

# Private Set Intersection (PSI)

## Malicious security, and amplifying the success probability

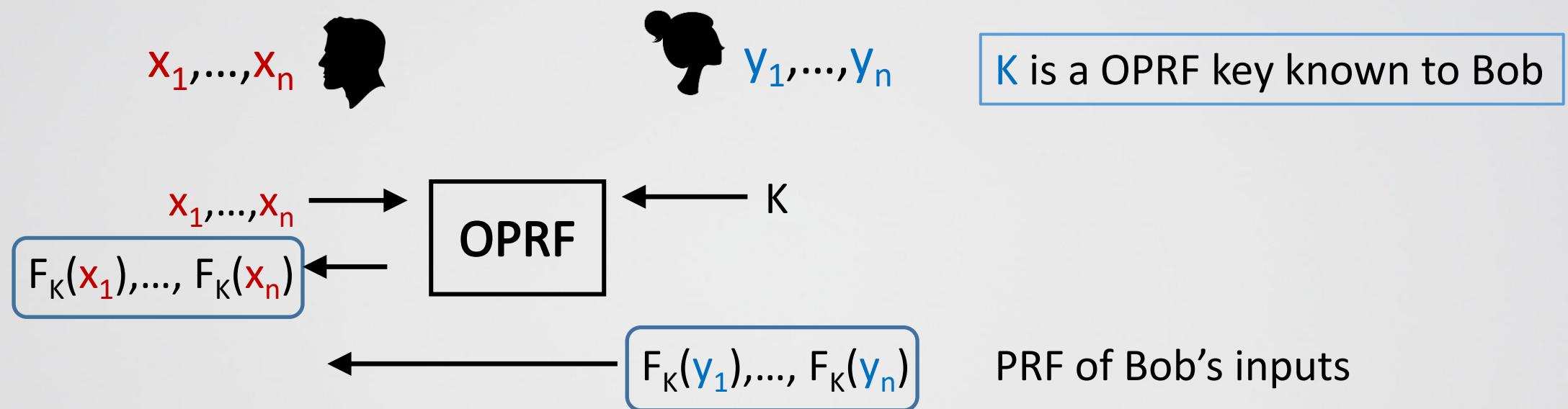
Benny Pinkas, Bar-Ilan University

# In this lecture

- Malicious security for PSI
- Amplifying the success probability
- PSI conclusions

(many slides by my coauthors)

# Template for PSI based on OPRF (previous hour)



Compares the two lists

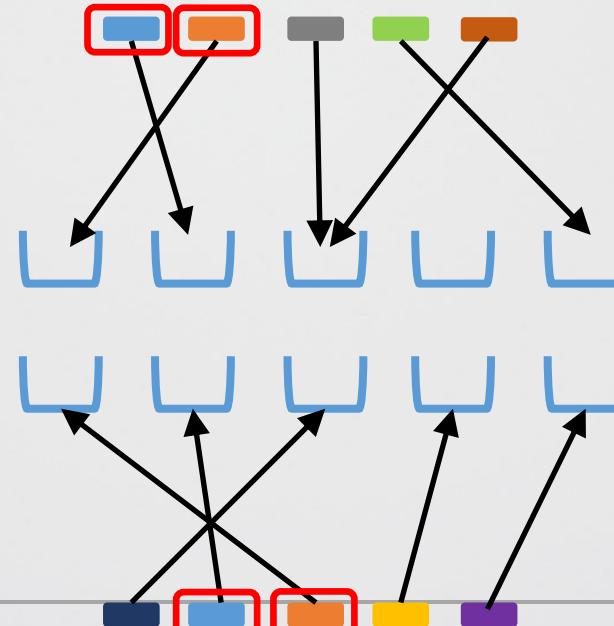
# Implementing the OPRF

- The most efficient OPRF implementations are based on OT extension
- Caveat: Secure only as long as client evaluates the OPRF at most once
- E.g., when  $F_{a,b}(x) = ax+b$

# Solution: Hashing

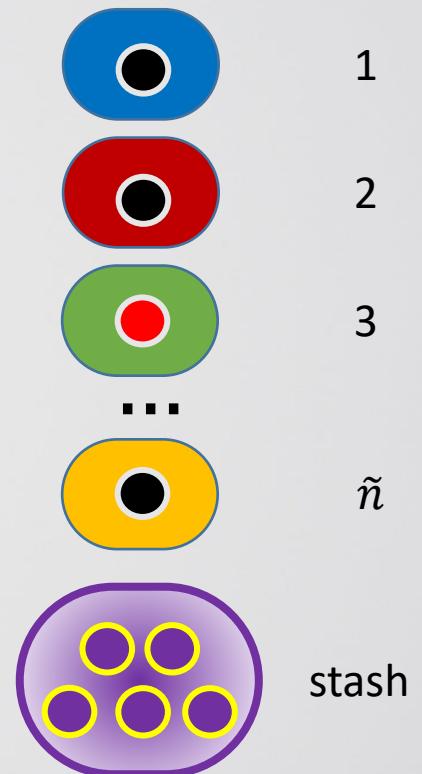
- Suppose both parties use the same public random hash function  $h()$  to hash their  $n$  items to  $n$  bins.
  - Then obviously if Alice and Bob have the same item, both of them map it to the **same** bin. PSI can then be independently run for each bin.
  - If Bob has a single item in each bin, he only needs to evaluate the OPRF once

**Problem:** many bins  
will have >1 item  
mapped to them



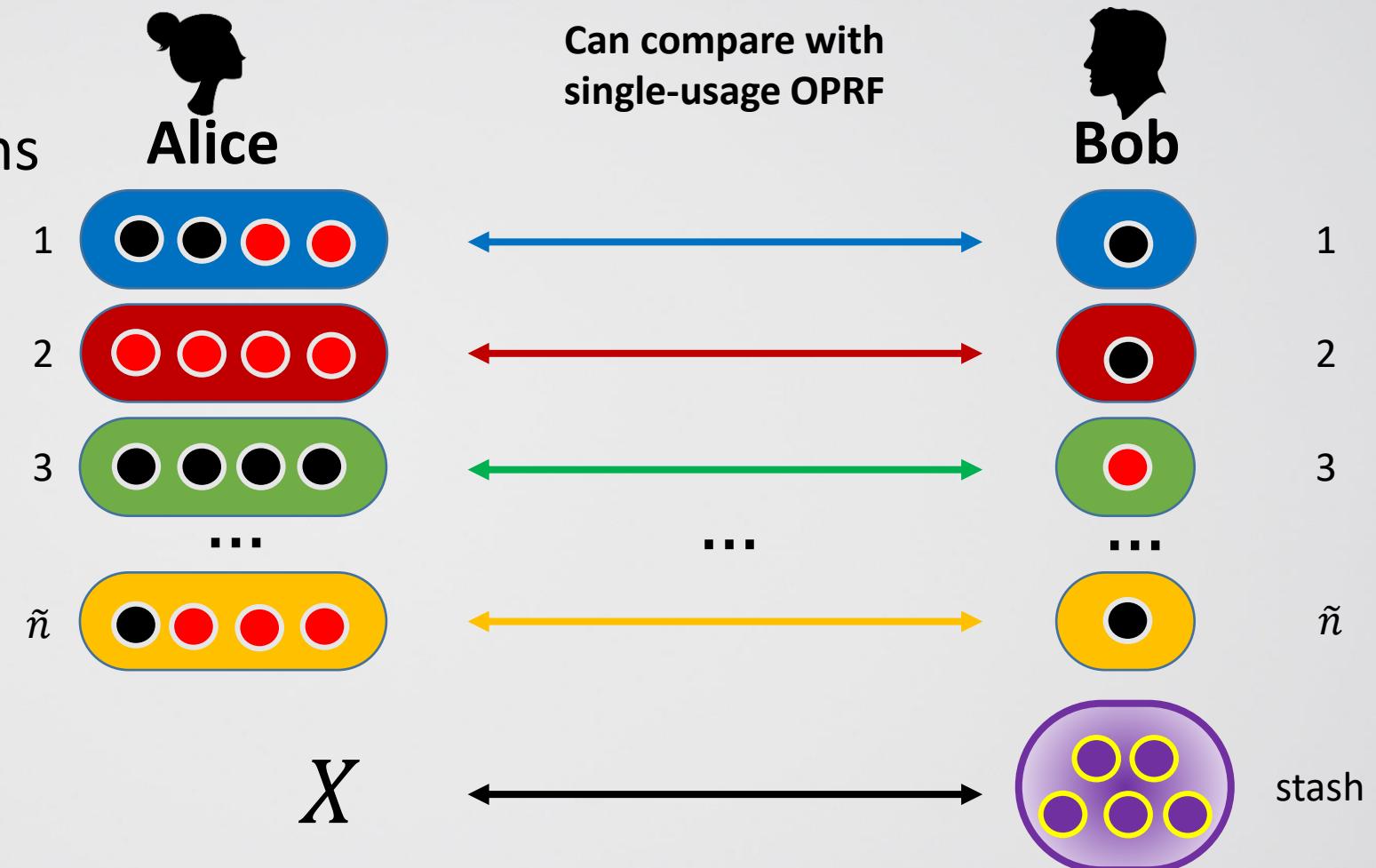
# Using 2 Hash Functions (cuckoo hashing [PR,KMW])

