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Models of Computation

RAM Model
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Random Access Machine

CPU Operation
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Access Patterns Reveal Information!
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Access Patterns Reveal Information!

rfllmc searchz;/al, s, t) |
mid = (s+t)/2
if val<mem[mid]
search(val,O,mid)
| else searfh(val, mild+1, t) |

Access Pattern of binary search leaks
the rank of the number being searched
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Access Patterns Reveal Information!

— _
if (secret variable)

Read mem]|x]
else

Write memly]

Access pattern reveals the value of
the secret variable



Access Patterns Reveal Information!
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Problem




Circuits RAM Model Oblivious RAM Model

A program in the RAM model
Access Pattern is “oblivious”:
Can be simulated from (T,N)
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Example: Sorting

. Merge sort: O(n log n)
 non oblivious

. Bubble sort: O(1?)
» oblivious

Merge((1,2,3),(4,5,6))
1 4

BubbleSort(1,2,3,4)
1,2
2,3
3,4
1,2
2,3
1,2

Merge((1,3,5),(2,4,6))
1 2
3 2
3 4
5 4
5 6
6

BubbleSort(4,3,2,1)
4,3
4,2
4,1
3,2
3,1
2,
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Models of Computation

Circuits RAM Model Oblivious RAM A plivious RAM Model

Compiler

/N

Usually, N' = O(N)
T'/T : overhead of the

compilation
A program in the RAM model
iy, Access Pattern is “oblivious”:
Ob:xiMous RAM Program with (T,N) s Can be simulated from (T,N)
Compiler Oblivious RAM Program with (T’, N’)
Trivial RAM Program with (T,N) —>
Compiler Oblivious RAM Program with (TN, N)
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Oblivious RAM (ORAM)

An algorithmic technique that provably encrypts access patterns

Goldreich and Ostrovsky (87,90',96")

¢ Permuting and shuffling elements around the memory
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Multiple physical

Logical !
addresses reads/writes
Read addr
Write addr, data
Memory

Memory

Security: Physical accesses independent of input logical sequence
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Cloud computing: Architecture, secure processor:

Shroud: [RPMRS, Fast'12] OpenPiton: [BMFN+, CACM'19]
Metal: [CP, NDSS'20] Phantom: [MLSTS+ CCS'13]
Ring ORAM:  [RFKSS+, SEC'15] Ghostrider: [LHMHTS, ASPLOS'15, Best Paper]
ObliviStore:  [SS, S&P"13] Ascend: [RFK+ TDSC'19l, [FRY+ HCPA'14],
S30RAM: [HOY, CCS'17], [HYG'19] Raccoon: [LRT, SEC'15]

TaoStore: [SZALT, S&P'16] Klotski: [ZSYZSJ, ASPLOS'20]

O.R.ORAM: [CCR, CCS'19] | .
Obliviate: [AKSL, NDSS'18] ZeroTrace: [SGF, NDSS'18]

Others: [WNLCS+, CCS'14], Obscuro: - [AJX+, NDSS19] .
[BNPWH, CCS'15] Others: [HO+, PETS'19l, [HB+, CODASPY'20]

[RRM, C&S'20]

Theoretical crypto: ORAM Multi-party computation:

GHL+, Eurocrypt14l, [GHR+, FOCS'14], ObliVM: [WHCSS, CCS'14 ], [LWNHS, S&P'15]

GLO, FOCS'15], [GLOS, STOC'15], _ ,
BCP, TCC'16], [CLT, TCC'16l, SChemeS INWIWTS, S&P'15],

DDFRSW, TCC'16], [LO, CRYPTO'17l, ObliVC: [ZE15]
CCS, Asiacrypt'17], ICNS, TCC18], SPDZ: [KY, Eurocrypt'18]
CKNPS, Asiacrypt18], [CL, TCC19] Others: [GKK#+, CCS'12], I[GHJR, ACNS'15],

[Keller'17], [GKW, Asiacrypt'18]

E.:g%?g:mmg ang: Blockchain, ML, misc:

IDSLH. POPL'20] Blockchain: [CZJKJS, CCS'17]

Proof of retrievability: [CKW, Eurocrypt'13]

Database: Privacy-preserving ML: INWIWTS, S&P'15],
Obladi: ICBCHAA, OSDI'18} [\WLNHS, S&P'15]

ObliDB: [EZ, VLDB'20]
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[GO'87,90,96] [GM'11,KLO"12] [SCSL'11, SDS+13, [PPRY'18, [GO'87,90,96]
WCS'15] AKL+'20] [LN'18]

Hierarchical Hierarchical Tree Hierarchical
ORAM ORAM Based ORAM ORAM Lower Bound

O(log> N)

O(/N) ~ O(log’ N) — O(log N) Q(log N)

0(1()g2 N)
3
O(log” N) Matching the

lower bound!

