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Models of Computation

Circuits RAM Model

Random Access Machine


CPU Operation 

 

Memory access

Emulate easily

 

[CR73,PF79]


( )

T3 log T

T ≫ N

Size (how many wires, gates)

Depth (parallelism)

Time                                          T

Size of the memory                 N
Metrics:



secure processor

Access Patterns Reveal Information!



Access Patterns Reveal Information!

func search(val, s, t)


mid = (s+t)/2


if val<mem[mid]


search(val,0,mid)


else search(val, mid+1, t) 

Access Pattern of binary search leaks 

the rank of the number being searched



Access Patterns Reveal Information!

if (secret variable)


Read mem[x]


else


Write mem[y]

Access pattern reveals the value of  
the secret variable



Kidney 

Problem

Liver

Problem

Heart 

Problem

Access Patterns Reveal Information!



Circuits RAM Model Oblivious RAM Model

??

A program in the RAM model

Access Pattern is “oblivious”: 

Can be simulated from (T,N)



Example: Sorting

• Merge sort:  

•  non oblivious 


• Bubble sort:   

• oblivious

O(n log n)

O(n2)

Merge((1,2,3),(4,5,6))

1,3,5    2,4,6

1,3,5    2,4,6

1,3,5    2,4,6

1,3,5    2,4,6

1,3,5    2,4,6

1,3,5    2,4,6

1,2,3  4,5,6

1,2,3   4,5,6

1,2,3   4,5,6

1,2,3   4,5,6

1,2,3   4,5,6

1,2,3   4,5,6

Merge((1,3,5),(2,4,6))


1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

4,3,2,1

3,4,2,1

3,2,4,1

3,2,1,4

2,3,1,4

2,1,3,4

1,2,3,4


BubbleSort(1,2,3,4)
 BubbleSort(4,3,2,1)




Models of Computation

Circuits RAM Model Oblivious RAM Model

??

A program in the RAM model

Access Pattern is “oblivious”: 

Can be simulated from (T,N)

Oblivious RAM 
Compiler

RAM Program with (T,N) —> 

Oblivious RAM Program with (TN, N)

Trivial

Compiler

RAM Program with (T,N) —> 

Oblivious RAM Program with (T’, N’)

Oblivious 
RAM 

Compiler

Usually, 

 : overhead of the 
compilation

N′￼= O(N)
T′￼/T



Oblivious RAM (ORAM)

An algorithmic technique that provably encrypts access patterns




Goldreich and Ostrovsky (87’,90’,96’)


Permuting and shuffling elements around the memory




ORAM

Read addr

Write addr, data

Security: Physical accesses independent of input logical sequence

Logical 
addresses

Multiple physical 
reads/writes 

Memory Simulator

Memory 






O( N)
O(log3 N)

[GO’87,90,96]


Hierarchical

 ORAM


Matching the  
lower bound!


(Big constant)


Computational

[PPRY’18, 
AKL+’20]

Hierarchical 

ORAM


O(log N)

Lower Bound


[GO’87,90,96]

[LN’18]


Ω(log N)≈ O(log2 N)

[GM’11,KLO’12]


Hierarchical 

ORAM


Simple,  
small constants


Statistical

[SCSL’11, SDS+13, 

WCS’15 ]

Tree  
Based ORAM

O(log2 N)

O(log3 N)
⟹



Oblivious RAM Compiler:  
State of the Art

Tree based ORAMHierarchical 
[O90,GO96]  [Shi,Chan,Stefanov11] 

Lower bound: 

[GoldreichOstrovsky’96, LarsenNeilsen’18]

Ω(log N)

O(log2 N)O(log N)
Computational security


[OptORAMa,AKLNPS’20]
Statistical security

[PathORAM,CircuitORAM]



Oblivious PRAM compiler:

Introduced by Boyle, Chung and Pass in 2016

Recent work [AKLPS, SODA’22]:

Any PRAM program with  parallel time and  space


  parallel time and  space
T N

⟹ T log N N

Circuits RAM Model Oblivious RAM Model

??

Oblivious 
Parallelism 

No dynamic memory accesses A[i]
Not Oblivious 
No Parallelism 

Dynamic memory accesses A[i] Dynamic memory accesses A[i]
Oblivious 

No Parallelism 

Oblivious RAM 
Compiler

Parallelism
Not Oblivious 

Dynamic memory accesses A[i]

Parallel RAM Model Oblivious  
Parallel RAM Model

??

