
Oblivious Computation

Part I - Lower Bounds and Tree Based ORAMs

The 12th Bar-Ilan Winter School on Cryptography  
Advances in Secure Computation

Gilad Asharov

Bar-Ilan University

Some slides were created by: Elaine Shi, Ilan Komargodski

Models of Computation

Circuits RAM Model

Random Access Machine

CPU Operation

 

Memory access

Emulate easily

[CR73,PF79]

()

T3 log T

T ≫ N

Size (how many wires, gates)

Depth (parallelism)

Time T

Size of the memory N
Metrics:

secure processor

Access Patterns Reveal Information!

Access Patterns Reveal Information!

func search(val, s, t)

mid = (s+t)/2

if val<mem[mid]

search(val,0,mid)

else search(val, mid+1, t)

Access Pattern of binary search leaks

the rank of the number being searched

Access Patterns Reveal Information!

if (secret variable)

Read mem[x]

else

Write mem[y]

Access pattern reveals the value of  
the secret variable

Kidney

Problem

Liver

Problem

Heart

Problem

Access Patterns Reveal Information!

Circuits RAM Model Oblivious RAM Model

??

A program in the RAM model

Access Pattern is “oblivious”:

Can be simulated from (T,N)

Example: Sorting

• Merge sort:

• non oblivious

• Bubble sort:

• oblivious

O(n log n)

O(n2)

Merge((1,2,3),(4,5,6))

1,3,5 2,4,6

1,3,5 2,4,6

1,3,5 2,4,6

1,3,5 2,4,6

1,3,5 2,4,6

1,3,5 2,4,6

1,2,3 4,5,6

1,2,3 4,5,6

1,2,3 4,5,6

1,2,3 4,5,6

1,2,3 4,5,6

1,2,3 4,5,6

Merge((1,3,5),(2,4,6))

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

4,3,2,1

3,4,2,1

3,2,4,1

3,2,1,4

2,3,1,4

2,1,3,4

1,2,3,4

BubbleSort(1,2,3,4)
 BubbleSort(4,3,2,1)

Models of Computation

Circuits RAM Model Oblivious RAM Model

??

A program in the RAM model

Access Pattern is “oblivious”:

Can be simulated from (T,N)

Oblivious RAM
Compiler

RAM Program with (T,N) —>

Oblivious RAM Program with (TN, N)

Trivial

Compiler

RAM Program with (T,N) —>

Oblivious RAM Program with (T’, N’)

Oblivious
RAM

Compiler

Usually,

 : overhead of the
compilation

N′￼= O(N)
T′￼/T

Oblivious RAM (ORAM)

An algorithmic technique that provably encrypts access patterns

Goldreich and Ostrovsky (87’,90’,96’)

Permuting and shuffling elements around the memory

ORAM

Read addr

Write addr, data

Security: Physical accesses independent of input logical sequence

Logical
addresses

Multiple physical
reads/writes

Memory Simulator

Memory

O(N)
O(log3 N)

[GO’87,90,96]

Hierarchical

 ORAM

Matching the  
lower bound!

(Big constant)

Computational

[PPRY’18, 
AKL+’20]

Hierarchical

ORAM

O(log N)

Lower Bound

[GO’87,90,96]

[LN’18]

Ω(log N)≈ O(log2 N)

[GM’11,KLO’12]

Hierarchical

ORAM

Simple,  
small constants

Statistical

[SCSL’11, SDS+13,

WCS’15]

Tree  
Based ORAM

O(log2 N)

O(log3 N)
⟹

Oblivious RAM Compiler:  
State of the Art

Tree based ORAMHierarchical
[O90,GO96] [Shi,Chan,Stefanov11]

Lower bound:

[GoldreichOstrovsky’96, LarsenNeilsen’18]

Ω(log N)

O(log2 N)O(log N)
Computational security

[OptORAMa,AKLNPS’20]
Statistical security

[PathORAM,CircuitORAM]

Oblivious PRAM compiler:

Introduced by Boyle, Chung and Pass in 2016

Recent work [AKLPS, SODA’22]:

Any PRAM program with parallel time and space

 parallel time and space
T N

⟹ T log N N

Circuits RAM Model Oblivious RAM Model

??

Oblivious
Parallelism

No dynamic memory accesses A[i]
Not Oblivious
No Parallelism

Dynamic memory accesses A[i] Dynamic memory accesses A[i]
Oblivious

No Parallelism

Oblivious RAM
Compiler

Parallelism
Not Oblivious

Dynamic memory accesses A[i]

Parallel RAM Model Oblivious  
Parallel RAM Model

??

