Threshold Signatures
Part 2: RSA

Bar-Ilan University Winter School on Cryptography

Rosario Gennaro

\
\\&\i

Protocol Labs
Research

]

1\?& \\\?
NN

Z




The first public key signature Let be the product of two primes.

RSA signatures

On input a message /,
we hash it to obtain >

and compute the
signature

VERIFIER

Computes and

Rivest, R.; Shamir, A.; Adleman, L. (February 1978). "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems". Communications of the ACM. 21 (2)



Let’s start with additive

-out-of-11 RSA signatures

©® A dealer generates and shares the secret key ¢ among n parties additively
®© Let be the shares chosen at random in
® such that
® To sign players reveal
® Then

® Why is this secure?

© Same interpolation in the exponent argument as in the case of dlog schemes
® The simulator gives random d. to the adversary

©® given s it can compute the partial signatures of the honest players
® Random d;to chosen where? The simulator does not know

® It chooses them in

© Since the uniform distributions in and Z,, are indistinguishable
® When

Y.Desmedt, Y.Frankel: Threshold Cryptosystems. CRYPTO 1989: 307-315



Move to threshold

Shamir’'s over a ring

©® The dealer can share d with Shamir’s
©® Choose a random polynomial of degree f such that
© Send to player P; the share

©® Aset & of players cannot recover the secret by polynomial interpolation
©® To compute the Lagrangians they need to invert elements
® Which is secret and cannot be leaked to the participants

® Remember that

® where
® which cannot be computed by the players
© What the players can compute is by revealing

©® Since is an integer



Threshold RSA First Attempt

-out-of-17 RSA signatures

® A dealer generates and shares the secret key d among n parties with Shamir

© Let be the shares
® To sign players reveal
® Then

® How do we get s7?
©® Assume that (choose )
® Use Extended Euclidean algorithm to compute such that
® Then by the famous Shamir’s trick
©®

Victor Shoup: Practical Threshold Signatures. EUROCRYPT 2000: 207-220



Threshold RSA

Simulator gives random
Let’s try to Simulate " tho ol of the honeet.

players

Assume the adversary
can forge controlling
only ¢ players

T

Simulator computes the adversary t partial signatures
and knows SIMULATOR
® But cannot interpolate in the exponent the partial (forging centralized scheme)
signatures of the honest players
® Since then
® And the Lagrangians are fractions
® He can however interpolate




Threshold RSA

-out-of-17 RSA signatures

® A dealer generates and shares the secret key d among n parties with Shamir
© Let be the shares
® To sign players reveal n!
® Then
® Where

® We get s via the GCD trick again assuming that (choose )

Victor Shoup: Practical Threshold Signatures. EUROCRYPT 2000: 207-220



Threshold RSA

Simulator gives random
- - to the adversary and plays
S I m u Iatlon the role of the honest

players

Assume the adversary
can forge controlling
only ¢ players

Simulator computes the adversary t modified partial
signatures and knows SIMULATOR
® It can interpolate in the exponent the partial (forging centralized scheme)
signatures of the honest players
® Since then
® And the Lagrangians are fractions




What if the identifiers are big

Ad-hoc groups

® In the previous solution the value n is a parameter to the scheme
® Computation is linear in n (exponentiate to n/)
©® assumes that the identifiers of the players are exactly integers between 7 and
®© grows really large if identifiers are random k-bit strings

_— reduction ?27??
\ This one can be replaced with for

Computation of signature

<
g

® To sign players reveal
® Then

G, S.Halevi, H.Krawczyk, T.Rabin:Threshold RSA for Dynamic and Ad-Hoc Groups. EUROCRYPT 2008



Ad-Hoc Groups Threshold RSA

Assume the adversary Simulator gives random

BaCk to the Slmulatlon g?]?yfos?:yc;?gtrolling to the adversary and plays

the role of the honest
-4

players
Simulator computes the adversary t partial signatures
and knows
©® To interpolate in the exponent the partial

signatures of the honest players it has to compute
a of m
® Where is the product of all the _ :>
denominators of the adversary’s ‘
Lagrangians SIMULATOR <:
(forging a modified scheme)

Knowledge of =" allows the simulator to
complete the simulation If conjectured not to help find



Adding robustness
Dealing with bad partial signatures

® Remember that on message M a player outputs
® How to detect bad partial signatures?

® Message Authentication Codes:

©® For every share d, the dealer chooses n triplets such that
®© over the integers
® With and chosen uniformly at random
® And sends c; to player /i and to player

® When player / outputs
© It sends to player j the value
©® Player j accepts s; if

G, S.Jarecki, H.Krawczyk, T.Rabin: Robust and Efficient Sharing of RSA Functions. J. Cryptol. 13(2): 273-300 (2000)



Adding robustness
Dealing with bad partial signatures

® Remember that on message M a player outputs

© Zero-Knowledge Proofs:
® For every share d,, the dealer publishes

® When player / outputs
® It also sends a ZK proof that s; and G.to have the same discrete log with
respect to m and
® It requires restricting to a cyclic subgroup of
® For safe primes the subgroup of quadratic residues

G, S.Jarecki, H.Krawczyk, T.Rabin: Robust and Efficient Sharing of RSA Functions. J. Cryptol. 13(2): 273-300 (2000)



Chaum’s prescience
Equality of discrete log ZK Proofs in groups of prime order

D.Chaum, T.P. Pedersen: D.Chaum, H.Van Antwerpen: '9' *
Wallet Databases with Observers. CRYPTO 1992 Undeniable Signatures. CRYPTO 1989 L'J
EE=———

) $

< >

Public coin: can be made non-interactive Private coin (can’t be made non-interactive). Two
via Fiat-Shamir. Proof of knowledge of round HVZK (can be turned into 4-round full Zk)




Composite order
Equality of discrete log ZK Proofs in groups of unknown order

ver the in: tegers>

Choose r large enough to statistically hide

<

)

G, S.Jarecki, H.Krawczyk, T.Rabin: Robust and Efficient Sharing of RSA Functions. J. Cryptol. 13(2): 273-300 (2000)



Wait a minute

DEALER?

