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The first public key signature

RSA signatures

VERIFIER

Let N=pq be the product of two primes.

PK=(N,e)

SK=d=e-1

On input a message M, 
we hash it to obtain 
m ZN and compute the 

signature s=md

M,s

Computes m=H(M) and 
m=se mod N 

Rivest, R.; Shamir, A.; Adleman, L. (February 1978). "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems". Communications of the ACM. 21 (2)



Let s start with additive

n-out-of-n RSA signatures

PK=(N,e)

SK=d

M,s=md

A dealer generates N,e,d and shares the secret key d among n parties additively
Let [d1 n] be the shares chosen at random in Z

such that d= d1 n

To sign players reveal si=mdi mod N 
Then s= s1 n mod N

Why is this secure?
Same interpolation in the exponent argument as in the case of dlog schemes
The simulator gives random di to the adversary  

given s it can compute the partial signatures of the honest players 
Random di to chosen where? The simulator does not know 

It chooses them in ZN

Since the uniform distributions in Z and ZN are indistinguishable 
When p ~ q

Y.Desmedt, Y.Frankel: Threshold Cryptosystems. CRYPTO 1989: 307-315



The dealer can share d
Choose a random polynomial F(x) Z [X] of degree t such that F(0)=d
Send to player Pi the share di=F(i) mod 

A set S of t+1 players cannot recover the secret by polynomial interpolation 
To compute the Lagrangians they need to invert elements 
Which is secret and cannot be leaked to the participants

Remember that d= i S i,S di

where i,S j j (j-i)] 

which cannot be computed by the players
What the players can compute is (n!)d by revealing (n!)di

Since (n!) i,S is an integer 

Move to threshold



Threshold RSA First Attempt

t-out-of-n RSA signatures

PK=(N,e)

SK=d

M,s=md

A dealer generates N,e,d and shares the secret key d among n parties with Shamir 

Let [d1 n] be the shares 
To sign players reveal si=mdi mod N 

Then sn! = i S si = md*n! mod N 

How do we get s?
Assume that GCD(e,n!)=1 (choose e>n)

Use Extended Euclidean algorithm to compute a,b such that a*e+b*n!=1

s = md = md(a*e+b*n!) = ma * mb*d*n! = ma * sb mod N

Victor Shoup: Practical Threshold Signatures. EUROCRYPT 2000: 207-220



Threshold RSA

PK=(N,e)

s=mdSimulator computes the adversary t partial signatures 
si = m di and knows s0=s = m d

But cannot interpolate in the exponent the partial 
signatures of the honest players

Since dj= i S j,i,S di  then sj i S,si

And the Lagrangians are fractions
He can however interpolate sj

n! 
i S,si

M

d4 d5

s1 s2 s3

Assume the adversary 
can forge controlling 
only t players

SIMULATOR
(forging centralized scheme)

Simulator gives random di  

to the adversary and plays 
the role of the honest 

players

M



Threshold RSA 

t-out-of-n RSA signatures

PK=(N,e)

SK=d

M,s=md

A dealer generates N,e,d and shares the secret key d among n parties with Shamir 

Let [d1 n] be the shares 
To sign players reveal si=mdi * n! mod N 

Then sz = i S si = md*z mod N 
Where z=(n!)2

We get s via the GCD trick again assuming that GCD(e,z)=1 (choose e>n)

Victor Shoup: Practical Threshold Signatures. EUROCRYPT 2000: 207-220



Threshold RSA

Simulation

PK=(N,e)

s=mdSimulator computes the adversary t modified partial 
signatures ui = m di and knows u0=s=m d

It can interpolate in the exponent the partial 
signatures of the honest players

Since dj= i S j,i,S di  then sj i S,si

And the Lagrangians are fractions
uj

n! 
i S,ui

M

d4 d5

s1 s2 s3

Assume the adversary 
can forge controlling 
only t players

SIMULATOR
(forging centralized scheme)

Simulator gives random di  

to the adversary and plays 
the role of the honest 

players

M



What if the identifiers are big

Ad-hoc groups

PK=(N,e)

SK=d

M,s=md

In the previous solution the value n is a parameter to the scheme
Computation is linear in n (exponentiate to n!)
assumes that the identifiers of the players are exactly integers between 1 and n

n! grows really large if identifiers are random k-bit strings

To sign players reveal si=mdi * n! mod N 
Then sz = i S si = md*z mod N 

G, S.Halevi, H.Krawczyk, T.Rabin:Threshold RSA for Dynamic and Ad-Hoc Groups. EUROCRYPT 2008

reduction

Computation of signature
This one can be replaced with lcm{(i-j)} for i,j S
<2kt

???



