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Secret Sharing

e Suppose that we have sensitive information
e Missile launch codes
e A secret key for my crypto-wallet
e A sensitive database
e We do not want to put all our eggs in one basket
e A single point of failure
e We want to split the trust!
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Secret Sharing

Dealer
Sharing Phase

Shares E

Privacy: Each share does not provide any information about the secret s
(Even subset of shares do not provide any information about s)
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Secret Sharing

Dealer

Sharing Phase

Reconstruction Phase
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Secret Sharing

128 bits

S5 S5 Sy

S1

e To share a secret s among n parties?

e Say s is 128-bit secret key, n = 4

* Give each party 32 bits

* What does each party know about the key?
e What do 3 parties know about the secret?
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A Better Idea

e Sharing(s, n): (withn = 4, s € {0,1}1%%)
e Choose: Sl’SZ’ S3 <« {0,1}128
o Set: 5, = §s—(5+ 5, +53) < mod 128

o Party P; receives share s;

o Reconstruction(sy, $,, S3, 54):

4
. Output: Zsi mod 2!%® =
i=1

e What do 3 parties know about the secret?
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Notations

e S : the domain of the secret (e.g., {0,11}1%%)
e 1 :the number of parties
e f:threshold
e 1+ 1 parties can reconstruct the secret
e [ parties cannot learn anything about the secret

e This is “t+ 1-out-of-n” secret sharing

e A secret sharing scheme consists of a pair of functions (computable in
poly(n,log|S|):
 Dealing function: Sharing

e Recovery function: Reconstruction
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Syntax and Requirements

Sharing:
Sharing(s; r) = (sq, ...,5,),

where s € S is the secret, r is the randomness,
and s; is the share of the i-th party

) = s

Reconstruction(s. , ..., s;
I L+ 1

e Correctness:
For every set of parties A C [n] with |A| > ¢+ 1:
Reconstruction({Sharing(s)},) = s
e r-privacy: The distribution of any 7 shares is independent of the secret s

e Formally: for any pair of secrets s, s’ € S, and for any I C [n] with |I| <1t
{{sitics] (51, ..., 5,) < Sharing(s)} = {{s/};c/| (5], ..., 5,) < Sharing(s") }
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n-out-of-n Secret Sharing

* We already saw a construction of n-out-of-n secret sharing:

e Assume that S is a group with operation +
e Forexample,S =27,
e Sharing(s):
e Choose sy, ..., s,_; uniformly and independently at random from S
e Sets, = s—(s;+...+5,_)
e Output (sy, ...,5,)
e Reconstruction(sy, ..., s,):
e Output: s, + ... +5, =3¢

o Efficiency?|| s; | =] s | foreveryi
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What about 1 < n?

 Sharing:
For every authorized subset A C [n] of size f + 1, use the
t+ 1-out-of-r+1 secret sharing scheme solution to share s

* Reconstruction:
An authorized set of parties can reconstruct s

o Efficiency:

Each party receives ( "

) shares of size|| s | each
r+1

e Exponential when, e.g., t = n/2
e We can do better...
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Shamir’s Secret Sharing

* This time we need a richer algebraic structure: a field

« E.g., Z,is afield when p is a prime
. (Zp, +, ) is a commutative (additive) group,
o« (Z,\{0}, -, ) is a commutative (multiplicative) group

e In general, we will denote the field as [F
e LetS = [Fand assumethat |F| > n

e Letay,...,a, be distinct non-zero elements in [
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Shamir’s Secret Sharing

. Sharmgtﬂ,n(s):
e Choose a random degree f polynomial with s as its constant term
e p(X)=s+px+...,px
e Party P, receives (a;, p(t)))

* Properties:
e Every set of ¢ + 1 participants can recover the secret
e Every set of 7 shares does not reveal any information about s
e Even stronger: every t shares are uniformly distributed in [
e Size of each share: | F||
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How to Reconstruct?

