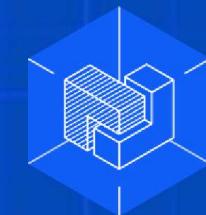


Threshold Signatures

Part 2: RSA

Bar-Ilan University Winter School on Cryptography

Rosario Gennaro



Protocol Labs
Research

The first public key signature

Let $N=pq$ be the product of two primes.

RSA signatures

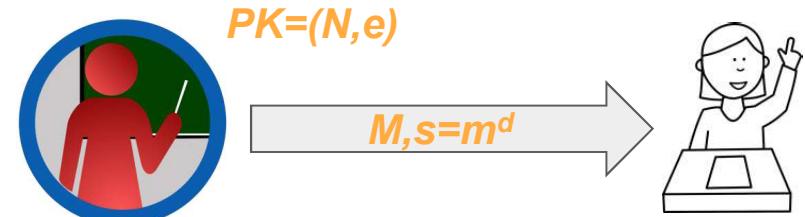
$PK=(N, e)$

$SK=d=e^{-1} \bmod \varphi(N)$

On input a message M ,
we hash it to obtain
 $m \in \mathbb{Z}_N$ and compute the
signature $s=m^d$

Computes $m=H(M)$ and
 $m=s^e \bmod N$

Let's start with additive



n -out-of- n RSA signatures

- A **dealer** generates N, e, d and shares the secret key d among n parties additively
 - Let $[d_1, \dots, d_n]$ be the shares chosen at random in $\mathbb{Z}_{\varphi(N)}$
 - such that $d = d_1 + \dots + d_n \bmod \varphi(N)$
 - To sign players reveal $s_i = m^{d_i} \bmod N$
 - Then $s = s_1 * \dots * s_n \bmod N$
- Why is this secure?
 - Same interpolation in the exponent argument as in the case of dlog schemes
 - The simulator gives random d_i to the adversary
 - given s it can compute the partial signatures of the honest players
 - Random d_i to chosen where? The simulator does not know $\varphi(N)$
 - It chooses them in \mathbb{Z}_N
 - Since the uniform distributions in $\mathbb{Z}_{\varphi(N)}$ and \mathbb{Z}_N are indistinguishable
 - When $p \sim q$

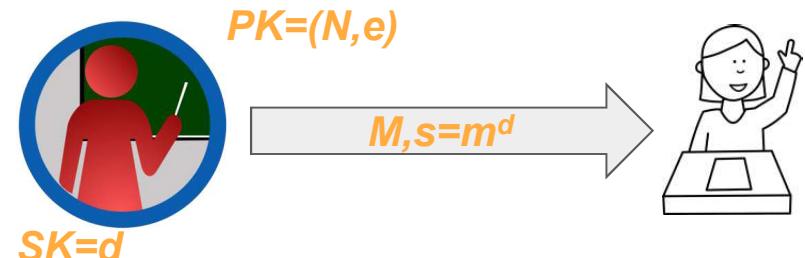
Move to threshold

Shamir's over a ring

- The **dealer** can share d with Shamir's
 - Choose a random polynomial $F(x) \in \mathbb{Z}_{\varphi(N)}[X]$ of degree t such that $F(0)=d$
 - Send to player P_i the share $d_i = F(i) \bmod \varphi(N)$
- A set S of $t+1$ players cannot recover the secret by polynomial interpolation
 - To compute the Lagrangians they need to invert elements $\bmod \varphi(N)$
 - Which is secret and cannot be leaked to the participants
- Remember that $d = \sum_{i \in S} \lambda_{i,S} d_i$
 - where $\lambda_{i,S} = [\prod_{j \in S, j \neq i} j] / [\prod_{j \in S, j \neq i} (j-i)] \bmod \varphi(N)$
 - which cannot be computed by the players
- What the players can compute is $(n!)d$ by revealing $(n!)d_i$
 - Since $(n!) \lambda_{i,S}$ is an integer

