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Quantum cryptography _




Quantum protocol

Quantum adversary (information
theoretic)

Quantum cryptography Composable quantum security
definition

Security proofs based on the laws of
quantum physics

We have a lot to learn.... :)



L ecture 1:

Introduction
BB84 and Ekert?1 protocols

L ecture 2:

QKD security definition
Quantum-proof randomness extractors

Lecture 3:

Security proof (the main parts)

Device-independent quantum key distribution



1. The task

2. It's alive

Introduction



Two honest parties: Alice and Bob

Goal: Create a secret key

Resources: N,
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\ ,
Two honest parties: Alice and Bob Yo U

Goal: Create a secret key

One dishonest party: Eve @
4 Authenticated classical channel N\
Eve's goal: gain as much information I.) \.s
as possible about the key
(Y

Information theoretic security E ' E

High key rate Alice Bob
Expansion rather than distribution ) )
01100101... 01100101...

"Everlasting security”



Structure of a general QKD protocol:

Generation of the classical raw data using the quantum devices
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Classical processing of the data (post-quantum cryptography)




Types of protocols: Some examples:

Prepare and measure protocols BB84 protocol
Entanglement based protocols Six-state protocol
Discrete-variable protocols Ekert 91 protocol
Continues-variable protocols COW protocol
Device-independent protocols Satellite-based protocols
Semi-device-independent Ping-pong protocol
One-way classical processing Twin-field protocol

Two-way classical processing

2
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Quantum hacking
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Cerberis® QKD System Clavis® QKD Platform

> Complex network topologies (ring, hub and spoke) > Open QKD platform for R&D applications

> Interoperability with major Ethernet and OTN encryptors > Interface to external detectors

> Easy integration in any data centre > Interface to external encryptors

> Centrally monitored solution > User interface for technology evaluation and testing

> Multiplexing of all channels on single fibre for metropolitan area

PRODUCT DETAILS

PRODUCT DETAILS




Real-world intercontinental
quantum communications
enabled by the Micius Sate"ite A joint China-Austria team has performed quantum key

distribution between the quantum-science satellite Micius and
multiple ground stations located in Xinglong (near Beijing),
Nanshan (near Urumgqi), and Graz (near Vienna). Such
experiments demonstrate the secure satellite-to-ground
exchange of cryptographic keys during the passage of the
satellite Micius over a ground station. Using Micius as a trusted
relay, a secret key was created between China and Europe at
locations separated up to 7,600 km on the Earth.

.. -



BB84 protocol
Intuition > Security reduction
Ekert 21 protocol

. Intuition

Getting Started

= b




Alice prepares one of the 4 states

U0 11)s 1), =) 3

at random and sends to Bob.

T

Same as choosing a basis z/X
and an eigenstate in that basis

Z . standard basis {
X : diagonal basis {

0),11) 1
+)51=))

(Honest and noiseless case)

Alice

Z 0)
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NS [ S—

b Measure

Bob



Alice prepares one of the 4 states

U0 11)s 1), =) 3

at random and sends to Bob.

Bob chooses at random whether to

measure the received qubit at the Z
or X basis.

He measures and records the
outcome.

(Honest and noiseless case)

Alice

Z 0)
X =)

X |+

Reminder: |+) =
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b Measure

Bob



Alice prepares one of the 4 states

U0 11)s 1), =) 3

at random and sends to Bob.

Bob chooses at random whether to
measure the received qubit at the Z
or X basis.

Alice and Bob publicly announce
their chosen bases.

(Honest and noiseless case)

NS [ S—

b Measure

Alice Bob
A Z 10)

X |-) X |-)
Z 1) Z 1)
— e ———————
Z |0 Z 10)

X |+ X |+)



(Honest and noiseless case)

Alice prepares one of the 4 states |
Prepare Measure

U0 11)s 1), =) 3

Alice Bob

at random and sends to Bob.

Z 0 Z 0)
Bob chooses at random whether to X ) X )
measure the received qubit at the Z
or X basis.

. . Z 1) Z 1)

Alice and Bob publicly announce
their chosen bases. —

Z 0 Z 0)

The " Z-outputs” construct the key.



(Honest and noiseless case)

Pre pa e L ‘}f M easure

Alice Bob

0) Z [10)

Notice: @
The measurement basis does / X |-) X |-
not reveal any information
about the key bit! \
21 z (I




Let's add the A dve 'Sa ry (and/or noise) into the picture!