2 (distinct) points determines 3 (distinct) points determines
exactly one degree-1 polynomial  exactly one degree-2 polynomial

In general:

t+ 1 (distinct) points determines exactly one degree t polynomial
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Reconstruction -
Lagrange Interpolation

Input: (a1, 1), -, (Ay 15 Yy 1) = (@, p(@y)), - ., (O, P>y 1))

X—a X—0 X0y

i) =y, -
ap—a a;— Qa3 ap — Qpyg
Q: What is the degree of f;(x)?
Q: What is f{(a)? What are fi(,), ..., fi(a,1)?

o Ardeg(fi(x) =t fila) =y filay) = ... =fila ) =0
We can define f>(x), ..., f,,{(x) analogously, and set f(x) := f;(x) + ... + f,;.1(x)

e Exercise: prove that f(x) = p(x)

e f(x)is a degree f polynomial, f(a;) = Yy, ..., J(X1 1) = Vi

e The polynomial f(x) — p(x) if a non-zero degree t polynomial with 7 + 1 distinct
roots - impossible
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Security - Intuition

2-out-of-2 secret sharing
(polynomial of degree-1)
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Security - Intuition

2-out-of-2 secret sharing
(polynomial of degree-1)
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Another Example

3-out-of-4 secret sharing
(polynomial of degree-2)
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Another Example

3-out-of-4 secret sharing
(polynomial of degree-2)
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Security - Formally

e P%':the set of all polynomials over [F with degree f and
constant term

. |P*] = [F[

e Sharing(s,n,t+ 1):
Choose a random polynomial p(x) « P*' and output

(p()), ....p(a,))
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Security - Formally

e Claim: Every t shares are distributed uniformly at random in [F
e Fix any fvalues (yy,...,y,) €I, subset! C [n], |I| =1

» There is exactly one polynomial p(x) € P*' that satisfies p(0) = s
and p(a;) = y; foreveryi € I

e The probability that Sharing(s, n, ¢ + 1) chose p(x) is 1/| F|’

e There is exactly one polynomial g(x) € P** that satisfies
q(0) = s"and g(a,) = y; forevery i € I

e The probability that Sharing(s’, n, t + 1) chose g(x) is 1/| F|’

Pr t[P(Oll)=y1,...,p(at)=yt] — Pr / [Q(Oﬁ):yl,---aQ(at):)’z] — t
px)<P* g(x)<P*! | [Fl
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Application: Key Recovery

e |t is hard to remember a secret key k

e So remember a password p and store H(p) @ k
e What if | forget the password?
* 3-out-of-5 secret sharing:

o Share ktosy,...,Ss

* The user selects 5 personal questions in which he
knows answers dy, ..., ds

o Store H(a,) @D sy, ..., H(as) @ s5
e The user can recover if he remembers at least 3 answers
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Application:
Robust Combiner

* We have 3 encryption schemes 11, 11,, 115, each
I1; = (KeyGen,, Enc;, Dec;)

* We do not know which one is actually secure

e Can we construct a new scheme that is secure iff at least one of
11, 1I1,, 115 is secure?

* Yes:
e Enc(k,m) :
o Secret share m into m, m,, m; (3-out-of-3)
e Encrypt m; using 11,

e The message is protected if at least one of 11, I1,, I15 is secure!
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Linear Secret Sharing

e The secret is an element in the field

e The randomness of Sharing is a vector of random
elements in the field

* The share of each party is some vector

e Each one of its coordinates is some fixed linear
combination of the secret and the randomness

e |s Shamir’s scheme a linear secret sharing scheme?
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Shamir Secret Sharing:
Matrix View

(1 o af agi\/;\ pla) |
o2 o5 %) : :
" D J—
1 ap1 ol an”; O :
2 n—1 :
\ 1 n an Qp, )\0 ) \p(an))
N >
Ve 7P = p(a)
Vali, j] = o~ G | SRS

The Vandermonde V- has an inverse iff ay, ..., a, are distinct elements in [

¢ BiU

Center For Research in Applied
Cryptography and Cyber Security




Shamir Secret Sharing:
Matrix View

VgD = p(a)
P o= Vg p@
S p<041>
(?1\ ( A X N, ) (p((:)zz) \
\ :0 ) \p(ozé ) )

s is a linear combination of the points (p(a,), ..., p(a,))

s=A-pla)+ ...+ 4 -pla,)

rchi pld
y 9 hy dyb



Linear Secret Sharing

e Shamir is a linear secret sharing scheme!

 Equivalent to Monotone Span Programs:
e Linear algebraic model of computation
e |ntroduced by Karchmer and Wigderson (1993)

 Packed Secret Sharing:
e (Can the shares hide more than one secret?
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General Access Structure

e \Who is authorized to reconstruct the secret?
e Shamir is a “threshold scheme”

e Authorized sets: all subsets of cardinality # + 1

e E.g.n =4, all subsets of 2 parties are authorized:

I'=1(1,2),(1,3), (1,4),(2,3),(2,4), 3.4) }
e What about (1,2,3)? (2,3,4)?

