued

๏ Can we do without a dealer
๏ YES
๏ Distributed Key Generation can be used to generate the nonce as well. 



Threshold Schnorr Signatures

Unforgeability by Simulation

PK=y=gx

R,s
Simulator with R:
๏ gives random ki  to the adversary and
๏ Interpolates in the exponents the  Ri = g ki of the honest 

players
๏ Now SIM knows si of the corrupted players
๏ With s they can interpolate the si of the honest players

M
M
R
s

x4 x5 
s1 s2 s3 

Assume the adversary 
can forge controlling 
only t players

SIMULATOR
(forging centralized scheme)

Simulator with y: 
● gives random xi  to the 

adversary and
● Interpolates in the 

exponents the  yi = g xi of 
the honest players

M

M
R
s

r4 r5 



Distributed Key Generation

What properties do we need

๏ The n players should jointly generate a sharing of secret key x 
๏ Let [x1 … xn] be the private shares 
๏ The public key PK=y=gx

๏ The partial public keys PKi=yi=gxi

๏ This protocol is repeated for each signature to generate the nonce k
๏ Let [k1 … kn] be the private shares, the public nonce R=gk and the partial public keys 

Ri=gki

๏ We should have a simulator that on input y
๏ Produces an indistinguishable view for the adversary on an execution that outputs y 



Verifiable Secret Sharing (VSS)

Feldman’s VSS
๏ In VSS the players have a guarantee that there is a unique secret shared and that their shares 

interpolate to the correct secret 

๏ The dealer on input the secret x 
๏ Chooses a polynomial F[X] of degree t such that F(0)=x 

๏ Let [fo … ft ] be the coefficients of F[X] (fo=x )
๏ Broadcasts Fj = gfj

๏ Sends to player i the share xi = F(i)

๏ Player i checks that their share xi lies on the polynomial defined by [Fo … Ft ] 
๏ Evaluation in the exponent
๏ If it does not they lodge a complaint

๏ If more than t complaints the dealer is bad and is disqualified
๏ Otherwise complaints are resolved by broadcasting the correct share 

P.Feldman: A Practical Scheme for Non-interactive Verifiable Secret Sharing. FOCS 1987: 427-437



Distributed Key Generation

Pedersen’s DKG
๏ Player i perform a Feldman’s VSS of zi

๏ The value Zi = gzi  is public from the Feldman VSS 
๏ Each player j receives share zij from player i 
๏ The value Zij = gzij  is also public from the Feldman VSS

๏ Let Q be the set of players who are not disqualified 
๏ The key x is defined as x = ⅀i∊Q  zi
๏ y= gx = ∏j∊ Q Zj 
๏ Player i share is defined as xi = ⅀j∊Q  zji
๏ yi = gxi = ∏j∊ Q Zji 

T.P. Pedersen: A Threshold Cryptosystem without a Trusted Party EUROCRYPT 1991: 522-526



There’s an issue …

(Non)-Simulation of Pedersen’s DKG

PK=y=gx

Simulator with y:
๏ Performs Feldman’s VSS for good players without 

knowing the contribution of the adversary
๏ There is no way SIM can hit the right distribution (the target 

value y)
๏ SIM needs to see the contribution of the adversary before 

committing to the contribution of the honest players 

Z1=gz1

The adversary controls 
only t players

SIMULATOR

Z2=gz2 Z3=gz3 ?? ??

G, S.Jarecki, H.Krawczyk, T. Rabin: Secure Distributed Key Generation for Discrete-Log Based Cryptosystems. J. Cryptol. 20(1)



Distributed Key Generation

Committed Pedersen’s DKG
๏ Player i commits to Zi = gzi with a non-malleable trapdoor commitment
๏ Player i perform a Feldman’s VSS of zi

๏ The value Zi = gzi  is public from the Feldman VSS 
๏ And is checked against the commitment 

๏ Each player j receives share zij from player i 
๏ The value Zij = gzij  is also public from the Feldman VSS

