Oblivious Computation
Part lll - OptORAMa

Gilad Asharov

Bar-llan University

The 12th Bar-llan Winter School on Cryptography
Advances in Secure Computation

Access Patterns Reveal Information!

dis @

s sl

B MALE O RAEE RLLE RALE RRAR RAAE ARAR A
IR SHER dE i

Secure processor

AUAR RLAR RLAR RARR ALK ooy

BEAE BENE BEEE BN Wi

Center for Research in Applied
Cryptography and Cyber Security

Access Patterns Reveal Information!

Ki dney

Liver
Problem

Oblivious RAM Compiler:
State of the Art

Lower bound: €2(log N)

[GoldreichOstrovsky’96, LarsenNeilsen’18]

. n
LEL]

Hierarchical Tree based ORAM
[090.GO96I [Shi,Chan,Stefanov11]
O(log N) O(log” N)
Computational security Statistical security

[OptORAMa’20] [PathORAM,CircuitORA% -
) BII.I eeeeeeeeeeeeeeeeeeeeeeeeee |
rrrrrrrrrrrrrrrrrrrrrrrrrrrr

OptORAMa

[Asharov, Komargodski, Lin, Nayak, Peserico, Shi’20]

There exists an ORAM with O(log N) worst-case overhead

& Asymptotically Optimal! 77

e Computational Security (OWF)
e Matches [LN’18]

e PRF -> Random Oracle
e Statistical security
e Matches [GO’96]

e Word size: log N

Client’s memory size O(1) words
Passive server
Balls and bins model

Large hidden constant
Based on hierarchical ORAM

A Short Tutorial

Hierarchical Solution

logZ N

O(log> N), . .., O(oz 1og N

[Ostrovsky’90],...,[KLO12]

o
‘ o
/) A~

PanORAMa
O(log N loglog N)

Patel,Persiano,Raykova,Yeo’18

OptORAMa

O(log N)

¢ BiIUl

Center for Research in Applied
Cryptography and Cyber Security

Hierarchical Solution

Hierarchical ORAM

|Goldreich and Ostrovsky 1996]

Non-Recurrent ’
Hash Table ORAM

Center for Research in Applied
Cryptography and Cyber Security

Hierarchical Solution

O(log>N), ..., O0(

log? N

loglog N

[Ostrovsky’90],...,[KLO12

Non-Recurrent Hash Table

Build(X):
X IS an array of pairs <addr,val>

Lookup(addr):
If addr € X, return val; otherwise return L

Also supports “dummy lookups” (addr = 1)

Security holds as long as each addr is looked up at most once!

Non-Recurrent Hash Table

e Balls into bins

e Each level has a PRF key K - mark ball addr to bin PRFk(addr)
Build O(n log n), Lookup O(log n w(1))

Implementation:

2n/log? n bins of size : log?n

L A A A A A A A A A A A A 4

Oblivious Sorts

v (N N | (|

Center for Research in Applied
Cryptography and Cyber Security

v

Oblivious Sorts

“Bin Packing”

ese

>

W Dummy

Oblivious Sorts

>

¢ BiU

Center for Research in Applied
Cryptography and Cyber Security

It is guaranteed that we do not

LOO ku p look for the same addr twice!

e Lookup(addr) : visit bin PRFk(addr) and scan for addr
e Lookup(dummy): visit and scan a random bin

Simulate Build: Oblivious sorts - easy
Simulate Lookup: Each Lookup() -> scan a random bin

Cost: Build — O(n log n), each lookup O(log” n)

L AR\ JEL AR BN BN 4
v v v v v we
O v vV v

W (W | | W

Center for Research in Applied
Cryptography and Cyber Security

Hierarchical Solution

Hierarchical ORAM

|Goldreich and Ostrovsky 1996]

Non-Recurrent ’
Hash Table ORAM

Center for Research in Applied
Cryptography and Cyber Security

/’-’\
NG

Hierarchical Solution

log? N
O(log?N), ..., 0(—2E

= Access (op,addr,data®)

Phase ll: Build

To - 20 . ready
", — W omou
I 2

DlogN

Center For Research in Applied
Cryptography and Cyber Security

.