Threshold RSA First Attempt

t -out-of- n RSA signatures

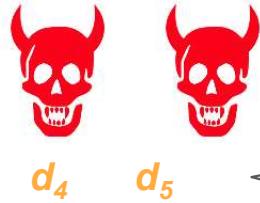


- A **dealer** generates N, e, d and shares the secret key d among n parties with Shamir $\text{mod } \varphi(N)$
 - Let $[d_1 \dots d_n]$ be the shares
 - To sign players reveal $s_i = m^{d_i} \text{ mod } N$
 - Then $s^{n!} = \prod_{i \in S} s_i^{n! \cdot \lambda_i} = m^{d \cdot n!} \text{ mod } N$
- How do we get s ?
 - Assume that $\text{GCD}(e, n!) = 1$ (choose $e > n$)
 - Use Extended Euclidean algorithm to compute a, b such that $a \cdot e + b \cdot n! = 1$
 - Then by the famous Shamir's trick
 - $s = m^d = m^{d(a \cdot e + b \cdot n!)} = m^a \cdot m^{b \cdot d \cdot n!} = m^a \cdot s^b \text{ mod } N$

Threshold RSA

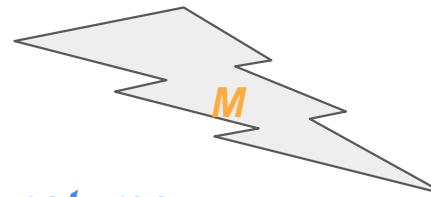
Let's try to Simulate

s_1 s_2 s_3



d_4 d_5

Assume the adversary
can forge controlling
only t players

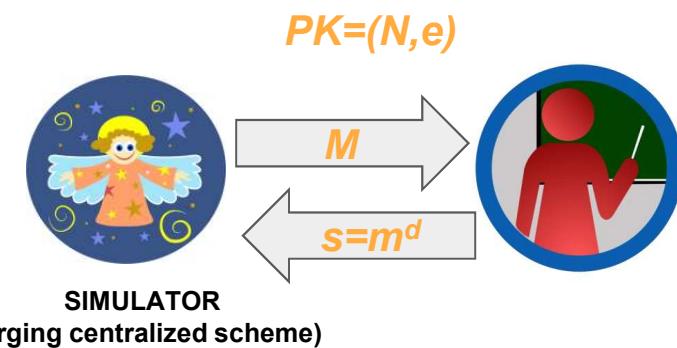


Simulator computes the adversary t **partial signatures**

$s_i = m^{d_i}$ and knows $s_0 = s = m^d$

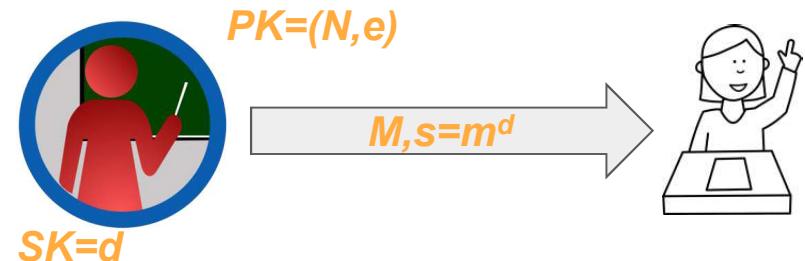
- But cannot interpolate in the exponent the partial signatures of the honest players
 - Since $d_j = \sum_{i \in S} \lambda_{j,i} s_i$ then $s_j = \prod_{i \in S} s_i^{\lambda_{j,i} s_i}$
 - And the Lagrangians are fractions
- He can however interpolate $s_j^{n!} = \prod_{i \in S} s_i^{n! \cdot \lambda_{j,i} s_i}$

Simulator gives random d_i
to the adversary and plays
the role of the honest
players



Threshold RSA

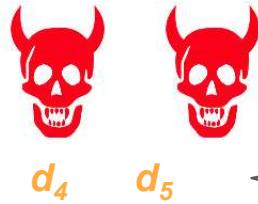
t -out-of- n RSA signatures



- ① A **dealer** generates N, e, d and shares the secret key d among n parties with Shamir $\text{mod } \varphi(N)$
 - ② Let $[d_1 \dots d_n]$ be the shares
 - ③ To sign players reveal $s_i = m^{di} * n! \text{ mod } N$
 - ④ Then $s^z = \prod_{i \in S} s_i^{n! * \lambda_i} = m^{d * z} \text{ mod } N$
 - ⑤ Where $z = (n!)^2$
 - ⑥ We get s via the GCD trick again assuming that $\text{GCD}(e, z) = 1$ (choose $e > n$)

