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• Dealing with a corrupted dealer



Secret Sharing
• Suppose that we have sensitive information 

• Missile launch codes

• A secret key for my crypto-wallet

• A sensitive database


• We do not want to put all our eggs in one basket 

• A single point of failure


• We want to split the trust!



Secret Sharing
S

Dealer

Privacy: Each share does not provide any information about the secret s 
(Even subset of shares do not provide any information about s)

S1 SnS2 Sn-1Shares

Sharing Phase



Secret Sharing
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Dealer

Shares
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• To share a secret  among  parties?


• Say  is 128-bit secret key, 

• Give each party 32 bits

• What does each party know about the key?

• What do 3 parties know about the secret? 

s n
s n = 4

Secret Sharing

3232 32 32

128 bits
s1 s2 s3 s4



• :            (with , ) 

• Choose: 


• Set:  


• Party  receives share 


• : 

• Output: 


• What do 3 parties know about the secret?

𝖲𝗁𝖺𝗋𝗂𝗇𝗀(s, n) n = 4 s ∈ {0,1}128

s1, s2, s3 ← {0,1}128

s4 := s − (s1 + s2 + s3) ← mod 2128

Pi si

𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍𝗂𝗈𝗇(s1, s2, s3, s4)
4

∑
i=1

si mod 2128 = s

A Better Idea



Notations
•  : the domain of the secret (e.g., )


•  : the number of parties


• : threshold


•  parties can reconstruct the secret


•  parties cannot learn anything about the secret


• This is “ -out-of- ” secret sharing 


• A secret sharing scheme consists of a pair of functions (computable in 
:


• Dealing function: 


• Recovery function: 

𝖲 {0,1}128

n
t

t + 1
t

t+1 n

𝗉𝗈𝗅𝗒(n, log |𝖲 | )
𝖲𝗁𝖺𝗋𝗂𝗇𝗀

𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍𝗂𝗈𝗇



• :

,


     where  is the secret,  is the randomness,  
     and  is the share of the -th party


• 


• Correctness:  
For every set of parties  with :





• -privacy: The distribution of any  shares is independent of the secret 


• Formally: for any pair of secrets , and for any  with 

 

𝖲𝗁𝖺𝗋𝗂𝗇𝗀
𝖲𝗁𝖺𝗋𝗂𝗇𝗀(s; r) → (s1, …, sn)

s ∈ 𝖲 r
si i

𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍𝗂𝗈𝗇(si1, …, sit+1
) → s′ 

A ⊆ [n] |A | ≥ t + 1
𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍𝗂𝗈𝗇({𝖲𝗁𝖺𝗋𝗂𝗇𝗀(s)}A) = s

t t s
s, s′ ∈ 𝖲 I ⊆ [n] | I | ≤ t

{{si}i∈I | (s1, …, sn) ← 𝖲𝗁𝖺𝗋𝗂𝗇𝗀(s)} ≡ {{s′ i}i∈I | (s′ 1, …, s′ n) ← 𝖲𝗁𝖺𝗋𝗂𝗇𝗀(s′ )}

Syntax and Requirements



n-out-of-n Secret Sharing
• We already saw a construction of n-out-of-n secret sharing:


• Assume that  is a group with operation +


• For example, 


• : 


• Choose  uniformly and independently at random from 


• Set 


• Output 


• :


• Output: 


• Efficiency?  for every 

𝖲
𝖲 = ℤm

𝖲𝗁𝖺𝗋𝗂𝗇𝗀(s)
s1, …, sn−1 𝖲

sn := s − (s1 + … + sn−1)
(s1, …, sn)

𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍𝗂𝗈𝗇(s1, …, sn)
s1 + … + sn = s
|| si || = || s || i



What about ?t < n
• Sharing:  

For every authorized subset  of size , use the  
-out-of-  secret sharing scheme solution to share 


• Reconstruction:  
An authorized set of parties can reconstruct 


• Efficiency:  
Each party receives  shares of size  each


• Exponential when, e.g., 

• We can do better…

A ⊆ [n] t + 1
t+1 t+1 s

s

( n
t + 1) ||s ||

t = n/2



Shamir’s Secret Sharing 
• This time we need a richer algebraic structure: a field


• E.g.,  is a field when  is a prime


•  is a commutative (additive) group,


•  is a commutative (multiplicative) group


• In general, we will denote the field as 


• Let  and assume that 


• Let  be distinct non-zero elements in 

ℤp p

(ℤp, +p )
(ℤp∖{0}, ⋅p )

