Oblivious Computation
Part | - Lower Bounds and Tree Based ORAMs

Gilad Asharov

Bar-llan University

Some slides were created by: Elaine Shi, llan Komargodski

ar-llan Winter School on Cryptography

Metrics:

Circuits

e l’
i v

oas

v

3
| |t
{
=
-
Aad
e
3

b
ot
e
Y
-
by
-
e
+*

nnnnn

Size (how many wires, gates)
Depth (parallelism)

Emulate easily

———_\.’

‘\/_——

T’log T
[CR73,PF79]
(T > N)

Models of Computation

RAM Model

-

Random Access Machine

CPU Operation

< Memory access

Time
Size of the memory

—]

¢ BiIUl

Center for Research in Applied
Cryptography and Cyber Security

Access Patterns Reveal Information!

dis @

s sl

B MALE O RAEE RLLE RALE RRAR RAAE ARAR A
IR SHER dE i

Secure processor

AUAR RLAR RLAR RARR ALK ooy

BEAE BENE BEEE BN Wi

Center for Research in Applied
Cryptography and Cyber Security

Access Patterns Reveal Information!

rfllmc searchz;/al, s, t) |
mid = (s+t)/2
if val<mem[mid]
search(val,O,mid)
| else searfh(val, mild+1, t) |

Access Pattern of binary search leaks
the rank of the number being searched

Center for Research in Applied
Cryptography and Cyber Security

Access Patterns Reveal Information!

— _
if (secret variable)

Read mem]|x]
else

Write memly]

Access pattern reveals the value of
the secret variable

Access Patterns Reveal Information!

Ki dney

Liver
Problem

Circuits RAM Model Oblivious RAM Model

A program in the RAM model
Access Pattern is “oblivious”:
Can be simulated from (T,N)

Center for Research in Applied
Cryptography and Cyber Security

Example: Sorting

. Merge sort: O(n log n)
 non oblivious

. Bubble sort: O(1?)
» oblivious

Merge((1,2,3),(4,5,6))
1 4

BubbleSort(1,2,3,4)
1,2
2,3
3,4
1,2
2,3
1,2

Merge((1,3,5),(2,4,6))
1 2
3 2
3 4
5 4
5 6
6

BubbleSort(4,3,2,1)
4,3
4,2
4,1
3,2
3,1
2,

rchi ppl d
yp 9 phy d yb

Ity

Models of Computation

Circuits RAM Model Oblivious RAM A plivious RAM Model

Compiler

/N

Usually, N' = O(N)
T'/T : overhead of the

compilation
A program in the RAM model
iy, Access Pattern is “oblivious”:
Ob:xiMous RAM Program with (T,N) s Can be simulated from (T,N)
Compiler Oblivious RAM Program with (T’, N’)
Trivial RAM Program with (T,N) —>
Compiler Oblivious RAM Program with (TN, N)

Center for Research in Applied
Cryptography and Cyber Security

Oblivious RAM (ORAM)

An algorithmic technique that provably encrypts access patterns

Goldreich and Ostrovsky (87,90',96")

¢ Permuting and shuffling elements around the memory

P Tt e T e
T R N A e YTk
= SRS R S e}
o
Center for Research in Applied
) rrrrrrrrrr hy and Cyber Security

Multiple physical

Logical !
addresses reads/writes
Read addr
Write addr, data
Memory

Memory

Security: Physical accesses independent of input logical sequence

Center For Research in Applied
Cryptography and Cyber Security

Cloud computing: Architecture, secure processor:

Shroud: [RPMRS, Fast'12] OpenPiton: [BMFN+, CACM'19]
Metal: [CP, NDSS'20] Phantom: [MLSTS+ CCS'13]
Ring ORAM: [RFKSS+, SEC'15] Ghostrider: [LHMHTS, ASPLOS'15, Best Paper]
ObliviStore: [SS, S&P"13] Ascend: [RFK+ TDSC'19l, [FRY+ HCPA'14],
S30RAM: [HOY, CCS'17], [HYG'19] Raccoon: [LRT, SEC'15]

