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In this lecture

* Malicious security for PSI
* Amplifying the success probability

* PS| conclusions

(many slides by my coauthors)




Template for PSI based on OPRF (previous hour)

X, X, .

X]_) X

(bl R )}*

OPRF

Compares the two lists

’ YirerYi

+—K

K'is a OPRF key known to Bob

[FK(Vl),---, FK(yn)] PRF of Bob’s inputs




Implementing the OPRF

* The most efficient OPRF implementations are based on OT extension

e Caveat: Secure only as long as client evaluates the OPRF at most once

* E.g., when F_,(x) = ax+b




Solution: Hashing

* Suppose both parties use the same public random hash function h() to
hash their n items to n bins.

* Then obviously if Alice and Bob have the same item, both of them map it to the
same bin. PSI can then be independently run for each bin.

* If Bob has a single item in each bin, he only needs to evaluate the OPRF once

/
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Using 2 Hash Functions (cuckoo hashing [PR,KMW])

* hq, h,:item — bin
* Map n items to (2 + €)n bins
e Each bin stores at most one item!

e Succeeds with very high probability

* |f we also have a stash of size s, all items x
can be mapped to either h,(x),h,(x) or the
stash, except with probability O(n"s*1)

yi

stash

()=:000




The Power of Using 2 Hash Functions (Cuckoo)

»

Can compare with
single-usage OPRF

* hq, h,:item — bin ‘
* Mapnitemsto (2 + €)nbins  Alice

* Alice —simple hashing M OO000 < >
* x - hy(x)and h,(x) 0000 ) N

Bob — Cuckoo hashing

oy hO)or hy) AUy

CQ ® o Q>
* Caveat: stash sizeis w(1) (let’s

ignore it) X < N ‘% “ stash

yi




Combining cuckoo hashing with PSI

* In each bin, Bob (who uses CH) has one item y. Alice has O(log n) items x,,x,,...

* In each bin, they run an OT-based OPRF of a function F, so that Bob learns
F(y), and Alice can compute F() on any input

* Alice sends to Bob the F() values she learned in all bins

* Bob compares them to the values that he learned




Why isn’t this secure against malicious parties?

It turned out that only the following attack is problematic:

e Suppose that both Alice and Bob have a value z
* Alice should put z in bins h,(z) and h,(z)
* Bob uses CH and puts z in only one of these two bins

* Suppose Alice chooses to put z only in bin h,(z)

* Then z will be in the PSI output iff Bob chose to put z in h(z)

* This decision of Bob depends on the other inputs that he has

* = The output of the PSI leaks information about other inputs of Bob




The function F() that is used

* F() can be implemented using oblivious transfer extension

 Specifically, a protocol of Orru, Orsini and Scholl, uses OT-extension to
implement F(), with the following properties
* The construction is secure against malicious behavior
* For each table entry i, the receiver learns F,(x), and the sender can compute F ()

* Important for this lecture: A homomorphic property: F(x) + F;(y) = F,;(x @ y).
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PS| from PaXoS, OKVS, and amplification

Relevant papers:

* Malicious security for OT extension: “PSI from OT”. Actively Secure 1-out-of-N OT
Extension with Application to Private Set Intersection. Michele Orru and Emmanuela
Orsini and Peter Scholl. (CT-RSA 2017)

* Efficient malicious PSI: PSI from PaXoS: Fast, Malicious Private Set Intersection. Benny
Pinkas and Mike Rosulek and Ni Trieu and Avishay Yanai (Eurocrypt 2020)

* Even more efficient malicious PSI; amplification of success probability: Oblivious Key-
Value Stores and Amplification for Private Set Intersection. Gayathri Garimella and Benny
Pinkas and Mike Rosulek and Ni Trieu and Avishay Yanai. (Crypto 2021)
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A different flavor of cuckoo hashing

* Bob is using CH

e Suppose that x is mapped to
locations h,(x)=i and h,(x)=].

