

Oblivious Computation

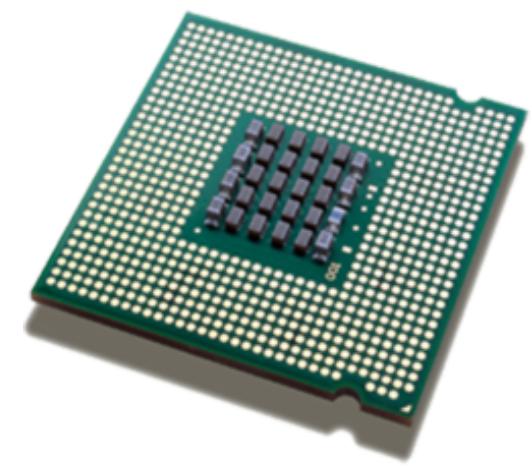
Part III - OptORAMa

Gilad Asharov

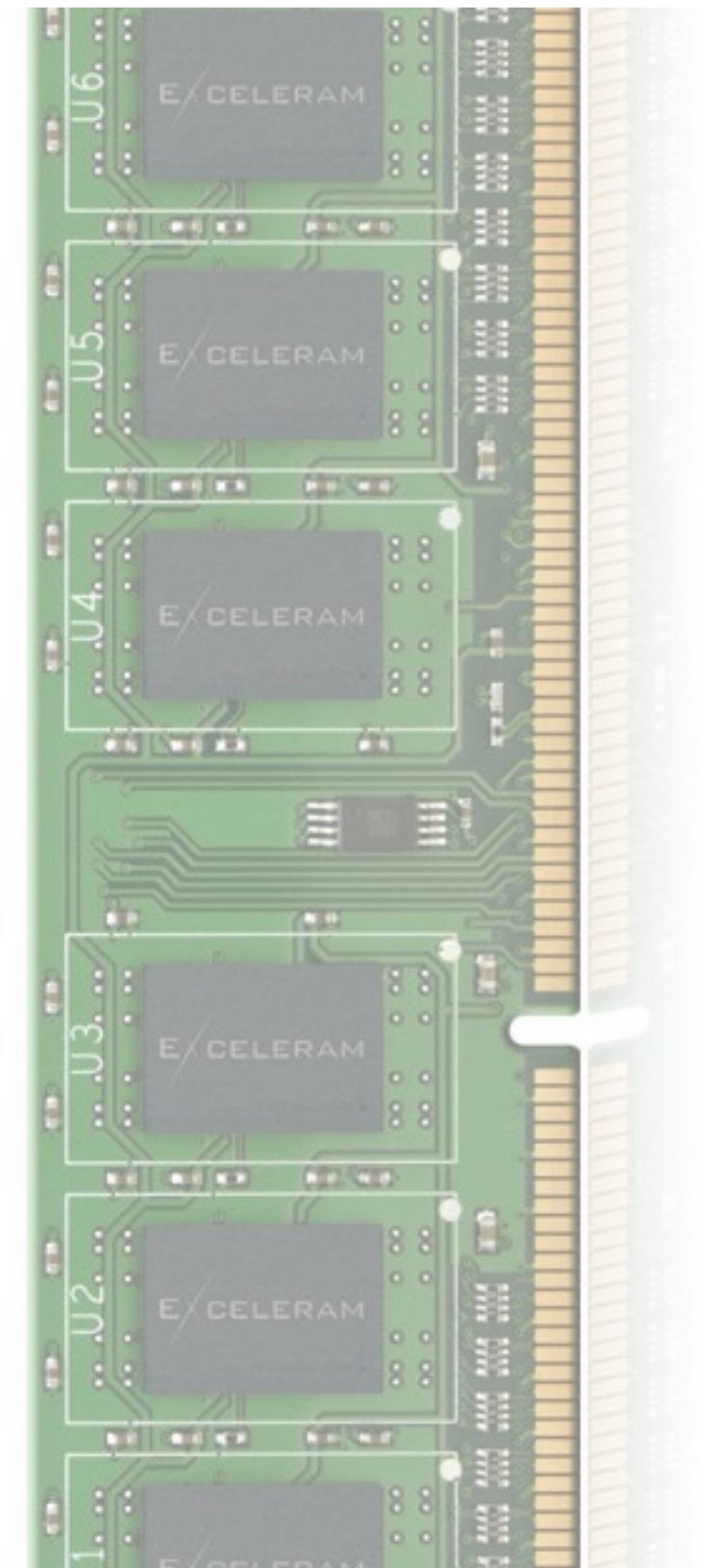
Bar-Ilan University

The 12th Bar-Ilan Winter School on Cryptography
Advances in Secure Computation

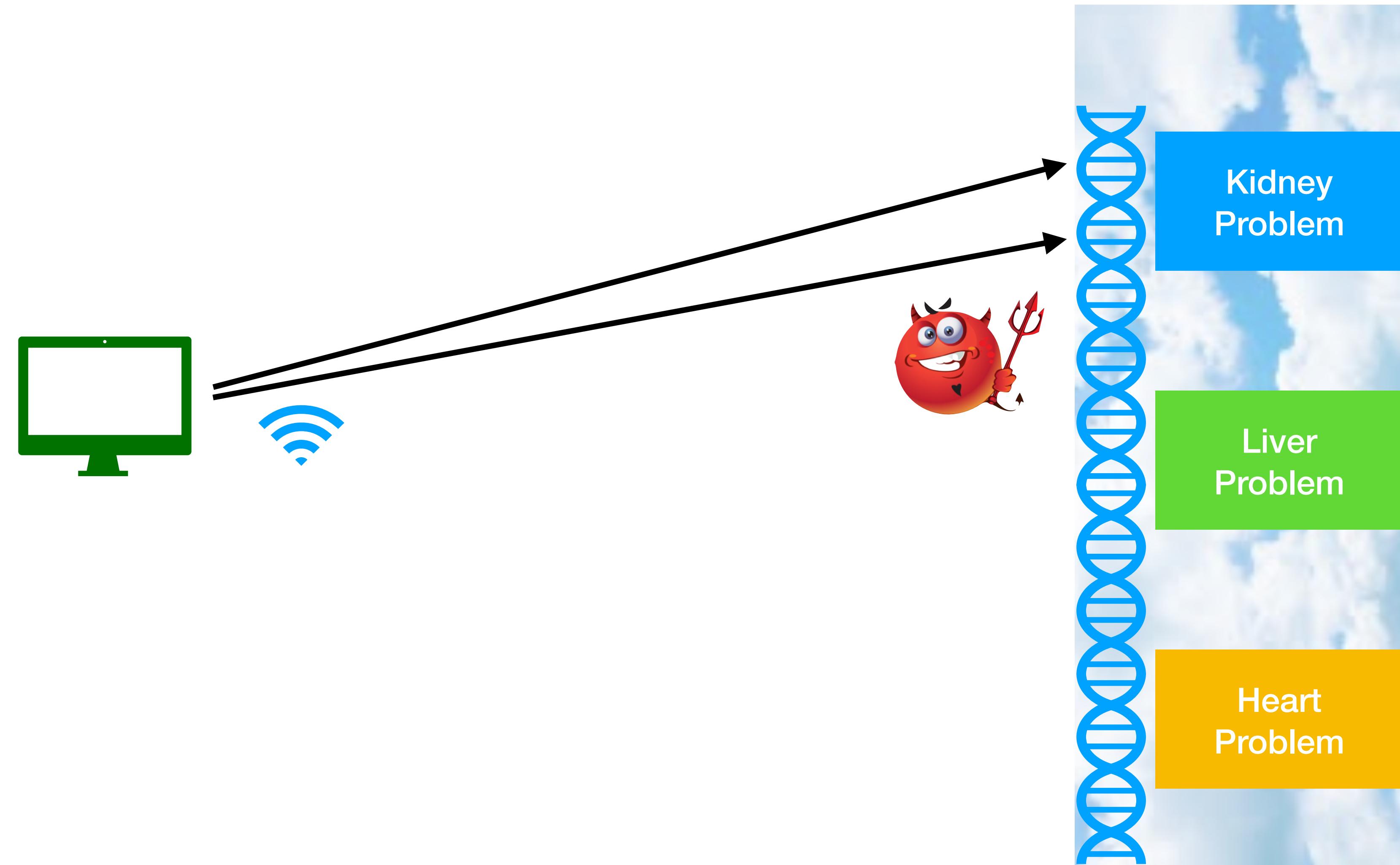
Access Patterns Reveal Information!



secure processor



Access Patterns Reveal Information!



Oblivious RAM Compiler: State of the Art

Lower bound: $\Omega(\log N)$

[GoldreichOstrovsky'96, LarsenNeilsen'18]



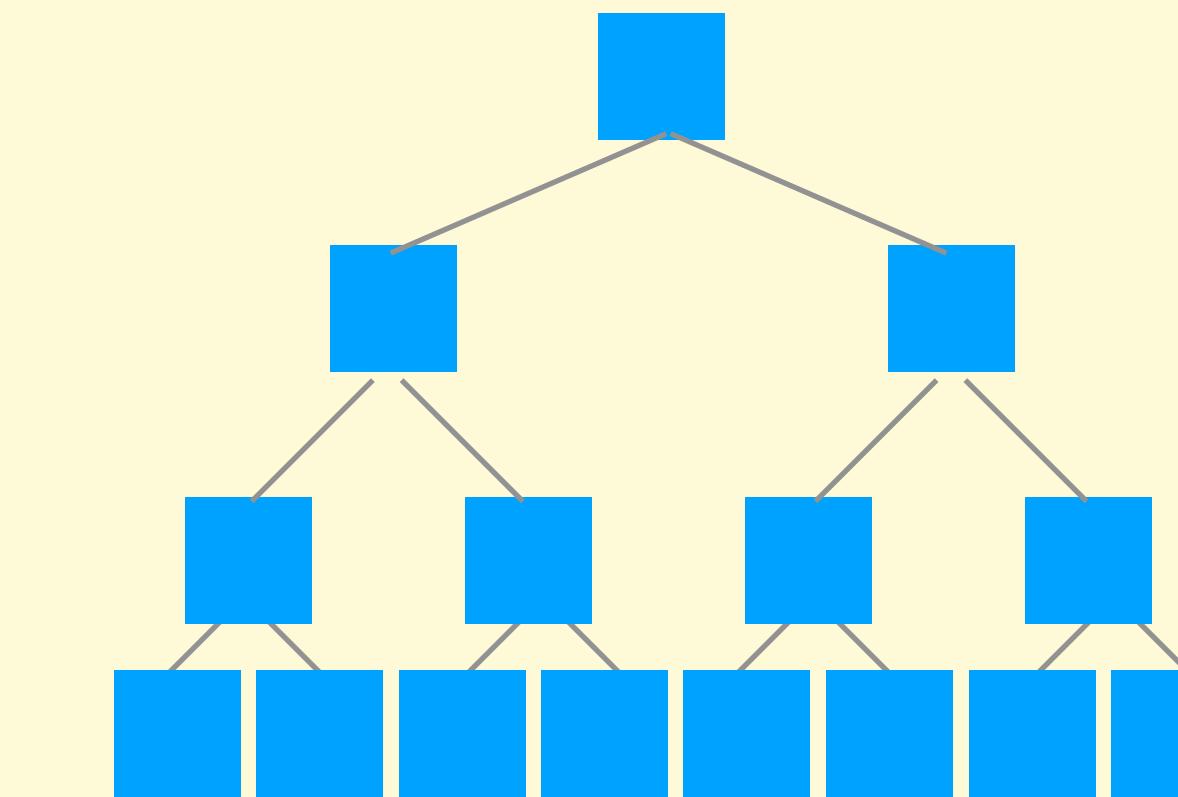
Hierarchical

[FO90, GO96]

$O(\log N)$

Computational security

[OptORAMa'20]



Tree based ORAM

[Shi, Chan, Stefanov'11]

$O(\log^2 N)$

Statistical security

[PathORAM, CircuitORAM]

OptORAMa

[Asharov, Komargodski, Lin, Nayak, Piserico, Shi'20]

There exists an ORAM with $O(\log N)$ worst-case overhead

Asymptotically Optimal!

- Computational Security (OWF)
 - Matches [LN'18]
- PRF \rightarrow Random Oracle
 - Statistical security
 - Matches [GO'96]

- **Word size:** $\log N$
- Client's memory size $O(1)$ words
- Passive server
- **Balls and bins** model
- Large hidden constant
- Based on hierarchical ORAM

A Short Tutorial

Hierarchical Solution

$$O(\log^3 N), \dots, O\left(\frac{\log^2 N}{\log \log N}\right)$$

[Ostrovsky'90], ..., [KLO12]

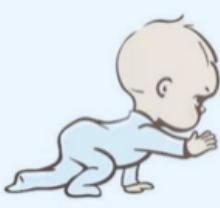
PanORAMa

$$O(\log N \log \log N)$$

Patel, Persiano, Raykova, Yeo '18

OptORAMa

$$O(\log N)$$



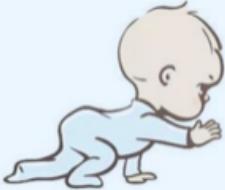
Hierarchical Solution

$O(\log^3 N), \dots, O(\frac{\log^2 N}{\log \log N})$

[Ostrovsky'90], ..., [KLO12]

Hierarchical ORAM

[Goldreich and Ostrovsky 1996]



Hierarchical Solution

$O(\log^3 N), \dots, O(\frac{\log^2 N}{\log \log N})$
[Ostrovsky'90], ..., [KLO12]

Non-Recurrent Hash Table

Build(x):

x is an array of pairs $\langle \text{addr}, \text{val} \rangle$

Lookup(addr):

If $\text{addr} \in x$, return val ; otherwise return \perp

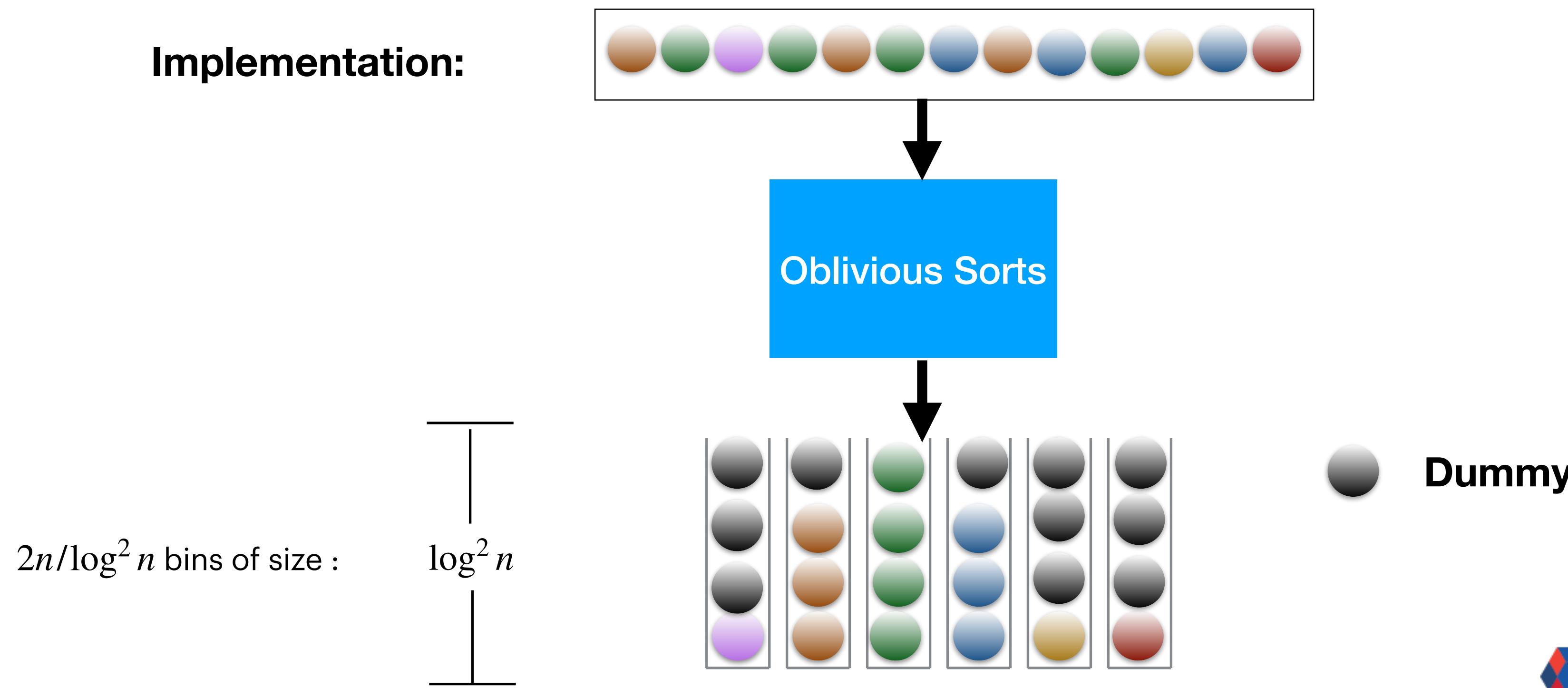
Also supports “dummy lookups” ($\text{addr} = \perp$)

Security holds as long as each addr is looked up at most once!