Eve's goal: gain as much information as possible about the key
... without being detected

The protocol should abort when detecting too much interference/noise



Public (insecure) quantum channel

Alice
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Z o) Keep a copy for herself?

Eve
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There are many ways for Eve to interact with the state on the channel but...

No-cloning



Public (insecure) quantum channel

Alice
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There are many ways for Eve to interact with the state on the channel but...



Pubhc msecure) quantum channel
1
‘ +) = —= (10)+ 1)

Alice V2 Bob

: Measure
Z 10) : Z 1)

X |+) Eve

There are many ways for Eve to interact with the state on the channel but...
Measurement disturbance —> Introduction of errors

The protocol needs to include a test for errors and abort if too many are
observed (and otherwise correct them)



Public (insecure) quantum channel
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Pre pa re s e N

Alice

Measure

Bob

@

Measure

Eve

”

There are many ways for Eve to interact with the state on the channel but...

The protocol needs to include a privacy amplification step
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Public (insecure) quantum channel

z gi o

‘ Eve

Measure

Bob

Eve can do a lot more, e.g., entangle the qubit to her qubits...
Think many rounds :o

We'll need to deal with all of this



Alice prepares one of the 4 states {|0),(1),|+),]-)} at random and
sends to Bob.

Bob chooses at random a basis to measure and records the
outcome.

Sifting: Alice and Bob publicly announce their chosen bases
and keep only the rounds in which they chose the same basis.

Testing for errors: Alice and Bob check on how many of the
rounds in which they both chose the x-basis their outcomes
are not identical.

If the error rate is too high they abort.

Classical post-processing: Alice and Bob apply error
correction and privacy amplification on the remaining bits.
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BB84 protocol
Intuition > Security reduction
Ekert 21 protocol

. Intuition

Getting Started

S




Ill

The BB84 protocol is a “prepare and measure protoco

Pre pare S —— ,»:}r Measure

Entanglement based protocols:

Instead of sending quits over a channel Alice and Bob use entangled states

Measure G = Measure




Ill

The BB84 protocol is a “prepare and measure protoco

Pre pare S —— ,»:}r Measure

Entanglement based protocols:

Instead of sending quits over a channel Alice and Bob use entangled states

Measure r A Measure

Gives us a different point of view




Maximally entangled state (EPR state) shared between Alice and Bob
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Ekert 91 protocol: same as BB84 but
using distribution of entanglement

Alice and Bob get their share of
the entangled state

They each choose a basis to
measure at random

Sifting
Testing for errors

Classical post-processing

Measure i

Measure

Z |0 Z 10)
X |-) X |+
Z 1) Z 1)



Honest noiseless case:

Distribution of the maximally entangled
state |®7) 45

Each outcomes achieved w.p. 0.5
Pure state

—> Any purification takes the form
PT)aB @ V) B

—> Completely independent of the
rest of the world (including Eve)

Measure i

Measure

Z |0 Z 10)
X |-) X |+)
Z 1) Z 1)
A L, S A —
Z |0) Z 1)
X |+) X |+)



Let’s bring Eve into the picture

Measure

Measure

Eve



Let’s bring Eve into the picture

Measure " T——— ‘ ‘ e s ool Measure

Eve

Alice, Bob and Eve share a tripartite state |Y) ApE

Alice and Bob's state PAB — TrE (‘¢>ABE) (density matrix; partial trace)

Compare to:

Eve is holding the purification = most powerful adversary S ap ® 1)



Alice, Bob and Eve share a tripartite state |¢)) ABE

deally |®7)ap ® [¥)p

Quantum “features” of entanglement:

Monogamy of entanglement

Uncertainty relations (third lecture)

Measure F S ‘ ‘ — Measure

b

Eve



Security
reduction

Measure

# Adversary is stronger

# Mathematically cleaner

Eve



QKD security definition
What does it mean to prove security?
Quantum abstract cryptography framework
Security proof
Quantum-proof extractors
Where the laws of quantum physics help us

A different model for QKD- device-independent QKD (stronger adversary)
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L ecture 2:

QKD security definition

Quantum-proof randomness extractors



What does it mean to prove security?

