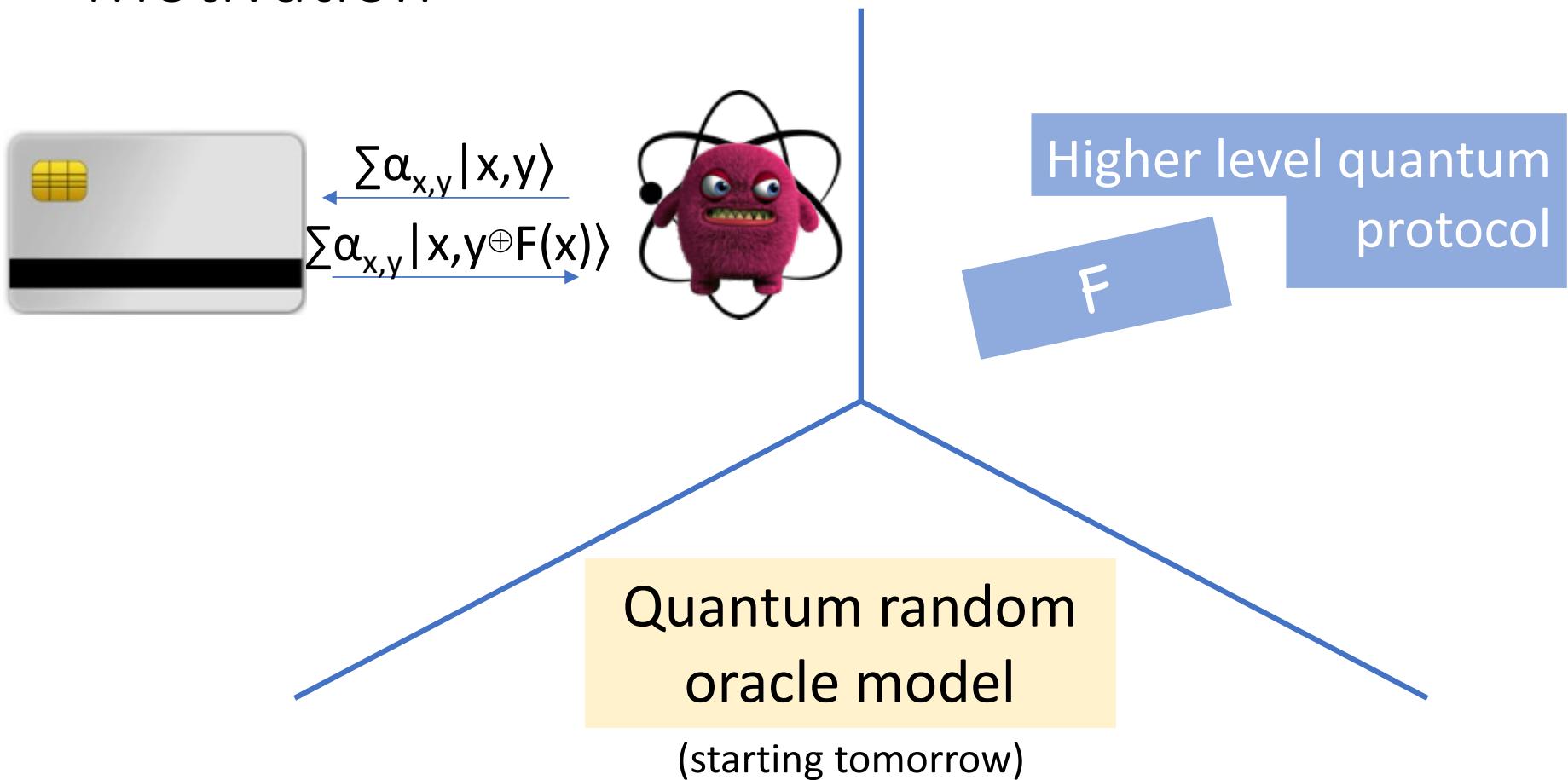


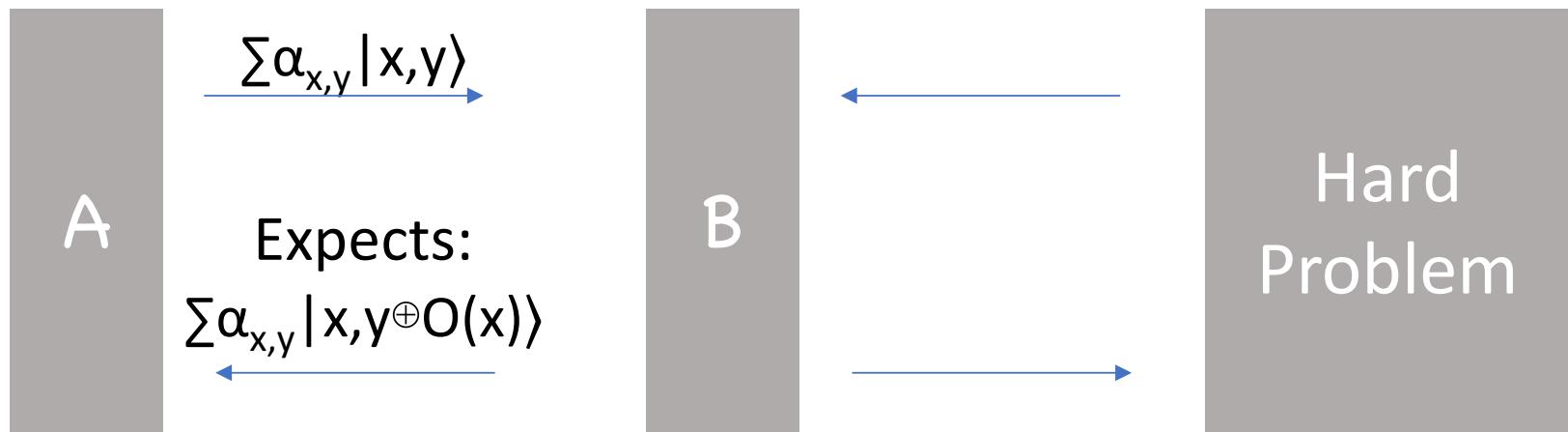
New Quantum Security Models

Mark Zhandry (Princeton & NTT Research)

Motivation



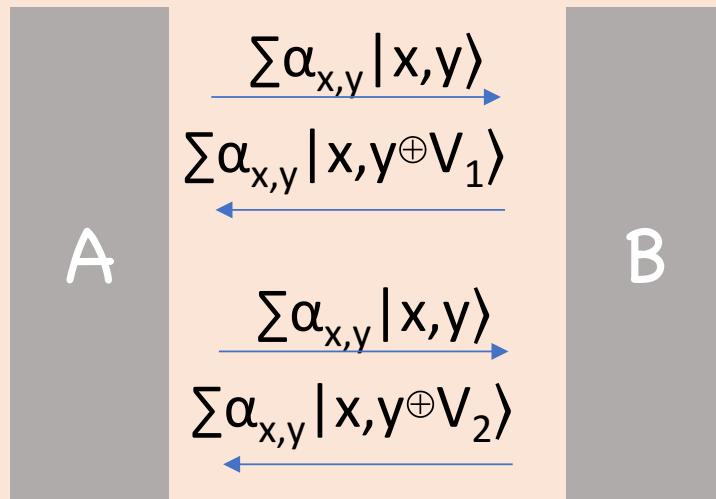
Security Proof Challenges



What does hybrid over queries look like?