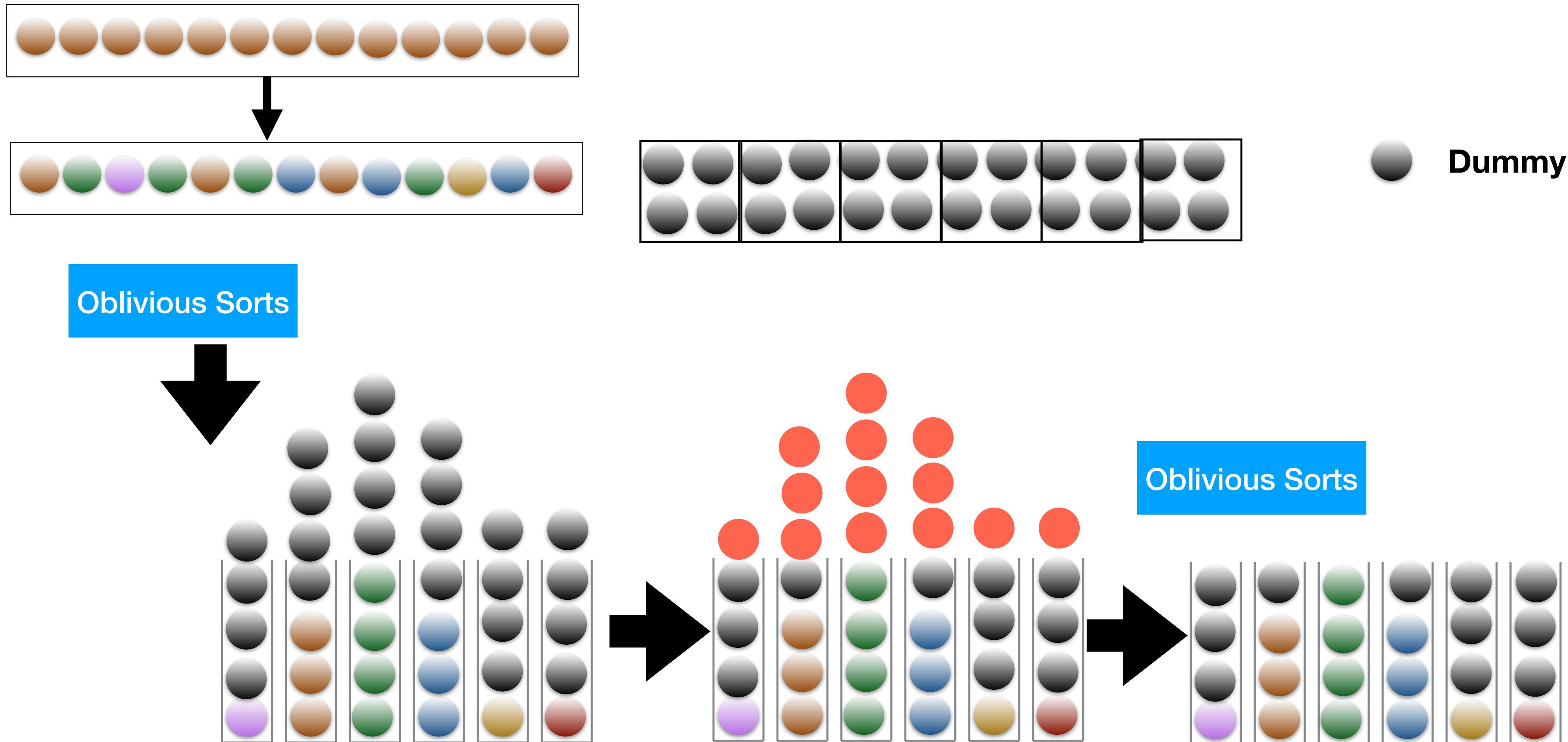
Non-Recurrent Hash Table

- Balls into bins
- Each level has a PRF key K - mark ball addr to bin $\text{PRF}_K(\text{addr})$

Build $O(n \log n)$, Lookup $O(\log n \omega(1))$



“Bin Packing”



Lookup

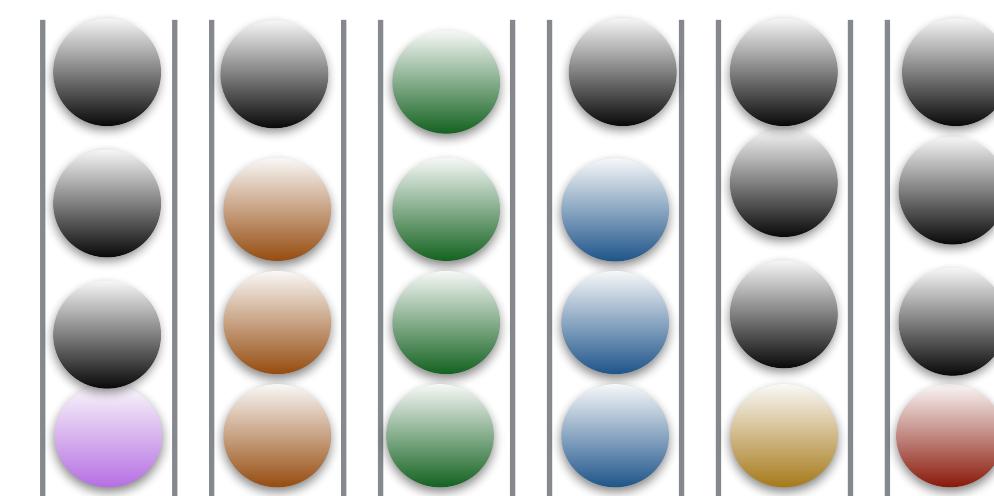
It is guaranteed that we do not look for the same addr twice!

- $\text{Lookup}(\text{addr})$: visit bin $\text{PRF}_k(\text{addr})$ and scan for addr
- $\text{Lookup}(\text{dummy})$: visit and scan a random bin

Simulate Build: Oblivious sorts - easy

Simulate Lookup: Each $\text{Lookup}()$ -> scan a random bin

Cost: Build – $O(n \log n)$, **each lookup** $O(\log^2 n)$



Hierarchical Solution

$O(\log^3 N), \dots, O(\frac{\log^2 N}{\log \log N})$

[Ostrovsky'90], ..., [KLO12]

Hierarchical ORAM

[Goldreich and Ostrovsky 1996]

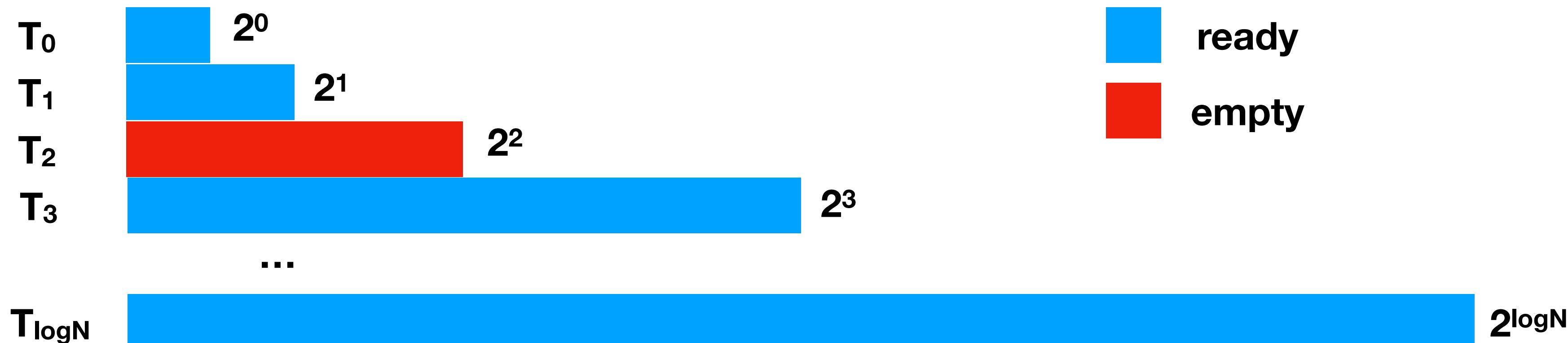
Hierarchical Solution

$O(\log^3 N), \dots, O(\frac{\log^2 N}{\log \log N})$
[Ostrovsky'90], ..., [KLO12]

Access (op,addr,data*)

Phase I: Lookup

Phase II: Build

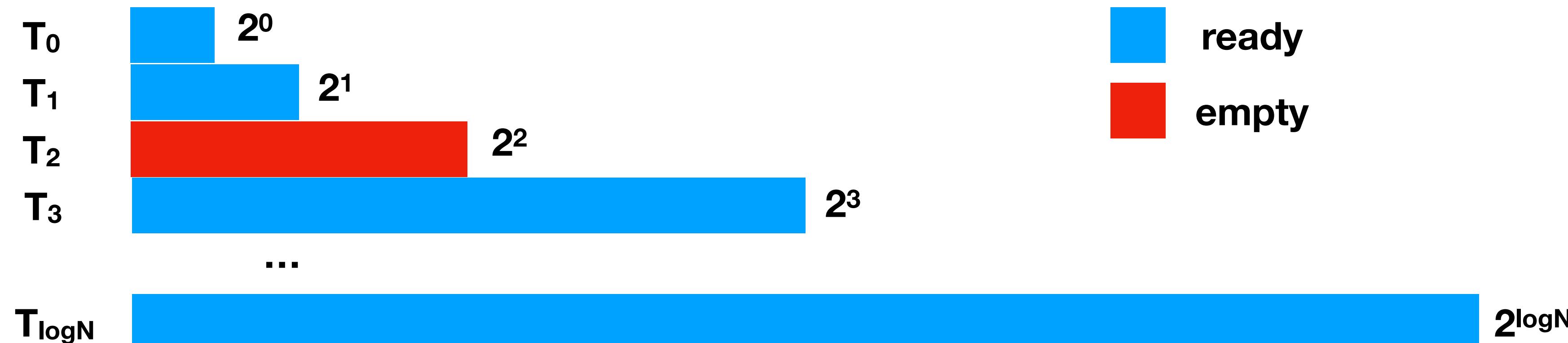


Access (op,addr,data*)

Phase I: Lookup

Perform **Lookup(addr)** in $T_1, \dots, T_{\log N}$
If item found in T_i , then **Lookup(\perp)** in $T_{i+1}, \dots, T_{\log N}$

Phase II: Build



Hierarchical Solution

$O(\log^3 N), \dots, O(\frac{\log^2 N}{\log \log N})$
[Ostrovsky'90], ..., [KLO12]

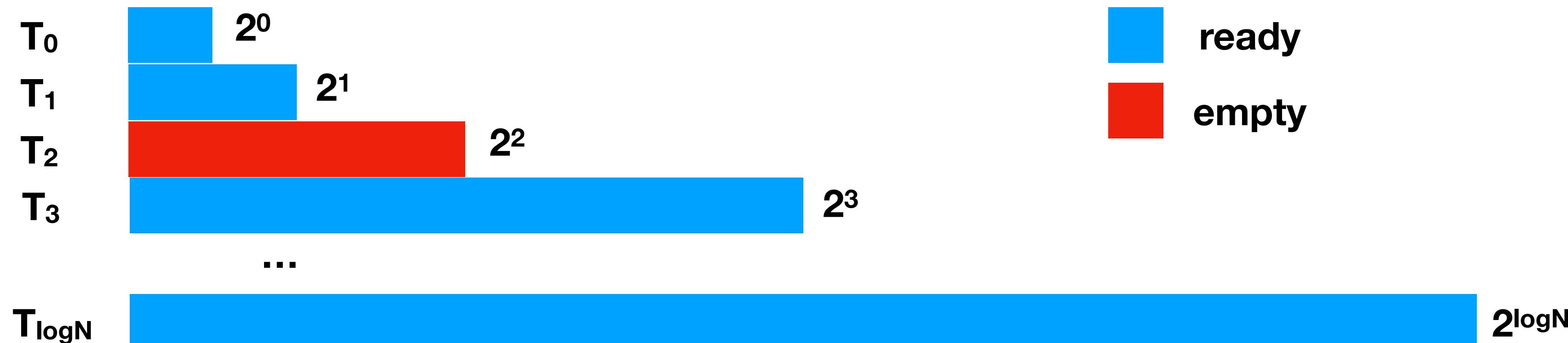
Access (op,addr,data*)

Phase I: Lookup

If $op=\text{read}$, then store the found item as v

If $op=\text{write}$, then ignore the found item and use $v = \text{data}^*$

Phase II: Build



Access (op,addr,data*)

Phase I: Lookup

Phase II: Build

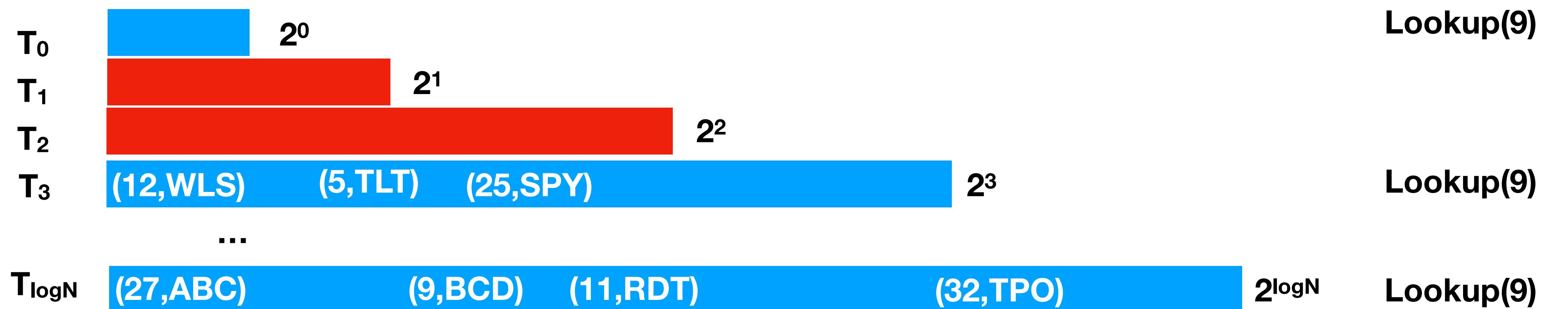
Find the first empty level l , and run $T_l.\mathbf{Build}(T_1 \cup \dots \cup T_{l-1} \cup \{\langle \text{addr}, v \rangle\})$