 What about general access structure?

e Eg..1'={(1,2,4),(1,3,4),(2,3)}7

e Monotone access structure:
e fA€]l andA C BthenB el
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(General Access Structure
[ltoSaitoNishizakio1]

I'=1{(1,2,4),(1,3,4),(2,3)}
Represent it as a CNF

(Py APy AP)V (Py AP5; APV (PyAPy)
e Y

S S S
a, P a,®a, b, ® b, Db, c, D c;
P, P, P, P,

ay b, a ¢ by C3 ay by
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Additional Topics

e Consider threshold access structure with 7+ 1

* Q: What is the size of the shares if we are using Shamir’s
scheme?

e Q: What is the size of the shares if we are using ISN?

e Fundamental question: What is the optimal share size for a
given access structure?

 Exercise[BenalohLeichter]: Construct a scheme where the
access structure is represented as a circuit (AND/OR gates)

e C(S)=1 iff the subset S is an authorized set
e The fan-out is 1 (every wire is an input to one gate only)
e CNF is a depth 2 circuit
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What’s Next?

What if some party is malicious and sends an incorrect share?
Can the honest party still reconstruct the secret?
How many wrong shares can they tolerate?

Reconstruction Phase
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What’s Next?

Dealer
Sharing Phase

Shares E

What if the dealer is malicious and sends shares that do not
define points on a polynomial?
Can the honest parties detect it?
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How to Deal with
Wrong Shares in Reconstruction?

Robust Secret Sharing
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Warmup:
Computational Setting

e Consider t + 1-out-of-n secret sharing

e At most ¢ parties are corrupted
* We assume that the dealer is honest

* The difficulty: corrupted parties might send in the

reconstruction phase different shares than those received
by the dealer

e How can we do it in the Computational Setting?
* The dealer signs on each share

* In reconstruction, parties can verity whether the share
IS correct with the signature

¢ BiU
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Do We Really Need
Signhatures?

 We just want to “authenticate” the information provided by the dealer
e 1-time-MAC: II = (Gen, Mac, Vrfy)
« One-time message authentication experiment Mac—forgel'ﬁime ;

e k<« Gen(1"

e A outputs a message m’ and is given in return a tag t' < Mac(m’)

« A outputs (m, 1) and wins if m # m’and Vrty (m, 1) = 1
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How to Construct IT
1-time-MAC?

e Gen(1") : (the security parameter relates to the size of the field B
e Choose random elements a, b € [, set k = (a, b)

e Mac,(m):
e Qutputt :=a-m+>b

o Vrty (m,1): Output 1 iff Mac(m) = 1

* Security:
e The adversary sees a pair of (m',t") = (m’,am’ + b) for m’ of its
choice
e Can it find another point on this line?
 Exercise: formalize it

e Probability to winis 1/| [|
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Robust Secret sharing

[RabinBenOr89]

i
Nz

k.

L]

. P;accepts s; iff Vrfyk (Sl t) =1




So What Do We Have So
Far?

* Computational setting:
 The dealer can provide extra information to aid verification
* Information theoretic setting:
 The dealer can provide extra information to aid verification
 Assuming large field, negligible failure probability

e Can we do better?

e Can we recognize the wrong shares without extra
information from the dealer?

e Can we correct errors with O-probability of failure?
* Yes! Using error correcting codes
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Center For Research in Applied
Cryptography and Cyber Security




Noisy Channels

001101 000111 000111

Flips a bit with some probability p
Goal: Reliable communication over a “noisy” channel
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Error Correcting Codes

Encode( ) Decode(

Correctness: Decode(Encode(m))=m
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Error Correcting Codes

Encode( N ) HE B B Decode(' @ H B )

Correctness: Decode(Encode(m))=m

Even stronger: Decode(Encode(m)+”noise”)=m

L >

t+1 n
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(n,t+1,d)-Code
-

e
o e o

® ® ® ®

Encode : X+ — X7

C={c|ImeX*! s.t. Encode(m) =c} C X"

d(C) = min{d(c,, ) | ¢y, ¢, € C, ) # ¢y}

The decoding function will decode to the closest codeword
(theoretically, it is possible to support (d — 1)/2 errors)
Decode : 2" —» TFly{ L)