- $h_1, h_2$ : item  $\rightarrow$  bin
- Map  $n$  items to  $(2 + \epsilon)n$  bins
- Each bin stores at most one item!
- Succeeds with very high probability
- If we also have a stash of size  $s$ , all items  $x$  can be mapped to either  $h_1(x), h_2(x)$  or the stash, except with probability  $O(n^{-(s+1)})$



# The Power of Using 2 Hash Functions (Cuckoo)

- $h_1, h_2: \text{item} \rightarrow \text{bin}$
- Map  $n$  items to  $(2 + \epsilon)n$  bins
  - Alice – **simple** hashing
    - $x \rightarrow h_1(x) \text{ and } h_2(x)$
  - Bob – **Cuckoo** hashing
    - $y \rightarrow h_1(y), \text{ or } h_2(y)$
- **Caveat:** stash size is  $\omega(1)$  (let's ignore it)



# Combining cuckoo hashing with PSI

- In each bin, Bob (who uses CH) has one item  $y$ . Alice has  $O(\log n)$  items  $x_1, x_2, \dots$
- In each bin, they run an OT-based OPRF of a function  $F$ , so that Bob learns  $F(y)$ , and Alice can compute  $F()$  on any input
- Alice sends to Bob the  $F()$  values she learned in all bins
- Bob compares them to the values that he learned

# Why isn't this secure against malicious parties?

It turned out that only the following attack is problematic:

- Suppose that both Alice and Bob have a value  $z$ 
  - Alice should put  $z$  in bins  $h_1(z)$  and  $h_2(z)$
  - Bob uses **CH** and puts  $z$  in only one of these two bins
- Suppose Alice chooses to put  $z$  only in bin  $h_1(z)$
- Then  $z$  will be in the PSI output **iff** Bob chose to put  $z$  in  $h_1(z)$
- This decision of Bob depends on the **other** inputs that he has
- → The output of the PSI leaks information about **other** inputs of Bob

# The function $F()$ that is used

- $F()$  can be implemented using oblivious transfer extension
- Specifically, a protocol of Orru, Orsini and Scholl, uses OT-extension to implement  $F()$ , with the following properties
  - The construction is secure against malicious behavior
  - For each table entry  $i$ , the receiver learns  $F_i(x)$ , and the sender can compute  $F_i()$
- Important for this lecture: A **homomorphic property**:  $F_i(x) + F_j(y) = F_{i+j}(x \oplus y)$ .

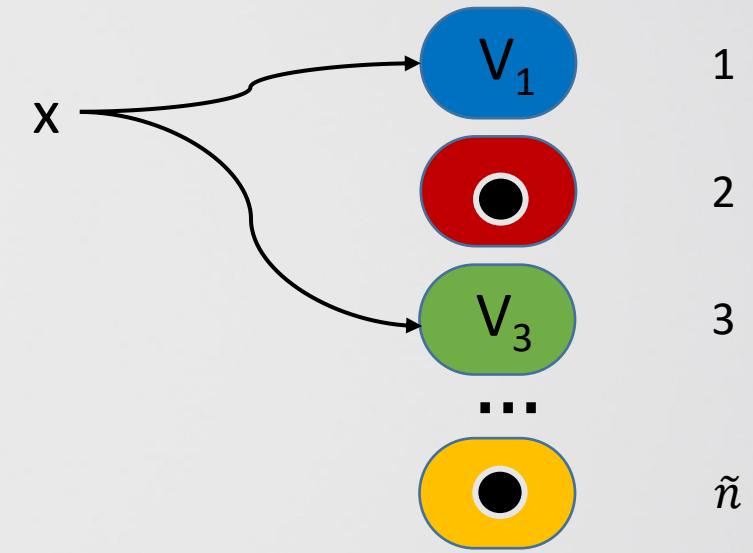
# PSI from PaXoS, OKVS, and amplification

## Relevant papers:

- **Malicious security for OT extension: “PSI from OT”.** Actively Secure 1-out-of-N OT Extension with Application to Private Set Intersection. Michele Orrù and Emmanuela Orsini and Peter Scholl. (CT-RSA 2017)
- **Efficient malicious PSI: PSI from PaXoS:** Fast, Malicious Private Set Intersection. Benny Pinkas and Mike Rosulek and Ni Trieu and Avishay Yanai (Eurocrypt 2020)
- **Even more efficient malicious PSI; amplification of success probability:** Oblivious Key-Value Stores and Amplification for Private Set Intersection. Gayathri Garimella and Benny Pinkas and Mike Rosulek and Ni Trieu and Avishay Yanai. (Crypto 2021)

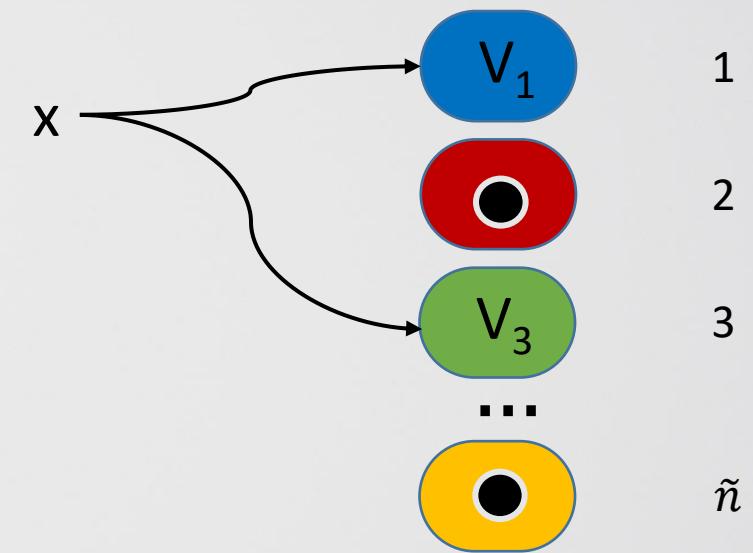
# A different flavor of cuckoo hashing

- Bob is using CH
- Suppose that  $x$  is mapped to locations  $h_1(x)=i$  and  $h_2(x)=j$ .
- Unlike CH, Bob puts there values  $V_i$  and  $V_j$  such that  $V_i \oplus V_j = x$
- Suppose that this mapping is possible, and this property holds for all items that Bob inserts (this is similar to a garbled Bloom filters)