& N
(S

Hierarchical Solution

log? N
O(log?N), ..., 0(—E "y
loglog N

- Access (op,addr,data®)

Perform Lookup(addr) in Thy,..., Tiogn
If item found in T;, then Lookup(L) in Ti+1,.., TiogN

Phase ll: Build

To - 20 . ready
", — W omou

A 2

DlogN

Center For Research in Applied
Cryptography and Cyber Security

.

A
(g <

Hierarchical Solution

og’N

1
O(log>N),..., (0]
(log"N) (loglogN)

= Access (op,addr,data®)

If op=read, then store the found item as v
If op=write, then ignore the found item and use v = data*

Phase ll: Build

To - 2 . ready
. [— W emo

A 2

DlogN

Center For Research in Applied
Cryptography and Cyber Security

p—

AN
o

Hierarchical Solution

logZN
O(og*N), ..., 0(—E)
loglog N

e Access (op,addr,data®)

Phase lI: Build

Find the first empty level |, and run T,.Build(T1U...UT.1 U {<addr,v>})
Mark T+,...,Ti-1 as empty and T, as ready

I
_ — F

To - 20 > . ready

DlogN

Center For Research in Applied
Cryptography and Cyber Security

Invariant: never query the same addr twice between two Rebuilds

Read(9)

Lookup(9)
(5,TLT) (25,SPY) Lookup(9)
(9,BCD) (11,RDT) (32,TPO) 2logN Lookup(9)

Center for Research in Applied
Cryptography and Cyber Security

Read(9)

Lookup(9)
(5,TLT) (25,SPY) Lookup(9)
(11,RDT) (32,TPO) 2logN | ookup(9)

Center for Research in Applied
Cryptography and Cyber Security

Read(9)

Lookup(9)
(5,TLT) (25,SPY) Lookup(9)
(11,RDT) (32,TPO) 2logN | ookup(9)

Center for Research in Applied
Cryptography and Cyber Security

Write(25,JRY)

Lookup(25)

(5,TLT) (25,SPY) Lookup(25)

(11,RDT) (32, TPO) DiogN

Center for Research in Applied
Cryptography and Cyber Security

Write(25,JRY)

Lookup(25)

Lookup(25)
Lookup(_L)

(11,RDT) (32,TPO) 2logN Lookup(l)

Center for Research in Applied
Cryptography and Cyber Security

Rebuild

(11,RDT) (32, TPO) DiogN

Center for Research in Applied
Cryptography and Cyber Security

LIS (27,ABC)

After Some More
Accesses...

(11,RDT) (32,TPO)

DlogN

LIS (27,ABC)

After Some More
Accesses...

(11,RDT) (32,TPO)

DlogN

T3

LIS (27,ABC)

(9,BCD)

(12,WLS)

After Some More
Accesses...

21
(25,JRY)
(5,TLT)

(11,RDT) (32,TPO)

DlogN

AN
- G
o]

“Total Cost - Basic Hierarchical ORAM

Hierarchical S
O(log®N), ..., 0(
[Ostrovsky’90],...

Lookup: perform lookup in log N levels, each requires log? N O(log’ N)
Rebuild: Rebuild level i every 2! accesses, over N accesses:
O(log* N)
logNN log N
— l . l — . 1 z 2
221' 2'-log2' =N Zz N log“ N
i=1 i=1

B >
B
 E

Improvements ewi1,kLo12]

Lookup: perform lookup in log N levels, each requires toe< effectively O(1) Sored AT
O(log N)

oy . : i
Rebuild: Rebuild level i every 2' accesses O(log? N)

Using hash tables
on the bins themselves +
stashes

DlogN

Center For Research in Applied
Cryptography and Cyber Security

il

From Hierarchical ORAM to
PanORAMa

 PanORAMa: Rebuild HT for a randomly shuffled input in O(N log log N)

e All elements that were not visited - are still randomly shuffled in the eye of the
adversary!

