



Threshold Signatures

Part 3: Quantum Resistant Schemes

Bar-Ilan University Winter School on Cryptography

Rosario Gennaro

Protocol Labs
Research

How to thresholdize any scheme

We are going to show how to use Threshold Fully Homomorphic Encryption (TFHE) to build a universal thresholdizer: a compiler that takes any cryptographic scheme and builds a non-interactive threshold version of it.

Let's recall the GSW13 FHE Scheme

- The secret key is a vector $sk \in \mathbb{Z}_q^l$
- A ciphertext is a matrix $ct \in \mathbb{Z}_q^{l \times m}$
- To decrypt we take the inner product of a column ct^k of ct with sk
 - If $d = \langle ct^k, sk \rangle$ is small then the plaintext bit is 0 otherwise is 1
- A n -out-of- n scheme follows:
 - Split $sk = sk_1 + \dots + sk_n$
 - Party i outputs $d_i = \langle ct^k, sk_i \rangle + noise$
 - The noise is needed to hide the secret share from reconstruction
 - $d \sim d_1 + \dots + d_n$

The problem with threshold

- If we split sk with Shamir
- Let $[sk_1 \dots sk_n]$ be the shares
- If Party i outputs $d_i = \langle ct^k, sk_i \rangle + noise$
 - When we interpolate with the Lagrangians $\sum_{i \in S} \lambda_{i,S} d_i$
 - The noise is the combination is not guaranteed to be small anymore
 - d is very far from $\sum_{i \in S} \lambda_{i,S} d_i$

First solution

Use Linear Secret Sharing with binary coefficients

- We split sk with a secret sharing scheme
 - Which is linear (so that we can still easily compute the inner product)
 - And reconstruction involves only 1/0 coefficients
- Let $[sk_1 \dots sk_n]$ be the shares
- Party i outputs $d_i = \langle ct^k, sk_i \rangle + noise$
 - We then reconstruct $\sum_{i \in S} \beta_{i,S} d_i$
 - $d \sim \sum_{i \in S} \beta_{i,S} d_i$
 - Since the combined noise is small (because $\beta_{i,S}$ is binary)

First solution

How expressive are $\{0,1\}$ -LSSS

- It turns out that they are quite expressive
 - They include threshold access structures
- The drawback is that they are not very efficient
 - For n players the shares grow as n^4

Second Solution

Grow the parameters to accommodate the noise

- Split \mathbf{sk} with Shamir
- Let $[\mathbf{sk}_1, \dots, \mathbf{sk}_n]$ be the shares
- Party i outputs $\mathbf{d}_i = \langle \mathbf{ct}^k, \mathbf{sk}_i \rangle + \mathbf{noise}$
 - Remove the denominators to make the Lagrangian integers
 - $\sum_{i \in S} \lambda_{i,S} n! \mathbf{d}_i$
- Choose LWE parameters large enough to accommodate the noise growth
- The issue now is that the parameters of the FHE are dependent on n

Thresholdize everything

A universal thresholdizer

- **Setup**: Given a secret \mathbf{k} it outputs shares $[\mathbf{k}_1 \dots \mathbf{k}_n]$ and a verification key \mathbf{VK}
- **Eval**: on input a circuit $\mathbf{C}(\dots)$, input \mathbf{x} and share \mathbf{k}_i
 - It outputs a partial evaluation \mathbf{y}_i
- **Verify**: On input $\mathbf{C}(\dots), \mathbf{x}, \mathbf{VK}, i, \mathbf{y}_i$ it accepts or rejects
- **Reconstruct**: from $t+1$ accepted partial evaluations \mathbf{y}_i it computes $\mathbf{y} = \mathbf{C}(\mathbf{k}, \mathbf{x})$

A universal thresholdizer

Combine TFHE with NIZKs

- **Setup**:
 - The share of each party is defined as
 - sk_i , the share of the TFHE
 - On input the secret k the verification key VK is defined as
 - $FHE(k), COM(sk_i)$
- **Eval**: on input a circuit $C(.,.)$, input x, VK and share sk_i
 - Each party evaluates $FHE(C(k, x))$ using the homomorphism of FHE
 - Then it produces y_i as
 - the partial decryption under sk_i for the TFHE +
 - a NIZK of correctness wrt VK, C
- **Verify**: checks the NIZK
- **Reconstruct**: uses the reconstruction procedure of the TFHE

A universal thresholdizer

Applications

If \mathbf{k} is the secret key for a cryptographic scheme and \mathbf{C} is the circuit expressing the cryptographic computation, we obtain 1-round threshold version of any scheme

One interesting application is the “compression” of the non-succinct Shamir-based TFHE we showed earlier

