4. g
AA 5?12Jé32ity BIU® The 11t" BIU Winter School on

Center for Research in Applied

Cryptography and Cyber Security Cryptography in a Quantum World

Thomas Vidick February 14-17, 2021
California Institute of Technology

Delegation of quantum computations

Thomas Vidick, Caltech

Part II: Delegation with two quantum provers
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Two-prover delegation
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* Classical computations:

— [BFLS’10] verify non-deterministic polytime computation using polylog verifier
————

— Based on probabilistically checkable proofs (PCP): interpret computation as local constraint satis-

faction problem (“tableau”) and encode satisfying assignment in locally checkable code.

* Quantum computations: No good notion of PCP! Either:

— — Delegate circuit on a gate-by-gate basis, many repetitions to bring soundness down;

= - Hamiltonian model: check preparation of history state certificate for computation.

* Main challenge is to classically test that provers have/measure qubits as directed




Two quantum provers sharing entanglement @ y
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The Magic Square game
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Quantum solution
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Theorem. Suppose that two players sharing a state |p) € Ha ® Hp succeed with probability 1 in the \ 7 /
1

Magic Square game. Let By, .. .,(Bg be Bob’s observables in the game. Then

Eci g ik k
151151, = (3,155) (@4 'ST) n @ Y3 +1
. — b b0 [ (g v ] 1

Et‘b).‘ ([S)TS¥) (ng '35) 7 Ys, Yo 11
+1 +1 -1
b, by By



Rigidity

Corollary. Suppose that two players sharing a state |) € Ha ® Hg succeed with probability 1 in
—

the Magic Square game. Let(B1,...,Bg be Bob’s observables in the game. Then there is a unitary
@: Hp)— C%, (@such that
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Given as input a circuit C. Perform one of the following four tests with equal probability:

The RUV protocol

@Play t = poly(|C|) sequential Magic Square (MS) games with the two provers. If the fraction of

successes is below 1 — ¢ then reject.

@Execute a state tomography protocol in which Bob is asked to perform measurements that correspond
to t/2 magic states. Alice is instructed to play t MS games. Alice’s measurement outcomes are used

to check the results reported by Bob.

xecute a process tomography protocol in which Alice is instructed to perform Bell basis measure-

ments according to the pattern that corresponds to the teleportation-based circuit associated with C. Ve '}w\ ¥ JM,uL
-4

Bob is instructed to play t MS games. Bob’s measurement outcomes are used to verify that Alice is

reporting the correct outcomes for her Bell measurements. P l?“/*“‘} Wera /
£
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4. Orchestrate the computation of C: instruct Bob to prepare the magic states as in step 2, and Alice to P (o o ydi
perform Bell basis measurements as in step 3. Use the measurement outcome reported by Alice for o Mo

the output qubit as the output of the computation (after having applied the required Pauli corrections). > M



Verification in the Hamiltonian model

Theorem. For any integer n > 1 there is\m = poly(n) such that the following holds. Given a poly-size
quantum circuit C acting on n qubits and an input x for C there exist efficiently computable real weights
{ap: P €{I,X,Z}*"} suchthat Y_p |ap| = 1 and moreover if
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e (Completeness) If C accepts x with probability at least 2/ 3 then /\mm(HC) < —%,‘ D D D
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Given a circuit C and input x, let He be the m-qubit associated Hamiltonian. T
Perform either of the following with probability 1 — p and p, respectively: N \ * LHJ

@ xecute an m’-qubit entanglement test with both provers.

2 Select P’ € {I,By,.. Bg}mwumformly at random. Sele@ {I, X, Z}™ according to |ap|. Let
" H,..., by besuch that foralli € {1,...,m},

/P\}

P, =B, (ifh=2), P =By(ifth,=X), P =I(tP=1I)

(a) Send ty, ..., t, to Alice and P’ to Bob. {/W}N/L L Mu (/

(b) Alice replies with a,b € {0,1}" and Bob with c € {—1,1}"" o /
(c)Fori € {1,...,m} letd; = (—1)%c;, if P, = Z and d; = (—1)"ic,, if P, = X. L -2
(d) Accept if [];d; = sign(ap).
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Efficient two-prover delegation

* Need test for-multi-qubit entanglement + Pauli measurements: (Pauli braiding test” [NV’ 18] extends

BLR linearity test.

%« Combine with PCP techniques to obtain polylog classical verification of quantum polytime compu-

tation (**). (Also QMA languages given adequate access to a witness.)
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Open questions %\ C/\\ Z}
V

e Two-prover delegation of quantum computation with no entanglement? V

T (**) Can we get rid of the setup/CRS?
™, Quantum PCP?
\ﬁ Efficient verification without circuit-to-Hamiltonian? yo.o

\’) Efficient entanglement tests are not noise-tolerant. Delegation with noisy entanglement?