𝔽
𝖲 = 𝔽 |𝔽 | > n
α1, …, αn 𝔽



Shamir’s Secret Sharing 
• :


• Choose a random degree  polynomial with  as its constant term


•  

• Party  receives 


• Properties:


• Every set of  participants can recover the secret


• Every set of  shares does not reveal any information about 


• Even stronger: every  shares are uniformly distributed in 


• Size of each share: 

𝖲𝗁𝖺𝗋𝗂𝗇𝗀t+1,n(s)

t s
p(x) = s + p1x + …, ptxt

Pi (αi, p(αi))

t + 1
t s

t 𝔽
||𝔽 ||



How to Reconstruct?

In general:

 (distinct) points determines exactly one degree  polynomialt+1 t

2 (distinct) points determines 
exactly one degree-1 polynomial


3 (distinct) points determines 
exactly one degree-2  polynomial




Reconstruction -  
Lagrange Interpolation

• Input:  

 


• Q: What is the degree of ?


• Q: What is ? What are ?


• A: , , 


• We can define  analogously, and set 


• Exercise: prove that 


•  is a degree  polynomial, 


• The polynomial  if a non-zero degree  polynomial with  distinct 
roots - impossible

(α1, y1), …, (αt+1, yt+1) = ((α1, p(α1)), …, (αt+1, p(αt+1)))

f1(x) := y1 ⋅
x − α2

α1 − α2
⋅

x − α3

α1 − α3
⋅ … ⋅

x − αt+1

α1 − αt+1

f1(x)
f1(α1) f1(α2), …, f1(αt+1)

deg( f1(x)) = t f1(α1) = y1 f1(α2) = … = f1(αt+1) = 0
f2(x), …, ft+1(x) f(x) := f1(x) + … + ft+1(x)

f(x) = p(x)
f(x) t f(α1) = y1, …, f(αt+1) = yt+1

f(x) − p(x) t t + 1



Security - Intuition
2-out-of-2 secret sharing 
(polynomial of degree-1)



Security - Intuition
2-out-of-2 secret sharing 
(polynomial of degree-1)



Another Example
3-out-of-4 secret sharing 
(polynomial of degree-2)



Another Example
3-out-of-4 secret sharing 
(polynomial of degree-2)



Security - Formally

•  : the set of all polynomials over  with degree  and 
constant term 


• 


• :   
Choose a random polynomial  and output 

Ps,t 𝔽 t
s

|Ps,t | = |𝔽 |t

𝖲𝗁𝖺𝗋𝗂𝗇𝗀(s, n, t + 1)
p(x) ← Ps,t

(p(α1), …, p(αn))



Security - Formally
• Claim: Every  shares are distributed uniformly at random in 


• Fix any  values ,  subset 


• There is exactly one polynomial  that satisfies  
and  for every 


• The probability that  chose  is 1/ 


• There is exactly one polynomial  that satisfies 
 and  for every   


• The probability that  chose  is 1/ 


t 𝔽

t (y1, …, yt) ∈ 𝔽 I ⊂ [n], | I | = t

p(x) ∈ Ps,t p(0) = s
p(αi) = yi i ∈ I

𝖲𝗁𝖺𝗋𝗂𝗇𝗀(s, n, t + 1) p(x) |𝔽 |t

q(x) ∈ Ps′ ,t

q(0) = s′ q(αi) = yi i ∈ I

𝖲𝗁𝖺𝗋𝗂𝗇𝗀(s′ , n, t + 1) q(x) |𝔽 |t

Pr
p(x)←Ps,t

[p(α1) = y1, …, p(αt) = yt] = Pr
q(x)←Ps′ ,t

[q(α1) = y1, …, q(αt) = yt] =
1

|𝔽 |t



Application: Key Recovery
• It is hard to remember a secret key 


• So remember a password  and store 

• What if I forget the password?


• 3-out-of-5 secret sharing:


• Share  to 


• The user selects 5 personal questions in which he 
knows answers 


• Store 


• The user can recover if he remembers at least 3 answers

k
p H(p) ⊕ k

k s1, …, s5

a1, …, a5

H(a1) ⊕ s1, …, H(a5) ⊕ s5



Application:  
Robust Combiner

• We have 3 encryption schemes , each 



• We do not know which one is actually secure

• Can we construct a new scheme that is secure iff at least one of 

 is secure?