Mark T_1, \dots, T_{l-1} as empty and T_l as ready

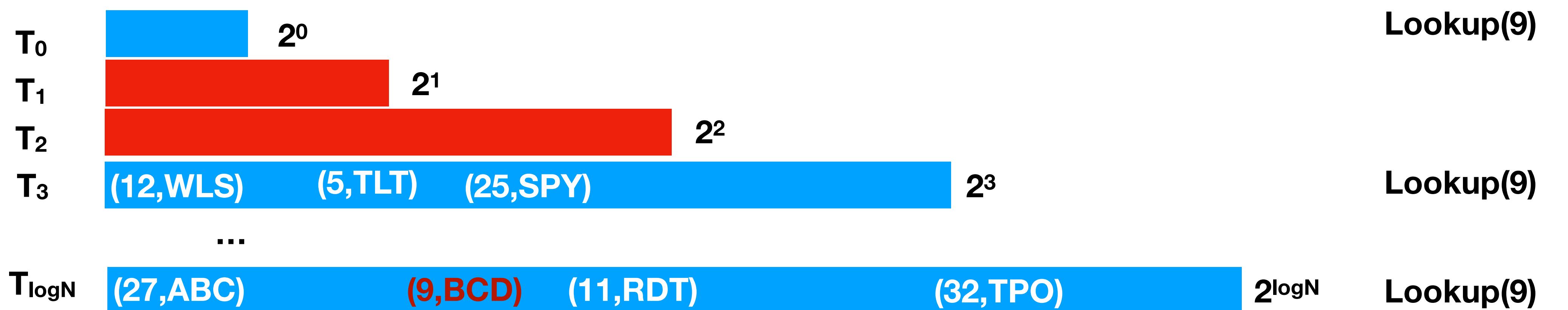


Invariant: never query the same `addr` twice between two Rebuilds

Read(9)



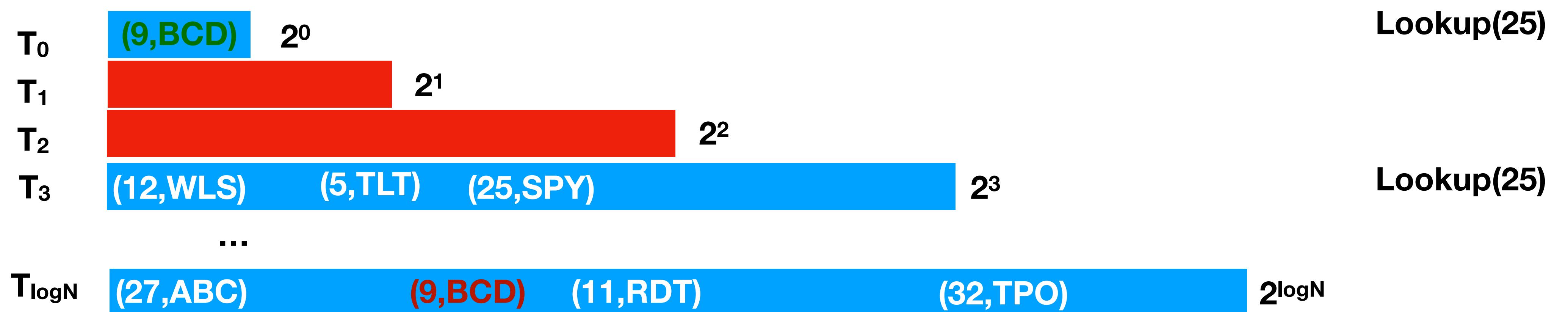
Read(9)



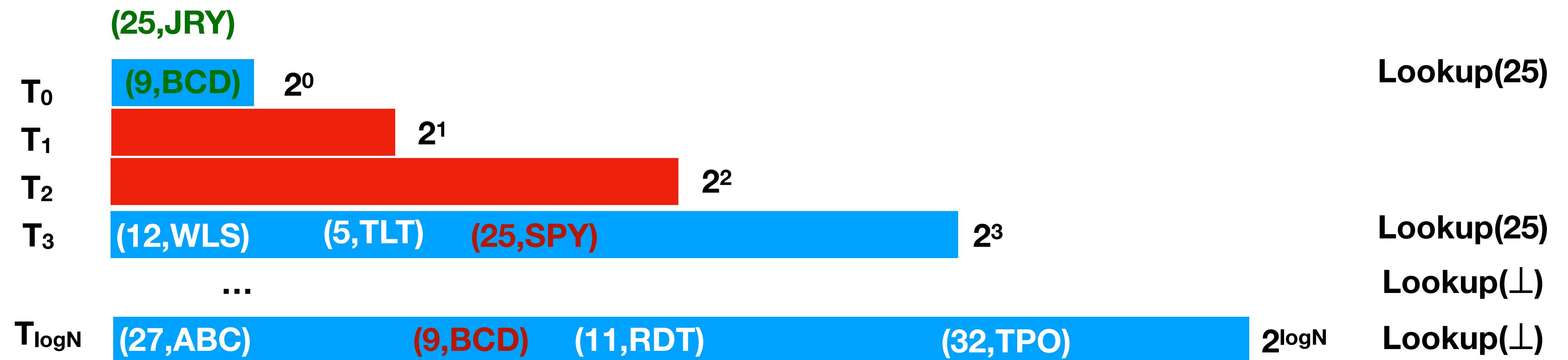
Read(9)

T_0	(9,BCD)	2^0	Lookup(9)			
T_1		2^1				
T_2		2^2				
T_3	(12,WLS)	(5,TLT)	(25,SPY)	2^3	Lookup(9)	
	...					
$T_{\log N}$	(27,ABC)	(9,BCD)	(11,RDT)	(32,TPO)	$2^{\log N}$	Lookup(9)

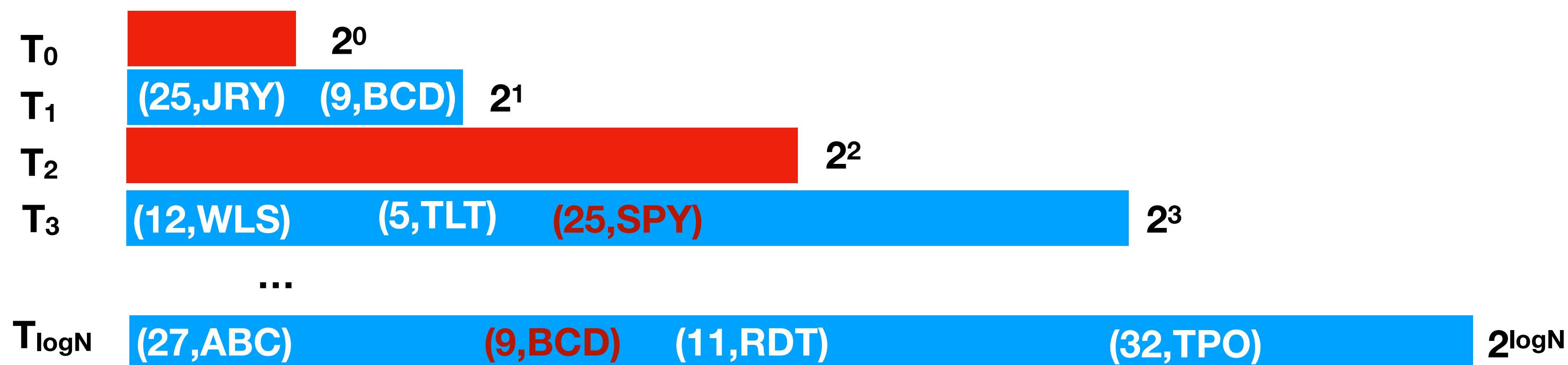
Write(25,JRY)



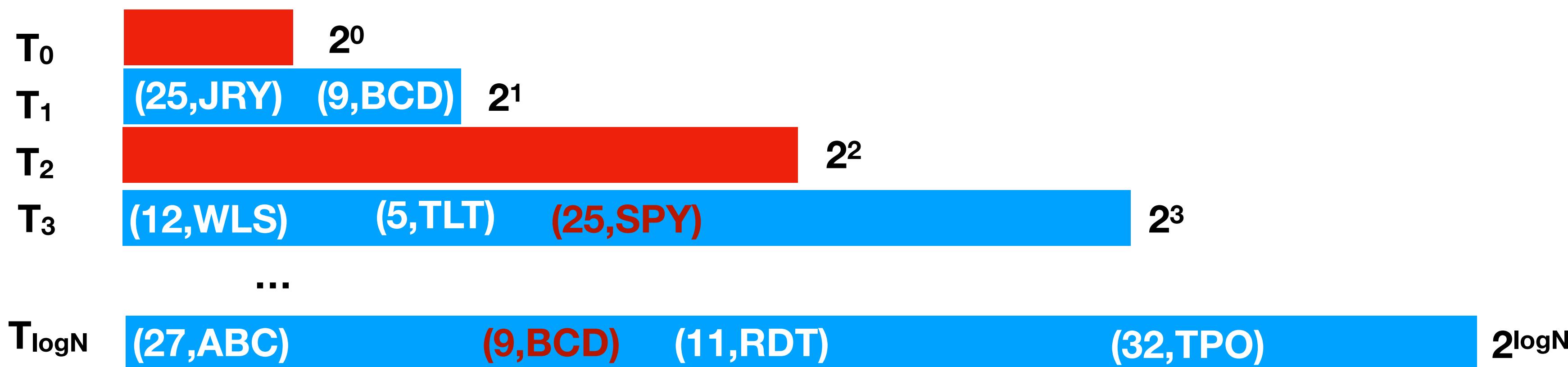
Write(25,JRY)



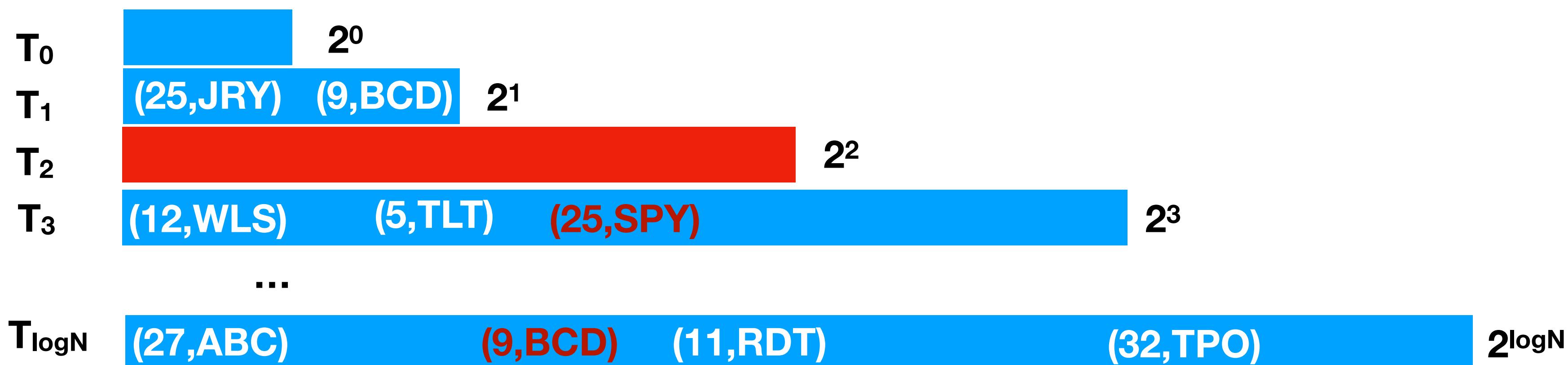
Rebuild



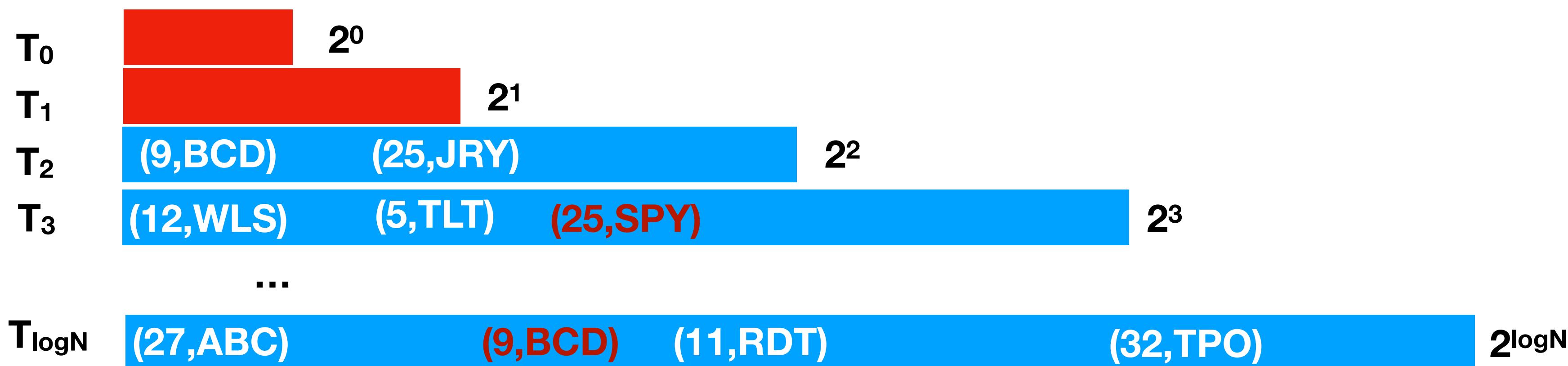
After Some More Accesses...



After Some More Accesses...



After Some More Accesses...