(Big constant)

Simple,
small constants

Statistical Computational

N
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Oblivious RAM Compiler:
State of the Art

Lower bound: 2(log N)

[GoldreichOstrovsky’96, LarsenNeilsen’18]

. n
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Hierarchical Tree based ORAM

[090.GO96] [Shi,Chan,Stefanov11]
Computational security Statistical security

[OptORAMa,AKLNPS’20] [PathORAI\/I,CircuitORA%
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No dynamic memory accesses Ali]

Oblivious
Parallelism

Oblivious PRAM compiler:
Introduced by Boyle, Chung and Pass in 2016

Recent work [AKLPS, SODA'22]:
Any PRAM program with 7 parallel time and /N space

—> T log N parallel time and N space

RAM Model Oblivious RAM Model

-

Oblivious RAM
Compiler

—

Dynamic memory accesses A[i]

Oblivious
No Parallelism

Dynamic memory accesses A[i]

Not Oblivious
No Parallelism

Oblivious
Parallel RAM Model Oblivious PRAM
Compiler Parallel RAM Model
a
Dynamic memory accesses A[i] Dynamic memory accesses A[i]
Not Oblivious Oblivious

Parallelism

Center for Research in Applied
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Oblivious RAM Compiler:
State of the Art

Lower bound: 2(log N)

[GoldreichOstrovsky’96, LarsenNeilsen’18]
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Hierarchical Tree based ORAM

[090.GO96] [Shi,Chan,Stefanov11]
Computational security Statistical security

[OptORAMa,AKLNPS’20] [PathORAI\/I,CircuitORA%
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| ower Bounds

Any ORAM compiler results in £2(log V) overhead

Center for Research in Applied
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Goldreich and Ostrovsky ['96]:

Q(log N)

p ()
&Balls and Bins mode|

& Statistical Security
€ Offline ORAM

Counting argument

Lower Bounds

Boyle and Naor ['16]:

An Q(log N) lower
bound for

offline ORAM

not in the balls and bins
model

Implies

an Q(N log N) lower

bound for
sorting circuits

Offline ORAM: the entire logical sequence is known in advance; including all addresses and data

Larsen and Nielsen ['18]:

Q(log N)

€Not in Balls and Bins
model

€ Computational Security
€ Online ORAM

Information transfer
technique

Center for Research in Applied
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The Lower Bound [LN"18]

* Based on information transfer technique of Patrascu & Demaine ’06

e Cell probe model [Yao’81] - computation is free, only charge for probes



The Lower Bound [LN"18]

Assign p{ = (Read/Write, addr) to an internal node v

Iff v is the lower common ancestor
of the two last physical accesses of addr

P=ipys - Did ‘

Logical Operations: OpT1 Op2 Op3 Opn

9 9

><

Physical probes: pll.-.,plq PZI---,qu p31---,1?3q p,}-.-,pfl] ¢ ¢



Example

Assign p{ = (Read/Write, addr) to an internal node v

Iff v is the lower common ancestor
of the two last physical accesses of addr

P=ipys - Did ‘

20, 44

Logical Operations: OpT1 Op2 Op3 Opn

9 9

>

. 1 1 1 1
Physical probes: pl.-.,plq Pz---,pzq p3---,p3q Pn--sPn ¢ ¢
5,10,20,1 12,11,20,44 4,44,50,20



Example

Assign p{ = (Read/Write, addr) to an internal node v

Iff v 1s the lower common ancestor

of the two last physical accesses of addr
PV={p1’ .o ’pk}

o5 ‘Each physical probe is counted at most once

@ total # of probes > Z | P, |

‘ veTree

Enough to bound

OO O C _—

Logical Operations: OpT1 Op2 Op3

9 9

. 1 1 1 .
Physical probes: pl.-.,l?lq Pz---,pzq P3---,P3q D,
5,10,20,1 12,11,20,44 4,44,50,20



Based on the physical access pattern - the adversary can compute the tree

Assumes
online ORAM

Security: For all logical sequences, for all v, | P, | should be similar

For every v, we can show a logical sequence forcing | P, | to be large

| P,,| must be large

Logical Operations: Write(1,r1) Write(2,r2) Write(3,r3) Write(4,r4) Read(1) Read(2) Read(3) Read(4)

Center for Research in Applied
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Based on the physical access pattern - the adversary can compute the tree

Assumes
online ORAM

Security: For all logical sequences, for all v, | P, | should be similar

For every v, we can show a logical sequence forcing | P, | to be large

| P,,| must be large

D
P = A ¥ N
- N N e P G - o 7. 50N
» e - - e, o\
’ N 2 "IN
= B L 9
¢ o ad

Logical Operations: Write(1,r1) Write(2,r2)  Read(1) Read(2)

Center for Research in Applied
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N
Claim: For every node indepth d, E[ | P,|] > >

Proof by encoding / compression argument
o (U
! ( (
2 (0 @ @ @

Logical Operations: Write(1,r1) Write(2,r2) Read(1) Read(2)

Center for Researc hin Applied
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N
Claim: For every node indepth d, E[ | P,|] > >

log N—1
E[total #of probes] > ), El|P,|1= Z 24 . — —NlogN

vElree VE Tree

We considered logical sequences of length NV

(Q(log N) overhead per operation (in expectation)
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Oblivious RAM Compiler:
State of the Art