* Unlike CH, Bob puts there values V.
and V; such that V, @ V, = x

e Suppose that this mapping is
possible, and this property holds for

all items that Bob inserts (this is
similar to a garbled Bloom filters)

X=V,+V;

=

12



A different flavor of cuckoo hashing

* |In the PSI protocol, Bob runs the OPRF in the
bins so that he learns F,(V;) and F,(V))

e Recall the homomorphic property of the

X
function: Fi(x) + F,(y) = F,,,(x D v) 2
* Therefore Bob can compute F,(V;) + F,(V;) =
Fi+j(Vi@ Vj) » Fi+j(X) )
 Alice sends to Bob, for each input vy of her, A
Fra)shai)(Y) p
X=V,+V;

* Security: Alice cannot cheat by sending just
one of F;(Y), Fa(Y) (this needs a proof)
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OKVS Example — Encoding in PaXoS impiified*)

key-value <a, val(a)>
Decode(a) = S[1] & S[5] = val(a)

IT H@=1 M@ =5
S

= | s¢1 | sl | s@B1| si41| s |

Hy, H, - MJ

How do we encode many such keys such that they decode correctly?




OKVS Example — Encoding in PaXoS impiified*)

Encode keys: a, b, ¢, d Peeling:
C : slot S[2]
T - d d : slot S[4]
\l D : slot S[3]
] = ‘ S(1] ‘ S[2] ‘ S[3] ‘ S[4] ‘ S[5] \ a : slot S[1], S[5]
K MJ ving for ‘S’ :
b 1] @ S[5] = val(a)
d 3] = S[5] + val(b)

4] = S[1] + val(d)
2] = S[4] + val(c)

nunumunm
N DA w=|O

recursively find slots constrained by just one key

Does encoding always work?
® BIU o, g atway




What happens when peeling fails?

* The 2-core of a graph is the maximum subgraph where each node has
degree at least 2

* Namely, the subgraph containing all cycles, as well as all paths connecting
cycles.

 All values (edges) which are not in 2-core can be handled via peeling
e But, peeling does not work on the 2-core

T C d D

Ny = | st | s | s@B1| sié1| sl

¢ JL__ p J
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What happens when peeling fails?

« THM™: For a CH graph of size O(n), WHP the 2-core of size O(logn) ©

* In other words, the encoding the we suggested can handle all but
O(logn) of the items mapped to the CH
* Handling only O(logn) items should be efficient

e But we must hide which items these are

17



What do we actually need?

* An “Oblivious Key-Value Store” (OKVS)

* Key-Value Store:

* Encode a set of (key, value) pairs. Querying an encoded key returns the
corresponding value.

* Oblivious Key-Value Store (OKVS):

* Hide the keys!
e A query for an encoded key k will return the corresponding value
* A query for a key which is not encoded will return a random value
e Suppose all encoded values in (key,value) pairs are random
* These two options will be indistinguishable for those making the queries

* This is a recurring requirement in PSI| protocols [CDJ16,KMP+17,PSTY19,
PRTY19, KRTW19]...

Center for Research in Applied
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Oblivious Key-Value Store (OKVS)

encode decode
(K, V)

(key,, value,) key, ——— — value;

key, —— —— value,

(key,, value,)

(key,, value,) ' S

key* ¢ K —— —— “don’t care”

(key,, value))

if values are random; then S hides encoded keys; hence oblivious

Center for Research in Applied
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Properties of OKVS

T (K, V) = (ky,vy), (ky,vy), .., (K, v,)

= | sm | s | | SIm] |

A must for

- Linear OKVS : if values are in F, use decoding function d : K = Fm
constructions Bingry OKVS : special case where d(k) = {0, 1}m

we Saw
[— d(kl) — | 1 Vi OKVS efficiency measures
. : . 52 .
' X = Size: — (optimal = 1)
= d(kn) — ‘ Vn Encoding time : solve for ‘S’
s Decoding time : matrix mult
Sm
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OKVS Examples - PaXoS