# A different flavor of cuckoo hashing

- In the PSI protocol, Bob runs the OPRF in the bins so that he learns  $F_i(V_i)$  and  $F_j(V_j)$
- Recall the homomorphic property of the function:  $F_i(x) + F_j(y) = F_{i+j}(x \oplus y)$
- Therefore Bob can compute  $F_i(V_i) + F_j(V_j) = F_{i+j}(V_i \oplus V_j) = F_{i+j}(x)$
- Alice sends to Bob, for each input  $y$  of her,  $F_{h1(y)+h2(y)}(y)$
- Security: Alice cannot cheat by sending just one of  $F_{h1(y)}(y)$ ,  $F_{h2(y)}(y)$  (this needs a proof)



$$X = V_1 + V_3$$

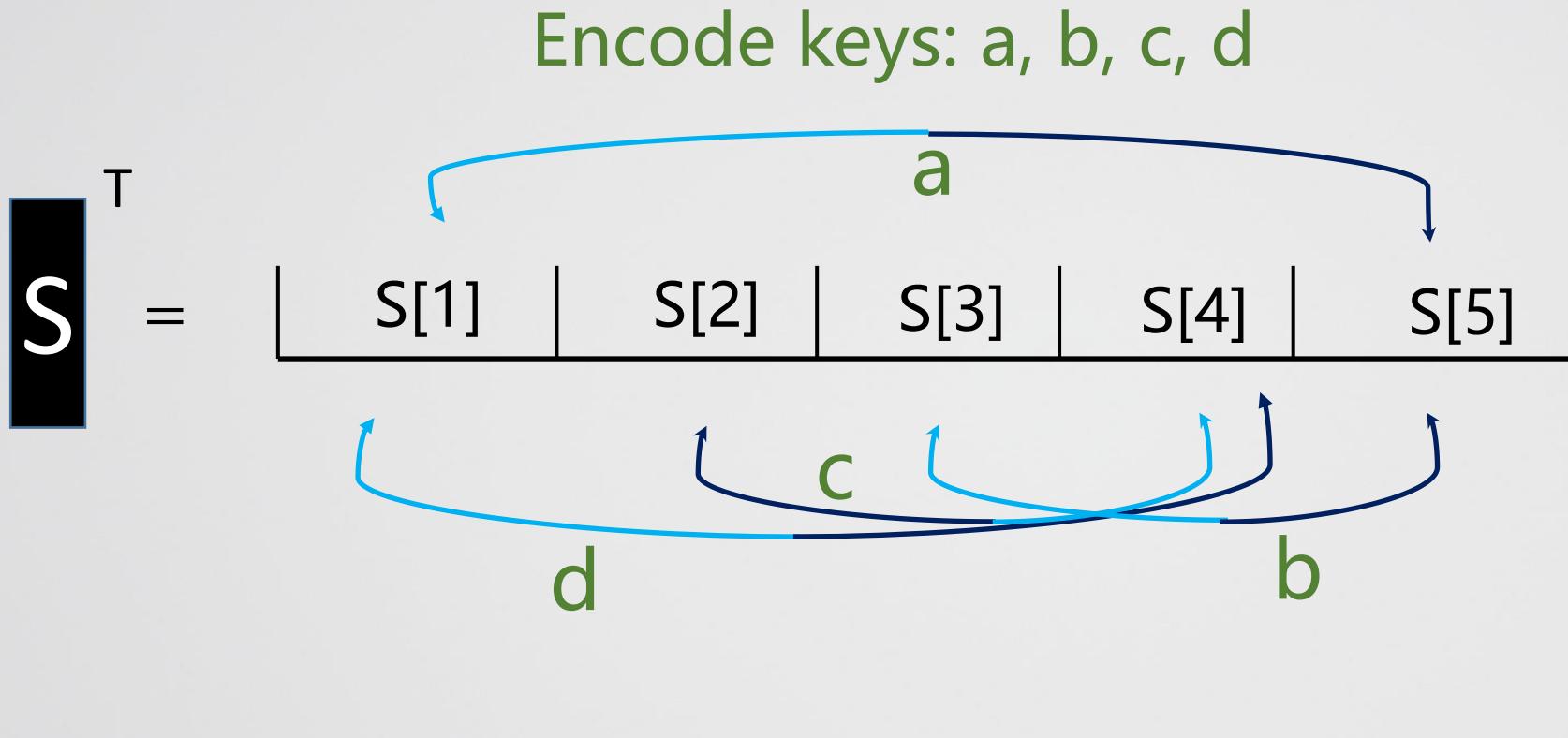
# OKVS Example – Encoding in PaXoS (simplified\*)

key-value  $\langle a, \text{val}(a) \rangle$   
 $\text{Decode}(a) = S[1] \oplus S[5] = \text{val}(a)$



How do we encode many such keys such that they decode correctly?

# OKVS Example – Encoding in PaXoS (simplified\*)



Solving for 'S' :

$$S[1] \oplus S[5] = \text{val}(a)$$

$$S[3] = S[5] + \text{val}(b)$$

$$S[4] = S[1] + \text{val}(d)$$

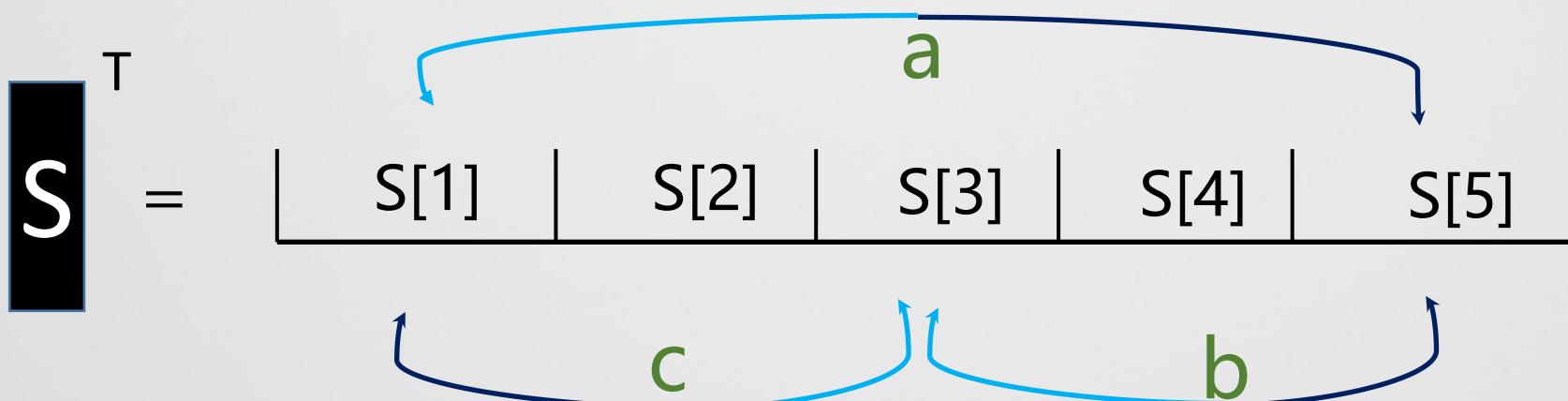
$$S[2] = S[4] + \text{val}(c)$$

recursively find slots constrained by just one key

Does encoding always work?

# What happens when peeling fails?

- The **2-core** of a graph is the maximum subgraph where each node has degree at least 2
  - Namely, the subgraph containing all cycles, as well as all paths connecting cycles.
- All values (edges) which are **not** in 2-core can be handled via peeling
  - But, peeling does not work on the 2-core



