

Thomas Vidick

California Institute of Technology

Delegation of quantum computations

Thomas Vidick, Caltech

Part III: *Delegation with a classical verifier and
a computationally bounded server*

The Morimae-Fitzsimons protocol

Theorem. For any $n \geq 1$ there is $m = \text{poly}(n)$ such that the following holds. Given a poly-size quantum circuit \mathcal{C} acting on n qubits and an input x for \mathcal{C} there exist efficiently computable real weights $\{\alpha_P : P \in \{I, X, Z\}^{\otimes m}\}$ such that $\sum_P |\alpha_P| = 1$ and moreover if

$$H_{\mathcal{C}} = \sum_{P \in \{I, X, Z\}^{\otimes m}} \alpha_P P$$

then:

- (Completeness) If \mathcal{C} accepts x with probability at least $2/3$ then $\lambda_{\min}(H_{\mathcal{C}}) \leq -\frac{2}{3}$;
- (Soundness) If \mathcal{C} accepts x with probability at most $1/3$ then $\lambda_{\min}(H_{\mathcal{C}}) \geq \frac{2}{3}$.

Claw-free functions

Definition (Trapdoor claw-free function family).

A family $\mathcal{F} = \{f_{pk} : \{0,1\}^{m(\lambda)} \rightarrow \{0,1\}^{m(\lambda)}\}_{pk \in \{0,1\}^{k(\lambda)}}$ is trapdoor claw-free against classical (resp. quantum) adversaries if the following conditions hold:

- There is a PPT key generation procedure $(pk, td) \leftarrow \text{GEN}(1^\lambda)$.
- f_{pk} can be efficiently evaluated: there is a PPT procedure that given pk and x as inputs returns $f_{pk}(x)$.
- For every $\lambda \in \mathbb{N}$ and $pk \in \{0,1\}^{k(\lambda)}$, f_{pk} is 2-to-1. Moreover, for any y in the range of f_{pk} the two preimages of y take the form (b, x_b) where $b \in \{0,1\}$ and $x_b \in \{0,1\}^{m(\lambda)-1}$.
- For every PPT (resp. QPT) procedure \mathcal{A} there is a negligible function $\mu : \mathbb{N} \rightarrow \mathbb{N}$ such that for every λ ,

$$\Pr_{pk \leftarrow_R \{0,1\}^{k(\lambda)}} ((x_0, x_1) \leftarrow \mathcal{A}(1^\lambda, pk) : x_0 \neq x_1, f_{pk}(x_0) = f_{pk}(x_1)) \leq \mu(\lambda).$$

- Given pk , td and any y in the range of f_{pk} it is possible to efficiently recover the two preimages x_0 and x_1 of y .

Committing to a qubit

Let $f : \{0, 1\}^m \rightarrow \{0, 1\}^m$ be claw-free.

Let $|\phi\rangle = \beta_0|0\rangle + \beta_1|1\rangle$ be a qubit.

160

140

120

100

80

60

40

mm

40

60

80

100

120

140

160

180

200

220

240

260

The Mahadev protocol (single qubit)

Let \mathcal{F} be a trapdoor claw-free function family and $\lambda \in \mathbb{N}$ a security parameter. Let $\gamma = 0$.

Let $H = \alpha_X X + \alpha_Z Z$. Repeat N times:

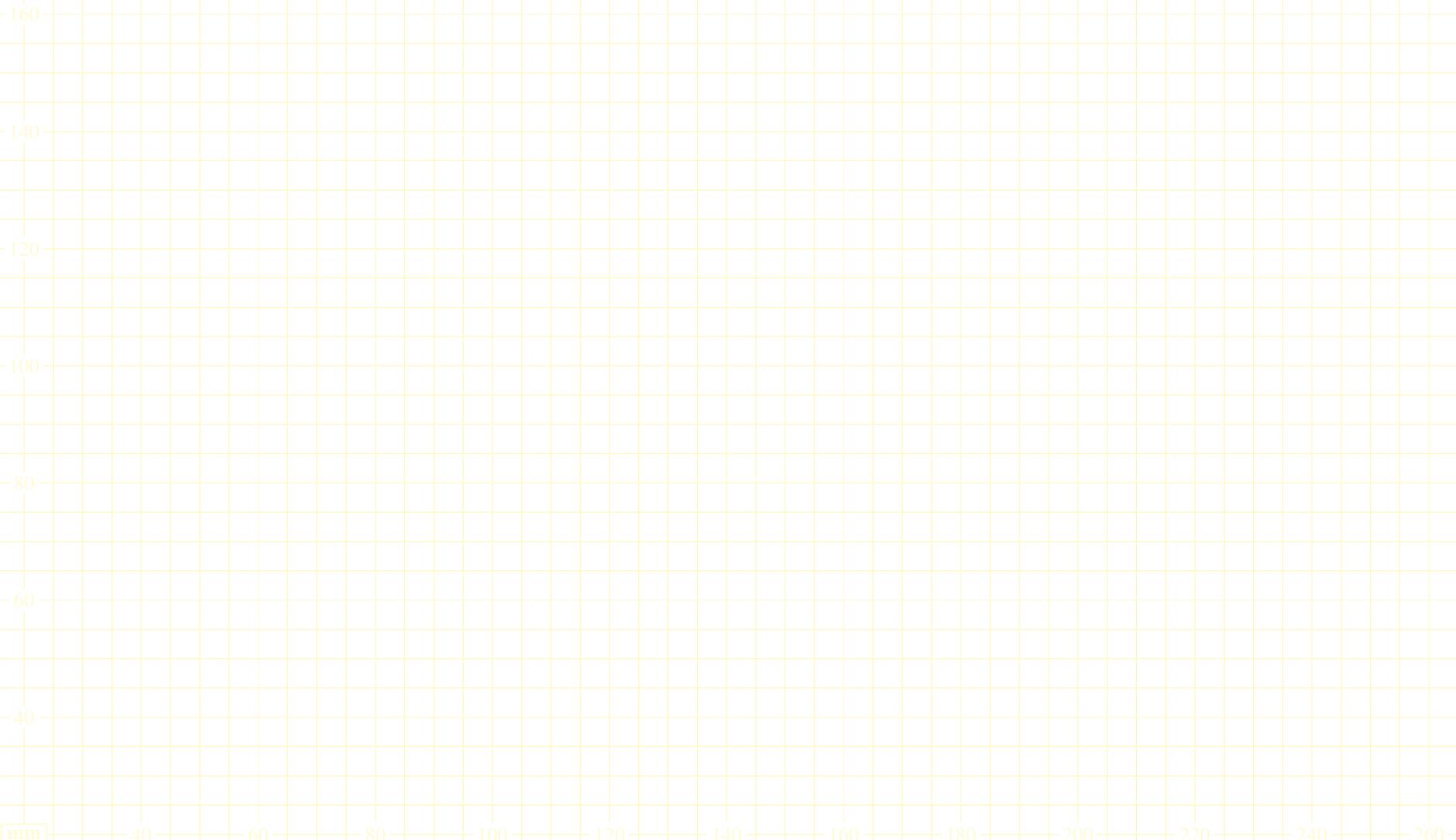
1. The verifier generates $(pk, td) \leftarrow \text{GEN}(1^\lambda)$. It sends pk to the prover.
2. The prover returns $y \in \{0, 1\}^m$.
3. The verifier selects a uniformly random challenge $c \leftarrow_R \{0, 1\}$ and sends c to the prover.
4. (a) (*Computational basis, $c = 0$:*) In case $c = 0$ the prover is expected to return $(b, x) \in \{0, 1\}^m$. If $f(b, x) \neq y$ then the verifier aborts. The verifier sets $a_Z \leftarrow (-1)^b$ and $\gamma \leftarrow \gamma + \alpha_Z a_Z$.
5. (b) (*Hadamard basis, $c = 1$:*) In case $c = 1$ the prover is expected to return $(u, d) \in \{0, 1\}^m$. The verifier uses td to determine the two preimages (b, x_b) of y . She sets $a_X \leftarrow (-1)^u \cdot (-1)^{d \cdot (x_0 + x_1)}$ and $\gamma \leftarrow \gamma + \alpha_X a_X$.