TaoStore: [SZALT, S&P'16] Klotski: [ZSYZSJ, ASPLOS'20]

O.R.ORAM: [CCR, CCS'19] | .
Obliviate: [AKSL, NDSS'18] ZeroTrace: [SGF, NDSS'18]

Others: [WNLCS+, CCS'14], Obscuro: - [AJX+, NDSS19] .
[BNPWH, CCS'15] Others: [HO+, PETS'19l, [HB+, CODASPY'20]

[RRM, C&S'20]

Theoretical crypto: ORAM Multi-party computation:

GHL+, Eurocrypt14l, [GHR+, FOCS'14], ObliVM: [WHCSS, CCS'14], [LWNHS, S&P'15]

GLO, FOCS'15], [GLOS, STOC'15], _ ,
BCP, TCC'16], [CLT, TCC'16l, SChemeS INWIWTS, S&P'15],

DDFRSW, TCC'16], [LO, CRYPTO'17l, ObliVC: [ZE15]
CCS, Asiacrypt'17], ICNS, TCC18], SPDZ: [KY, Eurocrypt'18]
CKNPS, Asiacrypt18], [CL, TCC19] Others: [GKK#+, CCS'12], I[GHJR, ACNS'15],

[Keller'17], [GKW, Asiacrypt'18]

E.:g%?g:mmg ang: Blockchain, ML, misc:

IDSLH. POPL'20] Blockchain: [CZJKJS, CCS'17]

Proof of retrievability: [CKW, Eurocrypt'13]

Database: Privacy-preserving ML: INWIWTS, S&P'15],
Obladi: ICBCHAA, OSDI'18} [\WLNHS, S&P'15]

ObliDB: [EZ, VLDB'20]

Center for Research in Applied
Cryptography and Cyber Security

[GO'87,90,96] [GM'11,KLO"12] [SCSL'11, SDS+13, [PPRY'18, [GO'87,90,96]
WCS'15] AKL+'20] [LN'18]

Hierarchical Hierarchical Tree Hierarchical
ORAM ORAM Based ORAM ORAM Lower Bound

O(log> N)

O(/N) ~ O(log’ N) — O(log N) Q(log N)

0(1()g2 N)
3
O(log” N) Matching the

lower bound!

(Big constant)

Simple,
small constants

Statistical Computational

N

Center for Research in Applied
Cryptography and Cyber Security

Oblivious RAM Compiler:
State of the Art

Lower bound: 2(log N)

[GoldreichOstrovsky’96, LarsenNeilsen’18]

. n
LEL]

Hierarchical Tree based ORAM

[090.GO96] [Shi,Chan,Stefanov11]
Computational security Statistical security

[OptORAMa,AKLNPS’20] [PathORAI\/I,CircuitORA%
eeeeeeeeeeeeeeeeeeeeeeeeee
> BIL o

No dynamic memory accesses Ali]

Oblivious
Parallelism

Oblivious PRAM compiler:
Introduced by Boyle, Chung and Pass in 2016

Recent work [AKLPS, SODA'22]:
Any PRAM program with 7 parallel time and /N space

—> T log N parallel time and N space

RAM Model Oblivious RAM Model

-

Oblivious RAM
Compiler

—

Dynamic memory accesses A[i]

Oblivious
No Parallelism

Dynamic memory accesses A[i]

Not Oblivious
No Parallelism

Oblivious
Parallel RAM Model Oblivious PRAM
Compiler Parallel RAM Model
a
Dynamic memory accesses A[i] Dynamic memory accesses A[i]
Not Oblivious Oblivious

Parallelism

Center for Research in Applied
Cryptography and Cyber Security

Parallelism

Oblivious RAM Compiler:
State of the Art

Lower bound: 2(log N)

[GoldreichOstrovsky’96, LarsenNeilsen’18]