OKVS efficiency measures for PaXoS

* The memory islinearinn

* Encoding time and decoding time are linear

* But cannot encode all items — failure for those which happen
to be in the 2-core




OKVS Examples - Polynomial

encode

(K V) = (k,v), (kyvy), ., (kpv,) ——  S(x) =5, +5s,xt+sx2+ ... s x™ 1
T
solve for 'S’
1ok KK KK 5 v N = [5;5; 53 - S,
2 2
X . =
S6 v6 ° .
1 k. k2 k3 Kk} K3 OKVS efficiency measures

Linear (optimal) size
Encoding time and Decoding time
= O(n log? n) field operations (FFT)
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OKVS Examples — Random Matrix

Pick a random matrix of size (n x m) of field elements (row
corresponding to key is defined as H(key))

T, T3 T "m S1 i OKVS efficiency measures
X s, = v, Size is linear
%5 Encoding time = O(n3)
| Un Decoding time = O(n?)
nXxXxm

Pr[Bad event: random matrix has linearly dependent rows] < |F|* ™1
Binary OKVS : d(k) = {0, 1} need m = n + 1 — 1 for error probability 27*

Center for Research in Applied
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Handling the 2-core in PaXoS

e Suppose | know in advance that whp |2-core| = O(logn)

* We can encode these logn items using a less efficient OKVS, e.g. a
random matrix

e Advantage: This requires only logn 4+ A variables to encode logn
values. Total OKCS size is O(n) + O(logn) + A

e Encoding takes (logn + 1) time, but this is fine.

24



The full solution (read on your own)

* The parties agree on adding O(logn) + A variables, and a random mapping H() to subsets of
these variables.

* The value of each input x is defined as the sum of the values of the two locations to which it is
mapped in the CH, and the random subset H(x) of the additional variables to which it is mapped.

* Bob maps his n inputs to a CH of size (2 + €)n
* Bob does peeling and remains with a 2-core of size O(logn) Expensive: O(logn + 1)3

* Bob sets random values to the nodes in the 2-core, but solves equations with the remaining
O(log n) + A variables, to ensure that the values of items in the 2-core is correct.

* Bob reverses the peeling to set values to nodes, ensuring the right values to all remaining
variables. ° Cheap: 0(n)

* Bob uses the OPRF to learn a value from each bin, sums them up, and learns F(x) for all inputs.

Center for Research in Applied
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What are concrete parameters for OKVS?

Theorem: If Pr[|2-CORE| = O(logn)] <¢€; |S| = 0(n) + 0(logn) + A
we can encode successfully with negligible error e + 274

PaXoS[PRTY20]: Table size |S| = 2.4n (heuristic), Pr[Encoding Fails] = 2749

The elephant in the room (for many PSI results): Rigorous

analysis to translate the asymptotic theorem to concrete
parameters ??




What are concrete parameters for OKVS?

Theorem: If Pr[|2-CORE| = O(logn)] < ¢; |S| = 0(n) + O(logn) + A
we can encode successfully with negligible error e + 274

[Wal21a] 3-cuckoo hash > |S| = 1.23n (empirically extrapolated)

Empirical confidence? How can we claim, with 0.9999 confidence, that

Except with probability 27*° can we encode using 3-cuckoo hashing
“1 M keys into 1.3 M bins with less than 10 keys in 2-CORE" ?
Simulation is very resource intensive!!

What if the application needs failure probability 2789 ?

Center for Research in Applied
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Using probabilistic constructions for PSI

* Hashing is a probabilistic process
* Sometimes it fails. In systems this results in higher overhead (not a big deal).