Security Proof Challenges

Take 1: Per QUERY



Problem: repeated queries?

Problem: distinguishing attack

$$\frac{\sum |x,0\rangle}{\sum |x,V_1\rangle} \quad \text{vs} \quad \frac{\sum |x,0\rangle}{\sum |x,O(x)\rangle}$$

Security Proof Challenges

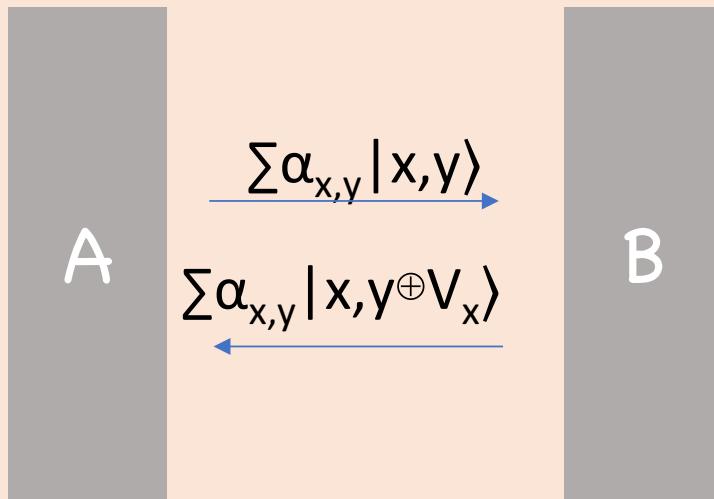
Typical reductions are commit to entire function
O at beginning, remain consistent throughout

[Zhang-Yu-Feng-Fan-Zhang'19]: "Committed programming reductions"

Non-committing reductions: topic for later class

Security Proof Challenges

Take 2: Per VALUE



Problem: exp-many values

- Exponential loss in hybrid
- How to simulate efficiently?

PRF Recap

Def: F is a **Fully Quantum** secure PRF if,

\forall QPT A , \exists negligible ϵ such that

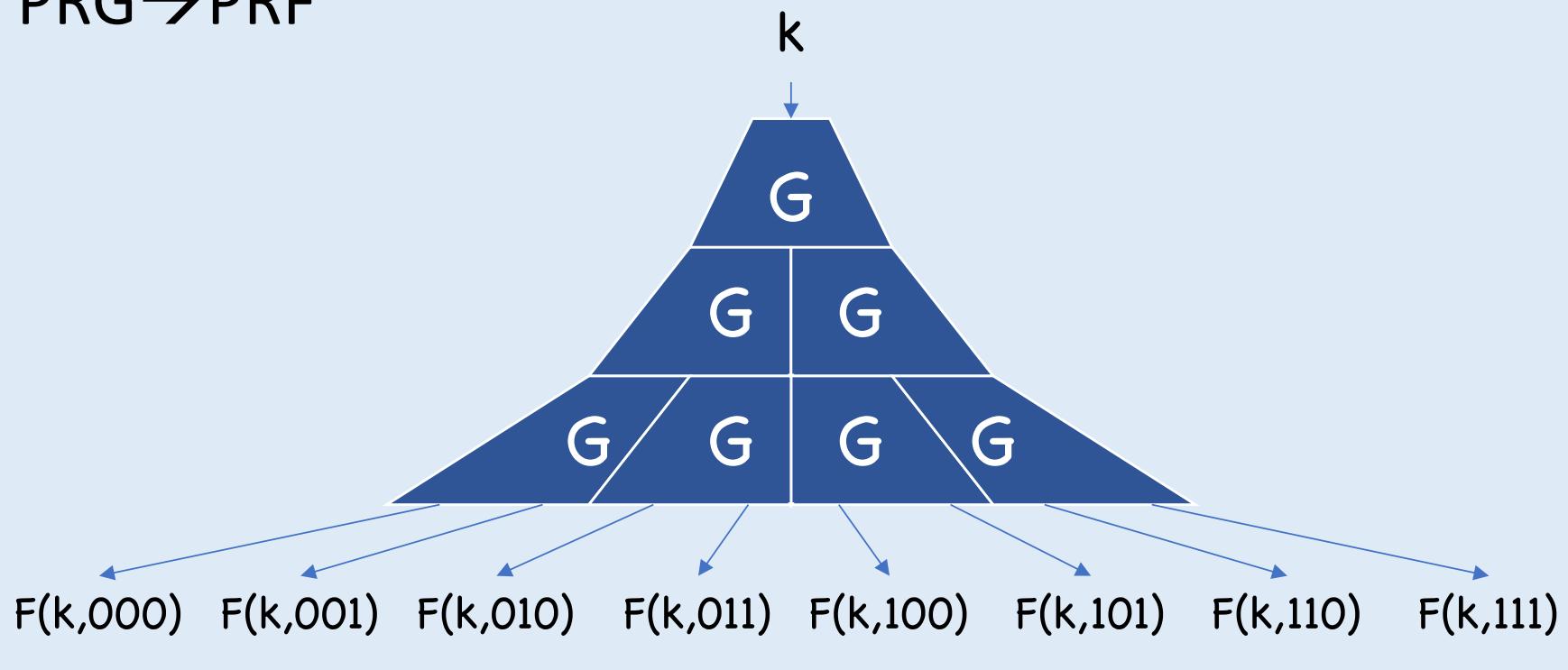
$$|\Pr[A^{(F(k,\cdot))}(\cdot)=1] - \Pr[A^{(R(\cdot))}(\cdot)=1]| < \epsilon$$

$A^{(O(\cdot))}$ means quantum queries:

$$\sum \alpha_{x,y} |x,y\rangle \quad \xrightarrow{\hspace{1cm}} \quad \sum \alpha_{x,y} |x,y^{\oplus O(x)}\rangle$$