Dynamic memory accesses A[i]
Oblivious

Parallelism

Oblivious PRAM
Compiler

Oblivious RAM Compiler:  
State of the Art

Tree based ORAMHierarchical
[O90,GO96] [Shi,Chan,Stefanov11]

Lower bound:

[GoldreichOstrovsky’96, LarsenNeilsen’18]

Ω(log N)

O(log2 N)O(log N)
Computational security

[OptORAMa,AKLNPS’20]
Statistical security

[PathORAM,CircuitORAM]

Lower Bounds
Any ORAM compiler results in overheadΩ(log N)

Lower Bounds

Goldreich and Ostrovsky [’96]:

Balls and Bins model

Statistical Security

Offline ORAM

Counting argument

Boyle and Naor [’16]:

An lower
bound for  
offline ORAM  
not in the balls and bins
model  
implies  
an lower
bound for  
sorting circuits

Ω(log N)

Ω(N log N)

Ω(log N)

Larsen and Nielsen [’18]:

Not in Balls and Bins
model

Computational Security

Online ORAM

Information transfer
technique

Ω(log N)

Offline ORAM: the entire logical sequence is known in advance; including all addresses and data

The Lower Bound [LN’18]
• Based on information transfer technique of Pătrașcu & Demaine ’06

• Cell probe model [Yao’81] - computation is free, only charge for probes

Logical Operations: Op1 Op2 Op3 Opn

The Lower Bound [LN’18]

Physical probes: p1
1…, pq

1 p1
2…, pq

2 p1
3…, pq

3 p1
n…, pq

n

=Pv {p1, …, pk}

Assign to an internal node  
iff is the lower common ancestor 

of the two last physical accesses of

pj
i = (𝖱𝖾𝖺𝖽/𝖶𝗋𝗂𝗍𝖾, 𝖺𝖽𝖽𝗋) v

v
𝖺𝖽𝖽𝗋

Example

Logical Operations: Op1 Op2 Op3 Opn

Physical probes: p1
1…, pq

1 p1
2…, pq

2 p1
3…, pq

3 p1
n…, pq

n

 5,10,20,1 12,11,20,44 4,44,50,20

20
, 4420

Assign to an internal node  
iff is the lower common ancestor 

of the two last physical accesses of

pj
i = (𝖱𝖾𝖺𝖽/𝖶𝗋𝗂𝗍𝖾, 𝖺𝖽𝖽𝗋) v

v
𝖺𝖽𝖽𝗋

=Pv {p1, …, pk}

Example

Logical Operations: Op1 Op2 Op3 Opn

Physical probes: p1
1…, pq

1 p1
2…, pq

2 p1
3…, pq

3 p1
n…, pq

n

 5,10,20,1 12,11,20,44 4,44,50,20

20
, 4420 Each physical probe is counted at most once 

total # 𝗈𝖿 𝗉𝗋𝗈𝖻𝖾𝗌 ≥ ∑
v∈𝖳𝗋𝖾𝖾

|Pv |

Enough to bound 

∑
v∈𝖳𝗋𝖾𝖾

|Pv | ≥ ??

Assign to an internal node  
iff is the lower common ancestor 

of the two last physical accesses of

pj
i = (𝖱𝖾𝖺𝖽/𝖶𝗋𝗂𝗍𝖾, 𝖺𝖽𝖽𝗋) v

v
𝖺𝖽𝖽𝗋

=Pv {p1, …, pk}

Based on the physical access pattern - the adversary can compute the tree

Security: For all logical sequences, for all , should be similar

For every , we can show a logical sequence forcing to be large

v |Pv |

v |Pv |

Assumes
online ORAM

Logical Operations: Write(1,r1) Read(1)Write(2,r2) Write(3,r3) Write(4,r4) Read(2) Read(3) Read(4)

 must be large|Pv |

Logical Operations: Write(1,r1) Read(1)Write(2,r2) Read(2)

 must be large|Pv |

Based on the physical access pattern - the adversary can compute the tree

Security: For all logical sequences, for all , should be similar

For every , we can show a logical sequence forcing to be large

v |Pv |

v |Pv |

Assumes
online ORAM

Claim: For every node in depth , d E[|Pv |] ≥
N
2d

Logical Operations: Write(1,r1) Read(1)Write(2,r2) Read(2)

Proof by encoding / compression argument

0

1

2

≥ ∑
v∈Tree

E[|Pv |] = ∑
v∈Tree

N
2d

=
log N−1

∑
d=0

2d ⋅
N
2d

= N log NE[total #of probes]

We considered logical sequences of length N

 overhead per operation (in expectation)Ω(log N)

Claim: For every node in depth , d E[|Pv |] ≥
N
2d

References

Goldreich and Ostrovsky: Software Protection and Simulation on Oblivious RAMs, JACM 1996

Boyle and Naor: Is There an Oblivious RAM Lower Bound? ITCS 2016

Larsen and Nielsen: Yes! There is an Oblivious RAM Lower Bound, CRYPTO 2018

Weiss and Wichs: Is there an Oblivious RAM Lower Bound for Online Reads? TCC 2018

Pavel Hubacek, Michal Koucky, Karel Kral, Veronika Slivova: Strong Lower Bounds for Online ORAM, TCC 2019