Threshold RSA

Simulation

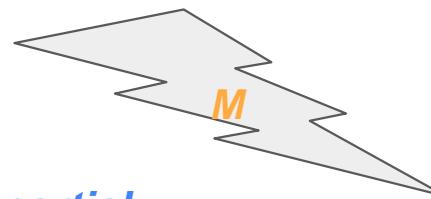


s_1 s_2 s_3

d_4 d_5

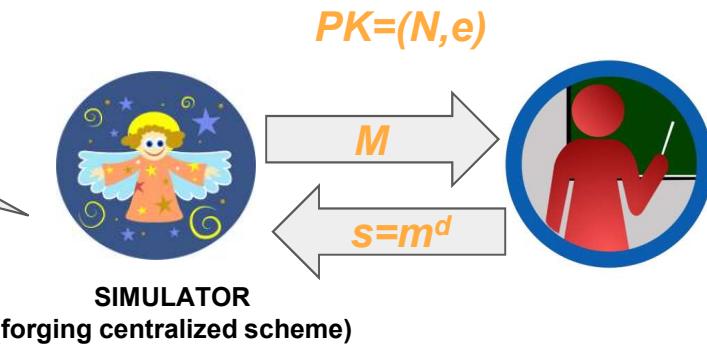
Assume the adversary
can forge controlling
only t players

Simulator gives random d_i
to the adversary and plays
the role of the honest
players

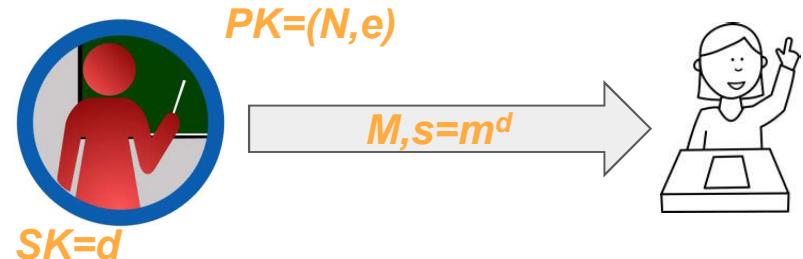


Simulator computes the adversary t **modified partial
signatures** $u_i = m^{d_i}$ and knows $u_0 = s = m^d$

- It can interpolate in the exponent the partial signatures of the honest players
 - Since $d_j = \sum_{i \in S} \lambda_{j,i} s_i$ then $s_j = \prod_{i \in S} s_i^{\lambda_{j,i}}$
 - And the Lagrangians are fractions
- $u_j^{n!} = \prod_{i \in S} u_i^{n! \cdot \lambda_{j,i}}$



What if the identifiers are big



Ad-hoc groups

- In the previous solution the value n is a parameter to the scheme
 - Computation is linear in n (exponentiate to $n!$)
 - assumes that the identifiers of the players are exactly integers between 1 and n
 - $n!$ grows really large if identifiers are random k -bit strings

- To sign players reveal $s_i = m^{di} * n! \pmod{N}$
- Then $s^z = \prod_{i \in S} s_i^{n! * \lambda_{i,S}} = m^{d*z} \pmod{N}$

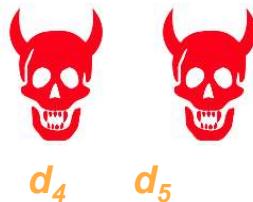
reduction ???