Ad-Hoc Groups Threshold RSA

Back to the Simulation

PK=(N,e)

s=mdSimulator computes the adversary t partial signatures 
si = m di and knows s0=s = m d

To interpolate in the exponent the partial 
signatures of the honest players it has to compute 
a zA-root of m

Where zA is the product of all the 

Lagrangians

M
d4 d5?? ?? ??

Assume the adversary 
can forge controlling 
only t players

SIMULATOR
(forging a modified scheme)

Simulator gives random di  

to the adversary and plays 
the role of the honest 

players

M

zA

M

s=md

zA-root(m)

If GCD(e,zA)=1 conjectured not to help find e-roots

Knowledge of allows the simulator to 
complete the simulation



Adding robustness

Dealing with bad partial signatures

Remember that on message M a player outputs si=mdi mod N 
How to detect bad partial signatures?

Message Authentication Codes:
For every share di, the dealer chooses n triplets (aij,bij,cij) such that

aij * di + bij = cij over the integers
With aij [0 2k1] and bij [0..2k2] chosen uniformly at random
And sends cij  to player i and aij,bij to player j

When player i outputs  si=mdi mod N 
It sends to player j the value Cij = mcij mod N 
Player j accepts si if si

aij * mbij= Cij mod N 

G, S.Jarecki, H.Krawczyk,T.Rabin: Robust and Efficient Sharing of RSA Functions. J. Cryptol. 13(2): 273-300 (2000)



Adding robustness

Dealing with bad partial signatures

Remember that on message M a player outputs si=mdi mod N 

Zero-Knowledge Proofs:
For every share di, the dealer publishes Gi = gdi mod N

When player i outputs  si=mdi mod N 
It also sends a ZK proof that si and  Gi to have the same discrete log with 
respect to m and g 

It requires restricting m,g to a cyclic subgroup of ZN*

For safe primes the subgroup of quadratic residues

G, S.Jarecki, H.Krawczyk,T.Rabin: Robust and Efficient Sharing of RSA Functions. J. Cryptol. 13(2): 273-300 (2000)



Equality of discrete log ZK Proofs in groups of prime order 

y=gx s=mx

a=gr,b=mr

D.Chaum, T.P. Pedersen:
Wallet Databases with Observers. CRYPTO 1992

c

d=r+cx mod q

$ r Zq

$ c Zq

ayc?=gd 

bsc?=md

Public coin: can be made non-interactive 
via Fiat-Shamir. Proof of knowledge of x

c=gamb

d=cx

-interactive). Two 
round HVZK (can be turned into 4-round full Zk)

$ a,b Zq

D.Chaum, H.Van Antwerpen:
Undeniable Signatures. CRYPTO 1989

d?=yasd



Composite order

Equality of discrete log ZK Proofs in groups of unknown order 

y=gx s=mx

a=gr,b=mr

c

d=r+cx over the integers

$ 
r

$ c

ayc?=gd 

bsc?=md

mod  N

Choose r large enough to statistically hide x

c=gamb

d=cx

$ a,b ZN

d?=yasd

G, S.Jarecki, H.Krawczyk,T.Rabin: Robust and Efficient Sharing of RSA Functions. J. Cryptol. 13(2): 273-300 (2000)



Wait a minute

DEALER?
This time removing the dealer is not as easy as in the case of discrete log based 
schemes

The dealer does not just generate a random value
It generates an RSA modulus N with its factorization and then the values e,d

To replace the dealer we need to come up with a protocol to do all of the above 
distributed with the above secrets (the factorization) in shared form

While in principle this is obtainable via MPC protocols it is still a difficult task to 
perform efficiently

The bottleneck would be the repeated computation of modular 
exponentiations in a distributed Miller-Rabin primality test
This has been a very active research area



Distributed RSA Generation

Avoiding Miller-Rabin

a. The n parties generate a random number and do a preliminary sieving (to 
make sure that it is not divided by small primes)

b. Given two such numbers p,q the parties compute N=pq
c. The parties now distributively test that N is bi-prime (the product of 2 primes)
d. If the test succeeds the parties compute e,d