Jacob, Larsen, Nielsen: Lower bounds for oblivious data structures, SODA 2019

Persiano and Yeo: Lower bounds for differentially private RAMs, EUROCRYPT 2019

Larsen, Simkin, Yeo: Lower bounds for multi-server oblivious RAMs, TCC 2020

Komargodski and Lin: A logarithmic lower bound for oblivious RAM (for all parameters), CRYPTO 2021

And more…

Oblivious RAM Compiler:  
State of the Art

Tree based ORAM
 [Shi,Chan,Stefanov11]

Hierarchical
[O90,GO96]

Lower bound:

[GoldreichOstrovsky’96, LarsenNeilsen’18]

Ω(log N)

O(log2 N)O(log N)
Computational security

[OptORAMa’20]
Statistical security

[PathORAM,CircuitORAM]

Tree Based ORAM
Simple constructions, statistical security, overheadO(log2 N)

Strawman: Randomly Permute Blocks in Memory

1 2 3 4 5 6 7 8

14 6 3 785 2

Strawman: Randomly Permute Blocks in Memory

14 6 3 785 2

Strawman: Randomly Permute Blocks in Memory

14 6 3 785 2

The adversary has no clue what the client is accessing

Strawman: Randomly Permute Blocks in Memory

14 6 3 785 2

The adversary has no clue what the client is accessing

Strawman: Randomly Permute Blocks in Memory

14 6 3 785 2

Repeated query!!!

Blocks must move around
in memory!

Memory

CPU

bucket

Each bucket stores real and dummy blocks

Memory

CPU l

block x

Position
map

Path invariant: every block mapped to a random path

 l

block x

Memory

CPU l

block x

Position
map

 l

block x

Reading a block is simple!

Memory

CPU l

block x

Position
map

 l

block x

After being read, block x must relocate!

Memory

CPU l

block x

Position
map

Pick a new random path and move x there

 l’

update position
map

Memory

CPU l

block x

Position
map

Where on the new path can we write block x ?

 l’

Memory

CPU l

block x

Position
map

Can we write it to the leaf?

 l’

Memory

CPU l

block x

Position
map

Can we write it to the leaf?

 l’

Memory

CPU l

block x

Position
map

Writing to any non-root bucket leaks information

 l’

Memory

CPU l

block x

Position
map

 l’

block x

Write it to the root!

Memory

CPU l

block x

Position
map

 l’

block x

Security: every request, visit a random path that has not been revealed

Memory

CPU l

block x

Position
map

 l’

block x

Problem?

Memory

CPU l

block x

Position
map

 l’

block x

Problem: root will overflow

A background eviction process percolates blocks upwards

 Not too slow: prevent overflow

 Not too fast: save cost

A background eviction process percolates blocks upwards

Every request: pick 2 random buckets per level to evict

load > 0

Scan, find a real
block, write to a child

Every request: pick 2 random buckets per level to evict

Memory

CPU

Eviction process does not leak information

Thm: bucket size = log n no overflow w.h.p. [SCSL’11]

Proof: use queuing theory and measure concentration bounds.

Memory

CPU

Every request incurs O(log2 n) cost

Thm: bucket size = log n no overflow w.h.p. [SCSL’11]

Position map

Position mapPosition map

…
…

Store position map recursively in a
smaller ORAM

Position mapPosition map

…
…

Cost with eviction: O(log3 n)

Previous construction - overhead:

Each path has nodes

Each node has a bucket of size

Recursion adds another

Improvement: Path ORAM (overhead)

Each node has a bucket of size

Client has local stash of size

O(log3 N)

O(log N)

O(log N)

O(log N)

O(log2 N)

O(1)

𝗉𝗈𝗅𝗒 log N

Path

ORAM

ACM CCS ‘13

[SDS+’13]

Path

ORAM

ACM CCS ‘13

[SDS+’13]

Achieves O(log2 n) cost
with recursion

A block is re-mapped to a new random
path upon being read.

The block must be relocated to the new
path without revealing the new path

Key challenge: design eviction process
and prove no overflow.

Summary: tree-based ORAMs

Tree Based ORAM

Shi, Chan, Stefanov, Li: Oblivious RAM with Worst-Case Cost, ASIACRYPT
2011

Stefanov, van Dijk, Shi, Fletcher, Ren, Yu, Devadas: Path ORAM: an Extemrely Simple
Oblivious RAM Protocol, CCS 2013

Gentry, Goldman, Halevi, Jutla, Raykova, Wichs: Optimizing ORAM and Using it
Efficiently for Secure Computation, PETS 2013

Chung, Pass: A Simple ORAM, 2013

Wang, Chan, Shi: Circuit ORAM: On Tightness of the Goldreich-Ostrovsky Lower
Bound, CCS 2015

O(log3 N)

Oblivious RAM Compiler:  
State of the Art

Hierarchical
[O90,GO96]

O(log N)
Computational security

[OptORAMa,AKLNPS’20]

Tree based ORAM
 [Shi,Chan,Stefanov11]

Lower bound:

[GoldreichOstrovsky’96, LarsenNeilsen’18]

Ω(log N)

O(log2 N)
Statistical security

[PathORAM,CircuitORAM]

Tomorrow!

Thank You!