Center for Research in Applied
Cryptography and Cyber Security




Reed-Solomon Code

e 2 = fixsome «ay, ..., a,, distinct elements in [-

e Encode(m) : m € F**!

e Given a message m = (my, ..., m) € F'*! define /

/ /
px) :=my+mx+ ...+ mx' : J M
|

e Output (p(aty), ..., p(a,))

e What is the minimum distance of this code?

e Two distinct polynomials of degree : p(x), g(x)
e How many points might they agree on?

e Atmostt

e Consider the polynomial i(x) := p(x) — g(x); it has at most ¢ roots
e Reed Solomonis (n,t+ 1,n — t) code. Might correct (n — t — 1)/2 errors

¢ BiU
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Reed Solomon Code and
Secret Sharing

e Set n>3t+1, we get (3t+1,1+1,2t+1)

e { parties do not learn anything about the secret

e We can tolerate (d — 1)/2 = t wrong shares during
reconstruction

e The >2t+1 honest parties can reconstruct the secret!
e \We assume here an honest dealer

Center for Research in Applied
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How to Efficiently

Reconstruct the Secret?
EEEEEEEEEEERE

e Given n shares that were received, how can we recognize
the wrong shares?

 One option:
* We need only t+1 shares for reconstruction

o Iryall (

n

-, 1> options and take the majority

e 1~ n/3, and so this is not particularly efficient...
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Noisy Decoding:
Berlekamp-Welch Algorithm

e Input: (@, ), ..., (a,,y,). Atleast 2¢ + 1 of the y;s lie on the same degree-t
polynomial p(x)

Goal: Find that polynomial p(x)
The idea:

e Find a polynomial E(x) of degree #errors, such that for every i:
e v+ E(ay) = p(a) - E(a;)
e Moreover:
o E(a) #0 if p(a;) =y,
The algorithm will find a polynomial Q(x) of degree-2t, and a polynomial E(x) of
degree at most 7 as above such that

e v;- E(a)) = Q(a,) for every i
Output P(x) = O(x)/E(x)

¢ BiU
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How to Find Q and E?

e We have 37 + 1 equations of the form (for every a)):
vileg + ey - @ €10y Lt a) = (qo+ ¢+ ... + %ﬂizt) =0

e We have (2t + 1) + ¢t = 31+ 1 unknowns
(e()a ela KR et—l)a (Q()a IR QQt)

e Simply use linear algebra

eeeee for Research in Applied
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Exercise / Example

e Reed Solomon with n=7, t=3, F = Zg,,

* You are given
¢ + e = {(000,001), (001,006), (002,123), (003,456), (004,057), (005,086), (006,121)}

* Find the message m

o Use: yey+ @) — (qo + q10; + ¢ + q30; + qua’) = — y,o

o — p— — — — —

001 000 928 000 000 000 000 €eo 000 006
006 006 928 928 928 928 928 el 923 924
123 246 928 927 925 921 913 Qo 437 006
456 439 928 926 920 902 848 q | = | 541 » 007
057 228 928 925 913 865 673 q> 017 009
086 430 928 924 904 804 304 qs3 637 916
121 726 928 923 893 713 562 |qi| [ 289 | 003 |
E(x) = 006 + 924x + x? O(x) = 006 + 007x + 009x? + 916x> + 003x*

O(x)/E(x) = 001 + 002x + 003x?
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Dealing with
a Corrupted Dealer:
Verifiable Secret Sharing




What’s Next?

Dealer
Sharing Phase

Shares E

How can we validate that all shares
of the honest parties lie on the same polynomial of degree t?
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Security Properties

e This time, Sharing is an interactive protocol!

e The input of the dealer is s
* All other parties have no inputs

* Privacy:
For an honest dealer, the adversary learns nothing about s

e Consistency:

The outputs of the honest party are consistent with some s* even if
the adversary is corrupted (agreement)

e Correctness:
For an honest dealer, consistency holds with s* = s

¢ BiU
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Communication Model

P 1
A
P1 P2 P3 P4
P4 < > P2
Authenticated broadcast channel
\/
P 3

Pairwise private channel
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Warmup:
The Computational Setting

e (G,q,g) agroup of order g with generator g in which the
discrete logarithm problem is hard

e H is arandom oracle
e Sharing(s,n,1):
e Round I: The dealer:

e Choose a random polynomial
B(x) = by + byx + ... + bx' of degree ¢

» Give to each party P; the share

e Broadcast the values 3= gbo, .o B, = gbf

« Broadcast the masked secret [@=WF (YN
.) Blu Center for Research in Applied
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&

Are the Shares Consistent?