• Yes:


•  


• Secret share  into  (3-out-of-3)


• Encrypt  using 


• The message is protected if at least one of  is secure!

Π1, Π2, Π3
Πi = (𝖪𝖾𝗒𝖦𝖾𝗇i, 𝖤𝗇𝖼i, 𝖣𝖾𝖼i)

Π1, Π2, Π3

𝖤𝗇𝖼(k, m) :
m m1, m2, m3

mi Πi

Π1, Π2, Π3



Linear Secret Sharing

• The secret is an element in the field


• The randomness of  is a vector of random 
elements in the field


• The share of each party is some vector

• Each one of its coordinates is some fixed linear 

combination of the secret and the randomness


• Is Shamir’s scheme a linear secret sharing scheme?

𝖲𝗁𝖺𝗋𝗂𝗇𝗀



Shamir Secret Sharing: 
Matrix View

0

BBBBBBBBBB@

p(↵1)
p(↵2)

...

...
p(↵n)

1

CCCCCCCCCCA

<latexit sha1_base64="fGw3T+/Ub9BjdrvuB3YqJlOfSCM="></latexit>

=

<latexit sha1_base64="+a1xe6N5zUUW/ZCt9xg9EUTPsNM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoBeh6MVjFfsBbSib7aRdutmE3Y1QSv+BFw+KePUfefPfuGlz0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvs389hMqzWP5aCYJ+hEdSh5yRo2VHq5L/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcx/pQqw5nAWamXakwoG9Mhdi2VNELtT+eXzsiZVQYkjJUtachc/T0xpZHWkyiwnRE1I73sZeJ/Xjc14ZU/5TJJDUq2WBSmgpiYZG+TAVfIjJhYQpni9lbCRlRRZmw4WQje8surpHVR9WrV2n2tUr/J4yjCCZzCOXhwCXW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH8NcjNw=</latexit>

0

BBBBB@

1 ↵1 ↵2
1 . . . ↵n�1

1

1 ↵2 ↵2
2 . . . ↵n�1

2
...

. . .
...

1 ↵n�1 ↵2
n�1 . . . ↵n�1

n�1

1 ↵n ↵2
n . . . ↵n�1

n

1

CCCCCA

<latexit sha1_base64="9I8hZkXammofJy5Y6rtatoDt9+w="></latexit>

V ⃗α ⋅ ⃗p = ⃗p(α)

The Vandermonde  has an inverse iff  are distinct elements in V ⃗α α1, …, αn 𝔽

V~↵[i, j] = ↵j�1
i

<latexit sha1_base64="Yvkz07+7c+fj9lLYTsv/cfKgY+4=">AAACEXicbVDLSsNAFJ3UV42vqEs3g0XoQksiBd0IRTcuK9gHpDFMppN22skkzEwKJeQX3Pgrblwo4tadO//GpM1CWw9cOHPOvcy9x4sYlco0v7XSyura+kZ5U9/a3tndM/YP2jKMBSYtHLJQdD0kCaOctBRVjHQjQVDgMdLxxje535kQIWnI79U0Ik6ABpz6FCOVSa5RbbtJb0Jw0kMsGqI0tenpyIFXcP526UMyOrNSXXeNilkzZ4DLxCpIBRRousZXrx/iOCBcYYaktC0zUk6ChKKYkVTvxZJECI/RgNgZ5Sgg0klmF6XwJFP60A9FVlzBmfp7IkGBlNPAyzoDpIZy0cvF/zw7Vv6lk1AexYpwPP/IjxlUIczjgX0qCFZsmhGEBc12hXiIBMIqCzEPwVo8eZm0z2tWvVa/q1ca10UcZXAEjkEVWOACNMAtaIIWwOARPINX8KY9aS/au/Yxby1pxcwh+APt8wf/i5xz</latexit>

det(V↵) =
Y

1ijn

(↵j � ↵i)

<latexit sha1_base64="UASews+2AGEgbcBl+FfBC5Ie7co="></latexit>

0

BBBBBBBBBB@

s
p1
...
pt
0
...
0

1

CCCCCCCCCCA

<latexit sha1_base64="ATwTJzmI9vQs10HazSUkRUT9h4g="></latexit>



⃗p = V−1
⃗α ⋅ ⃗p(α)

Shamir Secret Sharing: 
Matrix View

V ⃗α ⋅ ⃗p = ⃗p(α)

s = λ1 ⋅ p(α1) + … + λn ⋅ p(αn)
 is a linear combination of the points s (p(α1), …, p(αn))

0

B@
�1 �2 . . . �n

. . .
. . .