๏ Let Q be the set of players who are not disqualified 
๏ The key x is defined as x = ⅀i∊Q  zi
๏ y= gx = ∏j∊ Q Zj 
๏ Player i share is defined as xi = ⅀j∊Q  zji
๏ yi = gxi = ∏j∊ Q Zji 

G, S.Goldfeder:Fast Multiparty Threshold ECDSA with Fast Trustless Setup. CCS 2018: 1179-1194



Fixing the issue

Simulating Committed Pedersen’s DKG

PK=y=gx
C1

SIMULATOR

C3 C4C2 C5

Z1 Z3 Z4Z2 Z5

Rewind

Z1
Such that 
Y = Z1Z2Z3Z4Z5

Z3 Z4Z2 Z5 Can’t be changed 
due to non-malleability



Giving up Robustness

Adversary can always abort 
๏ In the Committed Pedersen’s DKG the adversary can always refuse to 

decommit
๏ Simulation gets stuck again

๏ The guarantee is that conditioned to the protocol successfully completing 
we can hit the right distribution of public keys
๏ So the adversary can create a denial of service attack
๏ But cannot forge 

๏ Since if the protocol completes we can turn a forgery in the 
distributed system into one in the centralized one 



Restoring Robustness

Prevent the adversary from aborting 
๏ We need a “recoverable commitment” 

๏ If the adversary refuses to open the honest parties can recover it
๏ That’s exactly what VSS is!

๏ But remember that we need a “non-malleability” condition
๏ Preventing the adversary from committing to something related to the 

honest players
๏ We are going to use an information–theoretically private VSS to commit

๏ The adversary has no information at all about the good players secrets
๏ Then we use Feldman’s VSS to compute the public key

๏ Enforcing that Feldman’s VSS is consistent with the information-theoretic 
VSS used to commit

G, S.Jarecki, H.Krawczyk, T. Rabin: Secure Distributed Key Generation for Discrete-Log Based Cryptosystems. J. Cryptol. 20(1)



Information-Theoretically Private Verifiable Secret Sharing

Pedersen’s VSS
The dealer on input the secret x 

๏ Chooses a random polynomial F[X] of degree t such that F(0)=x 
๏ Let [fo … ft ] be the coefficients of F[X] (fo=x )

๏ Chooses another random polynomial R[X] of degree t
๏ Let [ro … rt ] be the coefficients of R[X] 

๏ Broadcasts Fj = gfj htj

๏ Sends to player i the share xi = F(i),  yi = R(i)

๏ Player i checks that their shares xi  yi lies on the polynomial defined by [Fo … Ft ] 
๏ Evaluation in the exponent
๏ If it does not they lodge a complaint

๏ If more than t complaints the dealer is bad and is disqualified
๏ Otherwise complaints are resolved by broadcasting the correct share 

T.P. Pedersen: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. CRYPTO 1991: 129-140



Distributed Key Generation

Joint-Pedersen’s DKG
๏ Player i perform a Pedersen’s VSS of zi

๏ Player i perform a Feldman’s VSS of zi
๏ Only the public commitment part
๏ Uses the same polynomial F used to share zi

๏ Players already have the shares

๏ As before if Q is  the set of players who are not disqualified
๏ The key x is defined as x = ⅀i∊Q zi  and y= gx = ∏j∊ Q Zj 
๏ Player i share is defined as xi = ⅀j∊Q zji and yi = gxi = ∏j∊ Q Zji 

G, S.Jarecki, H.Krawczyk, T. Rabin: Secure Distributed Key Generation for Discrete-Log Based Cryptosystems. J. Cryptol. 20(1)



Solution with Robustness

Simulating Joint Pedersen’s DKG

PK=y=gx
Ped-VSS

SIMULATOR
Z1
Such that 
Y = Z1Z2Z3Z4Z5

Z3 Z4Z2 Z5
If the adversary does not 
reveal them, the honest 
parties can recover them 
via the Ped-VSS

Ped-VSS

Assuming honest majority SIM knows the values of the adversary
By interpolating the shares



Let’s stop for a second

Summary slide so far
๏ With a simulatable DKG we can construct Threshold Signatures for 

discrete-log based schemes such as BLS and Schnorr 
๏ Honest Majority with robustness 