Is my share consistent with whatever was broadcasted?

k o
(gB(a,-) — )HIZ:O(Bk)ai _ H]tc:()gbk a;i 9

No? This dealer is cheating!

How can | convince the others?

Center for Research in Applied
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Good or Bad Idea?

* How can | convince others that my share is incorrect?

A. | send each party in a private channel the share s; that
| received

B. | broadcast a “complaint!” and | hope that everyone
will believe me

C. | broadcast a “complaint!”. If there are more than t
complaints, then the dealer is corrupted and we can
abort the protocol

D. | broadcast a “complaint!”. If there are < 7 complains,
then the dealer is honest, and we can finish

Center for Research in Applied
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Are the Shares Consistent?

Step II: Each party that has a wrong share, broadcasts a complaint
Step Il (a): If there are more than t complaints, abort
Otherwise...

Complaint

Dealer

Complaint

My share is OK. But..
My share is OK. maybe P; is actually honest and it received a

Is it a fake complaint? corrupted share?/

Step lll (b): The dealer broadcasts the share of each party that complains

Why is it OK to reveal the share of a party?

@ Maybe the adversary learns new information?

Center for Research in Applied
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Three Options To Consider

Dealer

Complaint

Complaint

The broadcasted

s; looks OK. Was it a false
complaint?

\

@\iid incorrect. AboD

The broadcasted s; looks OK.
Was it a false complaint?

P; updates its share to the broadcasted information

If all complaints were resolved —
All honest parties hold shares on the same polynomial

Center for Research in Applied
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The Entire Protocol
(Think: how to get rid of £l ?)

e RoundIl:

e The dealer computes shares sy, ..., 5, and sends s; to P; privately

* The dealer publishes authentication information

* Round lI: Each party checks its share. If wrong - broadcasts “complaint”
e Round llI:

e |f #complaints > f, abort

 Otherwise, the dealer broadcasts the share of each party that
complained

e Round IV:

e All parties verify the broadcasted share (and parties might need to
update their shares)

o |f there is some contradiction then abort
e Otherwise, output your share

¢ BiU
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Verifiable Secret Sharing
In the
Information Theoretic Setting




Authentication In the
Information Theoretic Setting?

e Bivariate polynomials of degree f that hides the secret s:

[ [
C S y) = Z Z a; ;- x' -y a,; €l agg=s
i=0 j=0
* Properties:
» Define fi(x) := 5(x, &), g(y) := S(a;, y)
e Both are univariate polynomials of degree-f

o f:(x) will be the share of party P,

o g2.(y) will be the authentication information of P,

+ It holds that (@) = S(a;, @) = fi(ex;)

¢ BiU
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Bivariate Polynomial

S(a,,y) = g,(y)

fi(aj) = Sy, o) = gi(ax;)
S(a;, y) = g(y) O

S(ap,y) = g(y)

S(ay,y) = g1(y) o O O o O
YOO feo pw £ £,
S(x, ay) S(x, ) S(x, a,) Sx, a,)
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Bivariate Polynomial

Security: S(@3) = 8,(¥)

e The ¢ polynomials {f:(x) },; for
| 1| < tlook random 33 =50
* A set of 27 polynomials
{fix), g0}, for | I| < tsuch that se»-so
.« . S(ay,y) = g1(y)
Jia) = g(a;) for every i, j € I do

. . Sl AOW® £ £
not reveal any information about s S S(e.a) Sr.a) S(x.a,)

Interpolation:

o /i(%),8/(y)};c;+ s completely determines S(x, y)
o 1+ 1 polynomials {f(x)};c,for |J| =1+ 1S(x,y)

Center For Research in Applied
Cryptography and Cyber Security
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VSS

[BGW88,Feldman88]

* Round || -: The dealer chooses a random bivariate polynomial

[ [
with S(x,y) = Z Z a; ;- x' ey, a,; €k 50,0)=s

i=0 j=0
 Sendto party P;, f(x) = S(x, ;) and g(y) = pio v
e Round Il - exchange sub-shares: P; complains with the

points it received from the
. Pi Sendsfi(aj) — S(aja ai) and gi(aj) — S(aia dealer, not P,