® This time removing the dealer is not as easy as in the case of discrete log based
schemes
® The dealer does not just generate a random value
® It generates an RSA modulus N with its factorization and then the values

® To replace the dealer we need to come up with a protocol to do all of the above
distributed with the above secrets (the factorization) in shared form
® While in principle this is obtainable via MPC protocols it is still a difficult task to
perform efficiently
® The bottleneck would be the repeated computation of modular
exponentiations in a distributed Miller-Rabin primality test
©® This has been a very active research area



= = = Dan Boneh, Matthew K. Franklin: Efficient generation of shared RSA keys. J. ACM 48(4): 702-722 (2001)
Distributed RSA Generation

Avoiding Miller-Rabin

©® Let's break down the task:
a. The n parties generate a random number and do a preliminary sieving (to
make sure that it is not divided by small primes)
b. Given two such numbers the parties compute
The parties now distributively test that N is bi-prime (the product of 2 primes)
d. If the test succeeds the parties compute

o



= = = Dan Boneh, Matthew K. Franklin: Efficient generation of shared RSA keys. J. ACM 48(4): 702-722 (2001)
Distributed RSA Generation

Sieving and Multiplication

a. The n parties generate a random number and do a preliminary sieving (to
make sure that it is not divided by small primes)
® Each party generate random numbers and
® Reconstruct
©® Multiplication of additively shared values
® Andreject pif
® Where a is the small prime

a. Given two such numbers the parties compute
® Again this is the multiplication of additively shared values



= = = Dan Boneh, Matthew K. Franklin: Efficient generation of shared RSA keys. J. ACM 48(4): 702-722 (2001)
Distributed RSA Generation

Bi-primality testing

c. The parties now distributively test that N is bi-prime (the product of 2 primes)
® A very simplified version

® Remember that and the parties have additive sharings of
©® If Nis bi-prime then is the order of
©® The parties have an additive sharing of

©® Repeat many times:
® The parties choose a random value g and test if
©® Locally compute
® Use a distributed computation to check that
® Can’treveal the
® An additional GCD test is also required



= = u D.Catalano, G, S. Halevi: Computing Inverses over a Shared Secret Modulus. EUROCRYPT 2000: 190-206
Distributed RSA Generation

Inversion over a shared secret

d. The parties now choose e and compute
©® This is the “dual” problem of the one we saw yesterday
® Inthe DSA scheme we had a public modulus and we had to invert the secret
® Here we have a public value to invert but a secret modulus
® The parties have an additive sharing of
® Choose a random value and let
® Reveal

©® If GCD(a,e)=1 then there exists b,c such that ab+ce=1

® Shares of d can be easily obtained by setting
® With one party adding ¢ as well



= D.Catalano, G, S. Halevi: Computing Inverses over a Shared Secret Modulus. EUROCRYPT 2000: 190-206
A little detour

Signhatures based on Strong-RSA

We have been looking at the basic “hash and sign” RSA signature
® Which are proven in the random oracle model

® There are provably secure schemes based on the Strong-RSA assumption
©® Given find such that

® These schemes work as follows:
® The public key is and the secret key is
©® amessage M is mapped into an exponent m and the signature is

where

® The pair is valid if

© G, S.Halevi, T.Rabin: Secure Hash-and-Sign Signatures Without the Random Oracle. EUROCRYPT 1999: 123-139
© R.Cramer, V.Shoup: Signature schemes based on the strong RSA assumption. ACM Trans. Inf. Syst. Secur. 3(3): 161-185 (2000)

©® To make these schemes into threshold ones we need exactly the protocol we showed
before
® Given m compute a sharing of
® Over a distributed



Back to Distributed RSA generation N.Gilboa:Two Party RSA Key Generation. CRYPTO 1999: 116-129

The two-party case

The Boneh-Franklin protocol required honest majority and was proven only for the honest but
curious adversary setting

©® Gilboa showed how to extend it for the 2-party case

® In particular introducing the MtA protocols we discussed yesterday



= = = M.Chen, C.Hazay, Y.Ishai, Y.Kashnikov, D.Micciancio, T.Riviere, a.shelat,
Mo re D IStrI b Uted RSA Ge ne ratl on M.Venkitasubramaniam, R.Wang:Diogenes: Lightweight Scalable RSA

Modulus Generation with a Dishonest Majority. IEEE Symposium on Security

and Privacy 2021: 590-607
There are several applications beyond threshold RSA signatures that could use a distributed
generation of RSA moduli
® Many protocols have been presented following the Boneh-Franklin approach with
improvements focused on
® Increasing the rate of sieving to avoid running the bi-primality test too often
® Reducing communication complexity
©® E.g. use a distributed version of the MtA protocol using a threshold additively
homomorphic encryption
® Since one cannot use Paillier, use lattice-based one instead
©® Adding security against malicious adversary via ZK proofs
® Using recent advances in SNARKSs (sublinear size proofs)
® We can now generate distributed RSA moduli for 1000’s of parties in a matter of
minutes.