e But...
e Each layer is shuffled, but the concatenation is not shuffled

 PanORAMa showed how to “intersperse” arrays in O(N log log N)

-
g Jx5 4

Sil

PanORAMa

O(log N loglog N)
Patel,Persiano,Raykova,Yeo’18

Non-Recurret
Hash Table

Non-Recurrent
Hash Table
for shuffled inputs

Intersperse

Center for Research in Applied
Cryptography and Cyber Security

Intersperse

Intersperse

I, PSR shuffled I,| = n,
I Shuffled I =n

Generate random Aux with n, zeros, 1, ones (ng +n; = n)

O o111} 0 1 0,

Oblivious route

v

n
y n()! ° Tll! —n
no

n = mnop—+ N1

Challenge: Move the elements Obliviously
PanORAMa: Implemented in O(n log log n) .) Blu Center for Research in Applied
Cryptography and Cyber Securi ty

Intersperse

Generate random Aux

Intersperse From
Oblivious Tight Compaction

lo
P

q 0

1

1

1

0

1.0

Tight compaction

0] 0

0

0

1

1

1|1

Remember all “move balls”

Tight compaction-1

Perform same “swaps”

Intersperse in O(n)!

Rebuilding Hash Tables in
Linear Time

Weaker Primitive (But Suffices!) — Assumes Permuted Inputs

Warmup:

Goldreich and Ostrovsky

e Balls into bins

e Each level has a PRF key K - mark ball addr to bin PRFk(addr)
Build O(n log n), Lookup O(log n w(1))

Implementation:

L A A A A A A A A A A A A4

Oblivious Sorts

UL AR AN 4N 4B\ 4

Center for Research in Applied
Cryptography and Cyber Security

Build(X) where X is

Randomly Permuted?

Build

0000000000000

n “dummy” loo

P
C
O

T

Is it secure?

No!

An adversary can distinguish between

>

“real” lookups

OptORAMa: Build

1) Throw the n elements into n/polylogk bins according to a PRF key K - reveal access pattern

)

2) Sample an independent (secret) loads of throwing n’ = n-n/log n balls into the bins

3) Truncate to the secret loads and pad with dummies; move truncated elements to overflow pile
)

4) Build each major bin using smallHT; build overflow pile using cuckoo hash

Bin size =
polylog(k) I
Dummies Real
Real Dummies

Major bins Overflow pile
n-n/lod n Merge all bins;
9 Extract reals by tight compaction

reals
Exactly n/log n real elements

OptORAMa: Build

1) Throw the n elements into n/polylogk bins according to a PRF key K - reveal access pattern

)

2) Sample an independent (secret) loads of throwing n’ = n-n/log n balls into the bins

3) Truncate to the secret loads and pad with dummies; move truncated elements to overflow pile
)

4) Build each major bin using smallHT; build overflow pile using cuckoo hash

Bin size =
polylog(k) I
Dummies
Real

Major bins

Overflow pile (n/logn balls)

n-n/loa n Merge all bins;
realg Extract reals by tight compaction
Exactly n/log n real elements

OptORAMa: Lookup

n-n/log n real balls

Lookup(addr):
Search in overflow pile;
If found - visit random bin

Otherwise - visit PRFk(addr)

Center for Research in Applied
Cryptography and Cyber Security

Security

H i i i i I Overflow pile (n/logn balls)

n-n/logn real

111

n-n/logn real balls

Dummies

Real

Build

Lookup ! !l

Center For Research in Applied
Cryptography and Cyber Security

Security

H i i i i I Overflow pile (n/logn balls)

n-n/logn real

Dummies

Real

Build

Center For Research in Applied
Cryptography and Cyber Security

ShortHT

Looking inside the bins

Center for Researc hin Applied
Cryptography and Cyber Security

Packing - The Idea

Given n balls each of size D bits, word size w
Classical oblivious sort costs O(|D/w] - n - logn)
What if D < w?

Packing: put w/D balls in one memory word!

w bits

’CQ 000 000

D bits

Can sort in time O(D/w - n - log® n)

When n and D are small (say n = w*and D = log w), we

o _ nlog”n
can sort in linear time! (——— < n vs. n - logn)
W

Where is it Being Used?

