
Oblivious Computation

Part III - OptORAMa

The 12th Bar-Ilan Winter School on Cryptography  
Advances in Secure Computation

Gilad Asharov

Bar-Ilan University

secure processor

Access Patterns Reveal Information!

Kidney

Problem

Liver

Problem

Heart

Problem

Access Patterns Reveal Information!

Oblivious RAM Compiler:  
State of the Art

Tree based ORAMHierarchical
[O90,GO96] [Shi,Chan,Stefanov11]

Lower bound:

[GoldreichOstrovsky’96, LarsenNeilsen’18]

Ω(log N)

O(log2 N)O(log N)
Computational security

[OptORAMa’20]
Statistical security

[PathORAM,CircuitORAM]

OptORAMa  
[Asharov, Komargodski, Lin, Nayak, Peserico, Shi’20]

There exists an ORAM with O(log N) worst-case overhead

🎉 Asymptotically Optimal! 🎊
• Computational Security (OWF)

• Matches [LN’18]

• PRF -> Random Oracle

• Statistical security

• Matches [GO’96]

• Word size: log N

• Client’s memory size O(1) words

• Passive server

• Balls and bins model

• Large hidden constant

• Based on hierarchical ORAM

A Short Tutorial

Hierarchical Solution

[Ostrovsky’90],…,[KLO12]

O(log3 N), . . . , O(
log2 N

log log N
)

PanORAMa

O(log N log log N)

Patel,Persiano,Raykova,Yeo’18

OptORAMa

O(log N)

ORAMNon-Recurrent
Hash Table

Hierarchical ORAM

[Goldreich and Ostrovsky 1996]

Non-Recurrent Hash Table
Build(X):

X is an array of pairs <addr,val>

Lookup(addr):

If addr ∈ X, return val; otherwise return ⊥

Also supports “dummy lookups” (addr = ⊥)

Security holds as long as each is looked up at most once!𝖺𝖽𝖽𝗋

Non-Recurrent Hash Table
• Balls into bins

• Each level has a PRF key K - mark ball addr to bin PRFK(addr)

Build O(n log n), Lookup O(log n ω(1))

Implementation:

Oblivious Sorts

Dummy

log2 n bins of size :2n /log2 n

“Bin Packing”

Dummy

Oblivious Sorts

Oblivious Sorts

Lookup
• Lookup(addr): visit bin PRFK(addr) and scan for addr

• Lookup(dummy): visit and scan a random bin

It is guaranteed that we do not  
look for the same twice!𝖺𝖽𝖽𝗋

Simulate Build: Oblivious sorts - easy

Simulate Lookup: Each Lookup() -> scan a random bin

Cost: Build — , each lookup O(n log n) O(log2 n)

ORAMNon-Recurrent
Hash Table

Hierarchical ORAM

[Goldreich and Ostrovsky 1996]

Access (op,addr,data*)

T0

T1

T2

T3

TlogN

ready

empty

20

21

22

23

2logN

…

Phase I: Lookup

Phase II: Build

Access (op,addr,data*)
Perform Lookup(addr) in T1,…,TlogN
If item found in Ti, then Lookup(⊥) in Ti+1,..,TlogN

Phase I: Lookup

T0

T1

T2

T3

TlogN

ready

empty

20

21

22

23

2logN

…

Phase II: Build

Access (op,addr,data*)

If op=read, then store the found item as v
If op=write, then ignore the found item and use v = data*

ready

empty

…

Phase I: Lookup

Phase II: Build

T0

T1

T2

T3

TlogN

20

21

22

23

2logN

Access (op,addr,data*)

Find the first empty level l, and run Tl.Build(T1⋃…⋃Tl-1 ⋃ {<addr,v>})
Mark T1,…,Tl-1 as empty and Tl as ready

ready

empty

…

Invariant: never query the same addr twice between two Rebuilds

Phase I: Lookup

Phase II: Build

T0

T1

T2

T3

TlogN

20

21

22

23

2logN

Read(9)

20

21

22

2logN

…
(5,TLT) (25,SPY)(12,WLS)

(32,TPO)(9,BCD)(27,ABC) (11,RDT)

23 Lookup(9)

Lookup(9)

Lookup(9)T0

T1

T2

T3

TlogN

Read(9)

2logN

…
(5,TLT) (25,SPY)(12,WLS)

(32,TPO)(9,BCD)(27,ABC) (11,RDT)

Lookup(9)

Lookup(9)

Lookup(9)20

21

22

23

T0

T1

T2

T3

TlogN

Read(9)

2logN

…
(5,TLT) (25,SPY)(12,WLS)

(32,TPO)(9,BCD)(27,ABC) (11,RDT)

Lookup(9)

Lookup(9)

Lookup(9)(9,BCD) 20

21

22

23

T0

T1

T2

T3

TlogN

Write(25,JRY)

2logN

…
(5,TLT) (25,SPY)(12,WLS)

(32,TPO)(9,BCD)(27,ABC) (11,RDT)

(9,BCD)

Lookup(25)

Lookup(25)20

21

22

23

T0

T1

T2

T3

TlogN

Write(25,JRY)