* For PSI, a hashing failure results in either
* Inaccurate output (based on a subset of the original input set), or

* Information leakage

* For some applications this does not matter much
e ML?
e CSAM detection (false negatives are fine)

Center for Research in Applied
Cryptography and Cyber Security
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Using probabilistic constructions for PSI

* For a theoretical analysis, we want a negligible failure probability
(smaller than any polynomial function)

 For a concrete analysis we want the failure probability to be, e.g., < 240

* Typically, cuckoo hashing constructions have a very sharp threshold ©
* E.g., cuckoo hashing with 3 hash functions succeeds when |Table| > 1.23n

 But there is no tight analysis of the failure probability ®
e E.g., if the table is of size 1.3n, what’s the probability of failure?

* Solutions?
Heuristics; experiments (costly); amplification of success probability.




Using probabilistic constructions for PSI

Things to note:

* Typically, cuckoo hashing constructions have a very sharp threshold
* So, in practice, by using a slightly larger hash table, hashing should work well

* The failure probability is a function of the input size

* For small inputs, failure probability might be too large ®

 E.g., a failure probability of O(n3) (what constants?) might not be sufficiently
small when n=1,000
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New approach: amplification

We can very efficiently verify statements about large failure probabilities:

E.g., that with 0.9999 confidence, it holds that 3-cuckoo hashing can
encode

"1k keys into 1.3k bins/slots with less than 10 keys in 2-CORE"
with failure probability < 271°

Main idea

Compose empirically verified “smaller” OKVS instances into “larger” OKVS

provably amplifying the correctness guarantee from 271> to say, 2749




Star architecture

* 4 OKVS instances, each large enough to encode n/3 items, with failure
probability p

* A hash function H() which maps items to one of T,,T,,T;.

TO An additional OKVS of size(n/3)

IF




Star architecture - decoding

* Given a key k, read its values from tables T, and T, and return the
XOR of these results: Decode(k) = Decode(T,,k) XOR Decode(T k)

An additional OKVS of size(n/3)

IF

T, OKVS size(n/3) T3 OKVS size(n/3)




Star architecture - encoding

(The success of encoding into a table is a function of the keys, not the values)

* If encoding succeeds for all of T,,T,,T;, then
* Fill random values in T,,.

* |Insert values to T,,T,,T;, such that decoding succeeds: for all k, insert to Thi
the value Decode( To,k) XOR value(k)

An additional OKVS of size(n/3)

T2

Center for Research in Applied
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Star architecture - encoding

* If encoding succeeds for T,,T, but not for T;, then
* Fill random values in Ts.

* Insert values to T,, such that decoding succeeds for items mapped to T, : for k
mapped to T;, insert to T, the value Decode(T;,k) XOR value(k)

* Insert values to T,,T,, such that decoding succeeds: for all k mapped to T,,T,,
insert to Ty, the value Decode(T,k) XOR value(k)

To An additional OKVS of size(n/3)

T,

T3 OKVS size(n/3)

T OKVS size(n/3)
Center for Research in Applied
Cryptography and Cyber Security



Star architecture — bad event

* If encoding fails for two tables, then the process fails
* This only happens with probability = (;) . p?

* Performance:
e Size: 1.33 x optimal OKVS

* To set the parameters, need to verify a failure probability of p (easier)
* Obtain smaller failure probability p°

 Cangeneralizeto g bins EEEIRT AN

T2

OKVS size(n/3 OKVS size(n/3
IO (v/3)

Center for Research in Applied
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Concrete parameters for OKVS

Encode n=10°% key-value pairs:
Pr[encode fails] = 24505  Encoding time = 2.915s Decoding time = 1.625 seconds

OKVS size(n) = 161x8622 = 1.388n

0% - |a%0|

= 160 bins, n/q=6250

OKVS size(n/q)

T OKVS size(n/q) OKVS size(n/q)

Center for Research in Applied
Cryptography and Cyber Security



Further Improvements?

e Can design recursive constructions
* For practical deployments, a single-level construction seems sufficient

* Open question: build a polynomial-size OKVS with a negligible failure
probability (polynomial-size amplification of a small OKVS which has a

polynomial failure probability?)