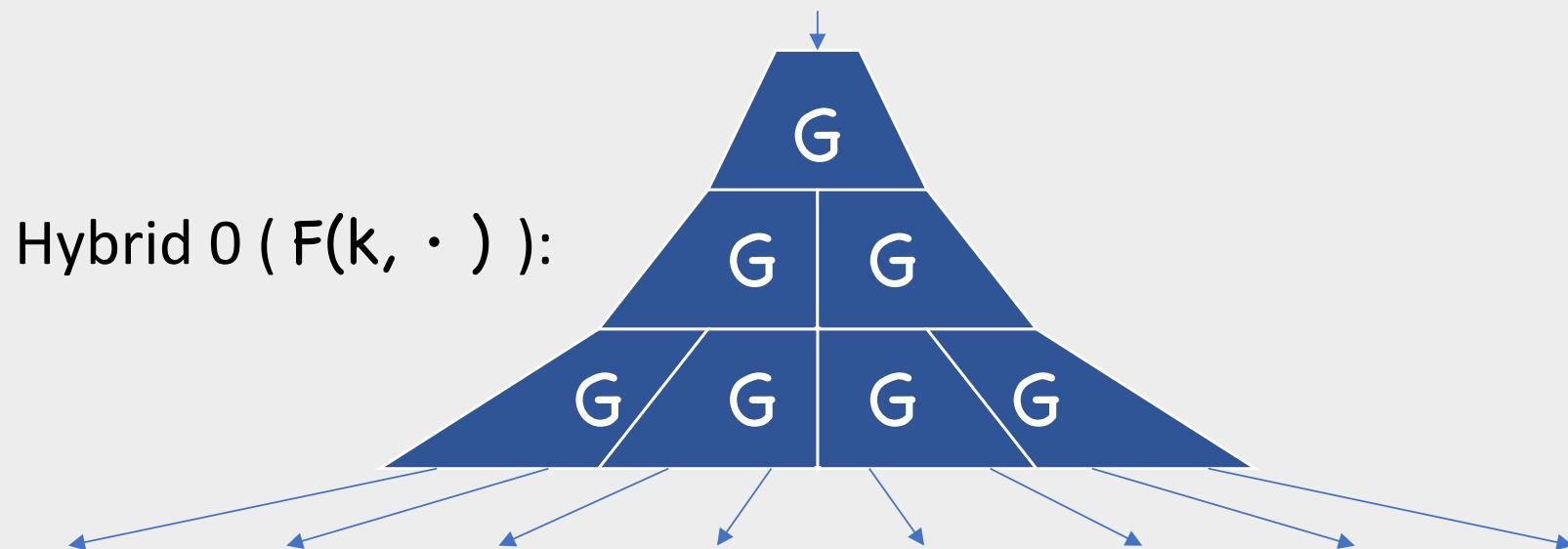
PRF Recap

PRG \rightarrow PRF



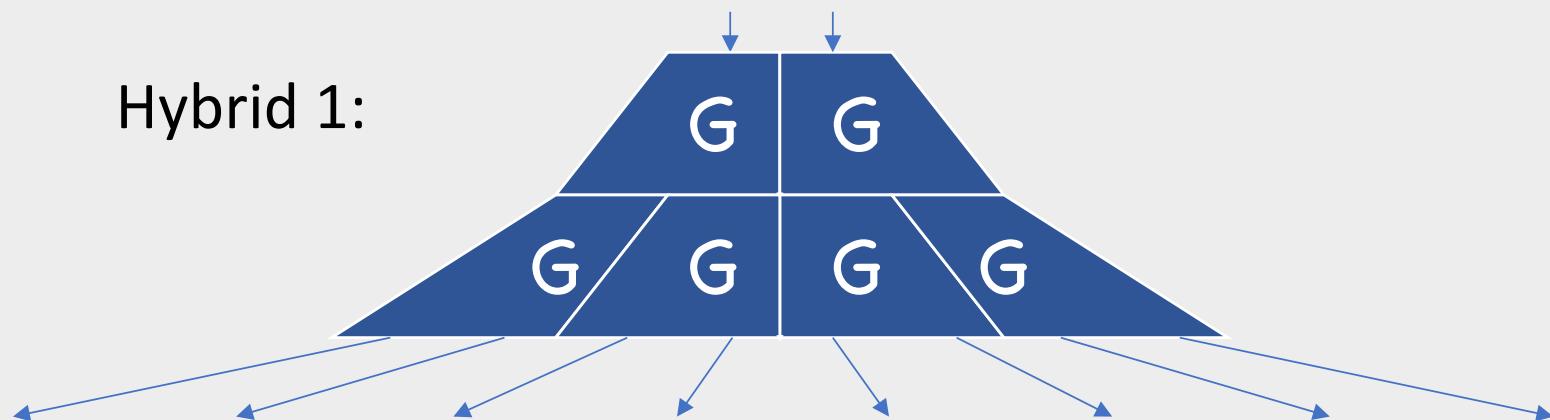
PRF Recap

Proof, step 1: Hybrid



PRF Recap

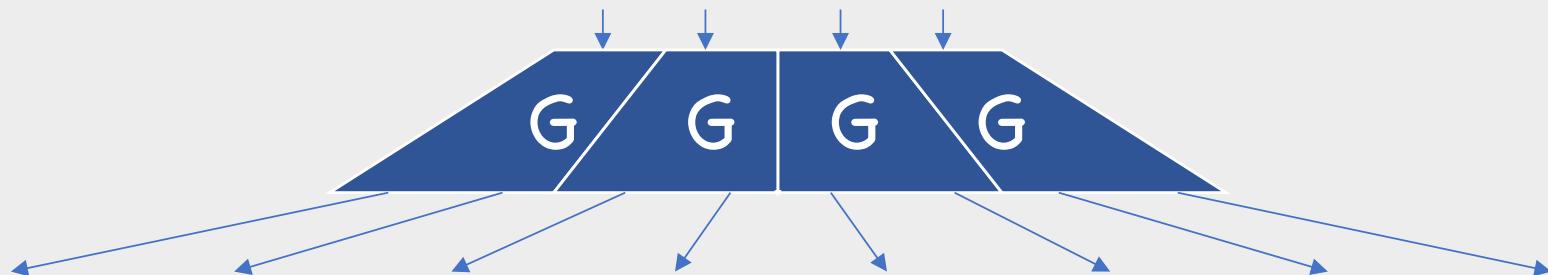
Proof, step 1: Hybrid



PRF Recap

Proof, step 1: Hybrid

Hybrid 2:



PRF Recap

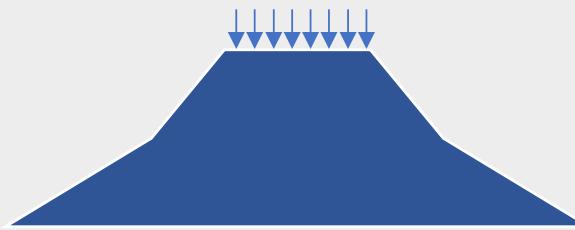
Proof, step 1: Hybrid

Hybrid $n(R(\cdot))$:

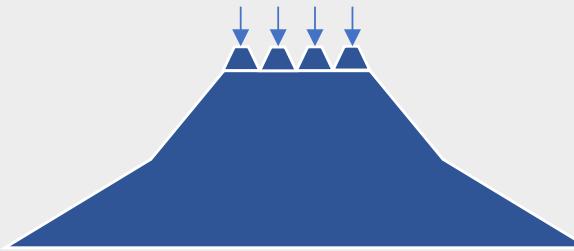
PRF Recap

Proof, step 1: Hybrid

$$\exists i \text{ s.t. } |\Pr[A^{\text{Hybrid } i+1}() = 1] - \Pr[A^{\text{Hybrid } i}() = 1]| \geq \varepsilon/n$$



VS

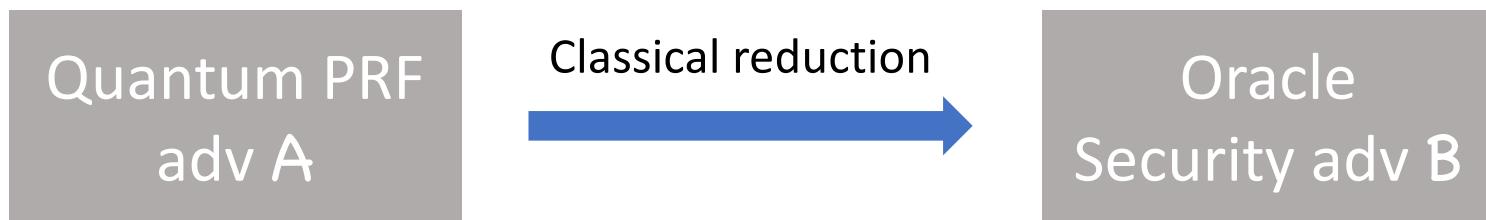


Step 1 makes sense if A classical,
post-quantum, or fully quantum

Another View

Def: G is Quantum Oracle Secure if, \forall QPT A , \exists negligible ϵ such that
 $|\Pr[A^{|R\rangle} = 1] - \Pr[A^{|G \circ O\rangle} = 1]| < \epsilon$

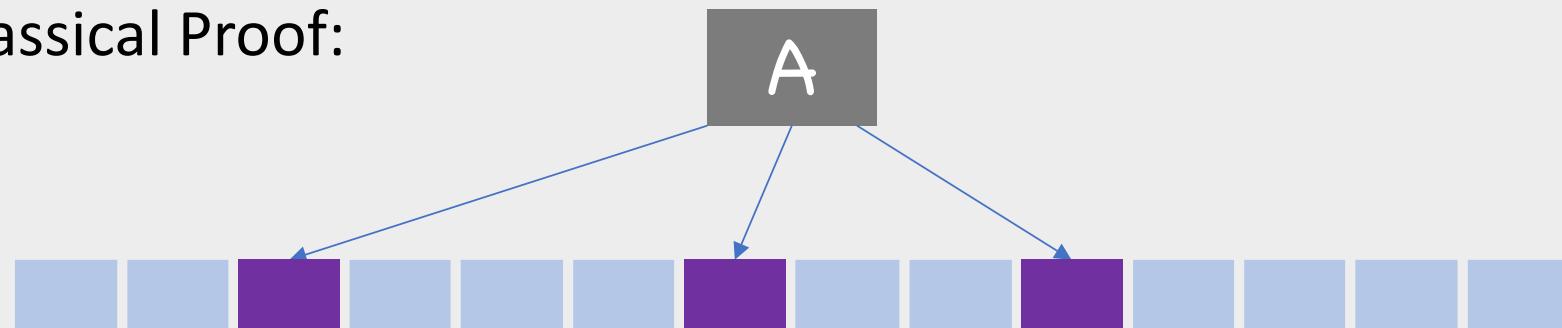
R, O random oracles



Another View

How to complete reduction from plain (post-quantum) PRGs?

Classical Proof:



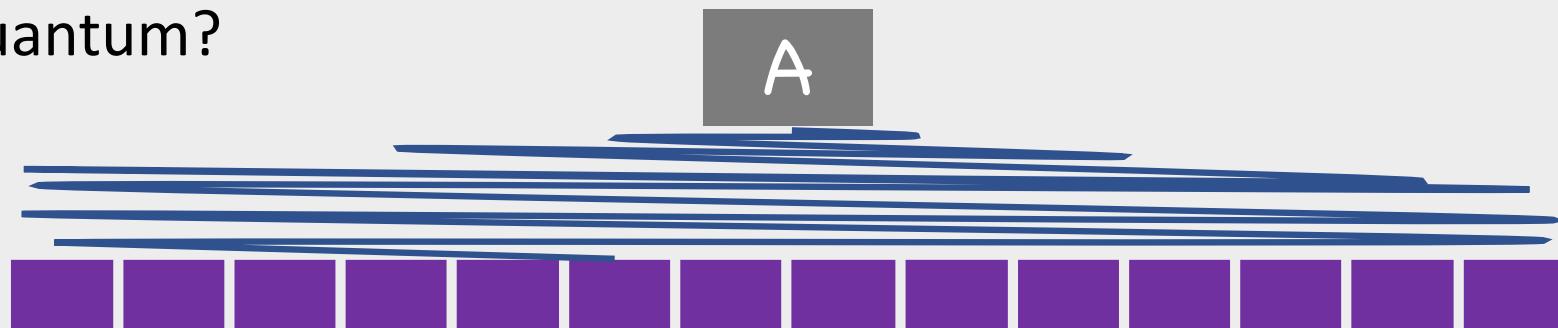
Only q queries

→ [Can simulate with q samples
Hybrid over q values]

Another View

How to complete reduction from plain (post-quantum) PRGs?

Quantum?



Need exponentially-many samples for perfect simulation

Reducing # of Hybrids

Goal: Simulate query responses
using only poly-many samples

Simulating with Few Samples

Extreme 1: Same sample in all positions

$V \ V \ V \ V \ V \ V \ V \ V \ V \ V \ V \ V \ V \ V \ V$

Distinguishable!