๏ Joint-Pedersen DKG
๏ Dishonest Majority with abort

๏ Committed Pedersen DKG

๏ Proof follows a simulation argument
๏ If you can forge in the threshold setting you can forge in the centralized 

setting



What about DSA

DSA: The Digital Signature Standard

VERIFIER

We have a cyclic group G of prime order q

PK=y=gx

SK=x

On input a message M
● Choose k∊Zq at random 

and compute R=ginv(k)

● Set s=k(m+xr) mod q
○ r=H(R), m=H(M)∊Zq

● Output (R,s)

M,R,s

Computes r=H(R), m=H(M)∊Zq
 and checks 
gmyr?=Rs



What about DSA

DSA vs Schnorr
On input a message M

● Choose k∊Zq at random 
and compute R=ginv(k)

● Set s=k(m+xr) mod q
○ r=H(R), m=H(M)∊Zq

● Output (R,s)

On input a message M
● Choose k∊Zq at 

random and 
compute R=gk

● Compute 
m=H(M,y,R)∊Zq

● Set s=k+mx mod q
● Output (R,s)

Inversion

Multiplication of two 
secret shared values 



Robust Threshold DSA

Threshold DSA DKG

PK=y=gxSK=x

M,R,s

๏ Joint-Pedersen DKG

● $ k∊Zq : R=ginv(k)

● s=k(m+xr) mod q 

G, S.Jarecki, H.Krawczyk, T. Rabin: Robust Threshold DSS Signatures. Inf.Comput. 164(1)



Robust Threshold DSA

Threshold DSA nonce

PK=y=gxSK=x

M,R,s

๏ Players perform two Joint-Pedersen DKG
๏ Let k,a be the random values generated
๏ Only for a the Feldman phase is performed, so the value A = ga  is public

๏ Players reconstruct the value b=ka
๏ By broadcasting the product shares

๏ Requires randomization with a 0-polynomial of degree 2t

๏  The players c=inv(b) mod q and compute R = g inv(k)= Ac

๏ The players already have shares of k 
๏ Bar-Ilan & Beaver’91

● $ k∊Zq : R=ginv(k)

● s=k(m+xr) mod q



Robust Threshold DSA

Threshold DSA s-value

PK=y=gxSK=x

M,R,s

๏ Players have shares of k and x
๏ Each party broadcasts si = mki + rkixi
๏ Which interpolates to s 

๏ Requires randomization with a 0-polynomial of degree 2t

๏  In both reconstructions how to weed out bad shares? 
๏ With error correction codes (requires n>4t+1)
๏ Or with ZK-proofs of correctness with respect to the public values generated 

by the VSSs (requires n>3t+1)

● $ k∊Zq : R=ginv(k)

● s=k(m+xr) mod q 



A little prehistoric detour

Multiplication of secrets shared additively
๏ Assume n players have additive shares of secrets a,b

๏ a=a1 + … + an and b=b1 + … + bn
๏ Player i holds ai and bi

๏ The parties want to compute an additive sharing of c=ab
๏ Note that c= ⅀i,j  aibj
๏ If Parties i and j could turn aibj into two values dij and eij such that 

๏ dij + eij = aibj
๏ Then Player i could set ci to

๏ aibi + ⅀i  dij + ⅀i eji

๏ c=c1 + … + cn
O.Goldreich, S.Micali, A.Wigderson: How to Play any Mental Game or A Completeness Theorem for Protocols with Honest Majority. STOC 1987: 218-229



A little less prehistoric detour

Multiplicative to additive shares 
๏ An MtA protocol allow two players Alice and Bob 

๏ Who hold secrets a,b∊Zq respectively
๏ To turn them into secret d,e∊Zq  respectively such that
๏ d+e=ab mod q 

๏ Let E be an additively homomorphic encryption scheme
๏ With message space and homomorphism over Zq 

A=E[a]

B=E[ab-e]Knows D

d=D[B]

$ e
Uses homomorphism to 
compute B

N.Gilboa:Two Party RSA Key Generation. CRYPTO 1999: 116-129



What encryption scheme?