Applications of OKVS

Amplified 3H-GCT can replace any random encoding task

: PaXo$S
Polynomials

v Sparse OT extension - PS| [PRTY19] v' OT-PaXoS PSI [PRTY20]
v' Oblivious Programmable PRF v fastest semi-honest 2PS|

v Circuit-PSI [PSTY19, GMRSS21] v fastest malicious 2-PS|

v Private Set Union [KRTW19] v empirically verified

v Multi-party PSI [KMPRT17] v generalize to admit linear OKVS

new efficient malicious-secure n-PSl new vOLE-OKVS PS5l

v VOLE-PaXoS PSI [RS21]

Center for Research in Applied
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Experimental Results

Takeaways while using this to compute PSI on million items:

3H-GCT, 3H-GCT (star-amp) : 1.61x, 1.43x less communication than
PaXoS-PSI

malicious . fastest run-time, ~2x faster than PaXoS-PSI
. faster than [PSTY19] semi-honest PSI




What should we consider when
choosing a PSI solution?




Simplicity
* Most cryptographic papers optimize performance, but if you want to

use PSI, you would also desire a solution that it is
* simple to understand and to explain (to your managers)

e simple to implement

* DH based constructions are much simpler than the constructions
based on OT extension + hashing « @ » B
S . VsV
(H(x,))%..., (H(x,))* =——
< (H(y,))P,..., (H(y,))P
< ((H(x)*)P,..., ((H(x,))*)P

((H(y))P)%..., ((H(y, )P )

Center for Research in Applied
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Using probabilistic constructions for PSI

* What is the concrete failure probability?

 Sometimes a heuristic analysis is fine

* For some applications hashing failures do not matter much
e ML?
 CSAM detection (false negatives are fine)

* The failure probability is a function of the input size
* For small inputs, failure probability might be too large ®
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What input size should we plan for?

The cost-per-item of PSI for small sets is higher than for larger sets:

e OT extension / VOLE run a preprocessing step using public key operations
* This is costly if we do only a few hundred OTs

* The hashing failure probability is smaller for larger input sets
* For smaller sets, obtaining a failure probability of 2-4% is costly

— For smaller input sizes, DH might be better than OT-based PSI




What input size should we plan for?

* For smaller input sets, a recent DH-based protocol of Rosulek-Triue
(CCS 2021) is best (also has malicious security)

OT-based PSI:
» 128 base OTs
» O(n) symm-key ops

£
T8}
g
:
2

KA-based PSI:
» O(n) pub-key ops

N

500 1000

set size (n)

(graph by Mark Rosulek)
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How to measure performance?

 What is more important, computation or communication costs?

e Google [IKN+19]: “For the offline “batch computing” scenarios we consider,
communication costs are far more important than computation. ... It is much less
expensive to add CPUs to a shared network than to expand network capacity.”

Center for Research in Applied
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How to measure performance?

Apple’s recent CSAM detection system:
e Each photo uploaded from a device is accompanied by a PSI message

* The additional message size is negligible. Computation (=battery usage) is
far more important.
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SpOT PSI (Crypto 2019 [PRTY])

—
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Von -
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Security: Semi-honest vs. Malicious

* For PSI, the performance gap between semi-honest and malicious
security is very small ©

* OT-based protocols: [PRTY20,GPRTY21] have the best performance,
and almost the same overhead for malicious and semi-honest security

* DH-based protocols: for small sets, the malicious protocol of [RT21] is
only 10%-20% slower than the best semi-honest PSI protocol




What should we use?

6H-based protocols N
e Best performance for small inputs
* Easy to implement and explain

e Can be modified to compute

6T-based protocols

* Much more efficient for larger
inputs

 More complicated

kintersection size /
PSI + generic MPC protocols\

* Can compute arbitrary functions
* Slower than OT-based

e More complicated
" i Y,

&Harder to modify

~
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A different model: Outsourced PSI

2| s
:ia _—

e “MPC as a service”
* Many users share their data between servers, which a run the MPC.
e Adifferent trust assumption (!) but can be very efficient !
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