Lower bound: 2(log N)

[GoldreichOstrovsky’96, LarsenNeilsen’18]
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Hierarchical Tree based ORAM
[090.GO96I [Shi,Chan,Stefanov11]
O(log N) O(log” N)
Computational security Statistical security

[OptORAMa’20] [PathORAI\/I,CircuitORA%
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Y BILE oo



Tree Based ORAM

Simple constructions, statistical security, 0(10g2 N) overhead
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Strawman: Randomly Permute Blocks in Memory
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Strawman: Randomly Permute Blocks in Memory
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Strawman: Randomly Permute Blocks in Memory

The adversary has no clue what the client is accessing

JUyyd@aug



Strawman: Randomly Permute Blocks in Memory

The adversary has no clue what the client is accessing

JUu@auuauy



Strawman: Randomly Permute Blocks in Memory

Repeated query!!!

JUu@auuauu



Blocks must move around
In memory!




M Each bucket stores real and dummy blocks
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Il Path invariant: every block mapped to a random path

= BB EHE SEBEHEEBEBEEBEBEBR
E E E E E E E E
B B_ B EH
E block X E

Position
map




lll Reading a block Is simple!
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After being read,
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S A EEEBEBEBEBEHBEBR - HBHBEHRB
= B B B8 E = B
= = =

=

Memory

map

block X



block x

S A EEEBEBEBEBEHBEBR - HBHBEHRB
= B B B8 E = B
= = =

=

Memory

map

block X



Can we write it to the leaf?

7
S A EEEBEBEBEBEHBEBR--HBHBEHRB

= B B H B = B
= = =
=

Memory

map

block X



Can we write it to the leaf?

= EEBEEBRRBEBBAQOBEBAE
= B B B8 E = B
= = =
=

Memory

map

block X



Writing to any non-root bucket leaks information

S EEEEEEBEEEEQNEEEE
= B B 2 B 0 B E
= = N =

= O

Memory

map

block X



S EEEEEEBEEEEQBEEEE
= B E E B 0 B E
= = N =

= O

Memory

map

block X



random not

SEEEEEEEEEE0NBEEEE
= B E E B 0 B E
= = Q =

= O

Memory

map

block X



Il Problem?
SEBEHEBERABRBRA0RARBAE
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ll Problem: root will overflow

SEBEHEBERABRBRA0RARBAE
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A baclkground eviction process percolates blocks upwards




A baclkground eviction process percolates blocks upwards

O Not too slow: prevent overflow

O Not too fast: save cost



" Every
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request: pick 2 random buckets per level to evict
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" Every request: pick 2 random buckets per level to evict

S HEHEARRREEBEBEBEBEBEBEBER
E E . E E . E E

Scan, find a real
block, write to a child



Eviction process does not leak information

SEEEEEEEEEEEEEEE
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Thm: bucket size=logn [—> no overflow w.h.p. [SCSL'11]

S HEHEARRREEBEBEBEBEBEBEBER
E E . E E . E E

Proof: use queuing theory and measure concentration bounds.



Thm: bucket size =log n —> no overflow w.h.p. [SCSL'11]

SEEEEERABRERRERE
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Every request incurs cost



S HEBRBBRRR
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i Store position map recursively in a
smaller ORAM
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m Cost with eviction: O(log? n)

EEEEEEEE




Previous construction - O(lo g3 N) overhead:

®Each path has O(log N) nodes Path
®Each node has a bucket of size O(log N) ORAM
-

Recursion adds another O(log N)

ACM CCS ‘13

Improvement: Path ORAM (O(lo g2 N) overhead)
-

-

Each node has a bucket of size O(1)

Client has local stash of size poly log N



10:
11:
12:
13:
14:
15:

16:

. T < position|a]

position[a] <~ UniformRandom(0...2"% — 1)

. for £ € {0,1,...,L} do

S < S UReadBucket(P(z,¥))
end for

data «+ Read block a from S
if op = write then

S« (S —{(a,data)}) U {(a,data™)}
end if

for € {L,L—1,...,0} do

Path

ORAM

ACM CCS ‘13

S+ {(a’,data’) € S : P(x,¢) = P(position[a’], ¢)}

S’ < Select min(|S’[, Z) blocks from S’.
S+ S§-5
WriteBucket(P(z, £), S")

end for

return data

Achieves O(log2 n) cost
with recursion



Summary: tree-based ORAMSs

A blocK Is re-mapped to a new random
nath upon being read.

The block must be relocated to the new
path without revealing the new path

Key challenge: design eviction process
and prove no overflow.



Tree Based ORAM

Shi, Chan, Stefanov, Li: Oblivious RAM with O(log> N) Worst-Case Cost, ASIACRYPT
2011
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Efficiently for Secure Computation, PETS 2013

Chung, Pass: A Simple ORAM, 2013
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Bound, CCS 2015



Oblivious RAM Compiler:
State of the Art

Lower bound: €2(log N)

[GoldreichOstrovsky’96, LarsenNeilsen’18]
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Hierarchical Tree based ORAM
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Thank You!
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