Total Cost - Basic Hierarchical ORAM

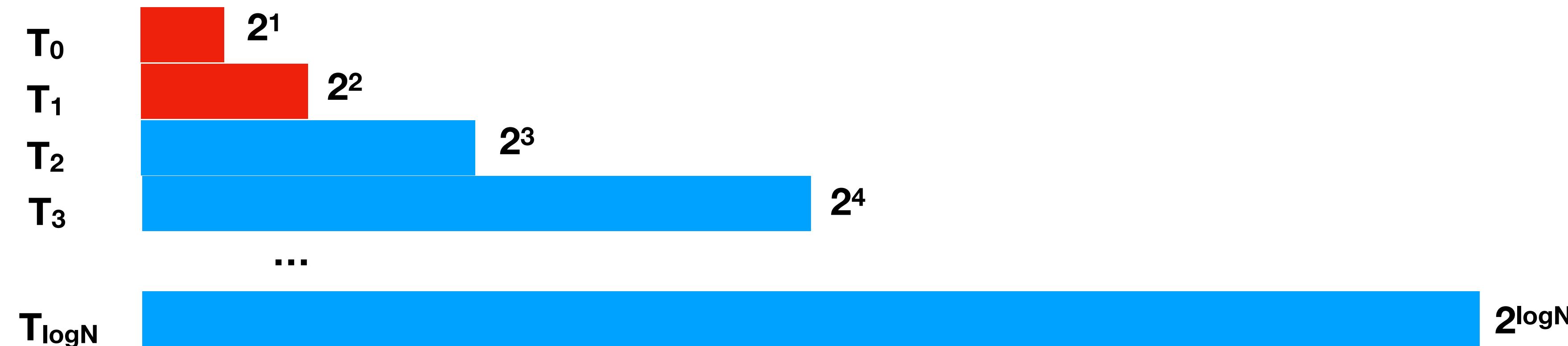
Lookup: perform lookup in $\log N$ levels, each requires $\log^2 N$

$O(\log^3 N)$

Rebuild: Rebuild level i every 2^i accesses, over N accesses:

$O(\log^2 N)$

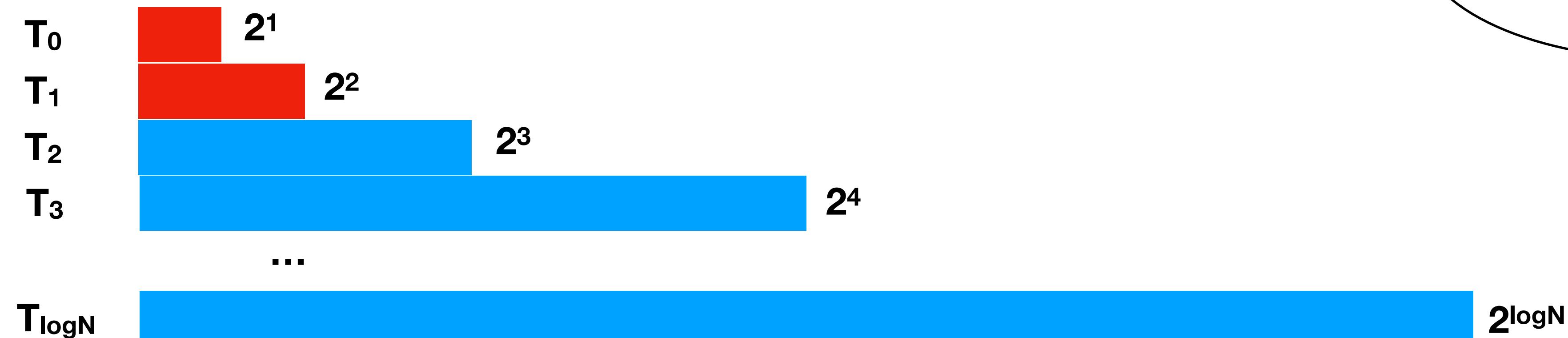
$$\sum_{i=1}^{\log N} \frac{N}{2^i} \cdot 2^i \cdot \log 2^i = N \cdot \sum_{i=1}^{\log N} i \approx N \log^2 N$$



Improvements [GM'11, KLO'12]

Lookup: perform lookup in $\log N$ levels, each requires $\log^2 N$ effectively $O(1)$ $\Rightarrow O(\log^3 N)$
 $O(\log N)$

Rebuild: Rebuild level i every 2^i accesses



Using hash tables
on the bins themselves +
stashes

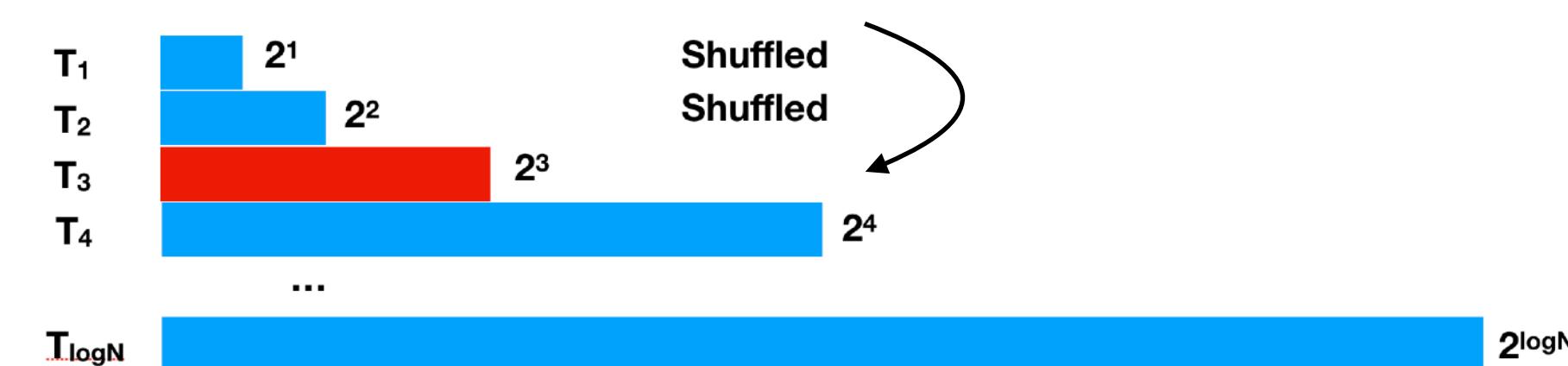
PanORAMa

$O(\log N \log \log N)$

Patel, Persiano, Raykova, Yeo '18

From Hierarchical ORAM to PanORAMa

- **PanORAMa**: Rebuild HT for a *randomly shuffled* input in $O(N \log \log N)$
 - All elements that were not visited - are still randomly shuffled in the eye of the adversary!
- **But...**
 - Each layer is shuffled, but the concatenation is not shuffled
 - PanORAMa showed how to “intersperse” arrays in $O(N \log \log N)$

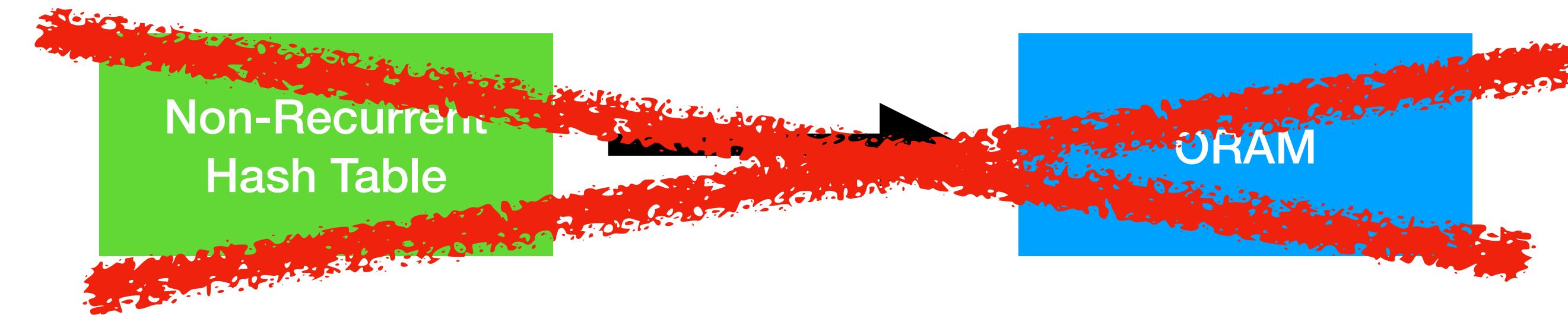
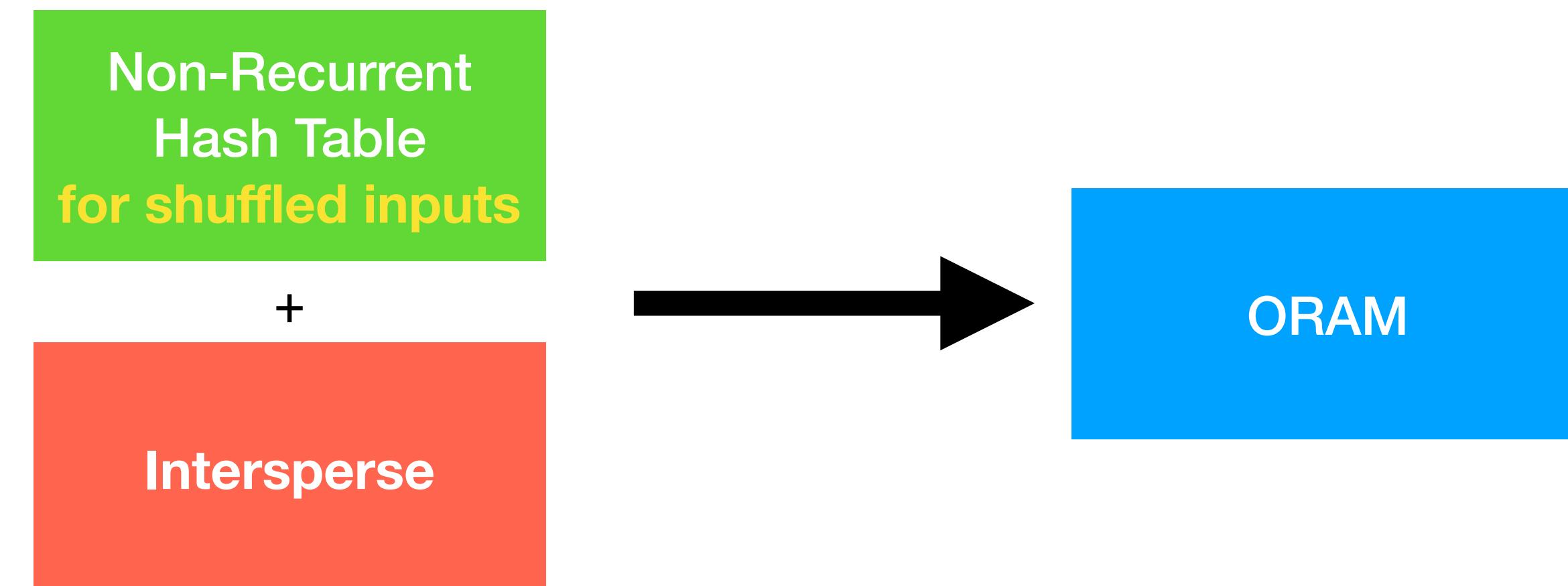


PanORAMa

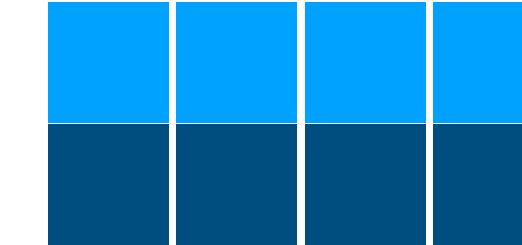
$O(\log N \log \log N)$

Patel, Persiano, Raykova, Yeo '18

PanORAMa



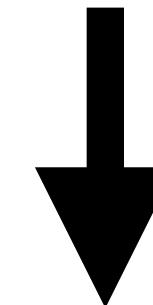
Intersperse

 I_0
 I_1 **Shuffled**
Shuffled

$|I_0| = n_0$
 $|I_1| = n_1$

Generate random Aux with n_0 zeros, n_1 ones $(n_0 + n_1 = n)$

0	0	1	1	1	0	1	0
---	---	---	---	---	---	---	---

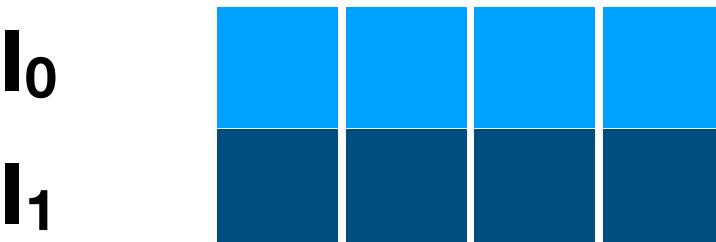
,**Oblivious route**

$$\binom{n}{n_0} \cdot n_0! \cdot n_1! = n!$$

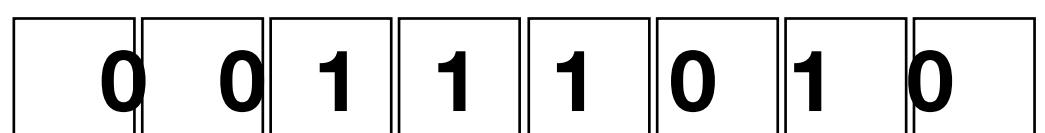
$$n = n_0 + n_1$$

Challenge: Move the elements **Obliviously**
PanORAMa: Implemented in $O(n \log \log n)$

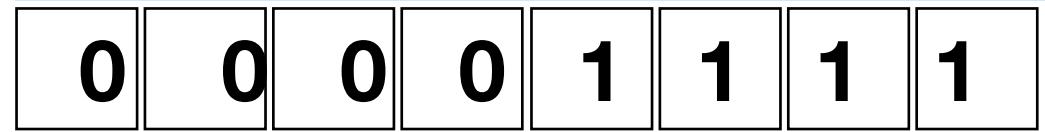
Intersperse From Oblivious Tight Compaction



Generate random Aux



Tight compaction



Remember all “move balls”

Tight compaction⁻¹

Perform same “swaps”

Intersperse in $O(n)$!