Dynamic memory accesses A[i]
Oblivious 

Parallelism 

Oblivious PRAM 
Compiler



Oblivious RAM Compiler:  
State of the Art

Tree based ORAMHierarchical 
[O90,GO96]  [Shi,Chan,Stefanov11] 

Lower bound: 

[GoldreichOstrovsky’96, LarsenNeilsen’18]

Ω(log N)

O(log2 N)O(log N)
Computational security


[OptORAMa,AKLNPS’20]
Statistical security

[PathORAM,CircuitORAM]



Lower Bounds
Any ORAM compiler results in  overheadΩ(log N)



Lower Bounds

Goldreich and Ostrovsky [’96]:


Balls and Bins model


Statistical Security


Offline ORAM


Counting argument

Boyle and Naor [’16]:


An  lower 
bound for  
offline ORAM  
not in the balls and bins 
model  
implies  
an  lower 
bound for  
sorting circuits

Ω(log N)

Ω(N log N)

Ω(log N)

Larsen and Nielsen [’18]:


Not in Balls and Bins 
model


Computational Security


Online ORAM


Information transfer 
technique

Ω(log N)

Offline ORAM: the entire logical sequence is known in advance; including all addresses and data



The Lower Bound [LN’18]
• Based on information transfer technique of Pătrașcu & Demaine ’06


• Cell probe model [Yao’81] - computation is free, only charge for probes



Logical Operations: Op1 Op2 Op3 Opn

The Lower Bound [LN’18]

Physical probes: p1
1…, pq

1 p1
2…, pq

2 p1
3…, pq

3 p1
n…, pq

n

=Pv {p1, …, pk}

Assign  to an internal node  
iff  is the lower common ancestor 

of the two last physical accesses of 

pj
i = (𝖱𝖾𝖺𝖽/𝖶𝗋𝗂𝗍𝖾, 𝖺𝖽𝖽𝗋) v

v
𝖺𝖽𝖽𝗋



Example

Logical Operations: Op1 Op2 Op3 Opn

Physical probes: p1
1…, pq

1 p1
2…, pq

2 p1
3…, pq

3 p1
n…, pq

n

      5,10,20,1      12,11,20,44        4,44,50,20

20
, 4420

Assign  to an internal node  
iff  is the lower common ancestor 

of the two last physical accesses of 

pj
i = (𝖱𝖾𝖺𝖽/𝖶𝗋𝗂𝗍𝖾, 𝖺𝖽𝖽𝗋) v

v
𝖺𝖽𝖽𝗋

=Pv {p1, …, pk}



Example

Logical Operations: Op1 Op2 Op3 Opn

Physical probes: p1
1…, pq

1 p1
2…, pq

2 p1
3…, pq

3 p1
n…, pq

n

      5,10,20,1      12,11,20,44        4,44,50,20

20
, 4420 Each physical probe is counted at most once 

total # 𝗈𝖿 𝗉𝗋𝗈𝖻𝖾𝗌 ≥ ∑
v∈𝖳𝗋𝖾𝖾

|Pv |

Enough to bound 

∑
v∈𝖳𝗋𝖾𝖾

|Pv | ≥ ??

Assign  to an internal node  
iff  is the lower common ancestor 

of the two last physical accesses of 

pj
i = (𝖱𝖾𝖺𝖽/𝖶𝗋𝗂𝗍𝖾, 𝖺𝖽𝖽𝗋) v

v
𝖺𝖽𝖽𝗋

=Pv {p1, …, pk}



Based on the physical access pattern - the adversary can compute the tree


Security: For all logical sequences, for all , should be similar


For every , we can show a logical sequence forcing  to be large

v |Pv |

v |Pv |

Assumes 
online ORAM

Logical Operations: Write(1,r1) Read(1)Write(2,r2) Write(3,r3) Write(4,r4) Read(2) Read(3) Read(4)

 must be large|Pv |



Logical Operations: Write(1,r1) Read(1)Write(2,r2) Read(2)

 must be large|Pv |

Based on the physical access pattern - the adversary can compute the tree


Security: For all logical sequences, for all , should be similar


For every , we can show a logical sequence forcing  to be large

v |Pv |

v |Pv |

Assumes 
online ORAM



Claim: For every node in depth , d E[ |Pv | ] ≥
N
2d

Logical Operations: Write(1,r1) Read(1)Write(2,r2) Read(2)

Proof by encoding / compression argument

0

1

2



≥ ∑
v∈Tree

E[ |Pv | ] = ∑
v∈Tree

N
2d

=
log N−1

∑
d=0

2d ⋅
N
2d

= N log NE[total #of probes]

