
Delegation of quantum computations

Thomas Vidick, Caltech

Part I: Delegation with a quantum verifier
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Problem statement: Delegated Quantum Computation (DQC)
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Outline

1. Information-theoretic delegation with a small quantum verifier

(a) Blindness: the quantum one-time pad

(b) Verifiability: Clifford authentication

2. Information-theoretic delegation with two provers

(a) Testing entanglement

(b) Two-prover delegation in the circuit model

(c) Two-prover delegation in the Hamiltonian model

3. Computationally secure delegation with a classical verifier

(a) Classically committing to a qubit

(b) The Mahadev protocol



40 60 80 100 120 140 160 180 200 220 240 260

40

60

80

100

120

140

160

180

200

mm

Definition (Blindness). A DQC protocol PAB provides ε-blindness if for all adversarial behaviors {Fi}
there exists a CPTP map F : L(HB)→ L(HB) such that

TrA ◦ PAB ≈ε F ◦ TrA .
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The Childs protocol for blind DQC
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Transversal gates

Definition (Clifford). A one- or two-qubit gate C is Clifford if for every Pauli P, there is a Pauli P′ such

that CP = P′C.

The T gate T =

(
1 0

0 eiπ/4

)
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Definition (Verifiability). A DQC protocol PAB provides ε-verifiability if for all adversarial behaviors

{Fi} and all initial states ψAR1 ⊗ ψR2B there is a 0 ≤ pψ ≤ 1 such that

ρ
ψ
AR1
≈ε pψ

(
U ⊗ IdR1

)
(ψAR1) + (1− pψ)|err〉〈err| ⊗ ψR1 .
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Authentication

Definition (Authentication scheme). A quantum authentication scheme (QAS) from ` to m = `+ e qubits

with security ε is specified by two families of unitaries E = {Ek} and D = {Dk} together with a set of

classical keys K such that:

1. (Completeness:) For all k ∈ K and all |ψ〉,

Dk
(
Ek
(
|ψ〉〈ψ| ⊗ |0e〉〈0e|

)
E†

k
)

D†
k = |ψ〉〈ψ| ⊗ |0e〉〈0e| .

2. (Soundness:) For any |ψ〉 let

Π = |ψ〉〈ψ| ⊗ Id+(Id−|ψ〉〈ψ|)⊗ (Id−|0e〉〈0e|) .

Then for any CPTP map F , if

σ =
1
|K|∑k

Dk
(
F
(

Ek(|ψ〉〈ψ| ⊗ |0e〉〈0e|)E†
k
))

D†
k

then

Tr
(
Π σ

)
≥ 1− ε .
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Verifiable delegation

• Childs protocol can be modified by adding authentication.

Provides verifiability at the cost of O(log(1/ε))-qubit (Clifford) quantum computer for verifier.

• Clifford authentication allows transversal application of Pauli gates.

Polynomial-code authentication allows transversal application of Clifford gates.

• Non-Clifford gates require magic states + classical communication.

• [ABOE’08,ABOEM’18] ε-blind and verifiable protocol with O(log(1/ε))-qubit verifier,

one-way quantum communication and two-way classical communication.

• [BFK’09,FK’16] O(1)-qubit verifier, measurement-based model of quantum computing.



40 60 80 100 120 140 160 180 200 220 240 260

40

60

80

100

120

140

160

180

200

mm

The Clifford authentication scheme

• Key k species Clifford circuit Ek on (e + 1) qubits.

• Dk = Ek: |ψ〉|0e〉 7→ Ek(|ψ〉|0e〉).

Lemma (Pauli twirl). For any m-qubit P 6= P′, and density ρ on m + m′ qubits,

1
4m ∑

Q∈Pm

(
Q†P′Q⊗ Id

)
ρ
(
Q†PQ⊗ Id

)
= 0 .



40 60 80 100 120 140 160 180 200 220 240 260

40

60

80

100

120

140

160

180

200

mm

Lemma (Pauli twirl). For any m-qubit P 6= P′, and density ρ on m + m′ qubits,

1
4m ∑

Q∈Pm

(
Q†P′Q⊗ Id

)
ρ
(
Q†PQ⊗ Id

)
= 0 .

Let F (·) = U ·U†, for some U = ∑P αPP

The Pauli twirl reduces any attack to a non-uniform mixture of Pauli attacks.
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Lemma (Clifford decoherence). Let ρ be a density on m + m′ qubits. Let U = ∑P∈Pm P ⊗ UP be

arbitrary. Then

1
|Cm| ∑

C∈Cm

(
(C⊗ Id)†U(C⊗ Id)

)
ρ
(
(C⊗ Id)†U†(C⊗ Id)

)

= (I ⊗UI) ρ (I ⊗UI)
† +

1
4m − 1 ∑

P,Q∈Pm\{Id}
(P⊗UQ) ρ (P⊗UQ) .
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Summary

• Computation on encrypted data.

No code allows universal transversal gate set: magic states and communication.

• Perfect information-theoretic blindness.

ε-verifiability with O(log(1/ε)) blow-up in computation size/communication.

• Additional models: measurement-based, post-hoc.

Open questions

• Fault-tolerance: can errors at the verifier side be exploited by the prover?

• Protocols for sub-universal classes of circuits, e.g. IQP circuits.

• Verification for sampling problems?

• Reduce classical communication/computation of the verifier.
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