If “things go sufficiently well”— we would like to
produce a key:

Identical keys for Alice and Bob

Unknown to Eve

If “things don’t go well” (too much noise / too active
adversary)— we would like to detect it and abort

The protocol can be implemented



How do we make this formal?

Quantum compassable security

' Secure
—r—

r--------------

These can be entangled




1. Composable security

2. Equivalence to trace distance definition

Security Definition



Abstract cryptography framework
Complete mathematical framework
Important “steps”:
Model the ideal system
ldentify the resources and model the real system
Quantum distinguisher— try to distinguish the real from ideal

Gives a precise description of what we achieve

(In the past a weaker security definition was used without anyone noticing!)



Ideal key distribution resource

Alice K Key K Bob

Eve



K| =1
K ~ Uy

Ideal key distribution resource




Resources (our building blocks):

Authenticated classical channel

Alice Bob
111
Eve
Insecure quantum channel
Alice Bob



Alice

ka, L

QKD QKD
HAlice l_[Bob

Classical authenticated channel

Eve



The real system is secure if it's indistinguishable from the ideal system

/

1. Quantum distinguisher (“quantum combs”)
2. No “division” to parties (crucial for composability)

n i

3. Everything is finite (no “poly”, “neg"”...)



The real system is secure if it's indistinguishable from the ideal system

Distinguishing advantage d(Z,R) =sup|Pr|D(Z) = 1| — Pr|[D(R) = 1]
D
Security: d(Z,R) <e¢

(Sort of...)



Real system

ldeal system

QKD
1_[Bob

QKD
HAlice




ldeal system Real system

s s s s s s s s s s s s s h e hes s s s s s s s e s e s s e e

I-------- ---1

The protocol is secure if there exists a simulator such that d(Z,R) <¢
It's clear what we're proving

As it turns out, it's equivalent to another statement



The definitions that arise from the composable security framework were
shown to be equivalent to another widely-used definition

Recall our informal definition:
If “things go sufficiently well”— we would like to produce a key:
ldentical keys for Alice and Bob
Unknown to Eve

Ill

If “things don’t go well” we would like to detect

it and abort

The protocol can be implemented



Def. [Correctness]: A protocol is €corr-correct, if Pr (K4 # Kg) < €corr

Def. [Secrecy]: A protocol is Egec-secret if

(1 — Pr(abort)) ||px .6 — pu, ® pEl| < Esec K|=¢
W

If we almost always
abort, the key is
trivially secret



Def. [Correctness]: A protocol is €corr-correct, if Pr (K4 # Kg) < €corr

Def. [Secrecy]: A protocol is Egec-secret if

(1 — Pr(abort)) ||px .6 — pu, ® pEl| < Esec K|=¢

N ——

Trace distance between two
states: the real and ideal
(want this to be small)



Def. [Correctness]: A protocol is £corr-correct, if Pr (K4 # Kg) < €corr

Def. [Secrecy]: A protocol is Egec-secret if

(1 — Pr(abort)) ||px .6 — pu, ® pEl| < Esec K|=¢

Real state of Alice /
and Eve at the end
of the protocol Uniform key Eve's quantum state

(when not aborting)



Def. [Correctness]: A protocol is £corr-correct, if Pr (K4 # Kg) < €corr

Def. [Secrecy]: A protocol is Egec-secret if

(1 — Pr(abort)) ||px .6 — pu, ® pEl| < Esec K|=¢

If a protocol is Ecorr-correct and Egec-secret, then it is (Ecorr + Esec )-correct-
and-secret

Def. [Security]: A protocol is (SSQKD, EQKD > ¢)-secure if:
(Soundness) The protocols is €gkp-correct-and-secret

(Completeness) There exists a quantum apparatus that implements the
protocol such that the probability of aborting is at most eqkp



Security Definition

- Def. [Correctnessl: A protocol is Ecare-correct. if Pr(Ki # Kr) < €oner

» Det.