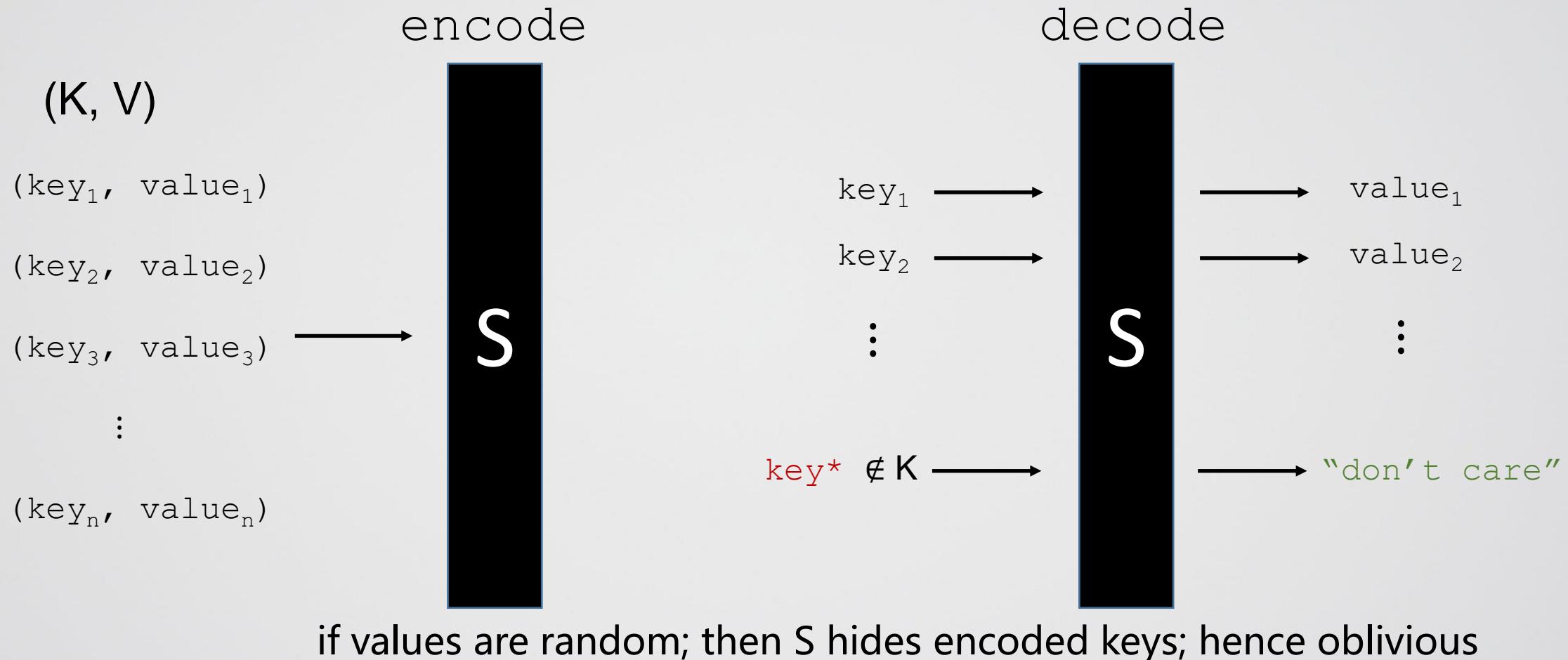
# What happens when peeling fails?

- THM\*: For a CH graph of size  $O(n)$ , WHP the 2-core of size  $O(\log n)$  ☺
- In other words, the encoding the we suggested can handle all but  $O(\log n)$  of the items mapped to the CH
  - Handling only  $O(\log n)$  items should be efficient
  - But we must hide which items these are

# What do we actually need?

- An “Oblivious Key-Value Store” (OKVS)
- Key-Value Store:
  - Encode a set of (key, value) pairs. Querying an encoded key returns the corresponding value.
- Oblivious Key-Value Store (OKVS):
  - **Hide the keys!**
    - A query for an encoded key  $k$  will return the corresponding value
    - A query for a key which is not encoded will return a random value
    - Suppose all encoded values in (key,value) pairs are random
    - These two options will be indistinguishable for those making the queries
- This is a recurring requirement in PSI protocols [CDJ16, KMP+17, PSTY19, PRTY19, KRTW19]...

# Oblivious Key-Value Store (OKVS)



# Properties of OKVS

$$S^T = \begin{bmatrix} S[1] & S[2] & \cdots & S[m] \end{bmatrix}$$

A must for  
the PSI  
constructions → Linear OKVS : if values are in  $\mathcal{F}$ , use decoding function  $d : K \rightarrow \mathcal{F}^m$   
we saw  
Binary OKVS : special case where  $d(k) = \{0, 1\}^m$

$$\begin{bmatrix} - & d(k_1) & - \\ \vdots & \ddots & \vdots \\ - & d(kn) & - \end{bmatrix}_{n \times m} \times \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_m \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

OKVS efficiency measures  
Size:  $\frac{n}{m}$  (optimal = 1)  
Encoding time : solve for 'S'  
Decoding time : matrix mult

# OKVS Examples - PaXoS

## OKVS efficiency measures for PaXoS

- The memory is linear in  $n$
- Encoding time and decoding time are linear
- But cannot encode all items – failure for those which happen to be in the 2-core

# OKVS Examples - Polynomial

$$(K, V) = (k_1, v_1), (k_2, v_2), \dots, (k_n, v_n) \xrightarrow{\text{encode}} S(x) = s_1 + s_2 x^1 + s_3 x^2 + \dots + s_n x^{n-1}$$

solve for 'S'

$$\begin{bmatrix} 1 & k_1 & k_1^2 & k_1^3 & k_1^3 & k_1^4 \\ \vdots & \ddots & & \ddots & & \vdots \\ 1 & k_6 & k_6^2 & k_6^3 & k_6^4 & k_6^5 \end{bmatrix} \times \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \\ s_5 \\ s_6 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \end{bmatrix}$$

$$S^T = [s_1 \ s_2 \ s_3 \ \dots \ s_n]$$

OKVS efficiency measures  
Linear (optimal) size  
Encoding time and Decoding time  
=  $O(n \log^2 n)$  field operations (FFT)

# OKVS Examples – Random Matrix

Pick a random matrix of size  $(n \times m)$  of field elements (row corresponding to key is defined as  $H(\text{key})$ )

$$\begin{bmatrix} r_1 & r_2 & r_3 & r_4 & \dots & r_m \\ \vdots & \ddots & & & \ddots & \vdots \\ & & & & & \end{bmatrix}_{n \times m} \times \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \\ s_5 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_n \end{bmatrix}$$

$s_m$

OKVS efficiency measures

Size is linear

Encoding time =  $O(n^3)$

Decoding time =  $O(n^2)$

$\Pr[\text{Bad event: random matrix has linearly dependent rows}] < |\mathcal{F}|^{n-m-1}$   
Binary OKVS :  $d(k) = \{0, 1\}^m$  need  $m \geq n + \lambda - 1$  for error probability  $2^{-\lambda}$

# Handling the 2-core in PaXoS

- Suppose I know in advance that whp  $|2\text{-core}| = O(\log n)$
- We can encode these  $\log n$  items using a less efficient OKVS, e.g. a random matrix
- Advantage: This requires only  $\log n + \lambda$  variables to encode  $\log n$  values. Total OKCS size is  $O(n) + O(\log n) + \lambda$
- Encoding takes  $(\log n + \lambda)^3$  time, but this is fine.

# The full solution (read on your own)

- The parties agree on adding  $O(\log n) + \lambda$  variables, and a random mapping  $H()$  to subsets of these variables.
- The value of each input  $x$  is defined as the **sum** of the values of the two locations to which it is mapped in the CH, and the random subset  $H(x)$  of the additional variables to which it is mapped.
- Bob maps his  $n$  inputs to a CH of size  $(2 + \epsilon)n$
- Bob does peeling and remains with a 2-core of size  $O(\log n)$   
Expensive:  $O(\log n + \lambda)^3$
- Bob sets random values to the nodes in the 2-core, but solves equations with the remaining  $O(\log n) + \lambda$  variables, to ensure that the values of items in the 2-core is correct.
- Bob reverses the peeling to set values to nodes, ensuring the right values to all remaining variables.  
Cheap:  $O(n)$
- Bob uses the OPRF to learn a value from each bin, sums them up, and learns  $F(x)$  for all inputs.

# What are concrete parameters for OKVS?

Theorem: If  $\Pr[|2\text{-CORE}| \geq O(\log n)] \leq \epsilon$ ;  $|S| = O(n) + O(\log n) + \lambda$   
we can encode successfully with negligible error  $\epsilon + 2^{-\lambda}$

PaXoS[PRTY20]: Table size  $|S| = 2.4n$  (heuristic),  $\Pr[\text{Encoding Fails}] = 2^{-40}$

**The elephant in the room** (for many PSI results): Rigorous  
analysis to translate the asymptotic theorem to concrete  
parameters ??