Computation of signature

This one can be replaced with $\text{lcm}\{(i-j)\}$ for $i, j \in S$
 $< 2^{kt}$

Ad-Hoc Groups Threshold RSA

Back to the Simulation



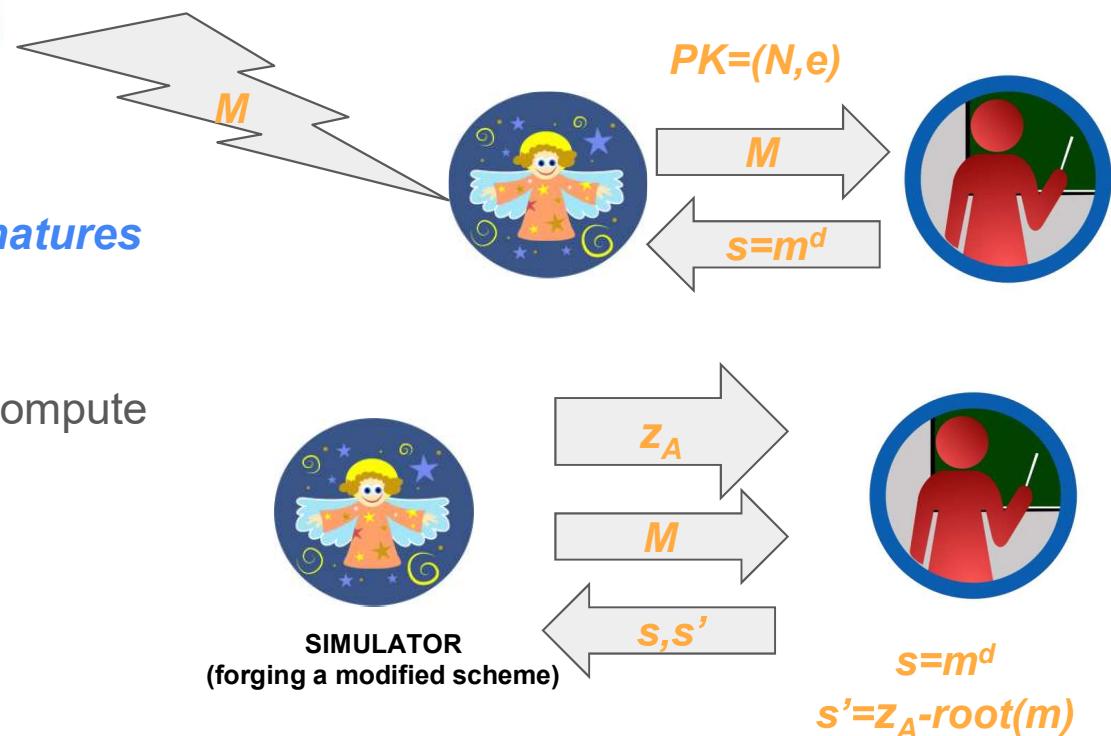
Simulator computes the adversary ***t* partial signatures**
 $s_i = m^{d_i}$ and knows $s_0 = s = m^d$

- To interpolate in the exponent the partial signatures of the honest players it has to compute a **z_A -root** of m
 - Where z_A is the product of all the denominators of the adversary's Lagrangians

Knowledge of s' allows the simulator to complete the simulation

Assume the adversary can forge controlling only t players

Simulator gives random d_i to the adversary and plays the role of the honest players



If $GCD(e, z_A) = 1$ conjectured not to help find **e -roots**

Adding robustness

Dealing with bad partial signatures

- Remember that on message M a player outputs $s_i = m^{di} \bmod N$
 - How to detect bad partial signatures?
- **Message Authentication Codes:**
 - For every share d_i , the dealer chooses n triplets (a_{ij}, b_{ij}, c_{ij}) such that
 - $a_{ij} * d_i + b_{ij} = c_{ij}$ over the integers
 - With $a_{ij} \in [0 \dots 2^{k1}]$ and $b_{ij} \in [0 \dots 2^{k2}]$ chosen uniformly at random
 - And sends c_{ij} to player i and a_{ij}, b_{ij} to player j
 - When player i outputs $s_i = m^{di} \bmod N$
 - It sends to player j the value $C_{ij} = m^{c_{ij}} \bmod N$
 - Player j accepts s_i if $s_i^{a_{ij}} * m^{b_{ij}} = C_{ij} \bmod N$

Adding robustness

Dealing with bad partial signatures

- Remember that on message M a player outputs $s_i = m^{di} \bmod N$
- **Zero-Knowledge Proofs:**
 - For every share d_i , the dealer publishes $G_i = g^{di} \bmod N$
 - When player i outputs $s_i = m^{di} \bmod N$
 - It also sends a ZK proof that s_i and G_i have the same discrete log with respect to m and g
 - It requires restricting m, g to a cyclic subgroup of \mathbb{Z}_N^*
 - For safe primes the subgroup of quadratic residues