Middle ground: Several samples in random positions

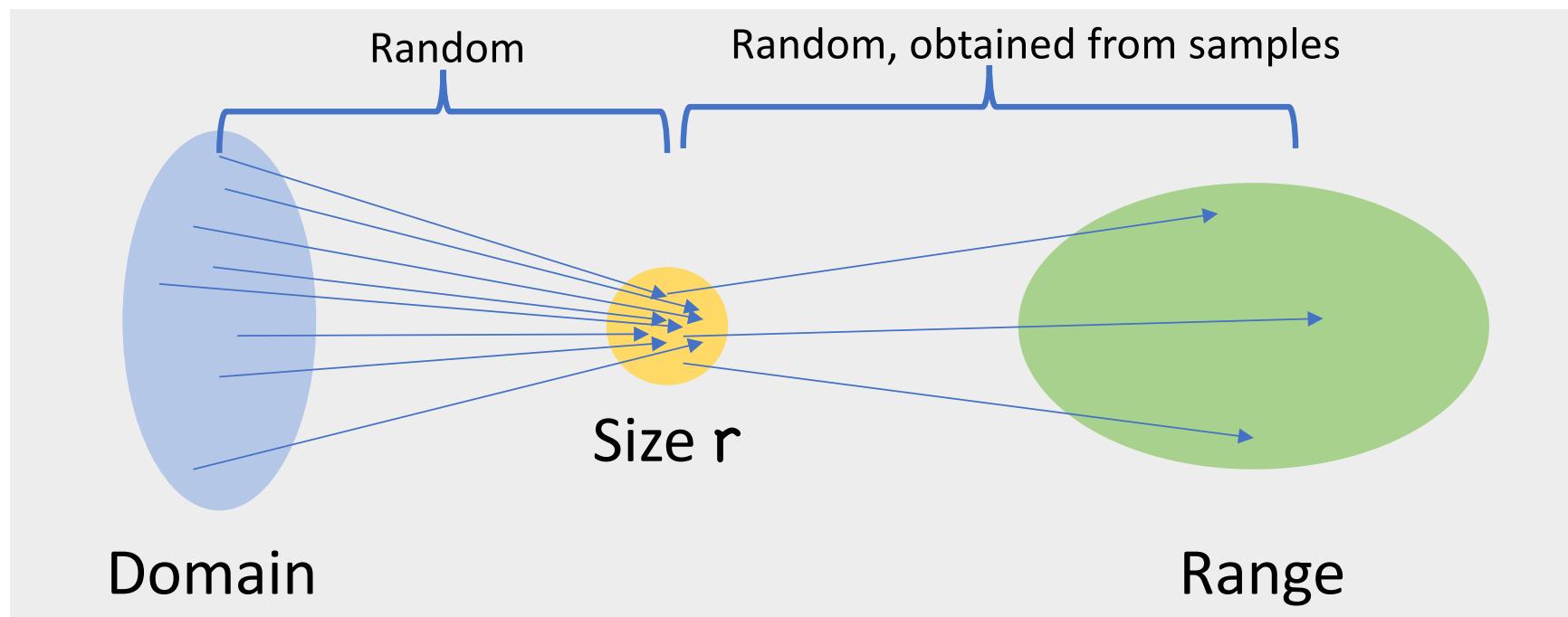
$V_1 \ V_5 \ V_3 \ V_5 \ V_2 \ V_1 \ V_4 \ V_3 \ V_2 \ V_1 \ V_4 \ V_5 \ V_2 \ V_3$

Extreme 2: Independent sample in each position

$V_1 \ V_2 \ V_3 \ V_4 \ V_5 \ V_6 \ V_7 \ V_8 \ V_9 \ V_{10} \ V_{11} \ V_{12} \ V_{13} \ V_{14}$

Exponential loss!

Small Range Distributions



How big of r to be indistinguishable from truly random?

Small Range Distributions

Thm [Z'12b]: No q quantum query alg can distinguish SR_r from random, except with probability $O(q^3/r)$.
Holds for any output distribution.

Quantum collision finding \rightarrow bound tight

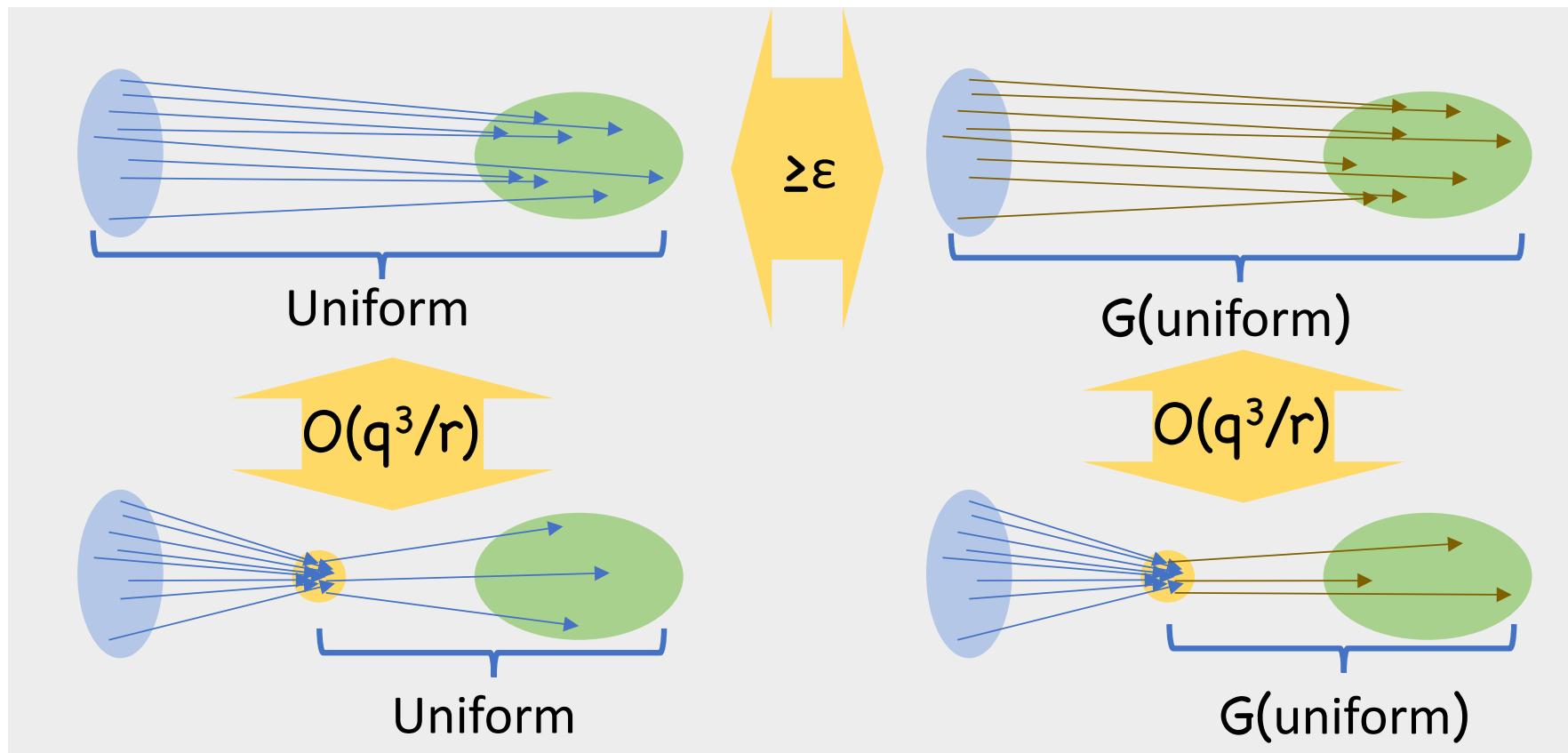
$$r=q^3?$$

$$r=q^4?$$

$$r=q^{20}?$$

$$r=1.01^q?$$

Quantum Proof



Quantum Proof

$$|\Pr[A^{|R\rangle} = 1] - \Pr[A^{|G \circ O\rangle} = 1]| \geq \varepsilon$$

$$|\Pr[B(y_1, \dots, y_r) = 1] - \Pr[B(G(x_1), \dots, G(x_r)) = 1]| \geq \varepsilon - O(q^3/r)$$