. . . . . .

1

CA

<latexit sha1_base64="wQdIdD5x1M/DIYtADXRGnb7I1Os="></latexit>

0

BBBBBBBBBB@

p(↵1)
p(↵2)

...

...
p(↵n)

1

CCCCCCCCCCA

<latexit sha1_base64="fGw3T+/Ub9BjdrvuB3YqJlOfSCM="></latexit>

=

<latexit sha1_base64="+a1xe6N5zUUW/ZCt9xg9EUTPsNM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoBeh6MVjFfsBbSib7aRdutmE3Y1QSv+BFw+KePUfefPfuGlz0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvs389hMqzWP5aCYJ+hEdSh5yRo2VHq5L/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcx/pQqw5nAWamXakwoG9Mhdi2VNELtT+eXzsiZVQYkjJUtachc/T0xpZHWkyiwnRE1I73sZeJ/Xjc14ZU/5TJJDUq2WBSmgpiYZG+TAVfIjJhYQpni9lbCRlRRZmw4WQje8surpHVR9WrV2n2tUr/J4yjCCZzCOXhwCXW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH8NcjNw=</latexit>

0

BBBBBBBBBB@

s
p1
...
pt
0
...
0

1

CCCCCCCCCCA

<latexit sha1_base64="ATwTJzmI9vQs10HazSUkRUT9h4g="></latexit>



Linear Secret Sharing

• Shamir is a linear secret sharing scheme! 

• Equivalent to Monotone Span Programs:

• Linear algebraic model of computation

• Introduced by Karchmer and Wigderson (1993)


• Packed Secret Sharing: 
• Can the shares hide more than one secret?



General Access Structure
• Who is authorized to reconstruct the secret?

• Shamir is a “threshold scheme” 


• Authorized sets: all subsets of cardinality 


• E.g. , all subsets of 2 parties are authorized: 



• What about  


• What about general access structure? 


• E.g.: ?


• Monotone access structure: 


• If  and  then 

t + 1
n = 4

Γ = {(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)}
(1,2,3)? (2,3,4)?

Γ = {(1,2,4), (1,3,4), (2,3)}

A ∈ Γ A ⊆ B B ∈ Γ



General Access Structure 
[ItoSaitoNishizaki91]

(P1 ∧ P2 ∧ P4) ∨ (P1 ∧ P3 ∧ P4) ∨ (P2 ∧ P3)

Γ = {(1,2,4), (1,3,4), (2,3)}

Represent it as a CNF 

s

}

s

}
s

}
a1 ⊕ a2 ⊕ a4 b1 ⊕ b3 ⊕ b4 c2 ⊕ c3

P1 P2 P3 P4

a1 a2 b3 a4b1 c3 b4c2



Additional Topics
• Consider threshold access structure with 

• Q: What is the size of the shares if we are using Shamir’s 

scheme?

• Q: What is the size of the shares if we are using ISN?

• Fundamental question: What is the optimal share size for a 

given access structure? 


• Exercise[BenalohLeichter]: Construct a scheme where the 
access structure is represented as a circuit (AND/OR gates)

• C(S)=1 iff the subset S is an authorized set

• The fan-out is 1 (every wire is an input to one gate only)

• CNF is a depth 2 circuit

t+1



What’s Next?

S1 SnS2 Sn-1

S

Reconstruction Phase

What if some party is malicious and sends an incorrect share? 
Can the honest party still reconstruct the secret? 

How many wrong shares can they tolerate?



What’s Next?
S

S1 SnS2 Sn-1

Dealer

Shares

Sharing Phase

What if the dealer is malicious and sends shares that do not 
define points on a polynomial?  

Can the honest parties detect it?



How to Deal with  
Wrong Shares in Reconstruction? 

Robust Secret Sharing



Warmup:  
Computational Setting

• Consider -out-of-  secret sharing


• At most  parties are corrupted

• We assume that the dealer is honest


•  The difficulty: corrupted parties might send in the 
reconstruction phase different shares than those received 
by the dealer


• How can we do it in the Computational Setting?

• The dealer signs on each share

• In reconstruction, parties can verify whether the share 

is correct with the signature

t + 1 n
t



Do We Really Need 
Signatures?