# What are concrete parameters for OKVS?

Theorem: If  $\Pr[|2\text{-CORE}| \geq O(\log n)] \leq \epsilon$ ;  $|S| = O(n) + O(\log n) + \lambda$   
we can encode successfully with negligible error  $\epsilon + 2^{-\lambda}$

[Wal21a] 3-cuckoo hash  $\rightarrow |S| = 1.23n$  (empirically extrapolated)

Empirical confidence? How can we claim, with 0.9999 confidence, that

Except with probability  $2^{-40}$  can we encode using 3-cuckoo hashing

“1 M keys into 1.3 M bins with less than 10 keys in 2-CORE” ?

Simulation is very resource intensive!!

What if the application needs failure probability  $2^{-80}$  ?

# Using probabilistic constructions for PSI

- Hashing is a probabilistic process
  - Sometimes it fails. In systems this results in higher overhead (not a big deal).
- For PSI, a hashing failure results in either
  - Inaccurate output (based on a subset of the original input set), or
  - Information leakage
- For some applications this does not matter much
  - ML ?
  - CSAM detection (false negatives are fine)

# Using probabilistic constructions for PSI

- For a theoretical analysis, we want a negligible failure probability (smaller than any polynomial function)
- For a concrete analysis we want the failure probability to be, e.g.,  $< 2^{-40}$
- Typically, cuckoo hashing constructions have a very sharp threshold ☺
  - E.g., cuckoo hashing with 3 hash functions succeeds when  $|Table| > 1.23n$
- But there is no tight analysis of the failure probability ☹
  - E.g., if the table is of size  $1.3n$ , what's the probability of failure?
- Solutions?
  - Heuristics; experiments (costly); **amplification** of success probability.

# Using probabilistic constructions for PSI

Things to note:

- Typically, cuckoo hashing constructions have a very sharp threshold
  - So, in practice, by using a slightly larger hash table, hashing should work well
- The failure probability is a function of the input size
  - For small inputs, failure probability might be too large ☹
  - E.g., a failure probability of  $O(n^{-3})$  (what constants?) might not be sufficiently small when  $n=1,000$

# New approach: amplification

We can very efficiently verify statements about large failure probabilities:  
E.g., that with 0.9999 confidence, it holds that 3-cuckoo hashing can encode

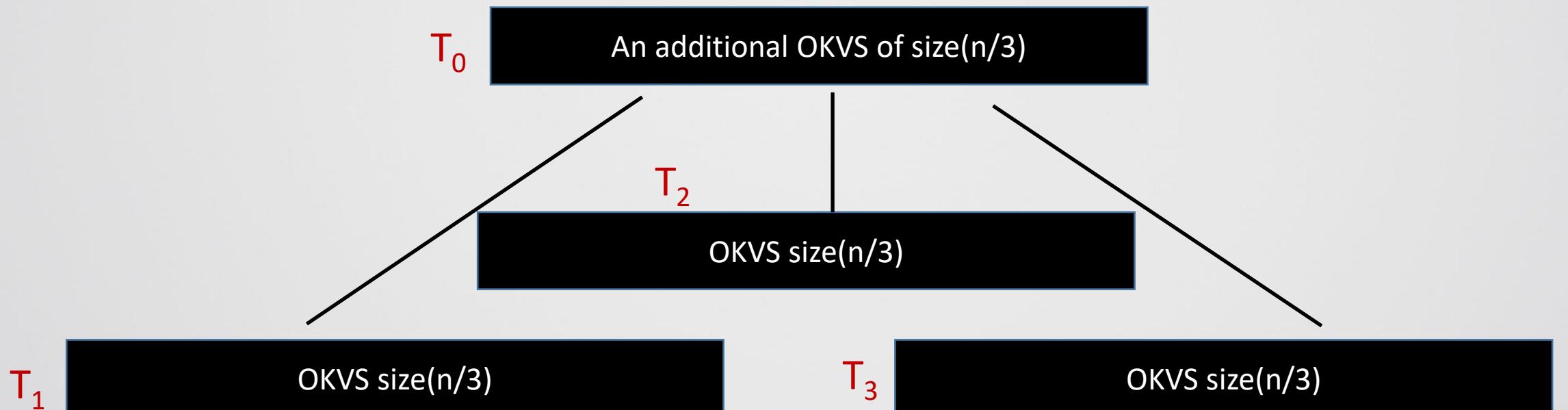
**“1k keys into 1.3k bins/slots with less than 10 keys in 2-CORE”**  
with failure probability  $< 2^{-15}$

Main idea

Compose empirically verified “smaller” OKVS instances into “larger” OKVS  
provably amplifying the correctness guarantee from  $2^{-15}$  to say,  $2^{-40}$

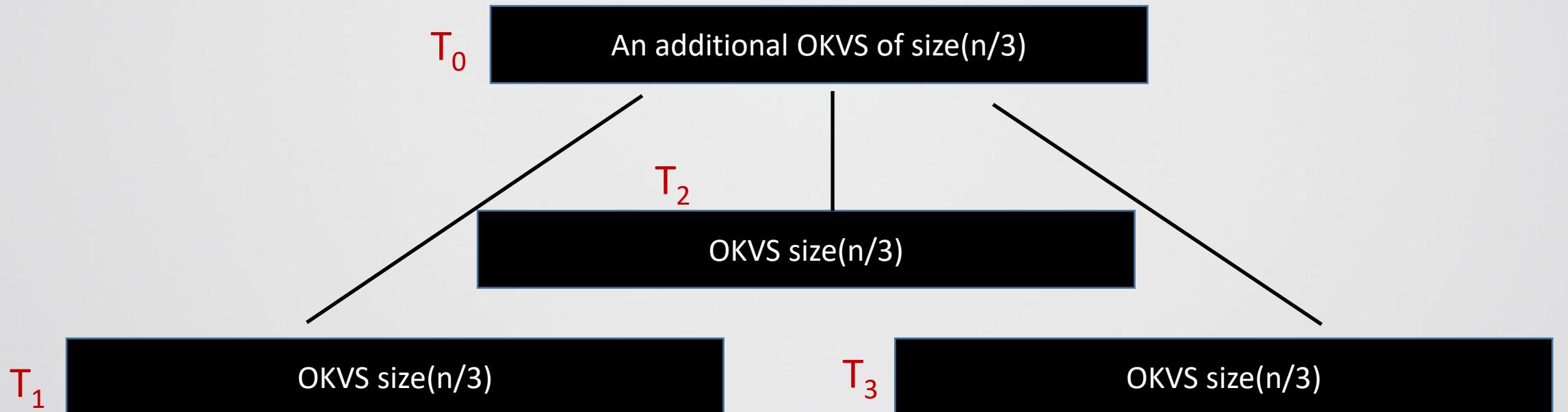
# Star architecture

- 4 OKVS instances, each large enough to encode  $n/3$  items, with failure probability  $p$
- A hash function  $H()$  which maps items to one of  $T_1, T_2, T_3$ .



# Star architecture - decoding

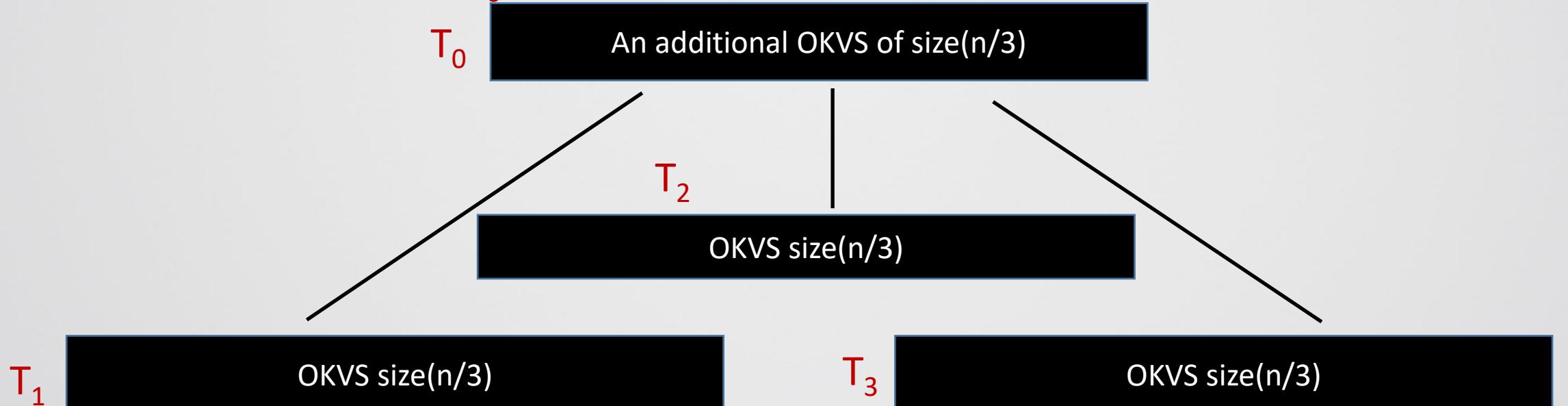
- Given a key  $k$ , read its values from tables  $T_0$  and  $T_{H(k)}$  and return the **XOR** of these results:  $\text{Decode}(k) = \text{Decode}(T_0, k) \text{ XOR } \text{Decode}(T_{H(k)}, k)$