$$|\Pr[C(y) = 1] - \Pr[C(G(x)) = 1]| \geq \varepsilon/r - O(q^3/r^2)$$

Optimize by setting $r = O(q^3/\varepsilon)$ Final advantage $O(\varepsilon^2/q^3)$

Notes

Requires knowing ϵ

Can fix by guessing $\epsilon = 2^{-i}$ for random i

ϵ^2 means much bigger security loss

Proving SR Theorem

Thm [Z'12a]: If A makes q quantum queries to $O \leftarrow D$, then

$$\Pr[A^D()=1] = \sum_{\substack{x_1, \dots, x_{2q} \\ y_1, \dots, y_{2q}}} \Pr[D(x_i)=y_i] \quad \forall i \in [2q]$$

(Restatement of polynomial method [Beals-Buhrman-Cleve-Mosca-de Wolf'01])

Thm [Z'12b]: For SR_r , the $\Pr[D(x_i)=y_i] \quad \forall i \in [k]$ are degree k polynomials in $1/r$

$$\rightarrow \Pr[A^{SR_r}()=1] = \text{degree } 2q \text{ polynomial in } 1/r$$

Proving SR Theorem

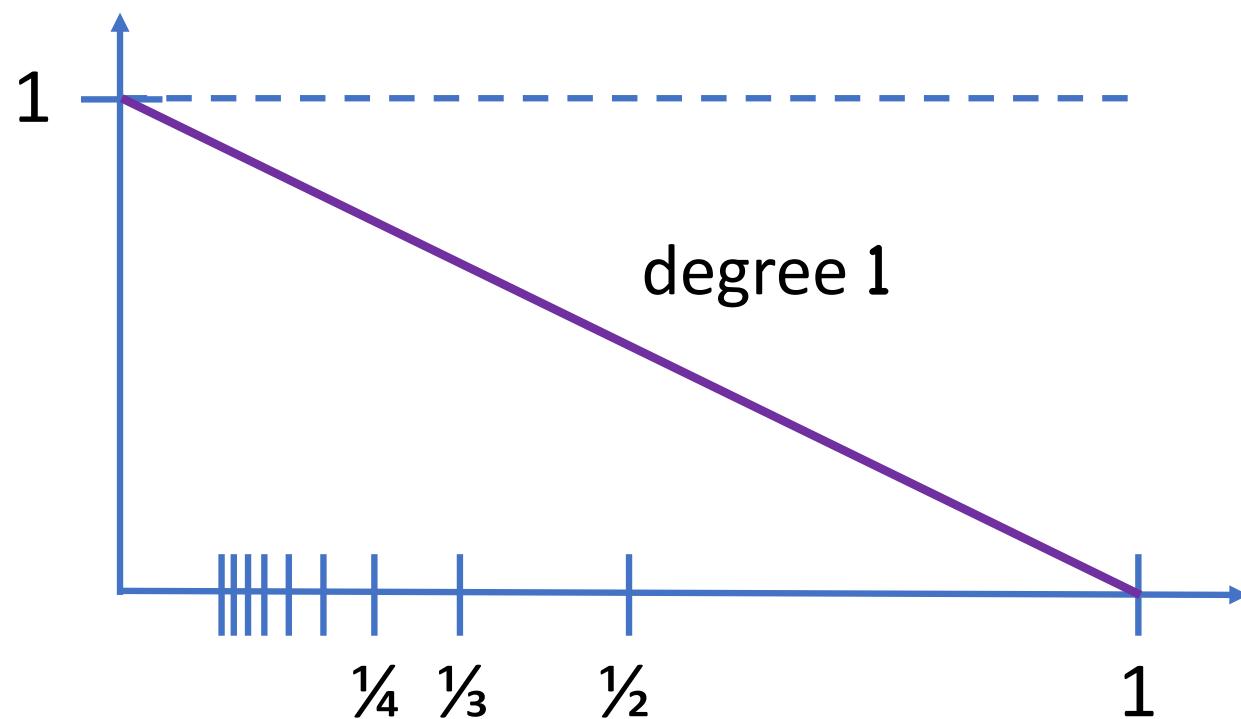
$$\Pr[A_{SR_r}()=1] = P(1/r) = \text{degree } 2q \text{ polynomial}$$

Additional observations:

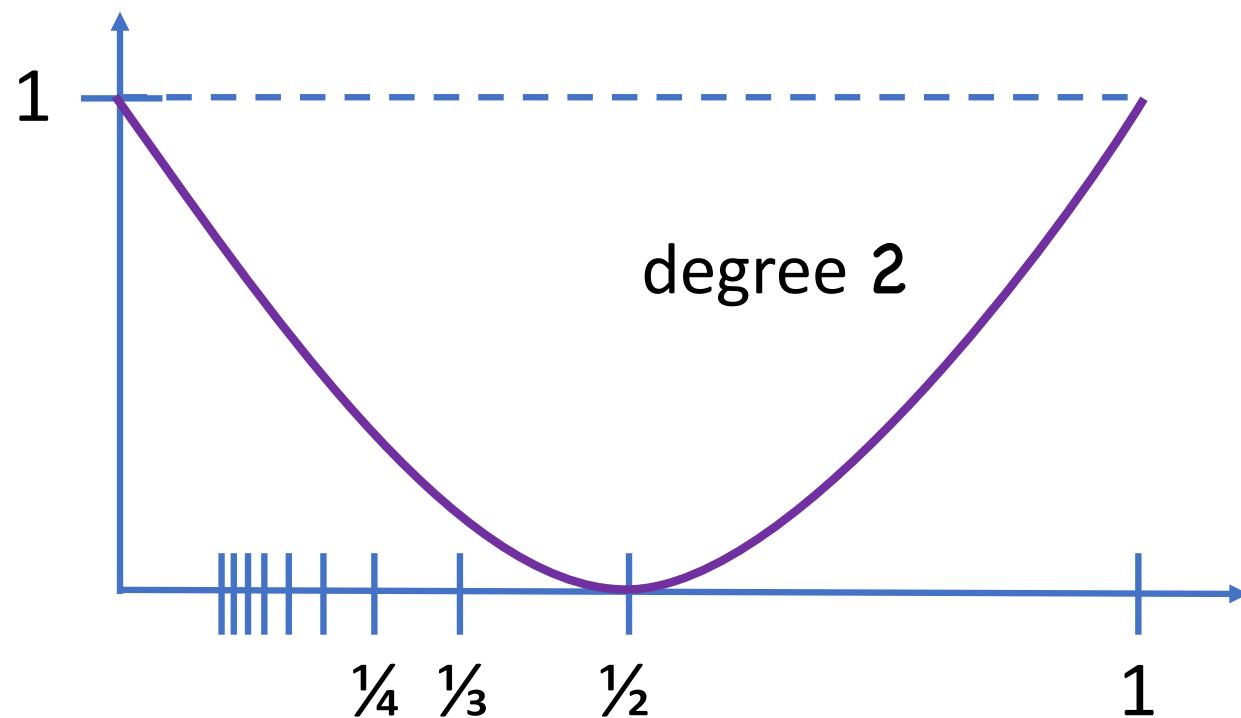
- SR_∞ = Truly random function
- $0 \leq P(1/r) \leq 1 \quad \forall \text{ positive integers } r$