. n
LEL]

Hierarchical Tree based ORAM

[090.GO96] [Shi,Chan,Stefanov11]
Computational security Statistical security

[OptORAMa,AKLNPS’20] [PathORAI\/I,CircuitORA%
eeeeeeeeeeeeeeeeeeeeeeeeee
> BIL o

| ower Bounds

Any ORAM compiler results in £2(log V) overhead

Center for Research in Applied
Cryptography and Cyber Security

Goldreich and Ostrovsky ['96]:

Q(log N)

p ()
&Balls and Bins mode|

& Statistical Security
€ Offline ORAM

Counting argument

Lower Bounds

Boyle and Naor ['16]:

An Q(log N) lower
bound for

offline ORAM

not in the balls and bins
model

Implies

an Q(N log N) lower

bound for
sorting circuits

Offline ORAM: the entire logical sequence is known in advance; including all addresses and data

Larsen and Nielsen ['18]:

Q(log N)

€Not in Balls and Bins
model

€ Computational Security
€ Online ORAM

Information transfer
technique

Center for Research in Applied
Cryptography and Cyber Security

The Lower Bound [LN"18]

* Based on information transfer technique of Patrascu & Demaine ’06

e Cell probe model [Yao’81] - computation is free, only charge for probes

The Lower Bound [LN"18]

Assign p{ = (Read/Write, addr) to an internal node v

Iff v is the lower common ancestor
of the two last physical accesses of addr

P=ipys - Did ‘

Logical Operations: OpT1 Op2 Op3 Opn

9 9

><

Physical probes: pll.-.,plq PZI---,qu p31---,1?3q p,}-.-,pfl] ¢ ¢

Example

Assign p{ = (Read/Write, addr) to an internal node v

Iff v is the lower common ancestor
of the two last physical accesses of addr

P=ipys - Did ‘

20, 44

Logical Operations: OpT1 Op2 Op3 Opn

9 9

>

. 1 1 1 1
Physical probes: pl.-.,plq Pz---,pzq p3---,p3q Pn--sPn ¢ ¢
5,10,20,1 12,11,20,44 4,44,50,20

Example

Assign p{ = (Read/Write, addr) to an internal node v

Iff v 1s the lower common ancestor

of the two last physical accesses of addr
PV={p1’ .o ’pk}

o5 ‘Each physical probe is counted at most once

@ total # of probes > Z | P, |

‘ veTree

Enough to bound

OO O C _—

Logical Operations: OpT1 Op2 Op3

9 9

. 1 1 1 .
Physical probes: pl.-.,l?lq Pz---,pzq P3---,P3q D,
5,10,20,1 12,11,20,44 4,44,50,20

Based on the physical access pattern - the adversary can compute the tree

Assumes
online ORAM

Security: For all logical sequences, for all v, | P, | should be similar

For every v, we can show a logical sequence forcing | P, | to be large

| P,,| must be large

Logical Operations: Write(1,r1) Write(2,r2) Write(3,r3) Write(4,r4) Read(1) Read(2) Read(3) Read(4)

Center for Research in Applied
Cryptography and Cyber Security

Based on the physical access pattern - the adversary can compute the tree

Assumes
online ORAM

Security: For all logical sequences, for all v, | P, | should be similar

For every v, we can show a logical sequence forcing | P, | to be large

| P,,| must be large

D
P = A ¥ N
- N N e P G - o 7. 50N
» e - - e, o\
’ N 2 "IN
= B L 9
¢ o ad

Logical Operations: Write(1,r1) Write(2,r2) Read(1) Read(2)

Center for Research in Applied
Cryptography and Cyber Security

N
Claim: For every node indepth d, E[| P,|] > >

Proof by encoding / compression argument
o (U
! ((
2 (0 @ @ @

Logical Operations: Write(1,r1) Write(2,r2) Read(1) Read(2)