# Star architecture - encoding

(The success of encoding into a table is a function of the keys, not the values)

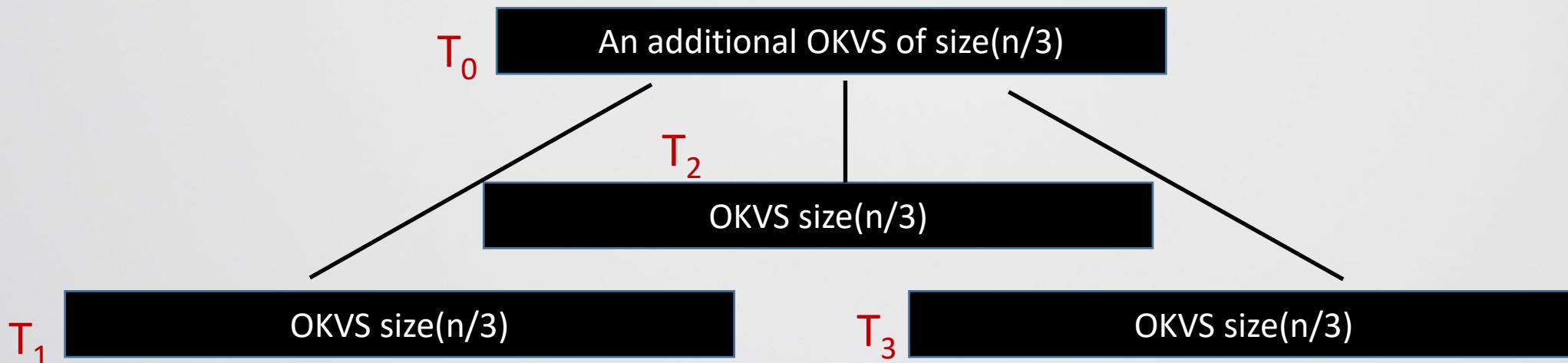
- If encoding succeeds for all of  $T_1, T_2, T_3$ , then
  - Fill random values in  $T_0$ .
  - Insert values to  $T_1, T_2, T_3$ , such that decoding succeeds: for all  $k$ , insert to  $T_{H(k)}$  the value  $\text{Decode}(T_0, k) \text{ XOR value}(k)$



# Star architecture - encoding

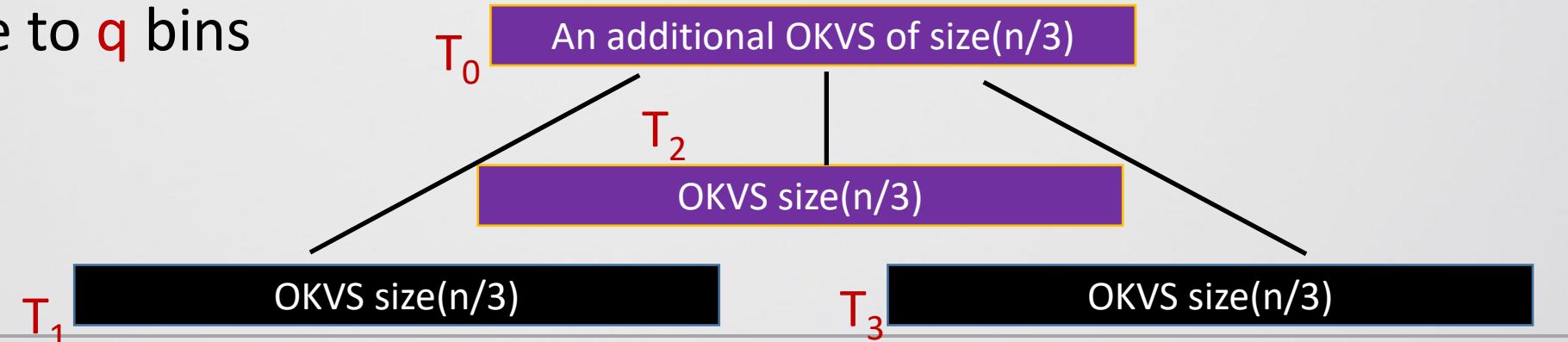
- If encoding succeeds for  $T_1, T_2$  but not for  $T_3$ , then
  - Fill random values in  $T_3$ .
  - Insert values to  $T_0$ , such that decoding succeeds for items mapped to  $T_3$ : for  $k$  mapped to  $T_3$ , insert to  $T_0$  the value  $\text{Decode}(T_3, k) \text{ XOR } \text{value}(k)$
  - Insert values to  $T_1, T_2$ , such that decoding succeeds: for all  $k$  mapped to  $T_1, T_2$ , insert to  $T_{H(k)}$  the value  $\text{Decode}(T_0, k) \text{ XOR } \text{value}(k)$

Same if encoding fails for  $T_1$  or  $T_2$



# Star architecture – bad event

- If encoding **fails** for **two tables**, then the process **fails**
- This only happens with probability  $\approx \binom{4}{2} \cdot p^2$
- Performance:
  - Size:  **$1.33 \times$  optimal OKVS**
  - To set the parameters, need to **verify** a failure probability of  **$p$**  (easier)
  - **Obtain** smaller failure probability  **$p^2$**
- Can generalize to  **$q$**  bins