Goal: bound $| P(1/r) - P(0) |$

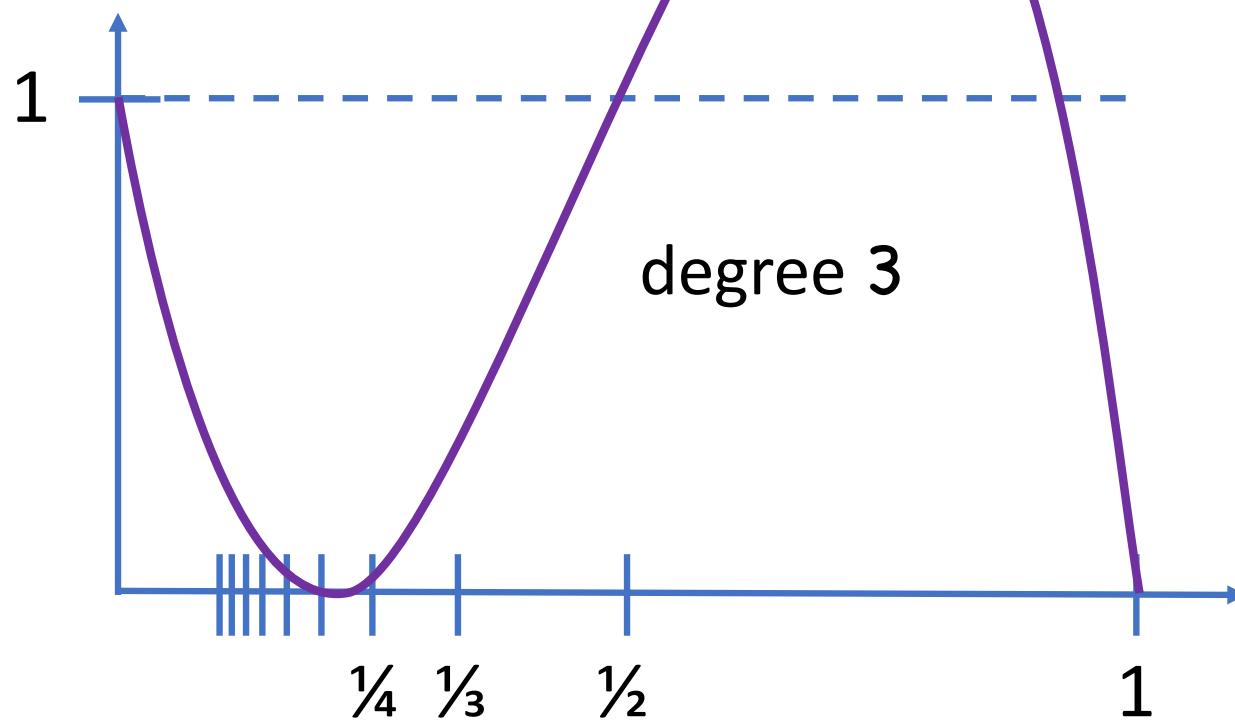
Proving SR Theorem



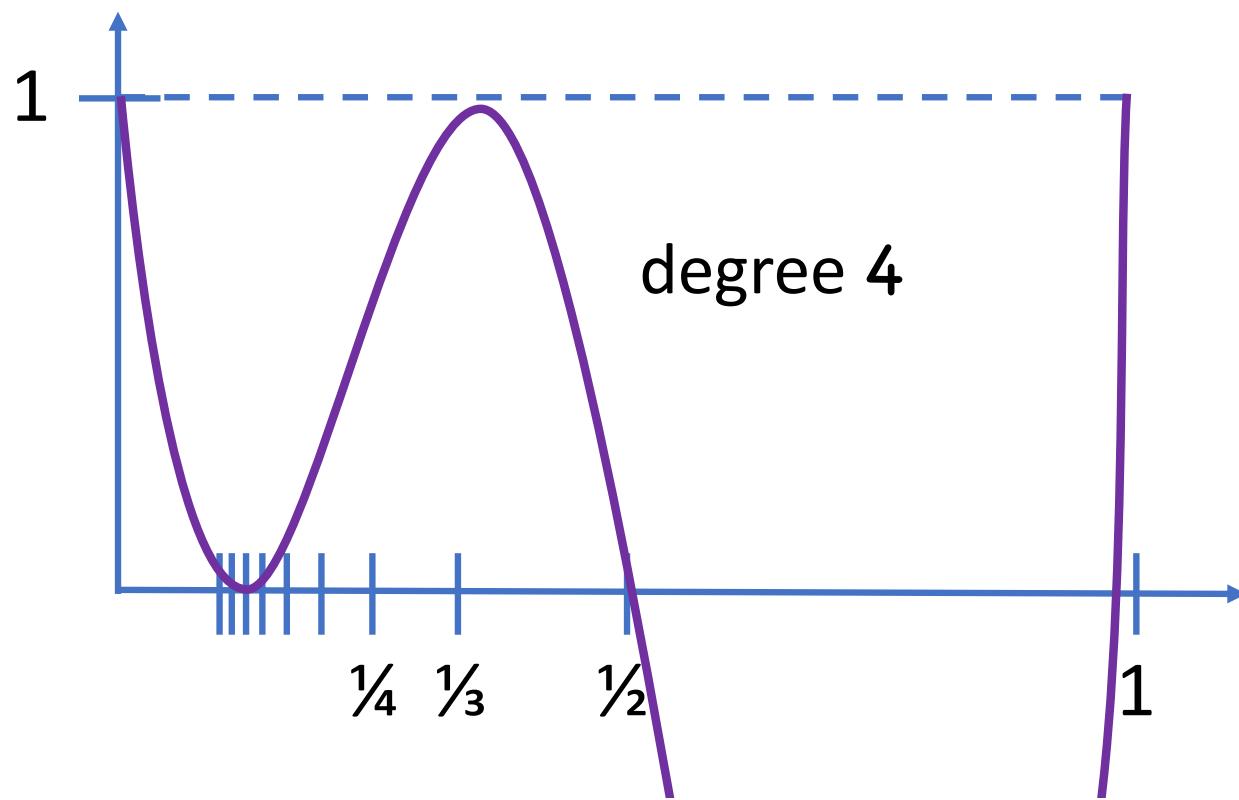
Proving SR Theorem



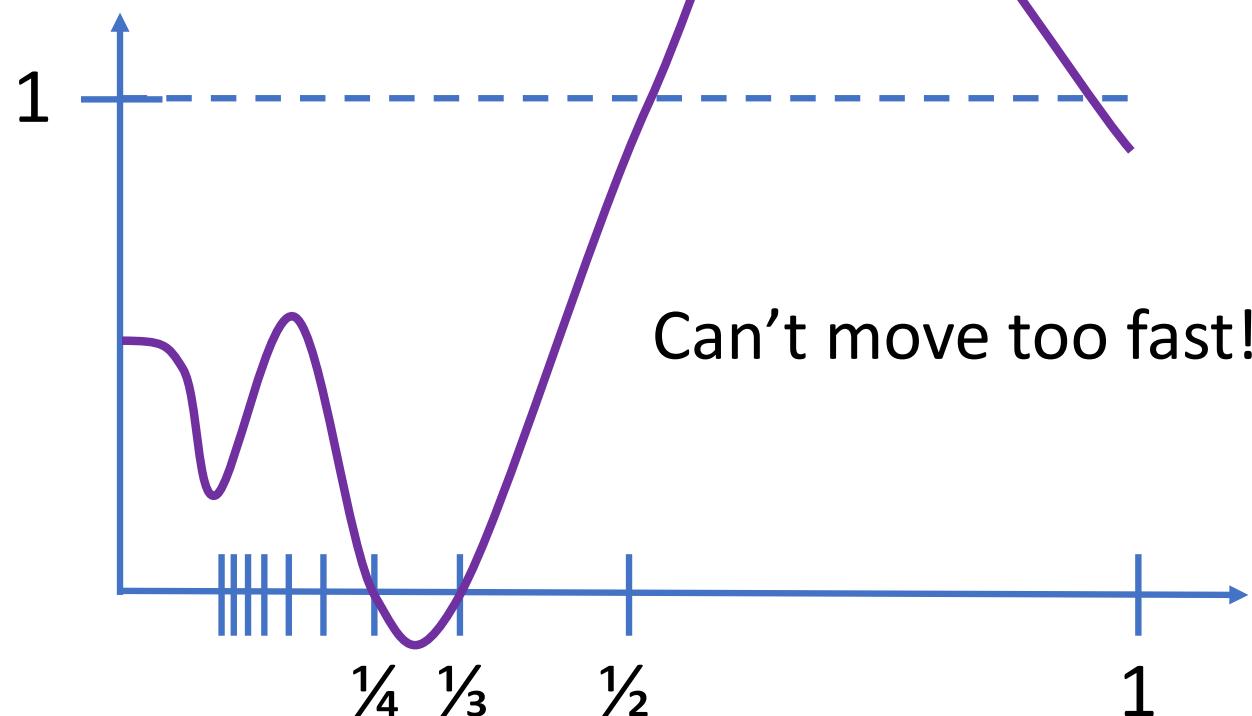
Proving SR Theorem



Proving SR Theorem



Proving SR Theorem



Proving SR Theorem

Thm [Z'12b]: If $P(1/r)$ satisfies:

- Degree $\leq k$
- $0 \leq p(1/r) \leq 1 \quad \forall$ positive integers r