Center for Researc hin Applied
Cryptography and Cyber Security

N
Claim: For every node indepth d, E[| P,|] > >

log N—1
E[total #of probes] >), El|P,|1= Z 24 . — —NlogN

vElree VE Tree

We considered logical sequences of length NV

(Q(log N) overhead per operation (in expectation)

References

Goldreich and Ostrovsky: Software Protection and Simulation on Oblivious RAMs, JACM 1996
Boyle and Naor: Is There an Oblivious RAM Lower Bound? ITCS 2016
Larsen and Nielsen: Yes! There is an Oblivious RAM Lower Bound, CRYPTO 2018

Weiss and Wichs: Is there an Oblivious RAM Lower Bound for Online Reads? TCC 2018

Pavel Hubacek, Michal Koucky, Karel Kral, Veronika Slivova: Strong Lower Bounds for Online ORAM, TCC 2019
Jacob, Larsen, Nielsen: Lower bounds for oblivious data structures, SODA 2019

Persiano and Yeo: Lower bounds for differentially private RAMs, EUROCRYPT 2019

Larsen, Simkin, Yeo: Lower bounds for multi-server oblivious RAMs, TCC 2020

Komargodski and Lin: A logarithmic lower bound for oblivious RAM (for all parameters), CRYPTO 2021

And more...

Center for Research in Applied
Cryptography and Cyber Security

Oblivious RAM Compiler:
State of the Art

Lower bound: 2(log N)

[GoldreichOstrovsky’96, LarsenNeilsen’18]

. n
LEL]

Hierarchical Tree based ORAM
[090.GO96I [Shi,Chan,Stefanov11]
O(log N) O(log” N)
Computational security Statistical security

[OptORAMa’20] [PathORAI\/I,CircuitORA%
eeeeeeeeeeeeeeeeeeeeeeeeee
Y BILE oo

Tree Based ORAM

Simple constructions, statistical security, 0(10g2 N) overhead

Center for Researc hin Applied
Cryptography and Cyber Security

Strawman: Randomly Permute Blocks in Memory

giaianainnn
) EEEEE

Strawman: Randomly Permute Blocks in Memory

giaianannn

Strawman: Randomly Permute Blocks in Memory

The adversary has no clue what the client is accessing

JUyyd@aug

Strawman: Randomly Permute Blocks in Memory

The adversary has no clue what the client is accessing

JUu@auuauy

Strawman: Randomly Permute Blocks in Memory

Repeated query!!!

JUu@auuauu

Blocks must move around
In memory!

M Each bucket stores real and dummy blocks
S HEEEHEEEEERAEBHEAARAE

\ \
\ / \ /
\ / \ // \ 7 \ / \ / \ // . , . ,
| o | | ~ | 7 | | | ~ | 7
” ~ 7 ” ~ ~
~ ” ~ P ~ ” ~ ”
~ -’ ~ ~ - N
S -’ ~ Phe N - ~ Phe

Il Path invariant: every block mapped to a random path

= BB EHE SEBEHEEBEBEEBEBEBR
E E E E E E E E
B B_ B EH
E block X E

Position
map

lll Reading a block Is simple!
EEEE“EEEEEEEEEEE

\ /
/ /
\ // \\ 7 \ // \\ P
~ e ~ - ~ 7 ~ e
N -’ s N -~ s
~ ~ - ~ ~ -
~ ” No ~ - No
" -~ | - | oy -
~ o~ ”’ ~ o ”’
\‘s - s\\ -
-y - —y -
\\ ” \\ ”
~ o~ - ~ -~ -
— - — -
—y - —y -
~ o - ~ o -
~~~~ —————
~~~ ———
i . -
-~ o -
~~~~ ———’
- - —_——
-~ -— — -
“‘ ———
—_— . =

Position

map




After being read,
EEEEIEEEEEEEEEEE

\ /
\ / \ / \ / \ / \ / \ / \ /
/
/ /
\ P \\ s \ // \ s
~ P - ~ P ~ -
\\ ” \\ // ~ P \\ s
-’ S - -
~ ~ \\,/ ~ P \\’/
L. | - | -
s~~ ”’ ‘s\ ””
~ -~ - o= -
~ - ~ -~ -
\\ ” —y -
~ o - ~ o~ -
\\ ” \\ ”
\\ ” \\ ”
— -
—~~~ ———’
—~— —
-~ — -
~ - o ——
-~ — —
—_ -—
~~~ —_—
il -
-~ -
o