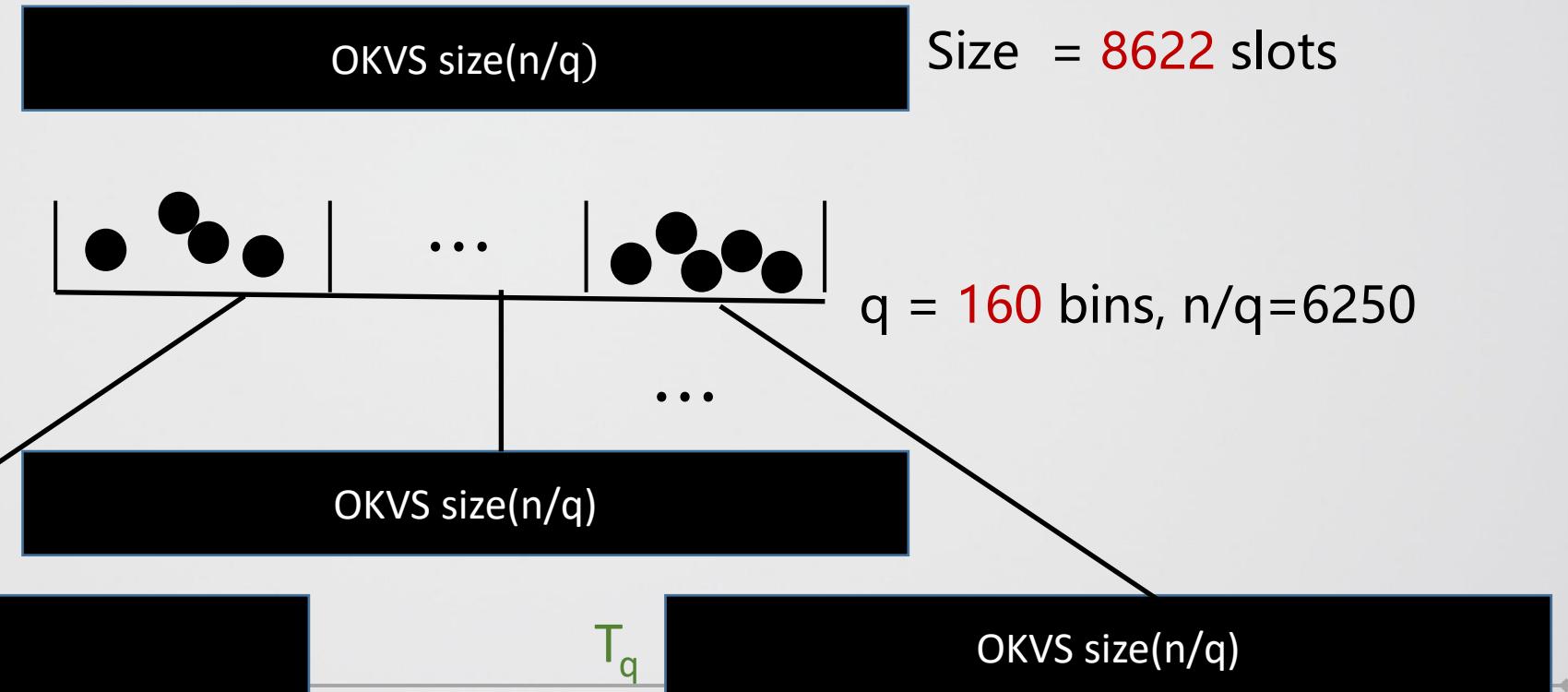


# Concrete parameters for OKVS

Encode  $n=10^6$  key-value pairs:

$\Pr[\text{encode fails}] = 2^{-45.05}$    Encoding time = 2.915 s   Decoding time = 1.625 seconds

OKVS size( $n$ ) =  $161 \times 8622 = 1.388n$



# Further Improvements?

- Can design recursive constructions
- For practical deployments, a single-level construction seems sufficient
- Open question: build a polynomial-size OKVS with a negligible failure probability (polynomial-size amplification of a small OKVS which has a polynomial failure probability?)

# Applications of OKVS

Amplified 3H-GCT can replace **any** random encoding task

## Polynomials

- ✓ Sparse OT extension → PSI [PRTY19]
- ✓ Oblivious **Programmable** PRF
  - ✓ Circuit-PSI [PSTY19, GMRSS21]
  - ✓ Private Set Union [KRTW19]
  - ✓ Multi-party PSI [KMPRT17]  
**new efficient malicious-secure n-PSI**

## PaXoS

- ✓ OT-PaXoS PSI [PRTY20]
  - ✓ **fastest semi-honest 2PSI**
  - ✓ **fastest malicious 2-PSI**
  - ✓ **empirically verified**
  - ✓ generalize to admit linear OKVS  
**new vOLE-OKVS PSI**
- ✓ vOLE-PaXoS PSI [RS21]

# Experimental Results

Takeaways while using this to compute PSI on **million** items:

3H-GCT, 3H-GCT (star-amp) : 1.61x, 1.43x less communication than PaXoS-PSI

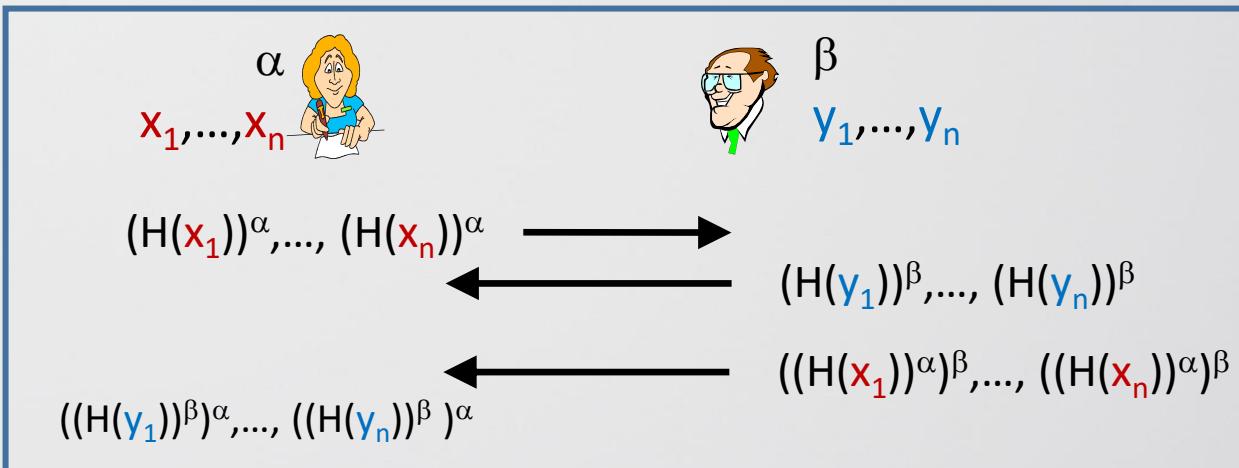
malicious

- : fastest run-time,  $\sim 2x$  faster than PaXoS-PSI
- : faster than [PSTY19] semi-honest PSI

# What should we consider when choosing a PSI solution?

# Simplicity

- Most cryptographic papers optimize performance, but if you want to use PSI, you would also desire a solution that is
  - simple to understand and to explain (to your managers)
  - simple to implement
- DH based constructions are much simpler than the constructions based on OT extension + hashing



# Using probabilistic constructions for PSI

- What is the concrete failure probability?
- Sometimes a heuristic analysis is fine
- For some applications hashing failures do not matter much
  - ML ?
  - CSAM detection (false negatives are fine)
- **The failure probability is a function of the input size**
  - For small inputs, failure probability might be too large ☹

# What input size should we plan for?

The cost-per-item of PSI for small sets is higher than for larger sets:

- OT extension / VOLE run a preprocessing step using public key operations
  - This is costly if we do only a few hundred OTs
- The hashing failure probability is smaller for larger input sets
  - For smaller sets, obtaining a failure probability of  $2^{-40}$  is costly

→ For smaller input sizes, DH might be better than OT-based PSI

# What input size should we plan for?

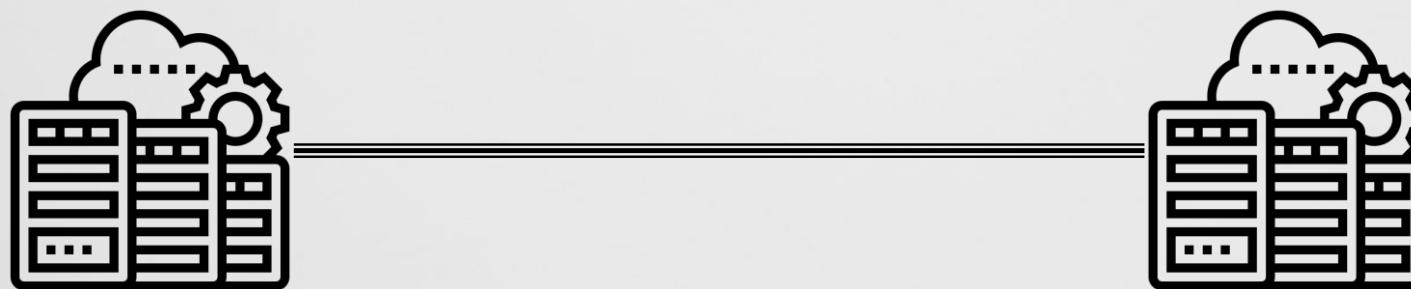
- For smaller input sets, a recent DH-based protocol of Rosulek-Tribe (CCS 2021) is best (also has malicious security)



(graph by Mark Rosulek)

# How to measure performance?

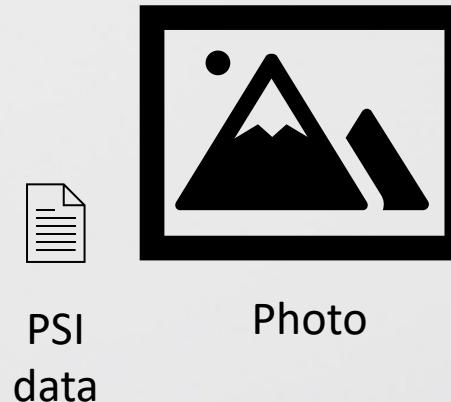
- What is more important, computation or communication costs?
- Google [IKN+19]: “For the offline “batch computing” scenarios we consider, **communication costs are far more important** than computation. ... It is much less expensive to add CPUs to a shared network than to expand network capacity.”