Can we use Paillier?
In our case q will be determined by the DSA parameters
๏ E with message space and homomorphism over Zq exists under assumption over 

class groups
๏ What about Paillier? 

๏ Homomorphism is over ZN where N is an RSA modulus. 
๏ Parties need to add a range ZK-proof that their values are “small”

๏ Prevent reduction mod N
๏ Important for both privacy and correctness

A=E[a] +ZKP[a is “small”

B=E[ab-e]+ZKP[b,e are small]Knows D

d=D[B]

$ e
Uses homomorphism to 
compute B

P.MacKenzie, M.K.Reiter: Two-party generation of DSA signatures. Int. J. Inf. Sec. 2(3-4): 218-239 (2004)



Threshold DSA with abort

Threshold DSA DKG

PK=y=gxSK=x

M,R,s

๏ Committed Pedersen DKG
๏ Each player has a share of x in a (t,n) Shamir scheme

๏ When t+1 players want to sign we think of their shares as additive shares of x 
๏ Scaling them with the appropriate Lagrangian coefficient

● $ k∊Zq : R=ginv(k)

● s=k(m+xr) mod q

R.Canetti, G, S.Goldfeder, N.Makriyannis, U.Peled: UC Non-Interactive, Proactive, Threshold ECDSA with Identifiable Aborts. CCS 2020: 1769-1787



Threshold DSA with abort 

Threshold DSA 

PK=y=gxSK=x

M,R,s

Simplified Version 

๏ t+1 players perform two additive sharings of random values k,a 
๏ a=a1 + … + an and k=k1 + … + kn
๏ The values Ai = gai  are committed with a non-malleable commitment

๏ Players performs 2 MtA protocols to get additive shares of b=ka and z=kx 
๏ Each player decommits Ai and players compute A=ga=∏i Ai
๏ Players reconstruct b, compute c=inv(b) mod q and R = g inv(k)= Ac

๏ Players broadcast si=kim+rzi to interpolate s
๏ Protocol aborts if the signature is not correct 

● $ k∊Zq : R=ginv(k)

● s=k(m+xr) mod q



Threshold DSA with abort 

Aborting should not reveal info 

PK=y=gxSK=x

M,R,s

We need to make sure that if the protocol aborts no information about the secrets of the 
honest parties is revealed

๏ Reductions mod N during the MtA protocols
๏ Avoided by enforcing range proofs

๏ Adversary using inconsistent values between the MtA protocols and the 
reconstructions of R,s
๏ Before outputting s the players check that Rk=g and Rz=y

๏ Via interpolation in the exponent
๏ And use ZK proof to enforce that those values are the same as the ones 

used in the MtA protocols and in the reconstruction of s 

● $ k∊Zq : R=ginv(k)

● s=k(m+xr) mod q



Additional References

More references on Threshold DSA with abort 
Dishonest Majority:

๏ Similar techniques to the ones described above
๏ Y.Lindell, A.Nof: Fast Secure Multiparty ECDSA. CCS 2018

๏ Using an oblivious-transfer based MtA protocol (avoids introducing additional 
assumptions)

๏ J.Doerner, Y.Kondi, E.Lee, a.shelat: Secure Two-party Threshold ECDSA from ECDSA Assumptions. IEEE Symposium on Security and Privacy 2018

๏ Using class groups in the MtA protocol (no range proofs)
๏ G.Castagnos, D.Catalano, F.Laguillaumie, F.Savasta, I.Tucker:Bandwidth-efficient threshold EC-DSA revisited: Online/Offline Extensions, Identifiable Aborts, Proactivity and 

Adaptive Security. IACR ePrint 2021/291 

๏ Two-party case
๏ P.MacKenzie, M.K.Reiter: Two-party generation of DSA signatures. Int. J. Inf. Sec. 2(3-4): 218-239 (2004)
๏ Y.Lindell: Fast Secure Two-Party ECDSA Signing. CRYPTO (2) 2017: 613-644

๏ Using MPC techniques
๏ The protocols we discussed are just traditional MPC protocols tailored to the 

computation of the DSA function: here are other ways using e.g. precomputation of 
Beaver’s triplets