Position

map

S A EEEBEBEBEBEHBEBR - HBHBEHRB
= B B B8 E = B
= = =

=

Memory

map

block X

block x

S A EEEBEBEBEBEHBEBR - HBHBEHRB
= B B B8 E = B
= = =

=

Memory

map

block X

Can we write it to the leaf?

7
S A EEEBEBEBEBEHBEBR--HBHBEHRB

= B B H B = B
= = =
=

Memory

map

block X

Can we write it to the leaf?

= EEBEEBRRBEBBAQOBEBAE
= B B B8 E = B
= = =
=

Memory

map

block X

Writing to any non-root bucket leaks information

S EEEEEEBEEEEQNEEEE
= B B 2 B 0 B E
= = N =

= O

Memory

map

block X

S EEEEEEBEEEEQBEEEE
= B E E B 0 B E
= = N =

= O

Memory

map

block X

random not

SEEEEEEEEEE0NBEEEE
= B E E B 0 B E
= = Q =

= O

Memory

map

block X

Il Problem?
SEBEHEBERABRBRA0RARBAE

\

'\ / \ ’ A ’ \ 4 \ / N ’ ’ N /
Y \ / / / \ / /
~ P “\ // ~ “\ //
~ ~
~ P S o P ~ Phe N o P
~ 7’ ~ P ~ 7 ~ P
~ 7 ~ P ~ ” ~ e
~ P ~ ~ P ~
~ P ~ // ~ //
N 7 N N

Position
map

ll Problem: root will overflow

SEBEHEBERABRBRA0RARBAE

\

\
\ / \ / N ,/ \ / \ / \ " /! \ /
/ / / /
\ / \ \ / \ \ / \ / \
\ 7 \ 7/ N 7 \ 7 \ 7 N, \ /7
| N | _ | ~\| // | N | | ~\| //
N ~
N // \\ /’ ~ // \\ //
~ 7 ~ P ~ 7 ~ P
~ P ~ P ~ ” ~ 7
\\ // ~ P ~ P ~ P
~ P ~ - N -’
o o

Position
map

A baclkground eviction process percolates blocks upwards

A baclkground eviction process percolates blocks upwards

O Not too slow: prevent overflow

O Not too fast: save cost

" Every

aia

\ /

\ /
\ 7/
~

DS
N

~

~

~

~

request: pick 2 random buckets per level to evict

= H B F

\ /

\ /
\ /7
-

-

\ /
\ /

\ /
\ /
I \I
~
~

S EEERF

\ /

\ /
\ /7
-

-

\ / \ /
\ / \ /
N/ \ _/

~ ”
S o _°
\\ 7
~ //

N~ -’

= B

\

/
\ /

\ /
\ 7/
| ~ |
~
~

= B

\ /

\ /
\ /7
-

-

" Every request: pick 2 random buckets per level to evict

S HEHEARRREEBEBEBEBEBEBEBER
E E . E E . E E

Scan, find a real
block, write to a child

Eviction process does not leak information

SEEEEEEEEEEEEEEE

\ \
\ y N S \ / A ’ \ / * i s ’ ' ’
\ / \ , \ / \ / \ / \ , \ / \ /
| | I ~I P | | | ~ | P
N\ // \\ // ~\ // \\ //
\\ // -~ ” \\ /’ ~ s
~ ” \\ ,/ ~ 7 \\ ,/
~ -’ ~ P ~ -’ ~ P

~ 7’ ~ P ~ ” ~ P

Thm: bucket size=logn [—> no overflow w.h.p. [SCSL'11]

S HEHEARRREEBEBEBEBEBEBEBER
E E . E E . E E

Proof: use queuing theory and measure concentration bounds.