* Round Ill - Check and complain:

o P; checks the two values (i, v;) it received fror P;

« If something is wrong, complaint(i, J, fi(aj), g(a;))

¢ BiU
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P;s Point of View
| ¢

S(ay) = g(y)
— -
S (Oﬂi_#__
Ji(x)
S(x, a;)

.)Blu icy ppld
y 9 hy dyb



P;s Point of View
| i

S(ay) = g(y) — —_ -




P;s Point of View
| i

Complaint(i,2,fi(a,), g{(,))

® O
S(ay) = g(y) — I
O

| ¢
S@F——‘i——

fi(x)
S(x, a;)
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VSS - Round IV

e Round IV: Check complaints - dealer:
o For each complaint(i, j, i, v) check: u = S(a;, ;) and v = S(a;, o).
e |f holds - do nothing
» Otherwise, broadcast reveal(i, f.(x), g(y))

|
The dealer reveals the
entire share of P,
S(ay) = g(y) — _— -
o
!

S(0,0) | £

Sk, )

Center For Research in Applied
Cryptography and Cyber Security
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What Happens if the Dealer
Is Honest?

e Q:lIs it possible that an honest party receive wrong sub-
shares from another honest party?

 Q: Will an honest party ever broadcast a complaint if the
dealer is honest?

 Q: Will the dealer broadcast the shares of honest parties?
e Q: May the dealer reveal a share of someone?

 Q: If some polynomial is broadcasted, will it contradict a
polynomial that is held by some honest party?

¢ BiU
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Round V: A Vote

e Each party P;:

* |f there are joint complaints —
complaint(k, j, u, v) and complaint(j, k, u’, v’)
then the dealer must response to one of them

e No response from the dealer = reject

e For each message reveal(/, ]j-(x), gj(y)) broadcasted by the dealer

o Check that ﬁ-(aj) = gj(ai) and gi((xj) = ]?(ai)
o Ifj = 1then P, updates its share

* \ote: if whatever was broadcasted is consistent, and my share was
not updated, then broadcast consistent

o If at least n — f broadcasted consistent then output f;(x)
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Questions:
Corrupted Dealer

* Q: Is it possible that an honest party receive wrong points from another honest
party?

o Yes; The dealer might send contradicting shares to P, Pj

e Q: n — t parties voted consistent. How many polynomials of honest parties
were replaced?

e At most t!

e More importantly, at least  + 1 honest parties received consistent shares
already in Round |

e The bivariate polynomial and the secret are well defined!

e Q:Ifonly r + 1 honest parties broadcasted consistent, does it guarantee that
all honest parties hold shares on the same bivariate polynomial?

* Yes! An honest party broadcasts consistent only if all conflicts were resolved
and its share was not replaced

e All information that the dealer broadcasted is consistent
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Bivariate Shares -
Reconstruction

S(@ ) = 8,() e Each party P;:

e Publish fi(x), g(y)
e Initialize K <« @

S(ay) = g() e Forj=1,....n:

e Does ]5 consistent with
S(@,5) = 8,00 at least 21 + 1 g’s?
e e Yes-addjto K

e Reconstruct S(x, y) from
the set of polynomials in K

S(0,0)

A A ) £,
Sx, ap) S(x, ap) S(x, a;) Sx, a,)

Reconstruction requires just private channels (no broadcast!)
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However, in Many
Protocols...

S(a,, y) = 8,(y)

S(ay) = g(y)

S(a,y) = ()

S(ay,y) = g1(y)

S(0,0)

S0 f(x) fix) f,(x)

Center for Research in Applied
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However, in Many

Protocols...

$1(0) /(0)

.) Blu Crptosraphy

rchi ppl d
d yb

Ji(0)

fi(x) = S(x, o))
f(0) = S0,
q(y) = $(0,y)

degree-t polynomial

qg(0) = S$(0,0) =s



Conclusion

e Letr < n/3. There exists a perfectly secure VSS protocol
INn the presence of a malicious adversary

e Moreover:

e Lett < n/2. There exists a statistically secure VSS

protocol in the presence of a malicious adversary
[RabinBenOr89]

* (assuming broadcast)
Thank You!
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