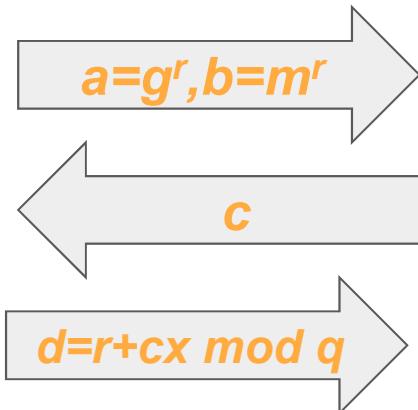
Chaum's prescience

Equality of discrete log ZK Proofs in groups of prime order

$$y=g^x \quad s=m^x$$

D.Chaum, T.P. Pedersen:
Wallet Databases with Observers. CRYPTO 1992

$$\$ \quad r \in \mathbb{Z}_q$$

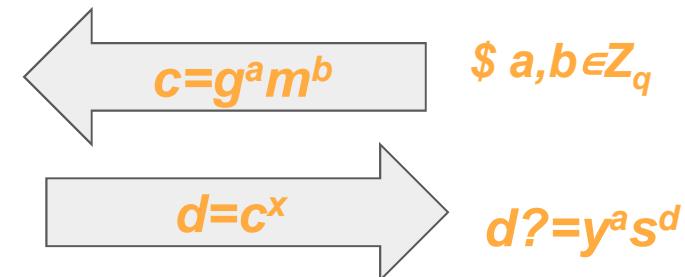


Public coin: can be made non-interactive via Fiat-Shamir. Proof of knowledge of x

$$\$ \quad c \in \mathbb{Z}_q$$

$$\begin{aligned} ay^c &?= g^d \\ bs^c &?= m^d \end{aligned}$$

D.Chaum, H.Van Antwerpen:
Undeniable Signatures. CRYPTO 1989



Private coin (can't be made non-interactive). Two round HVZK (can be turned into 4-round full Zk)

Composite order

Equality of discrete log ZK Proofs in groups of unknown order

$$y=g^x \quad s=m^x$$

$$\$ \quad r \in [0 \dots N*B]$$

$$\$ \quad c \in [0 \dots B']$$

$$c = g^a m^b$$

$$\$ \quad a, b \in \mathbb{Z}_N$$

$$a = g^r, b = m^r$$

$$c$$

$$d = r + cx \quad \text{over the integers}$$

$$\begin{aligned} ay^c &\stackrel{?}{=} g^d \\ bs^c &\stackrel{?}{=} m^d \\ &\mod N \end{aligned}$$

$$d = c^x$$

$$d \stackrel{?}{=} y^a s^d$$

Choose r large enough to statistically hide x

Wait a minute

DEALER?

- This time removing the dealer is not as easy as in the case of discrete log based schemes
 - The dealer does not just generate a random value
 - It generates an RSA modulus N with its factorization and then the values e, d
- To replace the dealer we need to come up with a protocol to do all of the above distributed with the above secrets (the factorization) in shared form
 - While in principle this is obtainable via MPC protocols it is still a difficult task to perform efficiently
 - The bottleneck would be the repeated computation of modular exponentiations in a distributed Miller-Rabin primality test
 - This has been a very active research area

Avoiding Miller-Rabin

- Let's break down the task:
 - a. The n parties generate a random number and do a preliminary sieving (to make sure that it is not divided by small primes)
 - b. Given two such numbers p, q the parties compute $N=pq$
 - c. The parties now distributively test that N is bi-prime (the product of 2 primes)
 - d. If the test succeeds the parties compute e, d

Sieving and Multiplication

- a. The n parties generate a random number and do a preliminary sieving (to make sure that it is not divided by small primes)
 - Each party generate random numbers $p_i \in [0 \dots B]$ and $r_i \in [0 \dots B']$
 - Reconstruct pr
 - Multiplication of additively shared values
 - And reject p if $pr \equiv 0 \pmod{a}$
 - Where a is the small prime
- a. Given two such numbers p, q the parties compute $N = pq$
 - Again this is the multiplication of additively shared values