2logN

…
(5,TLT) (25,SPY)(12,WLS)

(32,TPO)(9,BCD)(27,ABC) (11,RDT)

Lookup(25)

Lookup(25)(9,BCD)

Lookup()⊥
Lookup()⊥

(25,JRY)

20

21

22

23

T0

T1

T2

T3

TlogN

Rebuild

2logN

…
(5,TLT) (25,SPY)(12,WLS)

(32,TPO)(9,BCD)(27,ABC) (11,RDT)

(9,BCD)(25,JRY)
20

21

22

23

T0

T1

T2

T3

TlogN

After Some More

Accesses…

2logN

…
(5,TLT) (25,SPY)(12,WLS)

(32,TPO)(9,BCD)(27,ABC) (11,RDT)

(9,BCD)(25,JRY)
20

21

22

23

T0

T1

T2

T3

TlogN

After Some More

Accesses…

2logN

…
(5,TLT) (25,SPY)(12,WLS)

(32,TPO)(9,BCD)(27,ABC) (11,RDT)

(9,BCD)(25,JRY)
20

21

22

23

T0

T1

T2

T3

TlogN

After Some More

Accesses…

2logN

…
(5,TLT) (25,SPY)(12,WLS)

(32,TPO)(9,BCD)(27,ABC) (11,RDT)

(9,BCD) (25,JRY)

20

21

22

23

T0

T1

T2

T3

TlogN

Total Cost - Basic Hierarchical ORAM

21

22

23

24

2logN

…

Lookup: perform lookup in levels, each requires
log N log2 N O(log3 N)

O(log2 N)
Rebuild: Rebuild level every accesses, over accesses: 
 

i 2i N

log N

∑
i=1

N
2i

⋅ 2i ⋅ log 2i = N ⋅
log N

∑
i=1

i ≈ N log2 N

T0

T1

T2

T3

TlogN

Improvements [GM’11,KLO’12]

21

22

23

24

2logN

…

Lookup: perform lookup in levels, each requires effectively

Rebuild: Rebuild level every accesses

log N log2 N O(1)

i 2i

O(log3 N)

O(log2 N)

O(log N)

Using hash tables
on the bins themselves +

stashes
T0

T1

T2

T3

TlogN

• PanORAMa: Rebuild HT for a randomly shuffled input in

• All elements that were not visited - are still randomly shuffled in the eye of the

adversary!

• But…

• Each layer is shuffled, but the concatenation is not shuffled

• PanORAMa showed how to “intersperse” arrays in

O(N log log N)

O(N log log N)

From Hierarchical ORAM to
PanORAMa

ORAMNon-Recurrent
Hash Table

PanORAMa

Non-Recurrent
Hash Table

for shuffled inputs

Intersperse

ORAM+

Intersperse
I0
I1

Generate random Aux with zeros, ones n0 n1

0 0 1 1 1 0 1 0 ,

Shuffled
Shuffled

Oblivious route

✓
n

n0

◆
· n0! · n1! = n!

n = n0 + n1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Challenge: Move the elements Obliviously

PanORAMa: Implemented in O(n log log n)

| I0 | = n0
| I1 | = n1

(n0 + n1 = n)

Intersperse

Intersperse From  
Oblivious Tight Compaction

I0
I1

Generate random Aux

0 0 1 1 1 0 1 0

Tight compaction

0 0 0 0 1 1 1 1

Remember all “move balls”

Tight compaction-1

Perform same “swaps”

Intersperse in !O(n)

Intersperse

Rebuilding Hash Tables in
Linear Time

Weaker Primitive (But Suffices!) — Assumes Permuted Inputs

Warmup:  
Goldreich and Ostrovsky

• Balls into bins

• Each level has a PRF key K - mark ball addr to bin PRFK(addr)

Build O(n log n), Lookup O(log n ω(1))

Implementation:

Oblivious Sorts

Dummy

Build(X) where X is
Randomly Permuted?

Is it secure?

No!

An adversary can distinguish between  

 
n “real” lookups n “dummy” lookups

Build

OptORAMa: Build

Real
Dummies Real

Dummies

Merge all bins;
Extract reals by tight compaction

Exactly n/log n real elements

1) Throw the n elements into n/polylogk bins according to a PRF key K - reveal access pattern

2) Sample an independent (secret) loads of throwing n’ = n-n/log n balls into the bins

3) Truncate to the secret loads and pad with dummies; move truncated elements to overflow pile

4) Build each major bin using smallHT; build overflow pile using cuckoo hash

Major bins Overflow pile

Bin size =
polylog(k)

n-n/log n
reals

OptORAMa: Build

Real
Dummies

Merge all bins;
Extract reals by tight compaction

Exactly n/log n real elements

Major bins

Overflow pile (n/logn balls)

Bin size =
polylog(k)

n-n/log n
reals

1) Throw the n elements into n/polylogk bins according to a PRF key K - reveal access pattern

2) Sample an independent (secret) loads of throwing n’ = n-n/log n balls into the bins

3) Truncate to the secret loads and pad with dummies; move truncated elements to overflow pile