We considered logical sequences of length N

 overhead per operation (in expectation)Ω(log N)

Claim: For every node in depth , d E[ |Pv | ] ≥
N
2d
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Oblivious RAM Compiler:  
State of the Art

Tree based ORAM
 [Shi,Chan,Stefanov11] 

Hierarchical 
[O90,GO96]

Lower bound: 

[GoldreichOstrovsky’96, LarsenNeilsen’18]

Ω(log N)

O(log2 N)O(log N)
Computational security


[OptORAMa’20]
Statistical security

[PathORAM,CircuitORAM]



Tree Based ORAM
Simple constructions, statistical security,  overheadO(log2 N)



Strawman: Randomly Permute Blocks in Memory

1 2 3 4 5 6 7 8

14 6 3 785 2



Strawman: Randomly Permute Blocks in Memory

14 6 3 785 2



Strawman: Randomly Permute Blocks in Memory

14 6 3 785 2

The adversary has no clue what the client is accessing



Strawman: Randomly Permute Blocks in Memory

14 6 3 785 2

The adversary has no clue what the client is accessing



Strawman: Randomly Permute Blocks in Memory

14 6 3 785 2

Repeated query!!!



Blocks must move around 
in memory!



Memory

CPU

bucket

Each bucket stores real and dummy blocks



Memory

CPU l

block x

Position 
map

Path invariant: every block mapped to a random path

 l

block x



Memory

CPU l

block x

Position 
map

 l

block x

Reading a block is simple!



Memory

CPU l

block x

Position 
map

 l

block x

After being read, block x must relocate!



Memory

CPU l

block x

Position 
map

Pick a new random path and move x there

 l’

update position 
map



Memory

CPU l

block x

Position 
map

Where on the new path can we write block x ?

 l’



Memory

CPU l

block x

Position 
map

Can we write it to the leaf?

 l’



Memory

CPU l

block x

Position 
map

Can we write it to the leaf?

 l’



Memory

CPU l

block x

Position 
map

Writing to any non-root bucket leaks information

 l’



Memory

CPU l

block x

Position 
map

 l’

block x

Write it to the root!



Memory

CPU l

block x

Position 
map

 l’

block x

Security: every request, visit a random path that has not been revealed



Memory

CPU l

block x

Position 
map

 l’

block x

Problem?



Memory

CPU l

block x

Position 
map

 l’

block x

Problem: root will overflow



A background eviction process percolates blocks upwards



    Not too slow:  prevent overflow

    Not too fast: save cost

A background eviction process percolates blocks upwards



Every request: pick 2 random buckets per level to evict



load > 0

Scan, find a real 
block, write to a child

Every request: pick 2 random buckets per level to evict



Memory

CPU

Eviction process does not leak information 



Thm:  bucket size = log n              no overflow w.h.p.    [SCSL’11]

Proof: use queuing theory and measure concentration bounds.



Memory

CPU

Every request incurs O(log2 n) cost

Thm:  bucket size = log n              no overflow w.h.p.    [SCSL’11]



Position map



Position mapPosition map

…
…

Store position map recursively in a 
smaller ORAM



Position mapPosition map

…
…

Cost with eviction: O(log3 n)



Previous construction -  overhead: 


Each path has  nodes


Each node has a bucket of size 


Recursion adds another 


Improvement: Path ORAM (  overhead)


Each node has a bucket of size 


Client has local stash of size 


O(log3 N)

O(log N)

O(log N)

O(log N)

O(log2 N)

O(1)

𝗉𝗈𝗅𝗒 log N

Path

ORAM

ACM CCS ‘13

[SDS+’13]



Path

ORAM

ACM CCS ‘13

[SDS+’13]

Achieves O(log2 n) cost 
with recursion



A block is re-mapped to a new random 
path upon being read.

The block must be relocated to the new 
path without revealing the new path

Key challenge: design eviction process 
and prove no overflow.

Summary: tree-based ORAMs



Tree Based ORAM
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O(log3 N)



Oblivious RAM Compiler:  
State of the Art

Hierarchical 
[O90,GO96]

O(log N)
Computational security


[OptORAMa,AKLNPS’20]

Tree based ORAM
 [Shi,Chan,Stefanov11] 

Lower bound: 

[GoldreichOstrovsky’96, LarsenNeilsen’18]

Ω(log N)

O(log2 N)
Statistical security

[PathORAM,CircuitORAM]

Tomorrow!



Thank You!