> This security definition of QKD was proven to K| = ¢
be equivalent to the composable security
» Ifarg definition we've seen before
and
> Justifies using this definition
» Det. , .
> Things can go wrong otherwise...
N
2. he

“QKD

Protocol suc d € Propabllity OT aPbOorting IS at Mmaos



Def. [Secrecy]: A protocol is Egec-secret if

(1 — Pr(abort)) ||px .6 — pu, ® pEl| < Esec K|=¢

N ——

Trace distance between two
states: the real and ideal
(want this to be small)

To make this small we use a privacy amplification step in the protocols



Privacy Amplification

Quantum-Proof Randomness Extractors




Data generation ‘
Eve
Y/ \

Measuring the quantum states
g g ,‘) \.s
Sifting
Z |0 Z 10)
Test (check for errors) and abort if needed
( ) X ) . @
Classical post-processing
Classical error correction Z |1) Z 1)
A T N — A W —

Privacy amplification



Data generation ‘

Eve
Measuring the quantum states }
%

Measure

LN

Sifting
Test (check for errors) and abort if needed

Classical post-processin
T . Alice and Bob are exchanging

Classical error correction classical information in the presence

. — of a quantum adversary
Privacy amplification



Alice’'sraw key:010100010011001110110... ‘
Eve

Classical-quantum state: PAE = Zp a)(ala ® pp

We have some correlations between Alice’s raw key A and Eve’s quantum system E

Privacy amplification: get rid of these correlations!

B Perfect (ideal) key
Want to get: py, @ pE ZZQ g‘k><k|KA X PE —

Tool: Quantum-proof randomness extractors



Want to transform a large but weak source of randomness into a shorter uniform
distribution

Cryptography; Pseudo-randomness; Combinatorics

Pguess(A)
Weak source of randomness Min-entropy: /

Hyin(A) = — log (mc?x Pr[a])

Hmin(A) > m

Va € {0,1}", Prfa] <27™

ae{0,1}"



Want to transform a large but weak source of randomness into a shorter uniform
distribution

Impossible to achieve deterministically

Weak source of randomness Uniform distribution

Pk

a € {0,1}" ke {0,1}*



Want to transform a large but weak source of randomness into a shorter uniform
distribution

Impossible to achieve deterministically

Possible with an additional short random seed

Weak source of randomness Uniform distribution

a € {0,1}" s € 40, l}d k € {0, 1}6



Def. [Randomness extractor]: A function Ext(4,S5):{0,1}" x {0,1}¢ — {0,1}¢ is

called a strong (m, ¢)-randomness extractor if for

1. S=U;,
2. any P with Hmin(A)Zm

we have
|Ext(A,S)S — Uy x S|| <e¢

/ [ Eve?

Output of the

Uniform key
extractor

(Strong extractor: the seed is made
public during the QKD protocol)



Def. [Randomness extractor]: A function Ext(4,S5):{0,1}" x {0,1}¢ — {0,1}¢ is

called a classical-proof strong (m, ¢)-randomness extractor if for

1. S=U;,

Hmin(A‘E) — logpguess(A‘E)
2. any Pug with Hpiw(A|E) > m Pouess(A|E) = Eepguess(A|p=e) = Ee max Pr|ale]
we have

|Ext(A,S)SE — U, x SE|| < ¢

\ Eve?

= E.||Ext(A z_., 5)S — Uy x S|

Classical side information (E) is kind of trivial when considering extractors...



Def. [Randomness extractor]: A function Ext(A4,S):{0,1}" x {0,1}¢ — {0,1}*

called a guantum-proof strong (m, ¢)-randomness extractor if for

1. S=U,

2. any pPAE —Zp a)(ala ® pr with Hy(A|E) >

&

Eve?

Hmin(A‘E) — logpguess(A|E)



Def. [Randomness extractor]: A function Ext(A4,S):{0,1}" x {0,1}¢ — {0,1}*

called a guantum-proof strong (m, ¢)-randomness extractor if for

1. S=U,

2. any pAg = Zp a)(ala ® pr with Hpin(A|E) >m

&

Eve?

Hmin(A‘E) — _logpguess(A|E)
Pguess(A|E) = max Zp )Tr(Mzp

Guessing prob. with access to a quantum system



Def. [Randomness extractor]: A function Ext(A4,S):{0,1}" x {0,1}¢ — {0,1}*

called a guantum-proof strong (m, ¢)-randomness extractor if for

1. S=U,

2. any pAg = Zp a)(ala ® pr with Hpin(A|E) >m

we have

|PExt(A,9)SE — PU, @ psE| < € ‘
Eve?
Eve's system is kept quantum! /
Crucial for composability! Hrin (A|E) = — 108 Dguess (A E)
The quantum case doesn’t follow Pguess(A|E) = max ZP )Tr(MEpE)

from the classical one... :(/:)
Guessing prob. with an access to a quantum system



Why did | tell you all of that...?