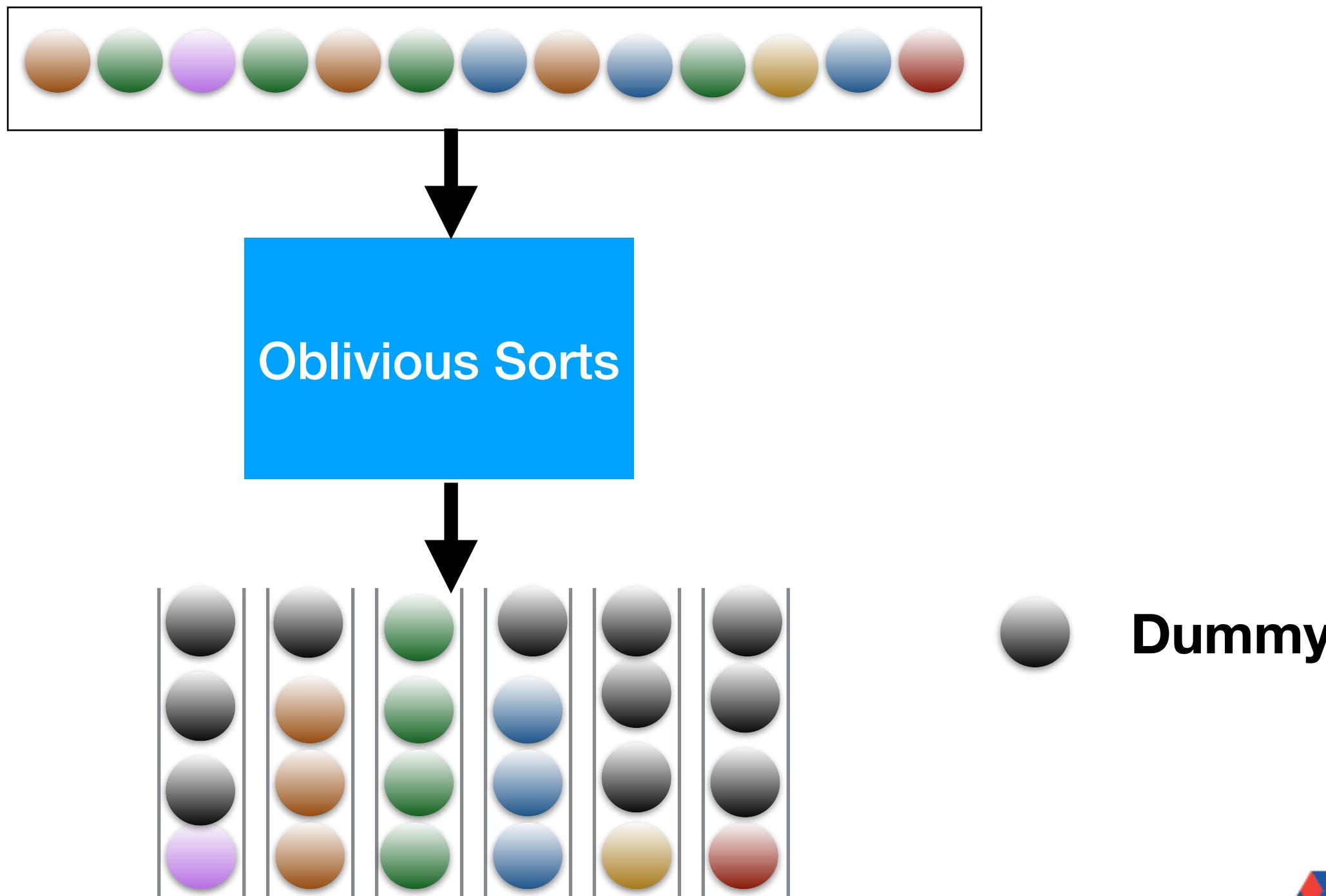
Rebuilding Hash Tables in Linear Time

Weaker Primitive (But Suffices!) — Assumes Permuted Inputs

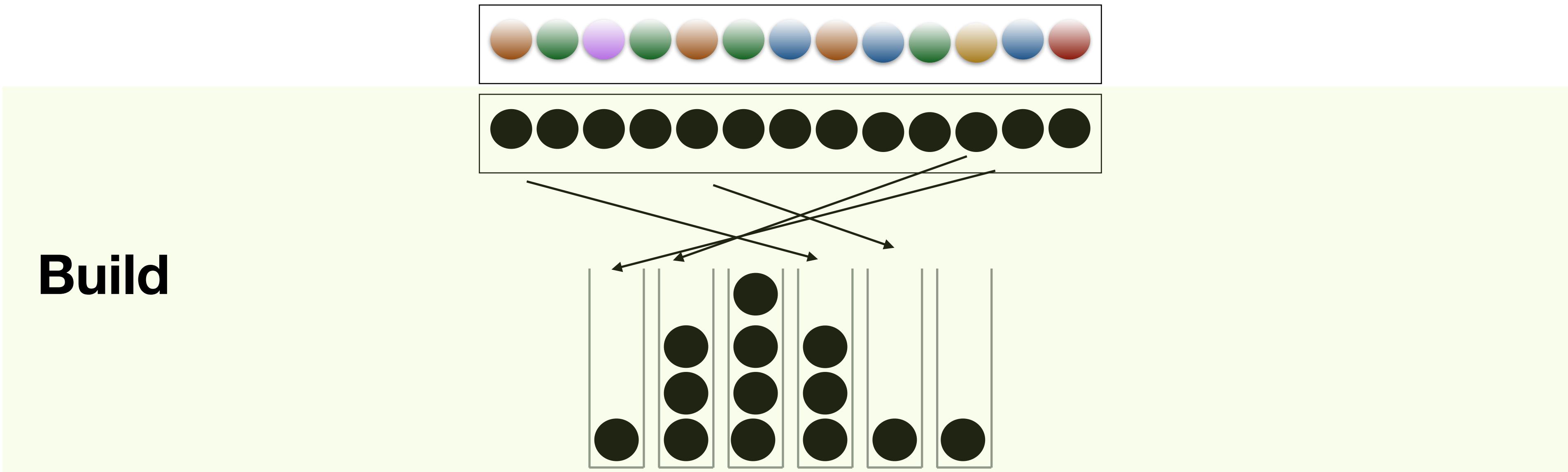
Warmup: Goldreich and Ostrovsky

- Balls into bins
- Each level has a PRF key K - mark ball $addr$ to bin $PRF_K(addr)$
Build $O(n \log n)$, Lookup $O(\log n \omega(1))$

Implementation:



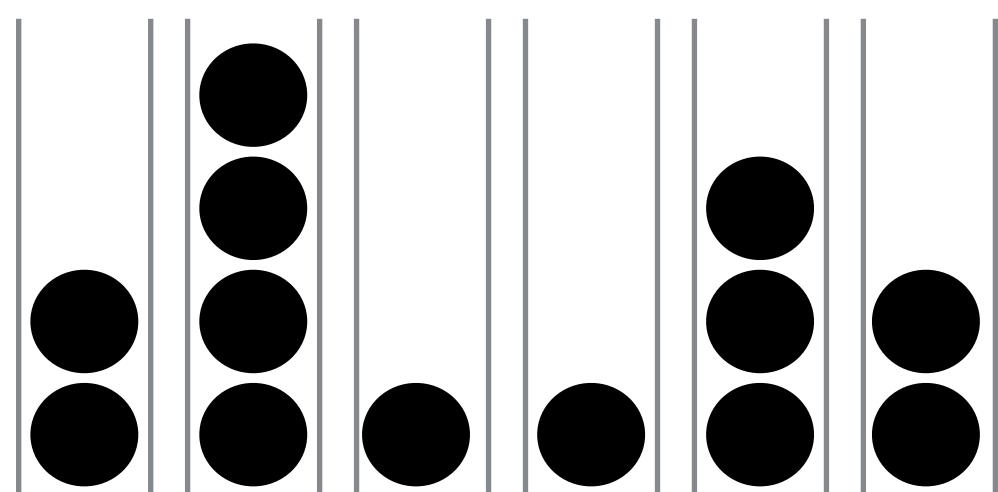
Build(X) where X is Randomly Permuted?



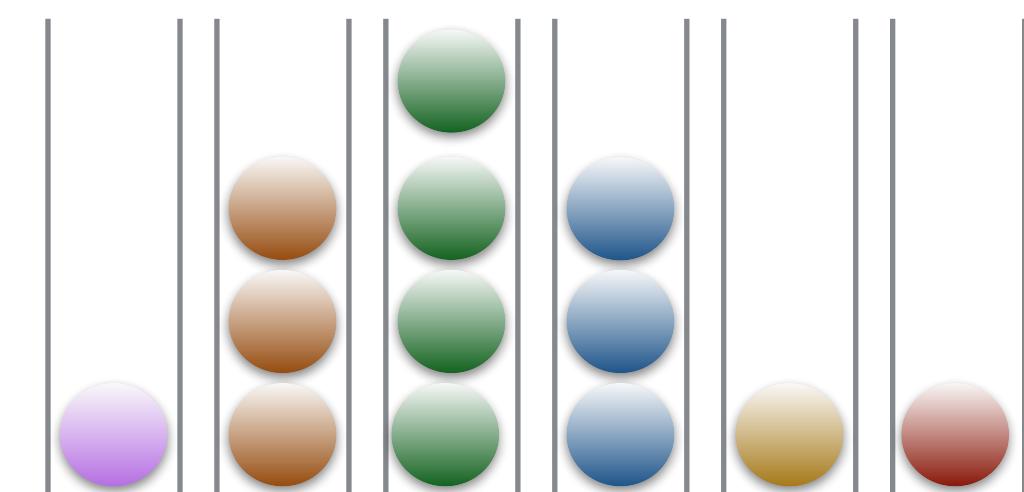
Is it secure?

No!

An adversary can distinguish between



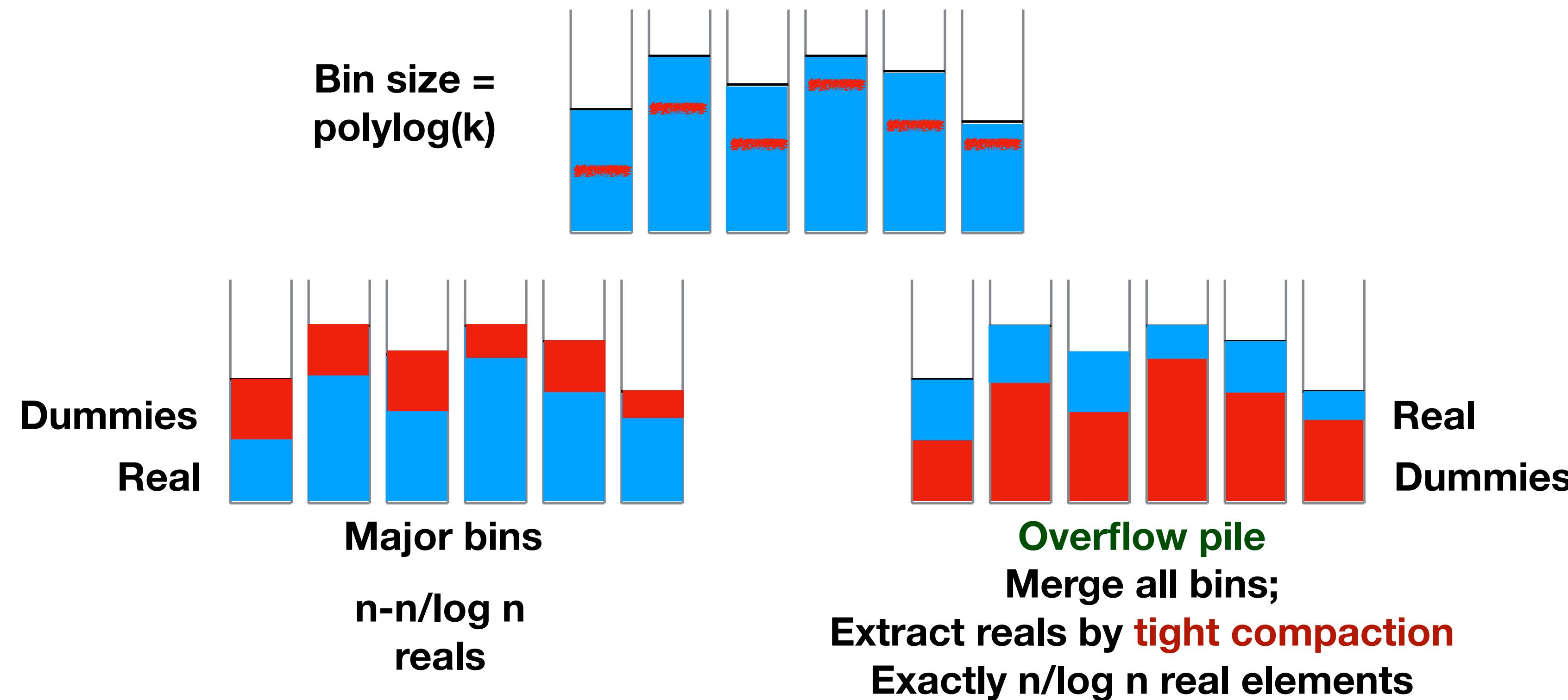
n "dummy" lookups



n "real" lookups

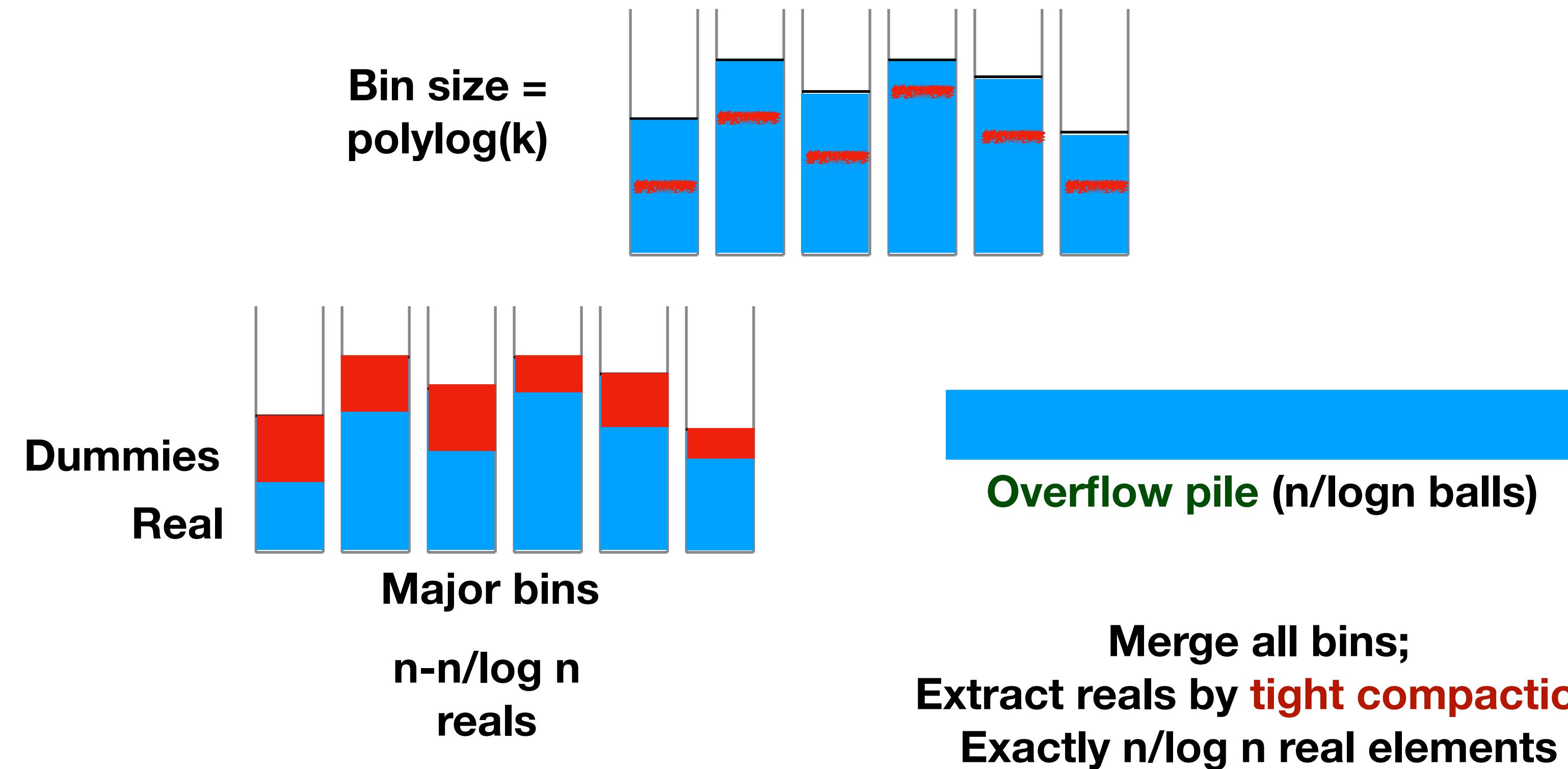
OptORAMa: Build

- 1) Throw the n elements into $n/\text{polylog}(k)$ bins according to a PRF key K - **reveal access pattern**
- 2) Sample an independent (secret) loads of throwing $n' = n - n/\log n$ **balls into the bins**
- 3) Truncate to the secret loads and pad with dummies; move truncated elements to **overflow pile**
- 4) **Build** each major bin using **smallHT**; build **overflow pile** using **cuckoo hash**

