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Part III: Delegation with a classical verifier and 
a computationally bounded server
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The Morimae-Fitzsimons protocol

Theorem. For any n ≥ 1 there is m = poly(n) such that the following holds. Given a poly-size

quantum circuit C acting on n qubits and an input x for C there exist efficiently computable real weights

{αP : P ∈ {I, X, Z}⊗m} such that ∑P |αP| = 1 and moreover if

HC = ∑
P∈{I,X,Z}⊗m

αP P

then:

• (Completeness) If C accepts x with probability at least 2/3 then λmin(HC) ≤ −2
3;

• (Soundness) If C accepts x with probability at most 1/3 then λmin(HC) ≥ 2
3.
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Claw-free functions

Definition (Trapdoor claw-free function family).
A family F = { fpk : {0, 1}m(λ) → {0, 1}m(λ)}pk∈{0,1}k(λ) is trapdoor claw-free against classical (resp.

quantum) adversaries if the following conditions hold:

• There is a PPT key generation procedure (pk, td)← GEN(1λ).

• fpk can be efficiently evaluated: there is a PPT procedure that given pk and x as inputs returns fpk(x).

• For every λ ∈ N and pk ∈ {0, 1}k(λ), fpk is 2-to-1. Moreover, for any y in the range of fpk the two

preimages of y take the form (b, xb) where b ∈ {0, 1} and xb ∈ {0, 1}m(λ)−1.

• For every PPT (resp. QPT) procedure A there is a negligible function µ : N → N such that for

every λ,

Pr
pk←R{0,1}k(λ)

(
(x0, x1)← A(1λ, pk) : x0 6= x1, fpk(x0) = fpk(x1)

)
≤ µ(λ) .

• Given pk, td and any y in the range of fpk it is possible to efficiently recover the two preimages x0

and x1 of y.
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Committing to a qubit

Let f : {0, 1}m → {0, 1}m be claw-free. Let |φ〉 = β0|0〉+ β1|1〉 be a qubit.
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The Mahadev protocol (single qubit)

Let F be a trapdoor claw-free function family and λ ∈N a security parameter. Let γ = 0.

Let H = αX X + αZ Z. Repeat N times:

1. The verifier generates (pk, td)← GEN(1λ). It sends pk to the prover.

2. The prover returns y ∈ {0, 1}m.

3. The verifier selects a uniformly random challenge c←R {0, 1} and sends c to the prover.

4. (a) (Computational basis, c = 0:) In case c = 0 the prover is expected to return (b, x) ∈ {0, 1}m. If

f (b, x) 6= y then the verifier aborts. The verifier sets aZ ← (−1)b and γ← γ + αZaZ.

(b) (Hadamard basis, c = 1:) In case c = 1 the prover is expected to return (u, d) ∈ {0, 1}m. The

verifier uses td to determine the two preimages (b, xb) of y. She sets aX ← (−1)u · (−1)d·(x0+x1)

and γ← γ + αXaX.

If the verifier has not aborted at any of the steps c = 0, she returns the real number o = 2
N γ.
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Soundness analysis

Suppose P succeeds with probability 1 in the preimage test.

Definition (Extracted qubit).
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Lemma (The isometry). Let Ẑ, X̂ be observables onH. Let |ψ〉 ∈ H. Define

V : H 7→ (H⊗C2)⊗C2

|ψ〉 7→ 1
2
(
Id⊗ Id⊗ Id+X̂⊗ X⊗ Id+Ẑ⊗ Z⊗ Id+X̂Ẑ⊗ XZ⊗ Id

)(
|ψ〉 ⊗ |EPR〉AB

)

Definition (Extracted qubit). For any prover P and string y, define the extracted qubit

ρ = TrH′A
(

V|ψy〉〈ψy|V† )
.
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Lemma. Suppose P succeeds with probability one in the preimage test. Let ρ be the extracted qubit. Then

• (Z-measurement:) The outcome of measuring ρ in the computational basis is identically distributed

to the bit (−1)b computed from the prover’s answer x in case c = 0.

• (X-measurement:) (**) The outcome of measuring ρ in the Hadamard basis is computationally indis-

tinguishable from the bit (−1)u+d·(x0+x1) computed from the prover’s answer x in case c = 1.

Definition (Adaptive hardcore bit). Let F be a 2-to-1 trapdoor claw-free function family. For any QPT

adversary A there is a negligible function µ such that∣∣∣1
2
− Pr

pk←R{0,1}k(λ)

(
(x, d)← A(1λ, pk), {x0, x1} ← f−1

pk ( fpk(x)) : d 6= 0m∧ d · (x0 + x1) = 0
)∣∣∣ ≤ µ(λ) .
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Summary

• Prover that succeeds with probab. 1 in preimage test (“perfect prover”) leads to an outcome o recorded

by the verifier s.t. E[o] ≈c 〈φ|H|φ〉 for some |φ〉 (or the prover breaks the hardcore bit assumption).

• Sequential repetition to estimate o + simple reduction to perfect prover gives constant complete-

ness/soundness gap

• Extension to multiqubit H requires additional assumptions:

– “Collapsing” property for multiqubit X · · ·X or Z · · · Z terms.

– Mixed XZ terms require more challenges and additional “injective invariance” property.

– Independent keys used to “commit” to each qubit.

• Final 4-message protocol has completeness negligibly close to 1 and soundness 3/4.
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Extensions and open questions

• Extensions:

– [Alagic-CGH’20] Non-interactive protocol in QRO model

– [Chia-CY’20] Make verifier super-efficient using CRS+QRO

– [Chung-LLW’21] Consider sampling problems

– [V-Zhang’20] Proof of quantum knowledge property

• [Georghiu-V’19] Remote state preparation→ composable protocol, measurement-based model

• Open questions:

– 1-round protocol

– Different assumptions. Information-theoretic security?

– Verification of restricted classes of circuits/ restricted provers
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