Security Definition QKD

» Data generation

» Def. [Secrecy]: A protocol is Egec -secret if » Measuring the quantum states

» Sifting
(1 - Pr(abort)) ”pKAE — pu, & pE” < Esec

N —

» Test (check for errors) and abort if needed

» Classical post-processing

Trace distance between two
states: the real and ideal
(want this to be small)

» Classical error correction

» Privacy amplification Using an extractor

Quantum-Proof Randomness Extractors » For the extractor to work we need to

have a sufficiently high min-entropy in
Alice’s outputs

» Def.[Randomness extractor]: A function Ext(A4,S):{0,1}" x {0,1}¢ — {0,1}¢ is

called a quantum-proof strong (m, c)-randomness extractor if for

1. §=U, » The main challenge in proving the
security of QKD protocols is to lower-

2. — ajla)la ® T .th Hmin AlFE 2 .
any PAE ;p( Jla)(ala @ pls - wi (AlE) 2 m bound the min-entropy

we have
|PExt(a,8)5E — pU, ® psEl| < € » This is what we're going to look at next
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Lecture 3:

Security proof (the main parts)

Device-independent quantum key distribution



Security Definition QKD

» Data generation

» Def. [Secrecy]: A protocol is Egec -secret if » Measuring the quantum states

» Sifting
(1 o Pr(abort)) ”pKAE — PU, X pE” < Esec

N —

» Test (check for errors) and abort if needed

» Classical post-processing

Trace distance between two
states: the real and ideal
(want this to be small)

» Classical error correction

» Privacy amplification

Quantum-Proof Randomness Extractors » For the extractor to work we need to

have a sufficiently high min-entropy in
Alice’s outputs

» Def.[Randomness extractor]: A function Ext(A4,S):{0,1}" x {0,1}¢ — {0,1}¢ is

called a quantum-proof strong (m, c)-randomness extractor if for

1. §=U, » The main challenge in proving the
security of QKD protocols is to lower-

2. — a)la)(aja ® : .th Huyin(A|E) > .
e ;p( lo)ela & ps W B bound the min-entropy

we have
|PExt(a,8)5E — pU, ® psEl| < € » This is what we're going to look at next



We need to lower-bound H,,;,(A|E) > m
of the state in the end of the execution of
the protocol:

PAE = ZP a)(aja ® pg

Alice'sraw key:010100010... ‘

Eve

After that, a quantum-proof extractor does
the work

Z |0 Z 0)
X |-) X |+)
——————
7 1) 7 |1
e
Z 0) Z 1)
X |+ X |+)



1. Quantum-proof extractors / (Computer science)
2. Reductionto IID (Information theory)

3. Uncertainty relation (Quantum physics)

S ] t I f
e c u r I y ro 0 (Somewhat informal, just presenting the main statements)




We need to lower-bound H,;.(A|E) >m
of the state in the end of the execution of
the protocol

a € {0,1}", for n the number of rounds
in the protocol

How do we analyze Eve's actions over n
rounds?

Adaptive strategies, global operation :(

Entropy doesn’t need to be produced in
every round

Z |0 Z 0)
X |-) X |+)
——————
7 1) 7 |1
e
Z 0) Z 1)
X |+ X |+)



Wishful thinking: Eve uses the same
strategy in each round, independently of
all other rounds

OABE

The initial state is an “independently and
identically distributed” (lID) state

PABE — U%EE
Intuitively: we only need to understand
what happens in one round

OABE

OABE

OABE

OABE

OABE

OABE

OABE

Alice Bob

Z |0 Z 0)

X |-) X |+)
——————

Z 1) Z 1)
e

Z 0) Z 1)

X |+ X |+)



A property of entropy of IID states pABE = 055

win (A[E), > nH(A|E); — cev/n

min

~ |

Many different entropies...
All describe some form of uncertainty, lack of knowledge



A property of entropy of IID states pABE = 055

win (A[E), > nH(A[E), — c:v/n

min
Smooth min-entropy von Neumann entropy
# Closely related to the min-entropy # Quantum version of the Shannon entropy
# Good for the extractors # (Always larger than the min-entropy)
# (Crucial and better) H(A), = —Tr(ologo)

H(A|E) = H(AE) — H(E)

Tells us that for IID states we now need to find a single-round quantity H(A|E),



Of course, that was only a wishful thinking. But...

