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The Morimae-Fitzsimons protocol

Theorem. For any n > 1 there is m = poly(n) such that the following holds. Given a poly-size

quantum circuit C acting on n qubits and an input x for C there exist efficiently computable real weights
{ap: P e {I,X,Z}*"} suchthat Y p |ap| = 1 and moreover if

He= )Y  apPl
Pe{l,X,Z}em

then:
* (Completeness) If C accepts x with probability at least 2/ 3 then Ay (He) < —%;

: i, 2
* (Soundness) If C accepts x with probability at most 1/3 then Ay, (He) > 3



Claw-free functions

Definition (Trapdoor claw-free function family).
A family F = {fp : {0, 1} — {0,1}mM)} pke{0,11k(1) is trapdoor claw-free against classical (resp.

quantum) adversaries if the following conditions hold:

* There is a PPT key generation procedure (pk, td) < GEN(1").
* fok can be efficiently evaluated: there is a PPT procedure that given pk and x as inputs returns fu(x).

* For every A € N and pk € {0, 13O, fpk is 2-to-1. Moreover, for any y in the range of fpi the two
preimages of y take the form (b, x,) where b € {0,1} and x;, € {0,1}"M~1,

* For every PPT (resp. QPT) procedure A there is a negligible function y : IN — IN such that for
every A,

Pr o ((x0,%1) = A(1Y, pk) = x0 # 21, for(x0) = fr(x1)) < (M)
pkg{0,1}K()

* Given pk, td and any y in the range of f, it is possible to efficiently recover the two preimages Xg
and x1 of V.



Committing to a qubit

Let f: {0,1} — {0,1}™ be claw-free. Let |[¢) = Bo|0) + B1|1) be a qubit.



The Mahadev protocol (single qubit)

Let F be a trapdoor claw-free function family and A € IN a security parameter. Let v = 0.

Let H= ax X + az Z. Repeat N times:

1. The verifier generates (pk, td) <— GEN(1*). It sends pk to the prover.

2. The prover returns y € {0,1}".

3. The verifier selects a uniformly random challenge ¢ <— {0, 1} and sends c to the prover.

4.(a) (Computational basis, ¢ = 0:) In case ¢ = 0 the prover is expected to return (b, x) € {0,1}™. If
f(b,x) # y then the verifier aborts. The verifier sets az < (—1)? and y < 7y + azaz.

(b) (Hadamard basis, ¢ = 1:) In case ¢ = 1 the prover is expected to return (u,d) € {0,1}"™. The

verifier uses td to determine the two preimages (b, x;) of y. She sets ax < (—1)* - (—1)4(¥o+x1)

and y < v + axax.

If the verifier has not aborted at any of the steps ¢ = 0, she returns the real number 0 = %’y.



Soundness analysis

Suppose P succeeds with probability 1 in the preimage test.

Definition (Extracted qubit).



Lemma (The isometry). Let Z, X be observables on H. Let |1)) € H. Define

ViH — (HRC)®C?
1 R R |
1) — E(Iol<§§>I<11<§§>I<;1+X<g>X<§§>I<;1+Z<§§>Z@IGHXZ@XZ@Iol)(\1/J>@USPR>AB)

Definition (Extracted qubit). For any prover P and string y, define the extracted qubit

P = Tr’H’A( V|‘/’}/><‘/Jy|v+) :



Lemma. Suppose P succeeds with probability one in the preimage test. Let p be the extracted qubit. Then

* (Z-measurement:) The outcome of measuring p in the computational basis is identically distributed

to the bit (—l)b computed from the prover’s answer x in case ¢ = 0.

* (X-measurement:) (**) The outcome of measuring p in the Hadamard basis is computationally indis-

tinguishable from the bit (—1)*+4&0+¥) computed from the prover’s answer x in case ¢ = 1.

Definition (Adaptive hardcore bit). Let F be a 2-to-1 trapdoor claw-free function family. For any QPT
adversary A there is a negligible function u such that

3 T (o)  ACY R, from} = () d £ 0" Ad (xo30) =0)| < )



Summary

 Prover that succeeds with probab. 1 in preimage test (“perfect prover”) leads to an outcome o recorded

by the verifier s.t. E|o] . (¢|H|¢) for some |¢) (or the prover breaks the hardcore bit assumption).

e Sequential repetition to estimate o + simple reduction to perfect prover gives constant complete-

ness/soundness gap
e Extension to multiqubit H requires additional assumptions:

— “Collapsing” property for multiqubit X - - - X or Z - - - Z terms.

— Mixed XZ terms require more challenges and additional “injective invariance” property.

— Independent keys used to “commit” to each qubit.

* Final 4-message protocol has completeness negligibly close to 1 and soundness 3 /4.



Extensions and open questions

e Extensions:

— [Alagic-CGH’20] Non-interactive protocol in QRO model

— [Chia-CY’20] Make verifier super-efficient using CRS+QRO

— [Chung-LLW’21] Consider sampling problems

— [V-Zhang’20] Proof of quantum knowledge property

* [Georghiu-V’19] Remote state preparation — composable protocol, measurement-based model

e Open questions:

— 1-round protocol

— Different assumptions. Information-theoretic security?

— Verification of restricted classes of circuits/ restricted provers
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