4) Build each major bin using smallHT; build overflow pile using cuckoo hash

OptORAMa: Lookup

Real
Dummies

n-n/log n real balls

Overflow pile (n/log n balls)

Lookup(addr):
Search in overflow pile;

If found - visit random bin

Otherwise - visit PRFK(addr)

Security

Build

n-n/logn real balls

Real

Dummies

n-n/logn real

Overflow pile (n/logn balls)

Lookup

Security

Build

Real

Dummies Overflow pile (n/logn balls)

n-n/logn real

Lookup

Security

Build

Real

Dummies

n-n/log n real

Overflow pile (n/log n balls)

Lookup

Access pattern of (Build,Lookup) looks like  

two independent instances of balls-into-bins processes

ShortHT
Looking inside the bins

Packing - The Idea
• Given n balls each of size bits, word size

• Classical oblivious sort costs

• What if ?

• Packing: put balls in one memory word!

• Can sort in time

• When and are small (say and), we

can sort in linear time! (vs.)

D w
O(⌈D/w⌉ ⋅ n ⋅ log n)

D ≪ w
w/D

O(D/w ⋅ n ⋅ log2 n)

n D n = w4 D = log w
n log2 n

w
≤ n n ⋅ log n

 bitsw

 bitsD

Where is it Being Used?

Where is it Being Used?

Each hash table is arranged as a sequence of “bins”

Each element resides in a random bin

The size of each bin is

Previously: build a structure on a bin using oblivious sort -> overhead

We can remove it using the packing trick

n = log4 N
nlog n log log N

From Amortized Complexity
to Worst-Case Complexity

De-amortization of Ostrovsky and Shoup ‘97

We got a taste of overhead — in amortized

Some operations require much longer -

Can we get in worse-case?

Classic de-amortization technique of hierarchical ORAM is not
compatible with OptORAMa and PanORAMa!

O(log N)

O(N)

O(log N)

De-amortization Friendly
Rebuild

(25,SPY)
(25,JRY)

(25,JRY)

Instead of “full / empty” -> “full / half full”

F
F
F
E

(25,SPY)
(25,JRY)

F
F
F

HF (25,SPY)
(25,JRY)

E

F

HF
HF

How Does it Help Us?

(25,JRY)
F
F

Push Down

(25,SPY)
(25,JRY)

F
HF

Merge + Dedup

Easier to de-amortize: Looking at only two consecutive levels

HF

FHF

F

FHF

HF

FHF

F

FHF

i

i − 1

Build level iBuild level i Build level iBuild level i

De-amortizing Rebuild

 of Level i

Randomness Reuse  
(PanORAMa / OptORAMa)

(32,TPO)(9,BCD)(27,ABC) (11,RDT)

Randomness Reuse  
(PanORAMa / OptORAMa)

Elements that we did not touch are still randomly shuffled!!

PanORAMa and OptORAMa do not perform full Rebuild -> 
Use the randomness from previous Rebuild 

-> Reduced Rebuild from to workO(n log n) O(n)

(32,TPO)(9,BCD)(27,ABC) (11,RDT)

(32,TPO) (9,BCD) (27,ABC)(11,RDT)

Main Challenge:

HF

0

FHF

i

i − 1

25

25

 We might re-consume the randomness!

Build level i

Main Idea
A B

(25,SPY)
(22,JRY)

(25,SPY)
(22,JRY)

Two copies - same data in each level

Each level has an active copy, and a copy that is being rebuilt

Main Idea
A B

(25,SPY)
(22,JRY)

(25,SPY)
(22,JRY)

Lookup Rebuild

Main Idea
A B

(25,SPY)
(22,JRY)

(25,SPY)
(22,JRY)

LookupRebuild

If the element is found -> put in both copies

Independent randomness!

See: 
Asharov, Komargodski, Lin, Shi:  
Oblivious RAM with Worst-Case Logarithmic Overhead, CRYPTO 2021

Conclusions

Tree based ORAMHierarchical
[O90,GO96] [Shi,Chan,Stefanov11]

Lower bound:

[GoldreichOstrovsky’96, LarsenNeilsen’18]

Ω(log N)

O(log2 N)O(log N)
Computational security

[OptORAMa’20]
Statistical security

[PathORAM,CircuitORAM]

References
Works mentioned in Part III

Goldreich, Ostrovsky:  
Software Protection and Simulation on Oblivious RAM, JACM 1996

Ostrovsky, Shoup:  
Private Information Storage, STOC 1997

Goodrich and Mitzenmacher:  
Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation, ICALP 2011

Kushilevitz, Lu, Ostrovsky: 
On the (In)Security of Hash-Based Oblivious RAM and a New Balancing Scheme, SODA 2012

Patel, Persiano, Raykova, Yeo:  
PanORAMa: Oblivious RAM with logarithmic Overhead, FOCS 2018

Asharov, Komargodski, Lin, Nayak, Peserico, Shi:  
OptORAMa: Optimal Oblivious RAM, EUROCRYPT 2020

Asharov, Komargodski, Lin, Shi:  
Oblivious RAM with Worst-Case Logarithmic Overhead, CRYPTO 2021

Thank You!