Bi-primality testing

- c. The parties now distributively test that N is bi-prime (the product of 2 primes)
 - A very simplified version
 - Remember that $N=pq$ and the parties have additive sharings of p, q
 - If N is bi-prime then $\varphi(N)$ is the order of \mathbb{Z}_N^*
 - The parties have an additive sharing $\varphi_1, \dots, \varphi_N$ of $\varphi(N)=N-p-q+1$
 - **Repeat many times:**
 - The parties choose a random value g and test if $g^{\varphi(N)}=1$
 - **Locally** compute $g_i=g^{\varphi_i}$
 - Use a distributed computation to check that $g_1 \cdot \dots \cdot g_n = 1$
 - Can't reveal the g_i
 - An additional GCD test is also required

Inversion over a shared secret

- d. The parties now choose e and compute $d = e^{-1} \bmod \varphi(N)$
 - This is the “dual” problem of the one we saw yesterday
 - In the DSA scheme we had a public modulus and we had to invert the secret
 - Here we have a public value to invert but a secret modulus
 - The parties have an additive sharing $\varphi_1, \dots, \varphi_N$ of $\varphi(N)$
 - Choose a random value $r_i \in [0 \dots B]$ and let $r = r_1 + \dots + r_n$
 - Reveal $a_i = \varphi_i + er_i$
 - $a = a_1 + \dots + a_n = \varphi(N) + re$
 - If $\text{GCD}(a, e) = 1$ then there exists b, c such that $ab + ce = 1$
 - $1 = ab + ce = b\varphi(N) + (br + c)e$
 - $br + c = e^{-1} \bmod \varphi(N)$
 - Shares of d can be easily obtained by setting $d_i = br_i$
 - With one party adding c as well

Signatures based on Strong-RSA

We have been looking at the basic “hash and sign” RSA signature

- Which are proven in the random oracle model
- There are provably secure schemes based on the Strong-RSA assumption
 - Given (N, g) find (e, s) such that $s^e = g \pmod{N}$
- These schemes work as follows:
 - The public key is (N, g) and the secret key is $\varphi(N)$
 - a message M is mapped into an exponent m and the signature is $s = g^d \pmod{N}$ where $d = m^{-1} \pmod{\varphi(N)}$
 - The pair (M, s) is valid if $s^m = g \pmod{N}$
 - G, S.Halevi, T.Rabin: Secure Hash-and-Sign Signatures Without the Random Oracle. EUROCRYPT 1999: 123-139
 - R.Cramer, V.Shoup: Signature schemes based on the strong RSA assumption. ACM Trans. Inf. Syst. Secur. 3(3): 161-185 (2000)
- To make these schemes into threshold ones we need exactly the protocol we showed before
 - Given m compute a sharing of $d = m^{-1} \pmod{\varphi(N)}$
 - Over a distributed $\varphi(N)$

The two-party case

The Boneh-Franklin protocol required honest majority and was proven only for the honest but curious adversary setting

- Gilboa showed how to extend it for the 2-party case
- In particular introducing the MtA protocols we discussed yesterday

More Distributed RSA Generation

M.Chen, C.Hazay, Y.Ishai, Y.Kashnikov, D.Micciancio, T.Riviere, a.shelat, M.Venkatasubramaniam, R.Wang:Diogenes: Lightweight Scalable RSA Modulus Generation with a Dishonest Majority. IEEE Symposium on Security and Privacy 2021: 590-607

Many follow up works

There are several applications beyond threshold RSA signatures that could use a distributed generation of RSA moduli

- Many protocols have been presented following the Boneh-Franklin approach with improvements focused on
 - Increasing the rate of sieving to avoid running the bi-primality test too often
 - Reducing communication complexity
 - E.g. use a distributed version of the MtA protocol using a threshold additively homomorphic encryption
 - Since one cannot use Paillier, use lattice-based one instead
 - Adding security against malicious adversary via ZK proofs
 - Using recent advances in SNARKs (sublinear size proofs)
 - We can now generate distributed RSA moduli for 1000's of parties in a matter of minutes.