• We just want to “authenticate” the information provided by the dealer


• 1-time-MAC: 


• One-time message authentication experiment 


• 


•  outputs a message  and is given in return a tag 


•  outputs  and wins if  and 

Π = (𝖦𝖾𝗇, 𝖬𝖺𝖼, 𝖵𝗋𝖿𝗒)
Mac-forge1-time

A,Π :

k ← 𝖦𝖾𝗇(1n)
A m′ t′ ← 𝖬𝖺𝖼k(m′ )
A (m, t) m ≠ m′ 𝖵𝗋𝖿𝗒k(m, t) = 1

Dealer ⟹ Pisi
⟹ Pjs′ i si = s′ i?



How to Construct IT  
1-time-MAC?

•   (the security parameter relates to the size of the field )


• Choose random elements , set 


• :


• Output 


• : Output 1 iff 


• Security: 


• The adversary sees a pair of  for  of its 
choice


• Can it find another point on this line? 

• Exercise: formalize it


• Probability to win is 

𝖦𝖾𝗇(1n) : 𝔽
a, b ∈ 𝔽 k = (a, b)

𝖬𝖺𝖼k(m)
t := a ⋅ m + b

𝖵𝗋𝖿𝗒k(m, t) 𝖬𝖺𝖼k(m) = t

(m′ , t′ ) = (m′ , am′ + b) m′ 

1/ |𝔽 |



•  accepts  iff Pj s′ i 𝖵𝗋𝖿𝗒ki,j
(s′ i, t′ i,j) = 1

Dealer Pisi, ti,j
Pj

Robust Secret sharing 
[RabinBenOr89]

ki,j

s′ i, t′ i,j



So What Do We Have So 
Far?

• Computational setting:  
• The dealer can provide extra information to aid verification 


• Information theoretic setting: 
• The dealer can provide extra information to aid verification

• Assuming large field, negligible failure probability


• Can we do better? 
• Can we recognize the wrong shares without extra 

information from the dealer?

• Can we correct errors with 0-probability of failure? 

• Yes! Using error correcting codes



Noisy Channels

A B
001101 000111 000111

Flips a bit with some probability  p

Goal: Reliable communication over a “noisy” channel



Error Correcting Codes

A B
Decode(Encode( ) )

=

Correctness: Decode(Encode(m))=m




Error Correcting Codes

Correctness: Decode(Encode(m))=m


A B
Decode(Encode( ) )

=

Even stronger: Decode(Encode(m)+”noise”)=m

t+1 n



(n,t+1,d)-Code








The decoding function will decode to the closest codeword 
(theoretically, it is possible to support  errors)


𝖤𝗇𝖼𝗈𝖽𝖾 : Σt+1 → Σn

C = {c |∃m ∈ Σt+1 s . t . 𝖤𝗇𝖼𝗈𝖽𝖾(m) = c} ⊂ Σn

d(C) = min{d(c1, c2) |c1, c2 ∈ C, c1 ≠ c2}

(d − 1)/2
𝖣𝖾𝖼𝗈𝖽𝖾 : Σn → Σt+1 ∪ { ⊥ }

d

d

Σn



Reed-Solomon Code
• , fix some , distinct elements in 


•  


• Given a message  define 



• Output 

Σ = 𝔽 α1, …, αn 𝔽
𝖤𝗇𝖼𝗈𝖽𝖾(m) : m ∈ 𝔽 t+1

m = (m0, …, mt) ∈ 𝔽 t+1

p(x) := m0 + m1x + … + mtxt

(p(α1), …, p(αn))

• What is the minimum distance of this code?


• Two distinct polynomials of degree :   


• How many points might they agree on?


• At most 


• Consider the polynomial ; it has at most  roots


• Reed Solomon is  code. Might correct  errors

t p(x), q(x)

t
h(x) := p(x) − q(x) t

(n, t + 1,n − t) (n − t − 1)/2



Reed Solomon Code and 
Secret Sharing

• Set n 3t+1, we get (3t+1,t+1,2t+1)

• t parties do not learn anything about the secret


• We can tolerate  wrong shares during 
reconstruction  


• The 2t+1 honest parties can reconstruct the secret!

• We assume here an honest dealer

≥

(d − 1)/2 = t

≥



How to Efficiently 
Reconstruct the Secret?

• Given  shares that were received, how can we recognize 
the wrong shares?