๏ D.Abram, A.Nof, C.Orlandi, P.Scholl, O.Shlomovits: Low-Bandwidth Threshold ECDSA via Pseudorandom Correlation Generators. IACR ePrint 2021/1587

๏ A.P. K.Dalskov, C.Orlandi, M.Keller, K.Shrishak, H. Shulman: Securing DNSSEC Keys via Threshold ECDSA from Generic MPC. ESORICS (2) 2020: 654-673



Additional References

More references on Threshold DSA with abort 
Honest Majority:

๏ Assumes n>2t+1 but also aborts
๏ Trade-off is better efficiency and round complexity 
๏ Also no need for a reliable broadcast channel

๏ Required by a robust and fair protocol
๏ I.Damgård, T.P.Jakobsen, J.B.Nielsen, J.l.Pagter, M.B.Østergård: Fast Threshold ECDSA with Honest Majority. SCN 2020: 382-400



Let’s revisit simulation

Unforgeability by Simulation

PK

s
Simulator:
๏ On input PK simulates the DKG to hit PK

๏ Does not know secret keys for at least one 
honest party

๏ On input M simulates signature protocol to hit s
๏ Threshold scheme as secure as centralized one 

MM
s

Assume the adversary 
can forge controlling 
only t players

SIMULATOR
(forging centralized scheme)

M

M
s

PK

s



But there is another strategy

Reduction to a hard problem

PK

s

Consider Schnorr’s signature scheme:
๏ We know that forgery can be reduced to the 

computation of discrete logs over the group G
๏ D.Pointcheval, J.Stern:Security Arguments for Digital Signatures and Blind 

Signatures. J. Cryptol. 13(3): 361-396 (2000)

 

M

REDUCTION

M
s

PK

s

M

M
s

z=gu

u

Embeds y somehow

Note that no such reduction is 
known for DSA



Another strategy

Unforgeability by Reduction

Reduction:
๏ On input y runs a DKG with output PK
๏ On input M runs a signature protocol that outputs a 

valid signature s
๏ The challenge z is embedded in the above transcripts 
๏ When adversary forges it uses the forgery to solve 

the challenge. 

M
s

Assume the adversary 
can forge controlling 
only t players

REDUCTION

M

PK

z=gu

s

u

Note that the reduction does 
not have to hit any specific 
value. Just be able to embed 
the challenge. 



Back to the basics

Let’s go back to Pedersen’s DKG
๏ A joint parallel execution of Feldman’s VSS of random values
๏ It may be sufficient for a proof by reduction

๏ Unfortunately not for DSA
๏ If the reduction is able to embed a specific challenge into the parameters of the 

distributed scheme 
๏ And extract the solution from a forgery

๏ Then we can prove that the scheme is secure
๏ In terms of unforgeability

๏ Note that this may not be sufficient for universal-composability 
๏ Simulation guarantees that no information at all is leaked
๏ Allowing for arbitrary compositions



Simplifying Schnorr

Threshold Schnorr with Pedersen's DKG
We use Pedersen’s DKG both for the key and nonce generation

๏ At the end of the DKG the secret key is x=xH+xC
๏ Where xH is the contribution of the honest players
๏ and  xC  is the contribution of the corrupted ones
๏ And xH and xC  may be related 

๏ This is why the adversary can bias the resulting key

๏ Assuming honest majority
๏ xC Is known to the reduction 

๏ From the VSS since it controls the majority of players 
๏ This allows the reduction to embed the challenge in the contribution of one of the honest 

players

G, S.Jarecki, H.Krawczyk, T. Rabin: Secure Distributed Key Generation for Discrete-Log Based Cryptosystems. J. Cryptol. 20(1)



Proving the simplified Schnorr

How the reduction works
The reduction runs on input z=gu and needs to compute u
๏ During the DKG one honest player uses z=gu as their contribution for their Feldman’s VSS

๏ The reduction needs to simulate Feldman’s VSS for this player
๏ Remember we can simulate Feldman’s VSS to hit a particular z

๏ The resulting secret key is x=u+xH+xC
๏ Where xH is the contribution of the other honest players 