A theorem called “the entropy accumulation theorem” tells us that under
certain conditions

win(AE), > nH(A[E)s — cov/n

min
still holds, with o defined via some optimization problem

(Roughly, o is the state that minimizes H(A|E), over all states that are
compatible with the data that Alice and Bob observe throughout the
execution of the protocol)

Pinitial
Reduction to |IID (not black box)




Asymptotic
equipartition
property

-
....
N
IS

Entropy
accumulation
theorem

0

Under certain conditions




Eve uses the same strategy in each round,

independently of all other rounds

B

OABE

HE. (AE), > nH(A|E), — cov/n

I1in

Our goal is now to lower-bound the
amount of von Neumann entropy
produced in one round

OABE

OABE

OABE

OABE

OABE

OABE

OABE

Alice Bob

Z |0 Z 0)

X |-) X |+)
——————

Z 1) Z 1)
e

Z 0) Z 1)

X |+ X |+)



1. Quantum-proof extractors / (Computer science)
2. Reduction to IID v (Information theory)
3. Uncertainty relation (Quantum physics)

S ] t I f
e c u r I y ro 0 (Somewhat informal, just presenting the main statements)




Tripartite quantum state o4pEg .:I. S

OABE

Alice is measuring either in the Z basis or the X basis

Incompatible bases— can’t guess both outcomes with certainty

HAz)+ H(Ax)>1

N

Notation: the outcome of measuring the system in the given basis



Tripartite quantum state o4pEg .:I. S

OABE

Alice is measuring either in the Z basis or the X basis

Incompatible bases— can’t guess both outcomes with certainty

HAz)+ H(Ax)>1

Z |0) Z 0)

I I X |-) X |+)
e e —

. Z 1) z 1)

Raw key  Testing

— v L

Z 10) Z 1)

X |+ X |+)




Tripartite quantum state oapg D —

OABE

Alice is measuring either in the Z basis or the X basis

Incompatible bases— can’t guess both outcomes with certainty
Given access to Bob's state one can do better

H(Az|B)+ H(Ax|B) > 1+ H(A|B)

|

Negative when Alice and Bob are entangled!

1 1
\¢+>=\ﬁ(|00>+\11>)=ﬁ(| )+ 1+ +)




Tripartite quantum state oapg D S

OABE

Alice is measuring either in the Z basis or the X basis

Using some entropic relations, H(Az|B) + H(Ax|B) > 1+ H(A|B) can be
rewritten as

H(Az‘E) ZI—H(A)de) Z 10) Z 10}
\ﬁﬁ/ X _> X@
Eve's uncertainty —
regarding the raw key bit z 1) z )
—
T Z 0) Z 1)
What we need in order to X |4 X |

lower-bound the total
amount of entropy
Hyin(Az|E)

min



Tripartite quantum state oapg D S

OABE

Alice is measuring either in the Z basis or the X basis

Using some entropic relations, H(Az|B) + H(Ax|B) > 1+ H(A|B) can be
rewritten as

H(Az|F)>1— H(Ax|Bx) z z 0
\—\/-—./ X —> X@
“Error rate” —
T Z 1) Z 1)
—_—
Can be estimated from the Z |0) Z |1
observed data during the X |+ X |+

execution of the protocol



Uncertainty Relation

."r.

L Ol < < i 4. *
po i
X

» Tripartite quantum state oapg J:l.

OABE

» Alice is measuring either in the Z basis or the X basis

» Using some entropic relations, H(Az|B) + H(Ax|B) > 1+ H(A|B) can be
rewritten as

H(Az|E) > 1— H(Ax[Bx) Questions?

» Example: perfect correlations (no errors) imply 1 bit of entropy per round

» Take-home message: quantum physics allows us to bound Eve’s knowledge
using Alice and Bob’s observed data (replaces computational assumptions)




Uncertainty relation H(Az|F)>1— H(Ax|Bx)

l

Entropy accumulation cL(AE), >nH(A|E), — can/M
(Reduction to |ID) l

Quantum-proof extractors HPExt(A,S)SE — pu, & ﬂSEH <€
Secrecy (1 o Pr(abort)) HIOKAE — pU, & /OEH < Esec

l

Security (Secrecy + correctness + completeness)



1. Motivation
2. Non-local games

3. Security

Device-Independent QKD




easure e ‘ ‘ i Measure

Z| X ‘ 7/ X

Eve

Uncertainty relation H(Az|E) >1— H(Ax|Bx)
What if the measurements are not exact...?