Center For Research in Applied
Cryptography and Cyber Security

Where is it Being Used?

PlogN

Each hash table is arranged as a sequence of “bins”
Each element resides in a random bin

The size of each binis n = log* N

Previously: build a structure on a bin using oblivious sort nlog n -> log log N overhead
We can remove it using the packing trick

Center For Research in Applied
Cryptography and Cyber Security

From Amortized Complexity
to Worst-Case Complexity

De-amortization of Ostrovsky and Shoup ‘97

We got a taste of O(log V) overhead — in amortized
Some operations require much longer - O(N)

Can we get O(log N) in worse-case?

Classic de-amortization technique of hierarchical ORAM is not
compatible with OptORAMa and PanORAMa!

De-amortization Friendly
Rebuild

Instead of “full / empty” -> “full / half full”

> B

(25,JRY)

(25,JRY)

How Does it Help Us?

D
I > .>-

P

Merge + Dedup

F
F (25,JRY)

Easier to de-amortize: Looking at only two consecutive levels

Center For Research in Applied
Cryptography and Cyber Security

De-amortizing Rebuild
of Level 1

| Build level i |

| Build level i | Build level i | | Build level i

Center for Research in Applied
Cryptography and Cyber Security

Randomness Reuse
(PanORAMa / OptORAMa)

(27,ABC) (9,BCD) (32,TPO)

Randomness Reuse
(PanORAMa / OptORAMa)

(27,ABC) (9,BCD) (32,TPO)

(32,TPO) (9,BCD) (27,ABC)

Elements that we did not touch are still randomly shuffled!!

PanORAMa and OptORAMa do not perform full Rebuild ->
Use the randomness from previous Rebuild

-> Reduced Rebuild from O(n log n) to O(n) work

Center For Research in Applied
Cryptography and Cyber Security

Main Challenge:

We might re-consume the randomness!

| Build level i

Center for Researc hin Applied
Cryptography and Cyber Security

(22,JRY)

|II |

Main ldea

(22,JRY)
(25,SPY)

Two copies - same data in each level

Each level has an active copy, and a copy that is being rebuilt

(25,SPY)

¢ BiIUl

Center for Research in Applied
Cryptography and Cyber Security

Main ldea

A B

Rebuild

Lookup

rchin ppl d
yp 9 phy d Cyber

Main ldea

A B

Rebuild Lookup

If the element is found -> put in both copies

Independent randomness!

See:

Asharov, Komargodski, Lin, Shi:
Oblivious RAM with Worst-Case Logarithmic Overhead, CRYPTO 2021 @) BILE o,

Conclusions

Lower bound: €2(log N)

[GoldreichOstrovsky’96, LarsenNeilsen’18]

. n
LEL]

Hierarchical Tree based ORAM

[090.GO96] [Shi,Chan,Stefanov11]
Computational security Statistical security
[OptORAMa’20] [PathORAM, CircuitORAM]

References

Works mentioned in Part Il

Goldreich, Ostrovsky:
Software Protection and Simulation on Oblivious RAM, JACM 1996

Ostrovsky, Shoup:
Private Information Storage, STOC 1997/

Goodrich and Mitzenmacher:
Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation, ICALP 2011

Kushilevitz, Lu, Ostrovsky:
On the (In)Security of Hash-Based Oblivious RAM and a New Balancing Scheme, SODA 2012

Patel, Persiano, Raykova, Yeo:
PanORAMa: Oblivious RAM with logarithmic Overhead, FOCS 2018

Asharov, Komargodski, Lin, Nayak, Peserico, Shi:
OptORAMa: Optimal Oblivious RAM, EUROCRYPT 2020

Asharov, Komargodski, Lin, Shi:
Oblivious RAM with Worst-Case Logarithmic Overhead, CRYPTO 2021

Center for Research in Applied
Cryptography and Cyber Security

Thank You!

Center for Research in Applied
Cryptography and Cyber Security