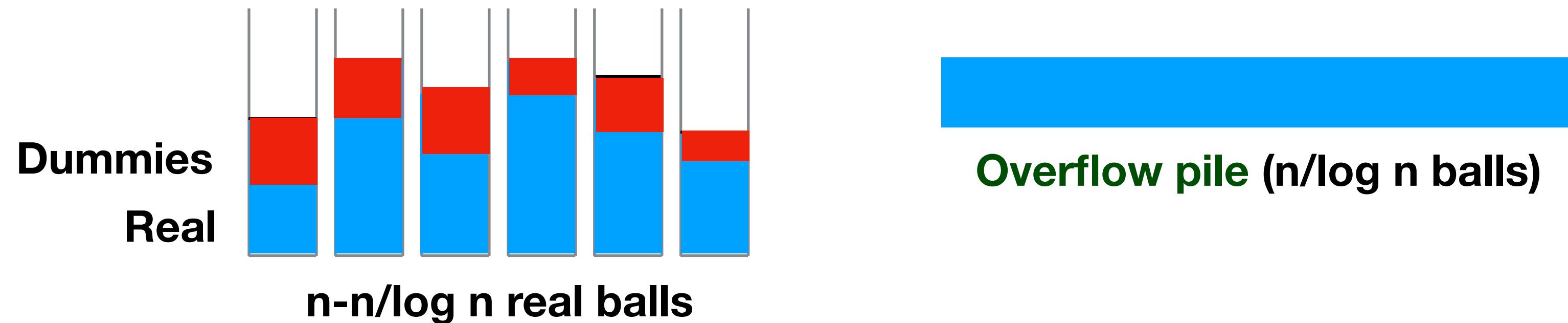


OptORAMa: Build

- 1) Throw the n elements into $n/\text{polylog}(k)$ bins according to a PRF key K - **reveal access pattern**
- 2) Sample an independent (secret) loads of throwing $n' = n - n/\log n$ **balls into the bins**
- 3) Truncate to the secret loads and pad with dummies; move truncated elements to **overflow pile**
- 4) **Build** each major bin using **smallHT**; build **overflow pile** using **cuckoo hash**

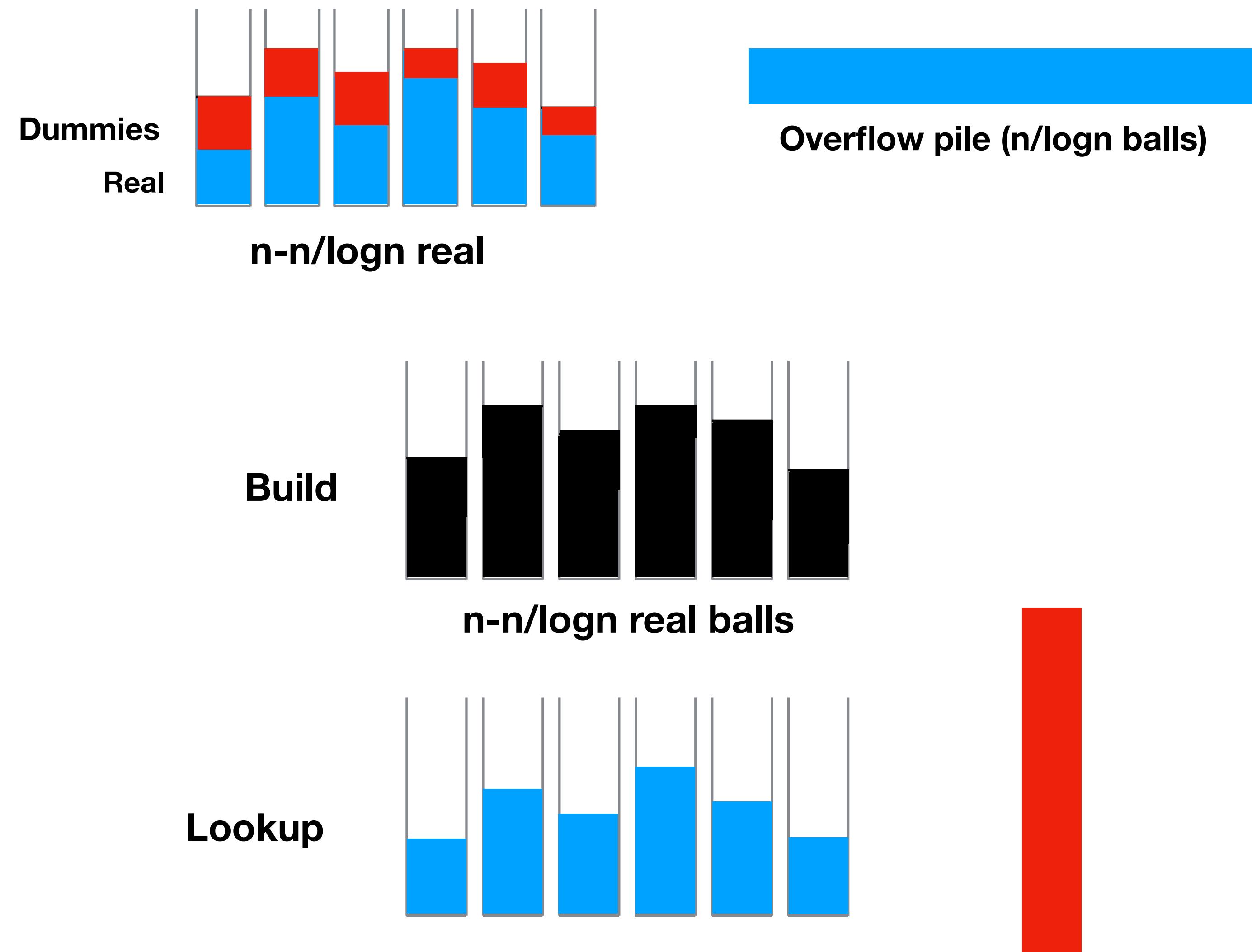


OptORAMa: Lookup

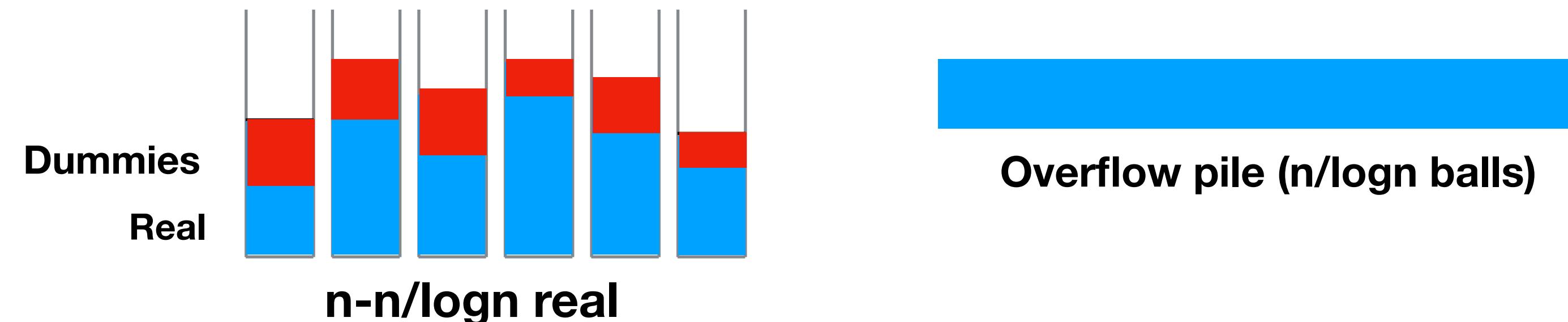
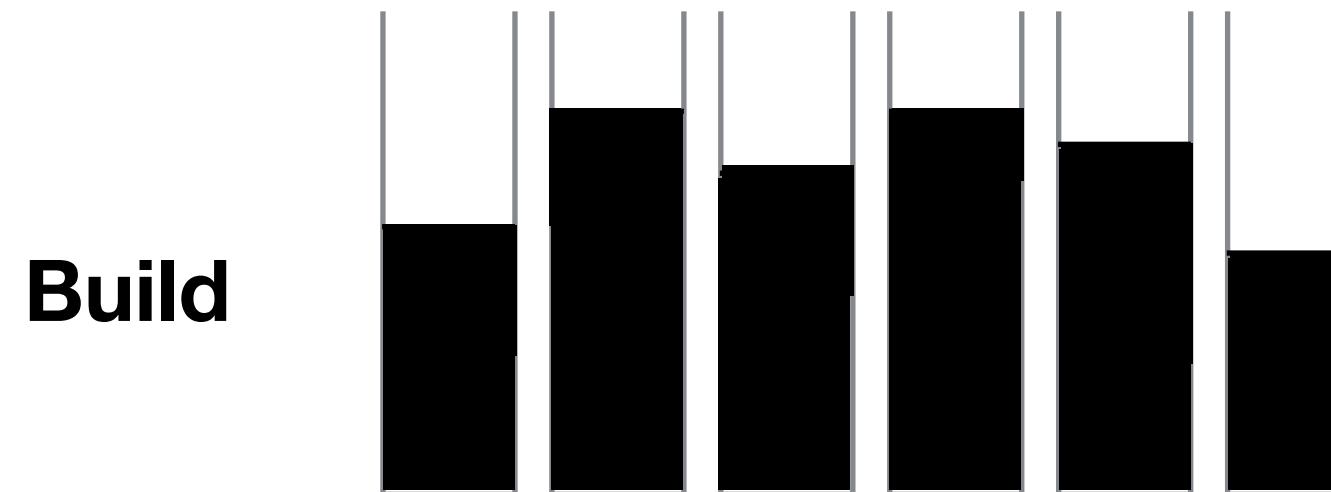
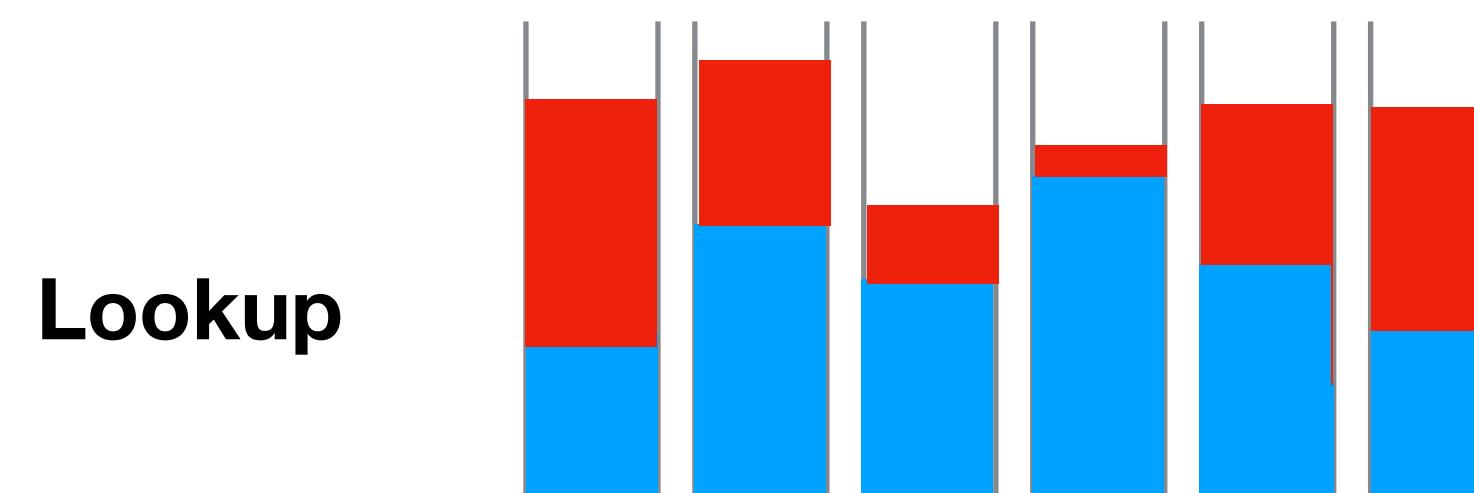


Lookup(addr):
Search in **overflow pile**;
If **found** - visit random bin
Otherwise - visit $\text{PRF}_k(\text{addr})$

