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Part |: Delegation with a quantum verifier



Problem statement: Delegated Quantum Computation (DQC)




Outline

1. Information-theoretic delegation with a small quantum verifier

(a) Blindness: the quantum one-time pad

(b) Verifiability: Clifford authentication

2. Information-theoretic delegation with two provers

(a) Testing entanglement
(b) Two-prover delegation in the circuit model

(¢c) Two-prover delegation in the Hamiltonian model

3. Computationally secure delegation with a classical verifier

(a) Classically committing to a qubit

(b) The Mahadev protocol



Definition (Blindness). A DQC protocol P ag provides e-blindness if for all adversarial behaviors {F;}
there exists a CPTP map F : L(Hp) — L(H3p) such that
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The Childs protocol for blind DQC




Transversal gates

Definition (Clifford). A one- or two-qubit gate C is Clifford if for every Pauli P, there is a Pauli P’ such
that CP = P'C.
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Definition (Verifiability). A DQC protocol P provides e-verifiability if for all adversarial behaviors
{Fi} and all initial states P ar, @ Pr,p there is a 0 < py < 1 such that
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Authentication

Definition (Authentication scheme). A quantum authentication scheme (QAS) from { to m = £ + e qubits
with security € is specified by two families of unitaries £ = {Ex} and D = {Dy} together with a set of
classical keys IC such that:

1. (Completeness:) For allk € K and all |),

Dy (Ex(J)(w] @ [0°X0°|) E{) Df = [p)(pp| ® |0°)0°] .

2. (Soundness:) For any |{) let

IT = |p)p| ® Id +(1d — |)(p]) © (Id —[0°)07])

Then for any CPTP map F, if
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then
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Verifiable delegation

e Childs protocol can be modified by adding authentication.
Provides verifiability at the cost of O(log(1/¢))-qubit (Clifford) quantum computer for verifier.

e Clifford authentication allows transversal application of Pauli gates.

Polynomial-code authentication allows transversal application of Clifford gates.

» Non-Clifford gates require magic states + classical communication.
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* [ABOE’08,ABOEM’ 18] e-blind and verifiable protocol with O(log(1/¢))-qubit verifier,

one-way quantum communication and two-way classical communication.

« [BFK’09,FK’16] O(1)-qubit verifier, measurement-based model of quantum computing.



The Clifford authentication scheme

* Key k species Clifford circuit Ex on (e + 1) qubits.

* D = E: [$)10°) = Ex(|)[0%)).

Lemma (Pauli twirl). For any m-qubit P # P’, and density p on m + m’ qubits,
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Lemma (Pauli twirl). For any m-qubit P # P, and density p on m + m’ qubits,

& L (Q'PQeld) p (Q'PQeId) = 0.
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Let F(-) = U - U", forsome U = Y, apP

The Pauli twirl reduces any attack to a non-uniform mixture of Pauli attacks.



Lemma (Clifford decoherence). Let p be a density on m + m’' qubits. Let U = Y pcp P @ Up be
arbitrary. Then
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Summary

e Computation on encrypted data.

No code allows universal transversal gate set: magic states and communication.

e Perfect information-theoretic blindness.

e-verifiability with O(log(1/¢)) blow-up in computation size/communication.

e Additional models: measurement-based, post-hoc.

Open questions

 Fault-tolerance: can errors at the verifier side be exploited by the prover?

* Protocols for sub-universal classes of circuits, e.g. IQP circuits.

e Verification for sampling problems?

* Reduce classical communication/computation of the verifier.
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