- ⦿ Our Shamir-based TFHE scheme had parameters growing with n
- ⦿ We can build a non-succinct universal thresholdizer using this non-succinct TFHE scheme
- ⦿ But then this UT can be used to thresholdize a succinct FHE
 - ⦿ Reminds me of the boosting step for FHE

Hard Homogenous Spaces

- A set \mathcal{E} endowed with a group action \mathbf{G}
 - If $g \in \mathbf{G}$ and $E \in \mathcal{E}$ there is an operation $g^*E = E' \in \mathcal{E}$
 - Hard problems:
 - Given E, E' find g such that $g^*E = E'$ (discrete log)
 - Given $E, E' = g^*E, F$ find $F' = g^*F$ (CDH)
 - The main difference with cyclic groups and discrete log based schemes is that there is no “structure” on the set \mathcal{E}
 - Which is the source of the conjecture quantum hardness
- In isogeny-based instantiations
 - \mathcal{E} is a set of elliptic curves
 - The operation $*$ brings you from one curve to another

Let's talk about isogenies

A signature scheme based on HHS

- A rift on Schnorr's. Let E be a “base” curve and assume $G=(\mathbb{Z}_q, +)$
- Alice knows $g \in G$ such that $F = g^* E$
- To prove this in ZK she runs the following protocol:
 - She chooses $a \in G$ at random and sends $F' = a^* E$
 - The verifier sends a bit b
 - If $b=0$
 - Alice answers with $c = a$
 - The verifier checks that $c^* E = F'$
 - If $b=1$
 - Alice answers with $c = ag^{-1}$
 - The verifier checks that $c^* F = F'$
- This proof can be turned into a signature scheme via the Fiat-Shamir heuristic

Let's talk about isogenies

A threshold signature scheme based on HHS

- Alice knows $g \in G: F = g^* E$
 - $a \in G$ sends $F' = a^* E$
 - The verifier sends a bit b
 - If $b=0$
 - Alice answers $c = a$
 - Verifier checks $c^* E = F'$
 - If $b=1$
 - Alice answers $c = ag^1$
 - Verifier checks $c^* F = F'$
- Assume a dealer has shared g via Shamir among n parties with threshold t
- When $t+1$ parties want to sign they map their shares to additive ones $g = g_1 + \dots + g_{t+1}$
- Each party selects a random value a_i
 - The computation of F' is performed sequentially
 - The first party computes $F_1 = a_1^* E$
 - Each next party i computes $F_i = a_i^* F_{i-1}$
 - $F' = F_{t+1}$
 - Compute the challenge b via hashing
 - Each party outputs $c_i = a_i \cdot g_i$
 - And $c = c_1 + \dots + c_{t+1}$

**Note the sequential computation
You cannot combine two separate isogeny computations**

Let's talk about isogenies

Daniele Cozzo, Nigel P. Smart:

Sashimi: Cutting up CSI-FiSh Secret Keys to Produce an Actively Secure
Distributed Signing Protocol. PQCrypto 2020: 169-186

A DKG for isogenies

- Assume a dealer has shared g via Shamir among n parties with threshold t
- When $t+1$ parties want to sign they map their shares to additive ones $g = g_1 + \dots + g_{t+1}$
- Each party selects a random value a_i
 - The computation of F' is performed sequentially
 - The first party computes $F_1 = a_1 * E$
 - Each next party i computes $F_i = a_i * F_{i-1}$
 - $F' = F_{t+1}$
 - Compute the challenge b via hashing
 - Each party outputs $c_i = a_i - g_i$
 - And $c = c_1 + \dots + c_{t+1}$

- The generation of the nonce can be used as a DKG
- As in FROST
 - Use the same ZK proof to prove knowledge of the contribution
 - Malicious security with abort

A Robust DKG for isogenies

- What if we want robustness (guaranteed termination)
 - With honest majority
- Note that in the setting of isogenies there is no equivalent of a Pedersen's VSS
 - Since it require combining two separate isogeny computations
- It is possible however for each party to do a non-malleable VSS via ZK proofs
 - Providing the non-malleable and recoverable properties of the commitment that we need to make the joint-VSS work
- The combination of the secret keys into a unique public key however remains sequential

The end

A non-exhaustive list of open problems

- DKG: truly scalable, without quadratic communication
 - Can we use recent advances in SNARKs?
- Better proofs:
 - We have UC proofs for Threshold DSA
 - FROST has a proof for concurrent security but not a full UC proof
- How inefficient is the FHE based UT?
 - FHE has been making great strides. At what point it pays off to build threshold schemes just by calling (a tailored version of) UT?
 - A similar question can be made for MPC
- Can we have threshold isogeny-based schemes without having to pay sequential rounds?