• One option:

• We need only t+1 shares for reconstruction


• Try all  options and take the majority


• , and so this is not particularly efficient… 

n

( n
t + 1)

t ≈ n/3



• Input: . At least  of the s lie on the same degree-  
polynomial 


• Goal: Find that polynomial 


• The idea: 

• Find a polynomial  of degree #errors, such that for every :


• 


• Moreover:


•   if   


•   if   


• The algorithm will find a polynomial  of degree-2t, and a polynomial  of 
degree at most  as above such that


•  for every 


• Output 

(α1, y1), …, (αn, yn) 2t + 1 yi t
p(x)

p(x)

E(x) i
yi ⋅ E(αi) = p(αi) ⋅ E(αi)

E(αi) = 0 p(αi) ≠ yi

E(αi) ≠ 0 p(αi) = yi

Q(x) E(x)
t

yi ⋅ E(αi) = Q(αi) i
P(x) = Q(x)/E(x)

Noisy Decoding: 
Berlekamp-Welch Algorithm



How to Find Q and E?

• We have  equations of the form (for every ):





• We have  unknowns 



• Simply use linear algebra 

3t + 1 αi

yi(e0 + e1 ⋅ αi… + et−1αt−1
i + αt

i ) − (q0 + q1αi + … + q2tα2t
i ) = 0

(2t + 1) + t = 3t + 1
(e0, e1, …, et−1), (q0, …, q2t)



Exercise / Example
• Reed Solomon with n=7, t=3, 


• You are given 



• Find the message m


• Use: 

𝔽 = ℤ929

c + e = {(000,001), (001,006), (002,123), (003,456), (004,057), (005,086), (006,121)}

yi(e0 + e1αi) − (q0 + q1αi + q2α2
i + q3α3

i + q4α4
i ) = − yiα2

i

E(x) = 006 + 924x + x2 Q(x) = 006 + 007x + 009x2 + 916x3 + 003x4

Q(x)/E(x) = 001 + 002x + 003x2



Dealing with  
a Corrupted Dealer: 

Verifiable Secret Sharing



What’s Next?
S

S1 SnS2 Sn-1

Dealer

Shares

Sharing Phase

How can we validate that all shares  
of the honest parties lie on the same polynomial of degree t? 



Security Properties
• This time,  is an interactive protocol!


• The input of the dealer is 

• All other parties have no inputs


• Privacy:  
For an honest dealer, the adversary learns nothing about 


• Consistency:  
The outputs of the honest party are consistent with some  even if 
the adversary is corrupted (agreement)


• Correctness:  
For an honest dealer, consistency holds with 

𝖲𝗁𝖺𝗋𝗂𝗇𝗀
s

s

s*

s* = s



Communication Model
P1

P4

P3

P2

Pairwise private channel

P1 P4P3P2

Authenticated broadcast channel



•  a group of order  with generator  in which the 
discrete logarithm problem is hard


•  is a random oracle


• :

• Round I: The dealer:  
• Choose a random polynomial 

 of degree  


• Give to each party  the share   


• Broadcast the values 


• Broadcast the masked secret 

(𝔾, q, g) q g

H
𝖲𝗁𝖺𝗋𝗂𝗇𝗀(s, n, t)

B(x) = b0 + b1x + … + btxt t
Pi si := B(αi)

B0 = gb0, …, Bt = gbt

c := H(b0) ⊕ s

Warmup:  
The Computational Setting



Are the Shares Consistent?

B(α1) B(α2) B(αn−1) B(αn)

Is my share consistent with whatever was broadcasted? 

(gB(αi) = )Πt
k=0(Bk)αk

i = Πt
k=0gbk⋅αk

i ?

,         B0 = gb0, …, Bt = gbt c := H(b0) ⊕ s

No? This dealer is cheating!

How can I convince the others?



Good or Bad Idea?
• How can I convince others that my share is incorrect? 


A. I send each party in a private channel the share  that  
I received 


B. I broadcast a “complaint!” and I hope that everyone 
will believe me  


C. I broadcast a “complaint!”. If there are more than t 
complaints, then the dealer is corrupted and we can 
abort the protocol


D. I broadcast a “complaint!”. If there are  complains, 
then the dealer is honest, and we can finish

si

≤ t



Are the Shares Consistent?

Pj

Dealer

Pi

My share is OK.  
Is it a fake complaint?

Complaint
Pj

Dealer

Pi

Complaint

My share is OK. But.. 
maybe  is actually honest and it received a 

corrupted share?
Pi

Step III (b):     The dealer broadcasts the share of each party that complains

Step II: Each party that has a wrong share, broadcasts a complaint

Step III (a): If there are more than t complaints, abort

Otherwise…


Why is it OK to reveal the share of a party?
Maybe the adversary learns new information?