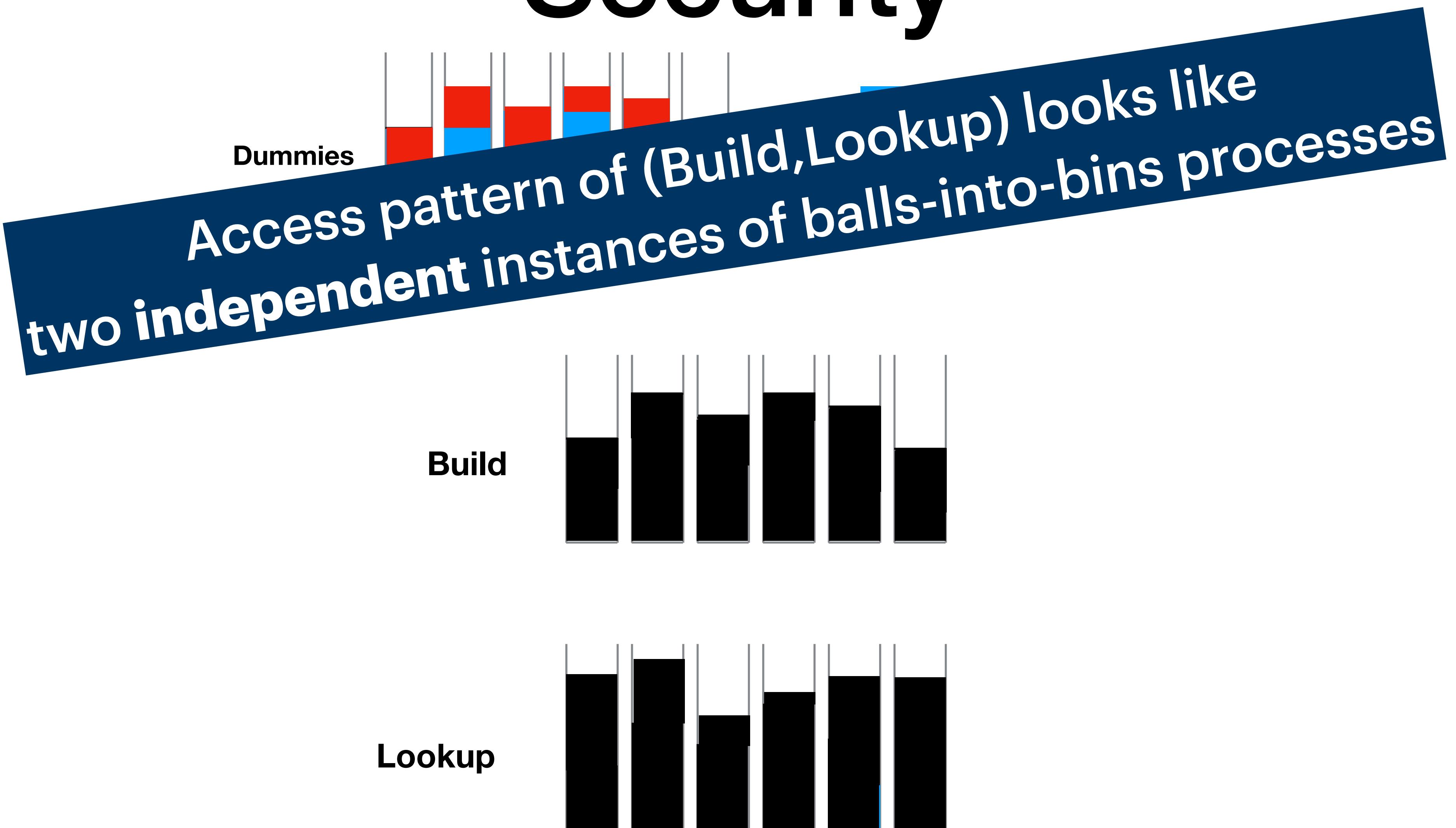
Security



Security



Security



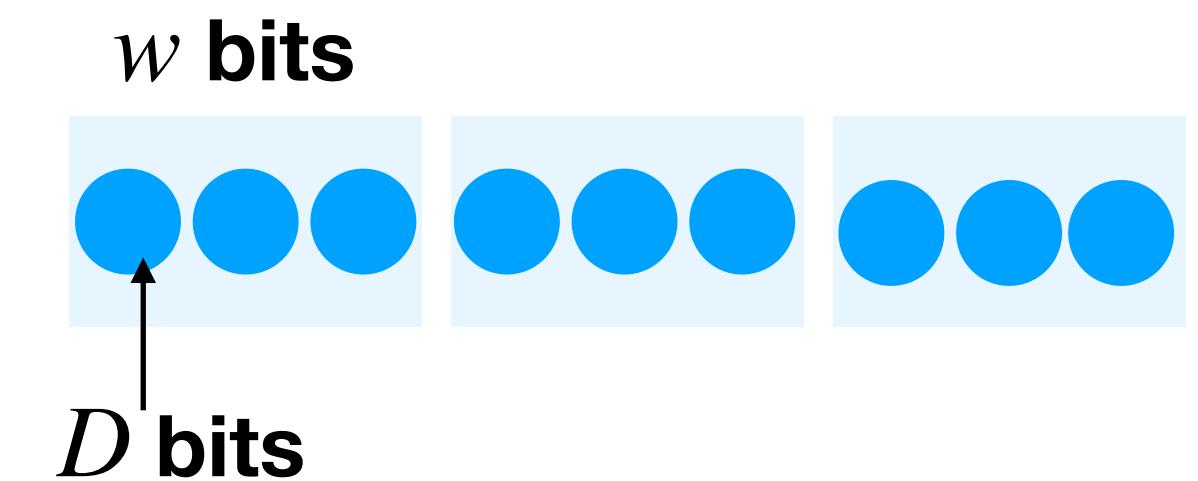
ShortHT

Looking inside the bins

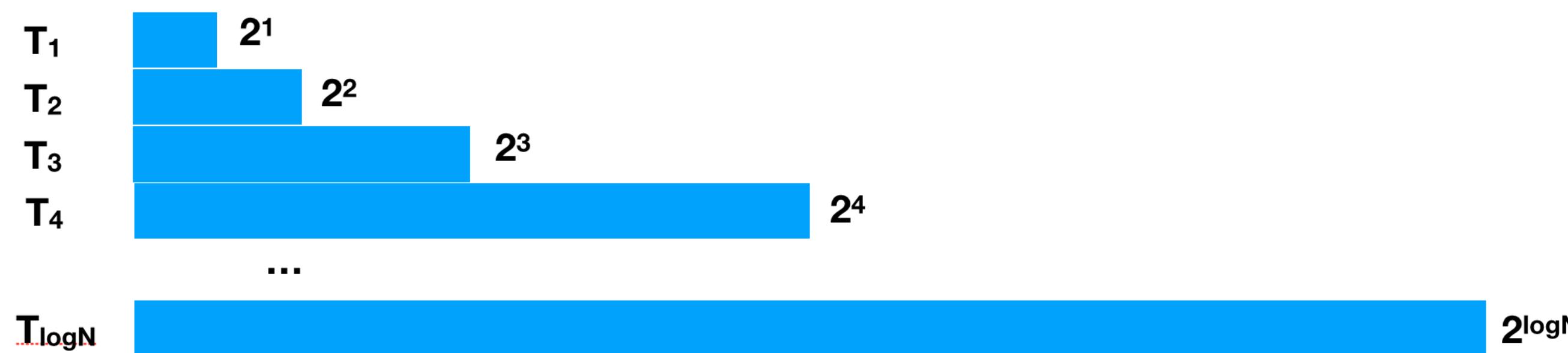
Packing - The Idea

- Given n balls each of size D bits, word size w
- Classical oblivious sort costs $O(\lceil D/w \rceil \cdot n \cdot \log n)$
- What if $D \ll w$?
- **Packing:** put w/D balls in one memory word!

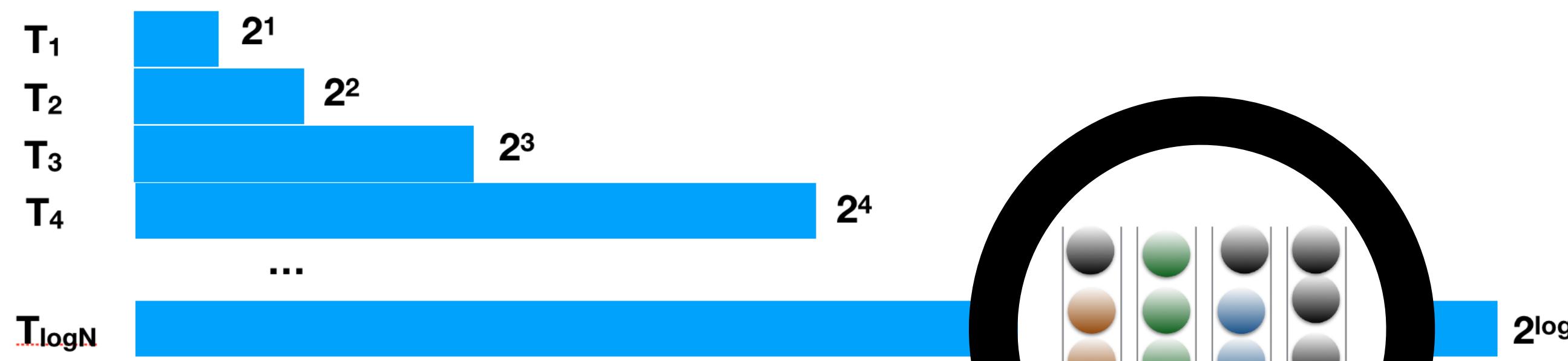
 \bullet Can sort in time $O(D/w \cdot n \cdot \log^2 n)$
- When n and D are small (say $n = w^4$ and $D = \log w$), we
can sort in linear time! ($\frac{n \log^2 n}{w} \leq n$ vs. $n \cdot \log n$)



Where is it Being Used?



Where is it Being Used?



Each hash table is arranged as a sequence of “bins”

Each element resides in a random bin

The size of each bin is $n = \log^4 N$

Previously: build a structure on a bin using oblivious sort $n \log n \rightarrow \log \log N$ overhead

We can remove it using the packing trick

From Amortized Complexity to Worst-Case Complexity

De-amortization of Ostrovsky and Shoup '97

We got a taste of $O(\log N)$ overhead – in amortized

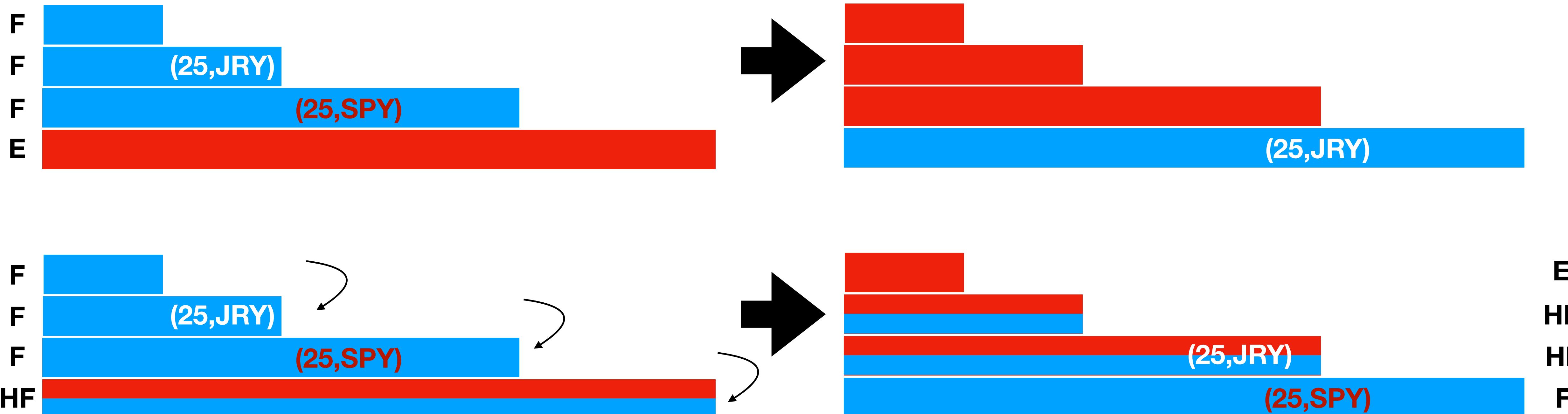
Some operations require much longer - $O(N)$

Can we get $O(\log N)$ in worse-case?

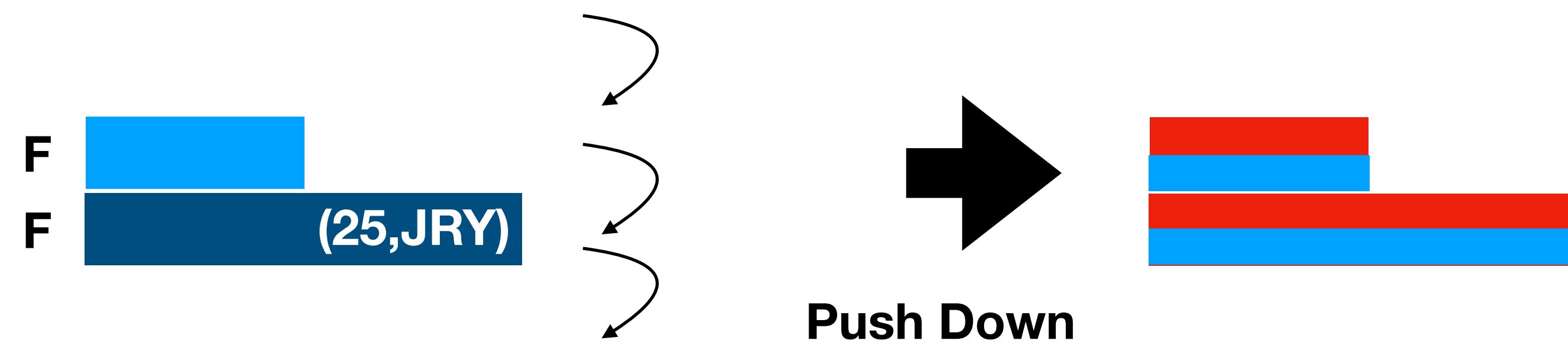
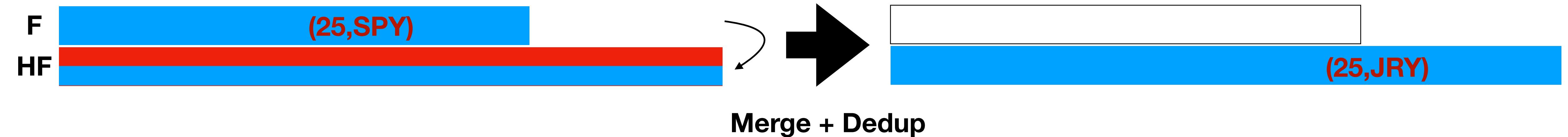
Classic de-amortization technique of hierarchical ORAM **is not compatible with OptORAMa and PanORAMa!**

De-amortization Friendly Rebuild

Instead of “full / empty” -> “full / half full”

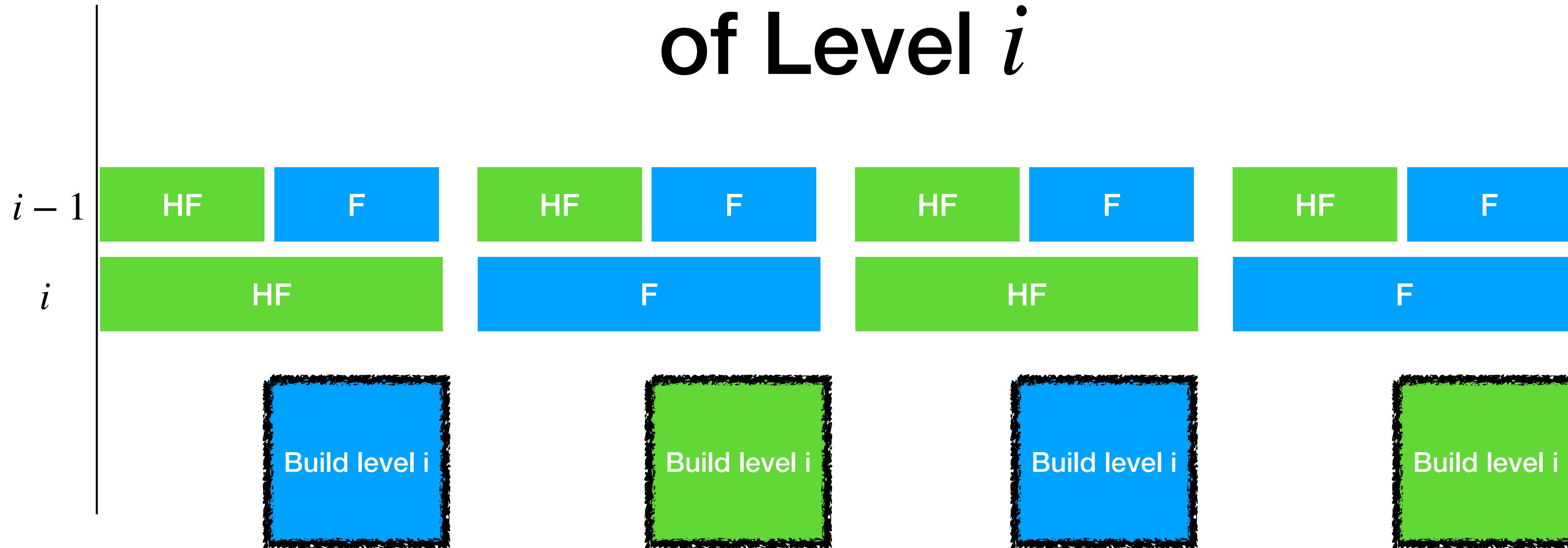


How Does it Help Us?