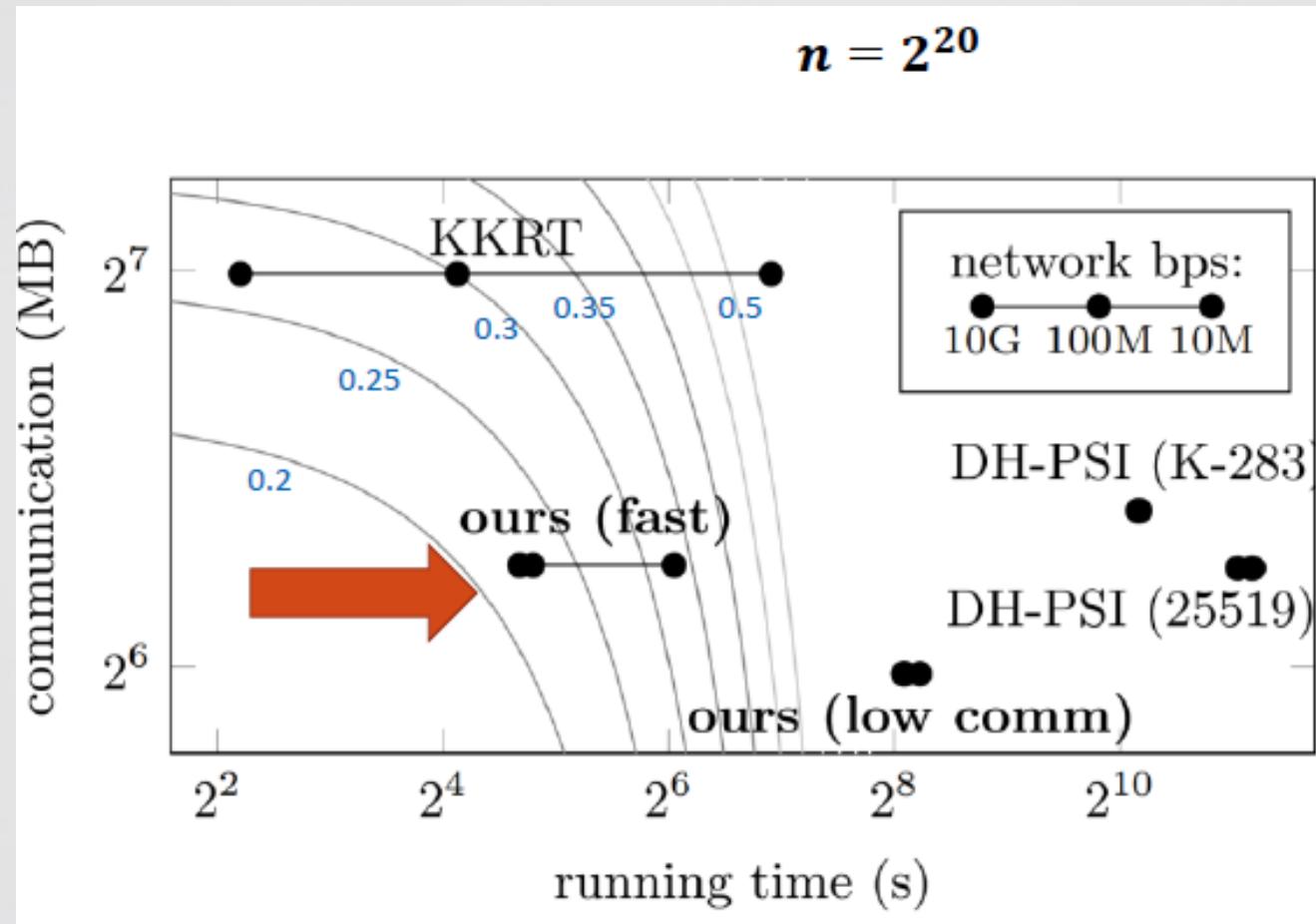
# How to measure performance?

Apple's recent CSAM detection system:

- Each photo uploaded from a device is accompanied by a PSI message
- The additional message size is negligible. Computation (=battery usage) is far more important.



# SpOT PSI (Crypto 2019 [PRTY])



# Security: Semi-honest vs. Malicious

- For PSI, the performance gap between semi-honest and malicious security is very small 😊
- OT-based protocols: [PRTY20,GPRTY21] have the best performance, and almost the same overhead for malicious and semi-honest security
- DH-based protocols: for small sets, the malicious protocol of [RT21] is only 10%-20% slower than the best semi-honest PSI protocol

# What should we use?

## DH-based protocols

- Best performance for small inputs
- Easy to implement and explain
- Can be modified to compute intersection size

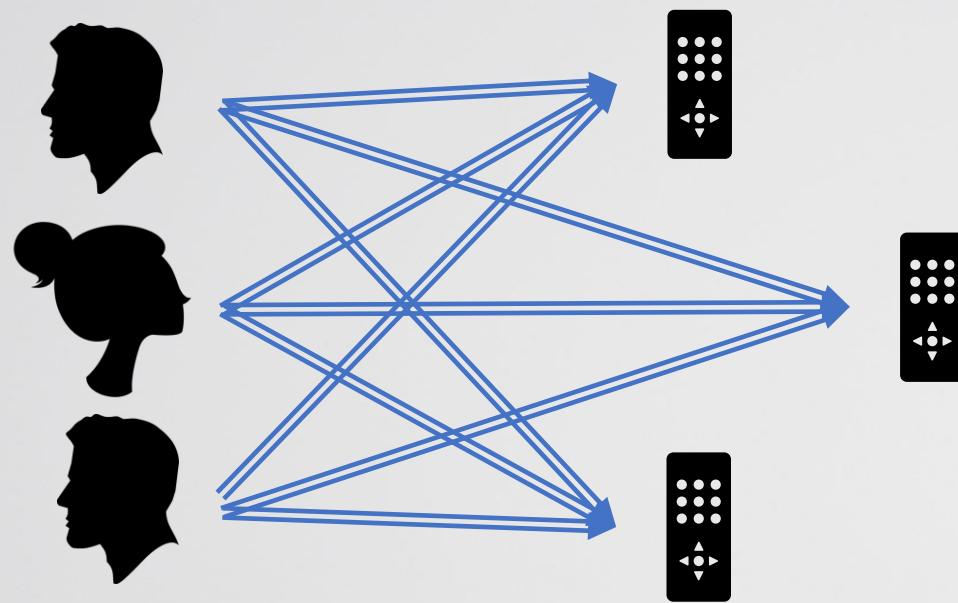
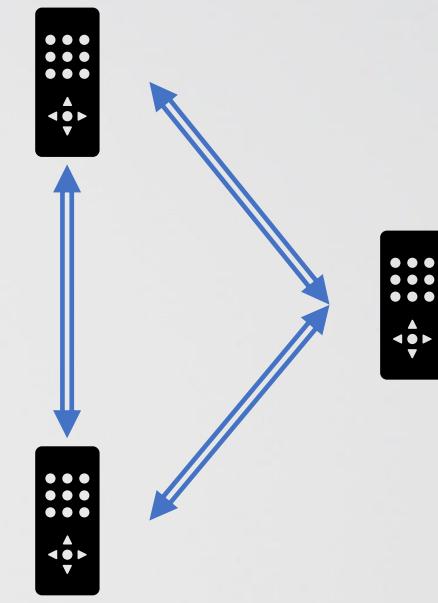
## OT-based protocols

- Much more efficient for larger inputs
- More complicated
- Harder to modify

## PSI + generic MPC protocols

- Can compute arbitrary functions
- Slower than OT-based
- More complicated

# A different model: Outsourced PSI



- “MPC as a service”
- Many users share their data between servers, which run the MPC.
- A different trust assumption (!) but can be very efficient !