Three Options To Consider

Pj

Dealer

Pi

The broadcasted 
 looks OK. Was it a false 

complaint?
si

Complaint Pj

Dealer

Pi

Complaint

 is indeed incorrect. Abort. si

If all complaints were resolved  
All honest parties hold shares on the same polynomial

⟹

The broadcasted  looks OK. 
Was it a false complaint? 

si

 updates its share to the broadcasted informationPi



The Entire Protocol 
(Think: how to get rid of       ?)

• Round I:  

• The dealer computes shares  and sends  to  privately

• The dealer publishes authentication information


• Round II: Each party checks its share. If wrong - broadcasts “complaint”

• Round III:  

• If #complaints , abort

• Otherwise, the dealer broadcasts the share of each party that 

complained

• Round IV:  
• All parties verify the broadcasted share (and parties might need to 

update their shares)

• If there is some contradiction then abort

• Otherwise, output your share

s1, …, sn si Pi

> t



Verifiable Secret Sharing 
 in the  

Information Theoretic Setting



Authentication in the 
Information Theoretic Setting?
• Bivariate polynomials of degree  that hides the secret :


•               ,      


• Properties:


• Define , 


• Both are univariate polynomials of degree- 


•  will be the share of party 


•  will be the authentication information of 


• It holds that 

t s

S(x, y) =
t

∑
i=0

t

∑
j=0

ai,j ⋅ xi ⋅ yj ai,j ∈ 𝔽 a0,0 = s

fi(x) := S(x, αi) gi(y) := S(αi, y)
t

fi(x) Pi

gi(y) Pi

gi(αj) = S(αi, αj) = fj(αi)



Bivariate Polynomial

S(0,0) f1(x)
S(x, α1)

S(α1, y) = g1(y)

f2(x)
S(x, α2)

fn(x)
S(x, αn)

fi(x)
S(x, αi)

S(α2, y) = g2(y)

S(αn, y) = gn(y)

S(αj, y) = gj(y)
fi(αj) = S(αj, αi) = gj(αi)



Bivariate Polynomial

S(0,0) f1(x) f2(x)
S(x, α1) S(x, α2)

fn(x)
S(x, αn)

S(α1, y) = g1(y)

S(α2, y) = g2(y)

S(αn, y) = gn(y)

fi(x)
S(x, αi)

S(αj, y) = gj(y)
fi(αj) = S(αj, αi) = gj(αi)

Interpolation: 

•  +  completely determines 


•  polynomials  for   

{fi(x), gi(y)}i∈I s S(x, y)
t + 1 {fj(x)}j∈J |J | ≥ t + 1 S(x, y)

Security: 

• The  polynomials  for 
 look random


• A set of  polynomials 
 for  such that 

 for every  do 
not reveal any information about 

t {fi(x)}i∈I
| I | ≤ t

2t
{fi(x), gi(y)}i∈I | I | ≤ t
fi(αj) = gj(αi) i, j ∈ I

s



VSS  
[BGW88,Feldman88]

• Round I - : The dealer chooses a random bivariate polynomial 

with  , ,      


• Send to party  ,  and 


• Round II - exchange sub-shares: 

•  sends  and  to 


• Round III - Check and complain: 

•  checks the two values  it received from 


• If something is wrong, complaint

S(x, y) =
t

∑
i=0

t

∑
j=0

ai,j ⋅ xi ⋅ yj ai,j ∈ 𝔽 S(0,0) = s

Pi fi(x) = S(x, αi) gi(y) = S(αi, y)

Pi fi(αj) = S(αj, αi) gi(αj) = S(αi, αj) Pj

Pi (uj, vj) Pj

(i, j, fi(αj), gi(αj))

Attention! 
 complains with the 

points it received from the 
dealer, not 

Pi

Pj



’s Point of ViewPi

S(0,0) f1(x) f2(x)
S(x, α1) S(x, α2)

fn(x)
S(x, αn)

S(α1, y) = g1(y)

S(α2, y) = g2(y)

S(αn, y) = gn(y)

fi(x)
S(x, αi)

S(α,y) = gi(y)



’s Point of ViewPi

S(0,0) f1(x) f2(x)
S(x, α1) S(x, α2)

fn(x)
S(x, αn)

S(α1, y) = g1(y)

S(α2, y) = g2(y)

S(αn, y) = gn(y)

fi(x)
S(x, αi)

S(α,y) = gi(y)



’s Point of ViewPi

S(0,0) f1(x) f2(x)
S(x, α1) S(x, α2)

fn(x)
S(x, αn)

S(α1, y) = g1(y)

S(α2, y) = g2(y)

S(αn, y) = gn(y)

fi(x)
S(x, αi)

S(α,y) = gi(y)

Complaint( )i,2, fi(α2), gj(α2)



VSS - Round IV
• Round IV: Check complaints - dealer: 

• For each complaint  check:  and . 