What if we don’t know the dimension...? (Side channels)

What if...



Ekert 91 P

7Z/X

s B Measure

7Z/X

Eve

Device-independent

" 14
PR ) ; .
R o e i N } e o } e I ; e R
* 4 N .

be”

Eve

Paranoid cryptographers;  Realistic physicists; Fundamental physics



How can we create keys this way?

There's one thing we do know (can enforce)- the partition to Alice and Bob

Similar to a multi-prover setting



Alice Bob

J
!
!
b

(Multi-prover proof system)

CHSH Game:

Alice: Input x € {0,1}
Output a € 40,1}

Bob: Input y € {0,1}
Output be {0,1}

Win: a®bb=x-y



Alice Bob CHSH Game:

Alice: Input x € {0,1}
Output a € {0,1}

Bob: Input y € {0,1}

Y
- Output be {0,1}
Win: aBb=x-y
b

Shared randomness

/

Best classical strategy: 75% winning probability p(ab|zy) = Zp(A)p(a\xA)p(My)\)
A

Best quantum strategy: ~85% winning probability [®7)as



Alice Bob CHSH Game:

Y
!
b

Best classical strategy: 75% winning probability

Alice: Input x € {0,1}
Output a € {0,1}
Bob: Input y € {0,1}
Output be {0,1}
a®Bb=x-y
C
9/7/702‘6
@S”b
Wef@o’
Quantum
advantage

Best quantum strategy: ~85% winning probability



Alice Bob Standard proof system:

checkif w € L
Y
!
!
b

Best classical strategy: 75% winning probability Quantum

Best quantum strategy: ~85% winning probability advantage



Alice Bob Standard proof system:
: checkif w € L

Non-local game:

Y
!
E check if the device is quantum
!
b

In fact— a certification of the
production of entropy

Best classical strategy: 75% winning probability Quantum

Best quantum strategy: ~85% winning probability advantage



Correlation Space

x J
v v
» The devices are described by a correlation p(ab|xy) - -
v v
» No assumption regarding the measurements/state/dimension a b

» Correlation space:

p(ablzy)

Non-local game
(Bell inequality)

The membership in the quantum
set problem is undecidable!




Correlation Space

x J
v v
» The devices are described by a correlation p(ab|xy) - -
v v
» No assumption regarding the measurements/state/dimension a b

» Correlation space:

Classical deterministic

/ strategy (75%)

Non-local game
(Bell inequality)




Correlation Space

x J
v v
» The devices are described by a correlation p(ab|xy) - -
v v
» No assumption regarding the measurements/state/dimension a b

» Correlation space:

Optimal quantum
strategy (~85%)

Non-local game
(Bell inequality)




Certification of Entropy

0.8 |

0.6 |

0.4

H(A|E)

0.2

| |
0.76 0.78 0.8 0.82 0.84

QueSTions’> Winning prob. in the CHSH game

» Take-home message: quantum physics allows us to bound Eve’s knowledge

using Alice and Bob'’s observed data




Winning a non-local game H(A|F) > f(win prob.)

l

Entropy accumulation cL(AE), >nH(A|E), — can/M
(Reduction to |ID) l

Quantum-proof extractors HPExt(A,S)SE — pu, & ﬂSEH <€
Secrecy (1 o Pr(abort)) HIOKAE — pU, & /OEH < Esec

l

Security* (Secrecy + correctness + completeness)



This sequence of steps doesn’t always work
There are QKD protocols whose security we don‘t know how to prove

Among them protocols that are of high relevance in practice

Looking for new protocols

Two-way classical post-processing (“advantage distillation”)

Many “intermediate” models that we need to learn to analyze



QKD Take-Home Messages

» In QKD everythina goes q.‘uantqm .
» Composable security definitions (delicaﬁte@!)
» Entropies (delicate!)
» Quantum-proof extractors (delicate!)

» The laws of quantum physics allow us to bound Eve’s knowledge from
the data that Alice and Bob observe during the execution of the protocol

» Quantitative bounds matter! Thank YOU!