๏ Known to the reduction since it choose it for them
๏ and  xC  is the contribution of the corrupted ones

๏ Known to the reduction from the VSS and honest majority assumption
๏ Now adapt the standard reduction for the centralized Schnorr to the distributed case

๏ When the adversary queries a message M
๏ Use the regular Schnorr reduction to produce a valid partial signature for the player who used z

๏ Since we don’t know u the discrete log
๏ Uses programmability of the random oracle

๏ When the adversary produces the forgery
๏ Use the regular Schnorr reduction to obtain x
๏ Which in turns yields u (since the reduction knows xH and xC ) 



The state of the art

FROST
Two major improvements over the previous Schnorr threshold scheme

๏ Assume dishonest majority
๏ At the end of the DKG the secret key is x=xH+xC
๏ We can’t assume that xC  is known to the reduction anymore
๏ Modifies Pedersen’s DKG: each party provides a proof of knowledge of their contribution

๏ Using Schnorr’s :)
๏ Which makes xC  available to the reduction 

๏ Uses a different idea to generate nonces
๏ Each party i generates ei and di and publishes Ei =gei and Di =gdi

๏ Let M be the message and S the set of t+1 players signing
๏ Set ki =ei +ri di as your additive share of the nonce k 
๏ Where ri =H(M,i,S)

๏ This binds the nonces to the message and the set of players signing making them 
effectively random across all executions 

C.Komlo, I.Goldberg: FROST: Flexible Round-Optimized Schnorr Threshold Signatures. SAC 2020: 34-65



Let’s talk DKG

The challenge of a good DKG
The DKG protocols we discussed so far have the following drawbacks

๏ Requires synchronous networks
๏ Have quadratic communication
๏ Require several rounds to resolve complaints

Open problem: Design a truly scalable DKG!



Publicly Verifiable DKG

Reducing Rounds via public verification
In Feldman’s VSS parties check that their share match the public commitments
๏ If they don’t we require communication rounds to lodge and resolve complaints

๏ Or there is an immediate abort

Using Verifiable Encryption the correctness of shares vs. public commitment can be verified directly
๏ Dealer performs Feldman’s VSS but does not send the shares privately to the parties
๏ Instead it encrypts them under their public keys and proves in ZK that they are correct values

๏ With respect to the public Feldman’s VSS commitments

An efficient implementation of this can be achieved with Paillier’s encryption 
Pierre-Alain Fouque, Jacques Stern: One Round Threshold Discrete-Log Key Generation without Private Channels. Public Key Cryptography 2001: 300-316



Aggregatable DKG

Reducing Communication via aggregation 
If the VSS is publicly verifiable (as in the previous slide) then it is not necessary that each party verifies 
everybody else’s VSS
๏ Instead of broadcasting its VSS to everybody a party gossips the VSS to a small group
๏ If the VSS is aggregatable each party aggregates all the VSS’s it receives into a single one and gossips it 

again
๏ Eventually the DKG is the aggregation of all the VSSs with a large reduction in communication

A recent work constructs such a DKG where however the secret key is a group element, not a field
๏ Not usable for a “standard” signature scheme
๏ But they build a new Threshold Verifiable Unpredictable Function 

Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, Alin Tomescu:Aggregatable Distributed Key Generation. EUROCRYPT (1) 2021: 147-176



Succinct Polynomial Commitments

Reducing Communication via trusted setup 
Feldman’s VSS is an example of a polynomial commitment:

๏ The dealer commits to a polynomial F[X] with coefficients [fo … ft ]  by publishing Fj = gfj

๏ The value xi = F(i) can be checked by Evaluation in the exponent

Is there a way to commit to a polynomial with a short (i.e. o(t)) string?
๏ Yes! We know polynomial commitments where the public information and proof of correctness are constant
๏ However they require a trusted setup 

๏ A.Kate, G.M.Zaverucha, I.Goldberg: Constant-Size Commitments to Polynomials and Their Applications. ASIACRYPT 2010: 177-194

There are other polynomial commitments with sub-linear (non constant) parameters without trusted setup 
๏ Very important in SNARKs
๏ Have not seen them used in DKGs