• If holds - do nothing


• Otherwise, broadcast reveal

(i, j, u, v) u = S(αj, αi) v = S(αi, αj)

(i, fi(x), gi(y))

S(0,0) f1(x) f2(x)
S(x, α1) S(x, α2)

fn(x)
S(x, αn)

S(α1, y) = g1(y)

S(α2, y) = g2(y)

S(αn, y) = gn(y)

fi(x)
S(x, αi)

S(α,y) = gi(y)

The dealer reveals the 
entire share of Pi



What Happens if the Dealer 
is Honest?

• Q: Is it possible that an honest party receive wrong sub-
shares from another honest party?


• Q: Will an honest party ever broadcast a complaint if the 
dealer is honest?


• Q: Will the dealer broadcast the shares of honest parties?


• Q: May the dealer reveal a share of someone?


• Q: If some polynomial is broadcasted, will it contradict a 
polynomial that is held by some honest party?



Round V: A Vote
• Each party :


• If there are joint complaints —  
complaint  and complaint  
then the dealer must response to one of them


• No response from the dealer  reject


• For each message reveal  broadcasted by the dealer  

• Check that  and  


• If  then  updates its share


• Vote: if whatever was broadcasted is consistent, and my share was 
not updated, then broadcast consistent 

• If at least  broadcasted consistent then output 

Pi

(k, j, u, v) ( j, k, u′ , v′ )

⟹
( j, fj(x), gj(y))

fi(αj) = gj(αi) gi(αj) = fj(αi)
j = i Pi

n − t fi(x)



Questions:  
Corrupted Dealer

• Q: Is it possible that an honest party receive wrong points from another honest 
party?


• Yes; The dealer might send contradicting shares to 


• Q:  parties voted consistent. How many polynomials of honest parties 
were replaced? 

• At most t!


• More importantly, at least  honest parties received consistent shares 
already in Round I


• The bivariate polynomial and the secret are well defined!


• Q: If only  honest parties broadcasted consistent, does it guarantee that 
all honest parties hold shares on the same bivariate polynomial?

• Yes! An honest party broadcasts consistent only if all conflicts were resolved 

and its share was not replaced

• All information that the dealer broadcasted is consistent

Pi, Pj

n − t

t + 1

t + 1



Bivariate Shares - 
Reconstruction

S(0,0) f1(x) f2(x)
S(x, α1) S(x, α2)

fn(x)
S(x, αn)

S(α1, y) = g1(y)

S(α2, y) = g2(y)

S(αn, y) = gn(y)

fi(x)
S(x, αi)

S(α,y) = gi(y)

• Each party :


• Publish 


• Initialize 


• For 


• Does  consistent with 
at least  ’s?


• Yes - add  to 


• Reconstruct  from 
the set of polynomials in 

Pi

fi(x), gi(y)
K ← ∅

j = 1,…, n :
fj

2t + 1 g
j K
S(x, y)

K

Reconstruction requires just private channels (no broadcast!)         



However, in Many 
Protocols…

S(0,0) f1(x) f2(x) fn(x)

S(α1, y) = g1(y)

S(α2, y) = g2(y)

S(αn, y) = gn(y)

fi(x)

S(α,y) = gi(y)



However, in Many 
Protocols…

S(0,0) f1(x) f2(x) fn(x)

S(α1, y) = g1(y)

S(α2, y) = g2(y)

S(αn, y) = gn(y)

fi(x)

S(α,y) = gi(y)

f1(0) f2(0) fi(0) fn(0)

fi(x) = S(x, αi)

fi(0) = S(0,αi)

q(y) = S(0,y)
degree-t polynomial

q(0) = S(0,0) = s



Conclusion

• Let . There exists a perfectly secure VSS protocol 
in the presence of a malicious adversary


• Moreover: 


• Let . There exists a statistically secure VSS 
protocol in the presence of a malicious adversary 
[RabinBenOr89]

• (assuming broadcast)

t < n/3

t < n/2

Thank You!