Thm: bucket size =log n —> no overflow w.h.p. [SCSL'11]

SEEEEERABRERRERE

\ / \ ’ » / \ ’ \ / \ ’ » ’ \ ’
/ \ / / \ /
\ / \ / \ / \ / \ / \ /
/ S / N S /
E\ / E\ .\ | E\ E\ | . E\ / E\
~ 7 ~ 7
~ o _’ S o _- S Phd S S Pad
~ N
” ~ P s ~ 7
S o - ~ -, -~ - S -
”’ ~ ” ~ ” ~ 7
DS P ~ 7
~ ” \\ ,/ ~ 7 \\ ,/
N N
” ”
\\ ’f” \\ ’f”
- -
\N\ ”’ \N\\ ”’

Every request incurs cost

S HEBRBBRRR

\\ / \ / \ / N p
\ / \ / \\ // . p
~ -
~ P - .
\\ _ P - _
~ P ~ P
~ P ~ P
~ 7 ~ ~
~ g ~ -
~ ” ~ P
N

Position map

i Store position map recursively in a
smaller ORAM

EEEEEEEE

—

-
—y -
~—y -
—y -
~—y)
—y -
~—y -
— -
~—y -
[-
—~— -
~ -
—~— -

m Cost with eviction: O(log? n)

EEEEEEEE

Previous construction - O(lo g3 N) overhead:

®Each path has O(log N) nodes Path
®Each node has a bucket of size O(log N) ORAM
-

Recursion adds another O(log N)

ACM CCS ‘13

Improvement: Path ORAM (O(lo g2 N) overhead)
-

-

Each node has a bucket of size O(1)

Client has local stash of size poly log N

10:
11:
12:
13:
14:
15:

16:

. T < position|a]

position[a] <~ UniformRandom(0...2"% — 1)

. for £ € {0,1,...,L} do

S < S UReadBucket(P(z,¥))
end for

data «+ Read block a from S
if op = write then

S« (S —{(a,data)}) U {(a,data™)}
end if

for € {L,L—1,...,0} do

Path

ORAM

ACM CCS ‘13

S+ {(a’,data’) € S : P(x,¢) = P(position[a’], ¢)}

S’ < Select min(|S’[, Z) blocks from S’.
S+ S§-5
WriteBucket(P(z, £), S")

end for

return data

Achieves O(log2 n) cost
with recursion

Summary: tree-based ORAMSs

A blocK Is re-mapped to a new random
nath upon being read.

The block must be relocated to the new
path without revealing the new path

Key challenge: design eviction process
and prove no overflow.

Tree Based ORAM

Shi, Chan, Stefanov, Li: Oblivious RAM with O(log> N) Worst-Case Cost, ASIACRYPT
2011

Stefanov, van Dijk, Shi, Fletcher, Ren, Yu, Devadas: Path ORAM: an Extemrely Simple
Oblivious RAM Protocol, CCS 2013

Gentry, Goldman, Halevi, Jutla, Raykova, Wichs: Optimizing ORAM and Using it
Efficiently for Secure Computation, PETS 2013

Chung, Pass: A Simple ORAM, 2013

Wang, Chan, Shi: Circuit ORAM: On Tightness of the Goldreich-Ostrovsky Lower
Bound, CCS 2015

Oblivious RAM Compiler:
State of the Art

Lower bound: €2(log N)

[GoldreichOstrovsky’96, LarsenNeilsen’18]

. n
LEL]

Hierarchical Tree based ORAM

ToMorr0

[090.GO96] [Shi,Chan,Stefanov11]
Computational security Statistical security

[OptORAMa,AKLNPS’20] [PathORAM, CircuitORA
D BIU oo,

Thank You!

Center for Research in Applied
Cryptography and Cyber Security