If the verifier has not aborted at any of the steps $c = 0$, she returns the real number $o = \frac{2}{N}\gamma$.

Soundness analysis

Suppose P succeeds with probability 1 in the preimage test.

Definition (Extracted qubit).



Lemma (The isometry). Let \hat{Z} , \hat{X} be observables on \mathcal{H} . Let $|\psi\rangle \in \mathcal{H}$. Define

$$V : \mathcal{H} \mapsto (\mathcal{H} \otimes \mathbb{C}_2) \otimes \mathbb{C}^2$$

$$|\psi\rangle \mapsto \frac{1}{2} (\text{Id} \otimes \text{Id} \otimes \text{Id} + \hat{X} \otimes X \otimes \text{Id} + \hat{Z} \otimes Z \otimes \text{Id} + \hat{X}\hat{Z} \otimes XZ \otimes \text{Id}) (|\psi\rangle \otimes |EPR\rangle_{AB})$$

Definition (Extracted qubit). For any prover P and string y , define the extracted qubit

$$\rho = \text{Tr}_{\mathcal{H}'A} (V|\psi_y\rangle\langle\psi_y|V^\dagger).$$

Lemma. Suppose P succeeds with probability one in the preimage test. Let ρ be the extracted qubit. Then

- (Z-measurement:) The outcome of measuring ρ in the computational basis is identically distributed to the bit $(-1)^b$ computed from the prover's answer x in case $c = 0$.
- (X-measurement:) (**) The outcome of measuring ρ in the Hadamard basis is computationally indistinguishable from the bit $(-1)^{u+d \cdot (x_0+x_1)}$ computed from the prover's answer x in case $c = 1$.

Definition (Adaptive hardcore bit). Let \mathcal{F} be a 2-to-1 trapdoor claw-free function family. For any QPT adversary \mathcal{A} there is a negligible function μ such that

$$\left| \frac{1}{2} - \Pr_{pk \leftarrow_R \{0,1\}^{k(\lambda)}} \left((x, d) \leftarrow \mathcal{A}(1^\lambda, pk), \{x_0, x_1\} \leftarrow f_{pk}^{-1}(f_{pk}(x)) : d \neq 0^m \wedge d \cdot (x_0 + x_1) = 0 \right) \right| \leq \mu(\lambda).$$

Summary

- Prover that succeeds with probab. 1 in preimage test (“perfect prover”) leads to an outcome o recorded by the verifier s.t. $E[o] \approx_c \langle \phi | H | \phi \rangle$ for some $|\phi\rangle$ (or the prover breaks the hardcore bit assumption).
- Sequential repetition to estimate o + simple reduction to perfect prover gives constant completeness/soundness gap
- Extension to multiqubit H requires additional assumptions:
 - “Collapsing” property for multiqubit $X \cdots X$ or $Z \cdots Z$ terms.
 - Mixed XZ terms require more challenges and additional “injective invariance” property.
 - Independent keys used to “commit” to each qubit.
- Final 4-message protocol has completeness negligibly close to 1 and soundness $3/4$.

Extensions and open questions

- Extensions:

- [Alagic-CGH'20] Non-interactive protocol in QRO model
- [Chia-CY'20] Make verifier super-efficient using CRS+QRO
- [Chung-LLW'21] Consider sampling problems
- [V-Zhang'20] Proof of quantum knowledge property
- [Georghiou-V'19] Remote state preparation → composable protocol, measurement-based model

- Open questions:

- 1-round protocol
- Different assumptions. Information-theoretic security?
- Verification of restricted classes of circuits/ restricted provers