Dan Boneh, Matthew K. Franklin: Efficient generation of shared RSA keys. J. ACM 48(4): 702-722 (2001)



Distributed RSA Generation

Sieving and Multiplication

a. The n parties generate a random number and do a preliminary sieving (to 
make sure that it is not divided by small primes)

Each party generate random numbers pi and  ri

Reconstruct pr
Multiplication of additively shared values
And reject p if pr=0 mod a 

Where a is the small prime

a. Given two such numbers p,q the parties compute N=pq
Again this is the multiplication of additively shared values

Dan Boneh, Matthew K. Franklin: Efficient generation of shared RSA keys. J. ACM 48(4): 702-722 (2001)



Distributed RSA Generation

Bi-primality testing

c. The parties now distributively test that N is bi-prime (the product of 2 primes)
A very simplified version
Remember that N=pq and the parties have additive sharings of p,q
If N is bi-prime then is the order of ZN*

The parties have an additive sharing 1 N of -p-q+1
Repeat many times:

The parties choose a random value g and test if g =1
Locally compute gi=g
Use a distributed computation to check that g1*...*gn =1

gi

An additional GCD test is also required

Dan Boneh, Matthew K. Franklin: Efficient generation of shared RSA keys. J. ACM 48(4): 702-722 (2001)



Distributed RSA Generation

Inversion over a shared secret
d. The parties now choose e and compute d=e-1 mod 

In the DSA scheme we had a public modulus and we had to invert the secret
Here we have a public value to invert but a secret modulus

The parties have an additive sharing 1 N of 
Choose a random value ri and let r = r1+...+rn

Reveal ai= i+ eri

a = a1+...+an

If GCD(a,e)=1 then there exists b,c such that ab+ce=1
1=ab+ce = b
br+c=e-1 mod 

Shares of d can be easily obtained by setting di=bri

With one party adding c as well

D.Catalano, G, S. Halevi: Computing Inverses over a Shared Secret Modulus. EUROCRYPT 2000: 190-206



A little detour

Signatures based on Strong-RSA

Which are proven in the random oracle model
There are provably secure schemes based on the Strong-RSA assumption

Given (N,g) find (e,s) such that se=g mod N 
These schemes work as follows:

The public key is (N,g) and the secret key is  
a message M is mapped into an exponent m and the signature is s=gd mod N 
where d=m-1 mod 
The pair (M,s) is valid if sm=g mod N

G, S.Halevi, T.Rabin: Secure Hash-and-Sign Signatures Without the Random Oracle. EUROCRYPT 1999: 123-139
R.Cramer, V.Shoup: Signature schemes based on the strong RSA assumption. ACM Trans. Inf. Syst. Secur. 3(3): 161-185 (2000)

To make these schemes into threshold ones we need exactly the protocol we showed 
before

Given m compute a sharing of d=m-1 mod 
Over a distributed  

D.Catalano, G, S. Halevi: Computing Inverses over a Shared Secret Modulus. EUROCRYPT 2000: 190-206



Back to Distributed RSA generation

The two-party case
The Boneh-Franklin protocol required honest majority and was proven only for the honest but 
curious adversary setting

Gilboa showed how to extend it for the 2-party case
In particular introducing the MtA protocols we discussed yesterday

N.Gilboa:Two Party RSA Key Generation. CRYPTO 1999: 116-129



More Distributed RSA Generation

Many follow up works
There are several applications beyond threshold RSA signatures that could use a distributed 
generation of RSA moduli 

Many protocols have been presented following the Boneh-Franklin approach with 
improvements focused on 

Increasing the rate of sieving to avoid running the bi-primality test too often
Reducing communication complexity

E.g. use a distributed version of the MtA protocol using a threshold additively 
homomorphic encryption 
Since one cannot use Paillier, use lattice-based one instead

Adding security against malicious adversary via ZK proofs
Using recent advances in SNARKs (sublinear size proofs)

minutes. 

M.Chen, C.Hazay, Y.Ishai, Y.Kashnikov, D.Micciancio, T.Riviere, a.shelat, 
M.Venkitasubramaniam, R.Wang:Diogenes: Lightweight Scalable RSA 
Modulus Generation with a Dishonest Majority. IEEE Symposium on Security 
and Privacy 2021: 590-607