Easier to de-amortize: Looking at only two consecutive levels

De-amortizing Rebuild of Level i



Randomness Reuse

(PanORAMa / OptORAMa)

(27,ABC)

(9,BCD)

(11,RDT)

(32,TPO)

Randomness Reuse

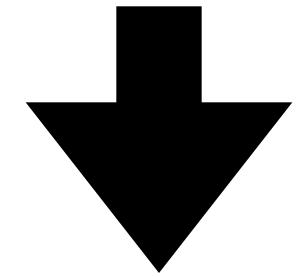
(PanORAMa / OptORAMa)

(27,ABC)

(9,BCD)

(11,RDT)

(32,TPO)



(11,RDT)

(32,TPO)

(9,BCD)

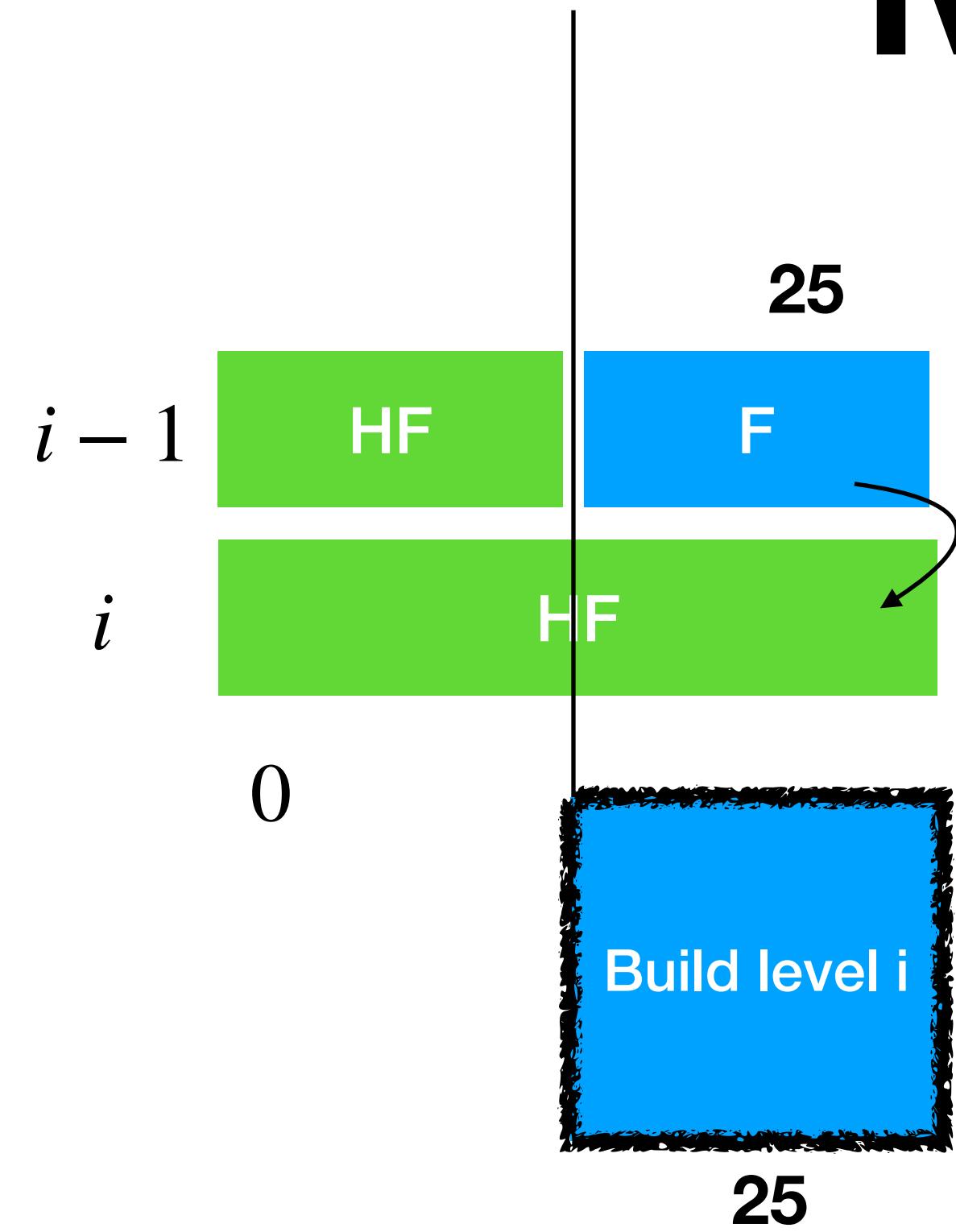
(27,ABC)

Elements that we did not touch are still randomly shuffled!!

PanORAMa and OptORAMa do not perform full **Rebuild** ->
Use the randomness from previous **Rebuild**

-> Reduced **Rebuild** from $O(n \log n)$ to $O(n)$ work

Main Challenge:

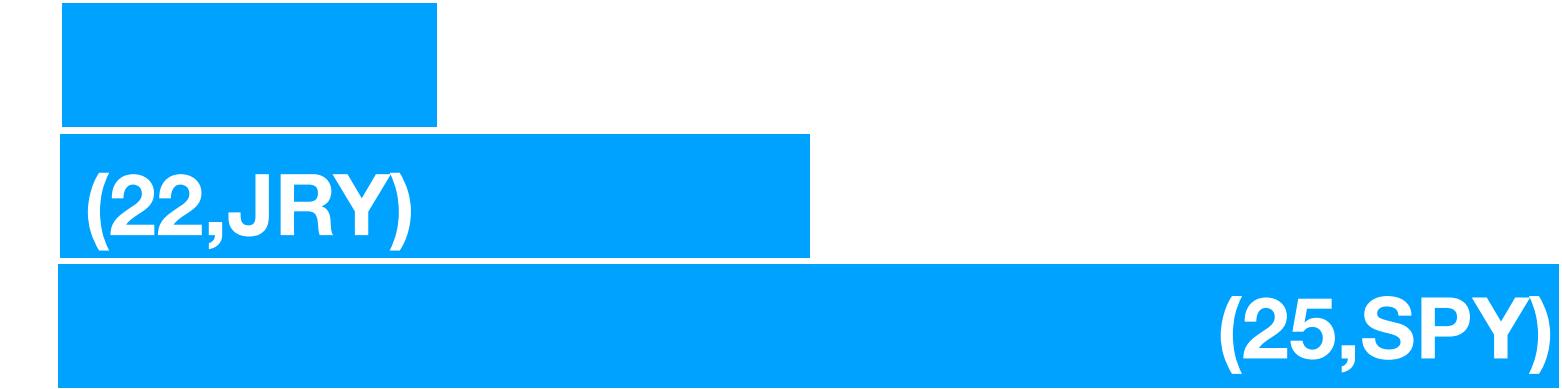


We might re-consume the randomness!

Main Idea

A

B

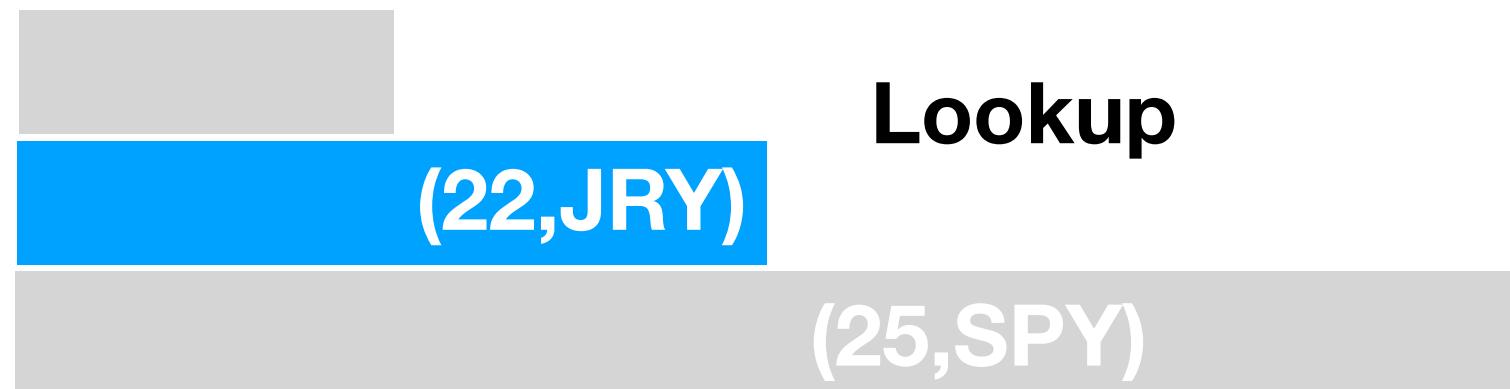


Two copies - same data in each level

Each level has an active copy, and a copy that is being rebuilt

Main Idea

A

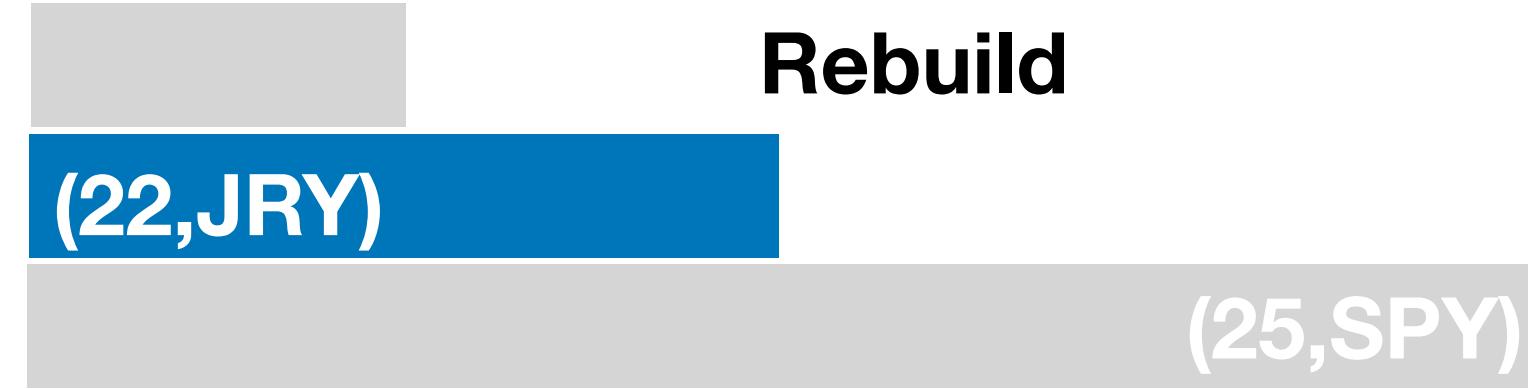


Lookup

(22,JRY)

(25,SPY)

B



Rebuild

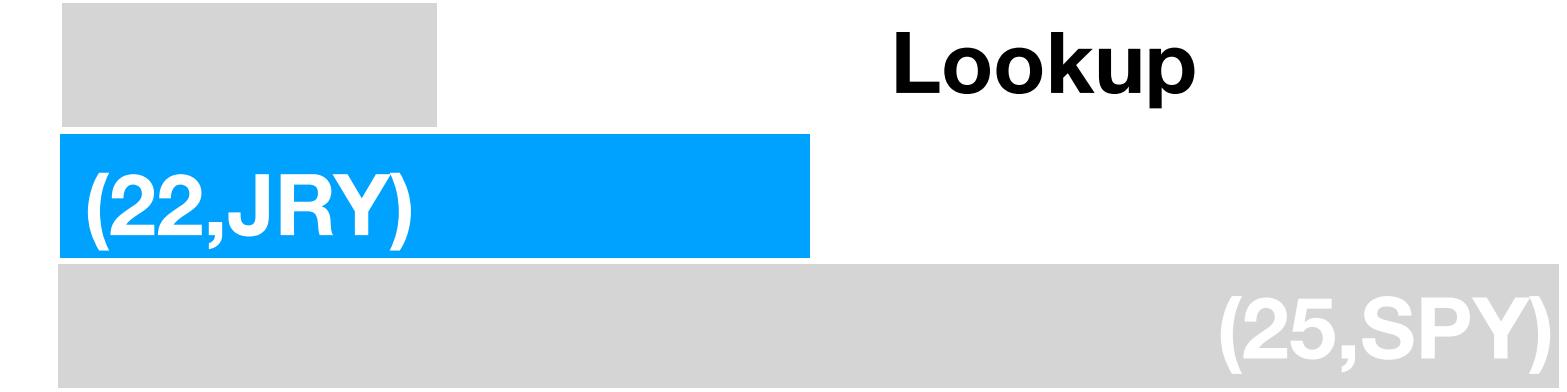
(22,JRY)

(25,SPY)

Main Idea

A

B



If the element is found -> put in both copies

Independent randomness!

See:

Asharov, Komargodski, Lin, Shi:

Oblivious RAM with Worst-Case Logarithmic Overhead, CRYPTO 2021

Conclusions

Lower bound: $\Omega(\log N)$

[GoldreichOstrovsky'96, LarsenNeilsen'18]



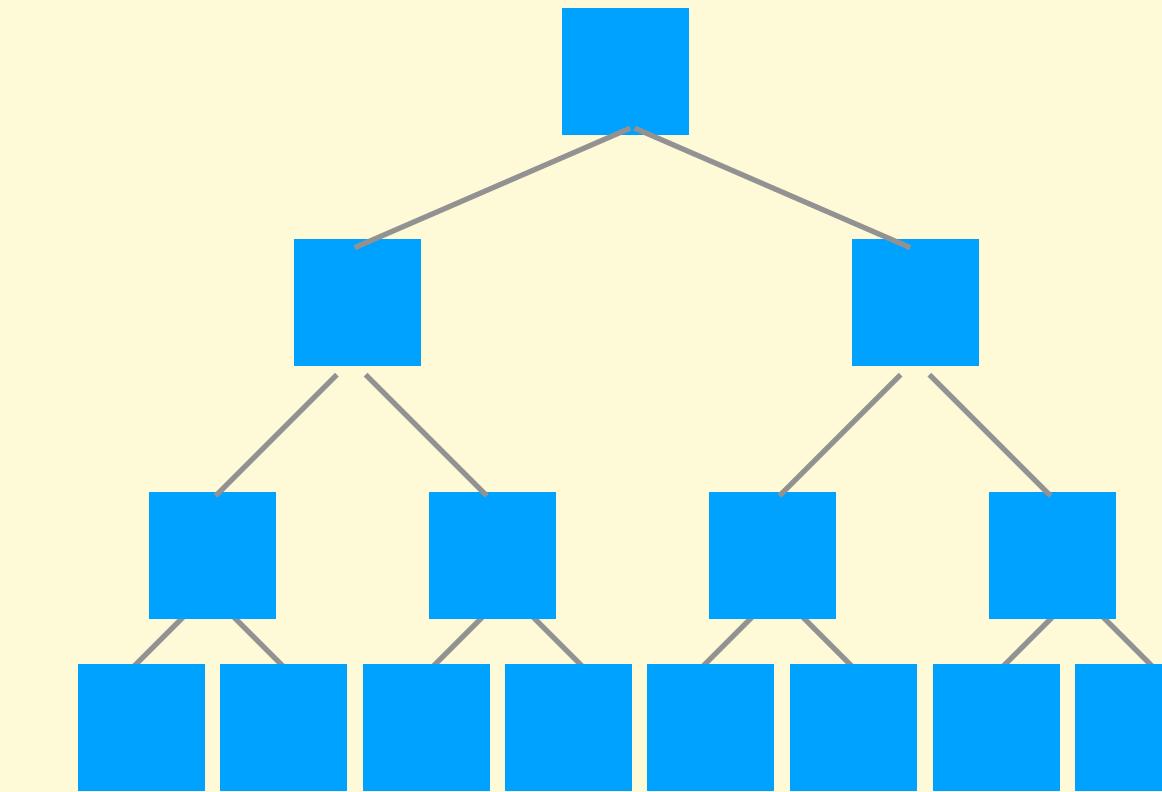
Hierarchical

[O90, GO96]

$O(\log N)$

Computational security

[OptORAMa'20]



Tree based ORAM

[Shi, Chan, Stefanov11]

$O(\log^2 N)$

Statistical security

[PathORAM, CircuitORAM]

References

Works mentioned in Part III

Goldreich, Ostrovsky:

Software Protection and Simulation on Oblivious RAM, JACM 1996

Ostrovsky, Shoup:

Private Information Storage, STOC 1997

Goodrich and Mitzenmacher:

Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation, ICALP 2011

Kushilevitz, Lu, Ostrovsky:

On the (In)Security of Hash-Based Oblivious RAM and a New Balancing Scheme, SODA 2012

Patel, Persiano, Raykova, Yeo:

PanORAMa: Oblivious RAM with logarithmic Overhead, FOCS 2018

Asharov, Komargodski, Lin, Nayak, Peserico, Shi:

OptORAMa: Optimal Oblivious RAM, EUROCRYPT 2020

Asharov, Komargodski, Lin, Shi:

Oblivious RAM with Worst-Case Logarithmic Overhead, CRYPTO 2021

Thank You!