Then $|P(1/r) - P(0)| \leq 27k^3/r$

(Asymptotically tight)

Remaining Step

SR_r requires random functions; how to simulate?

Only 2q-wise marginals matter
→ 2q-wise independent functions “look” random

What else is out there?

Encryption

Secret sharing

IBE

Authentication

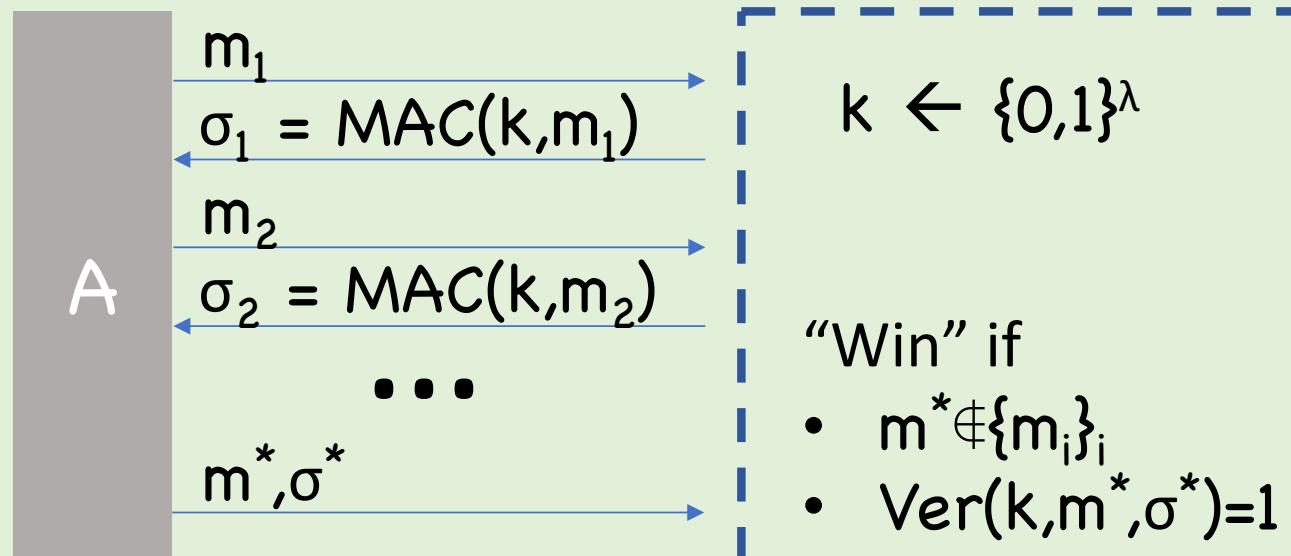
PRPs

MPC

Remainder of lecture: definitional issues

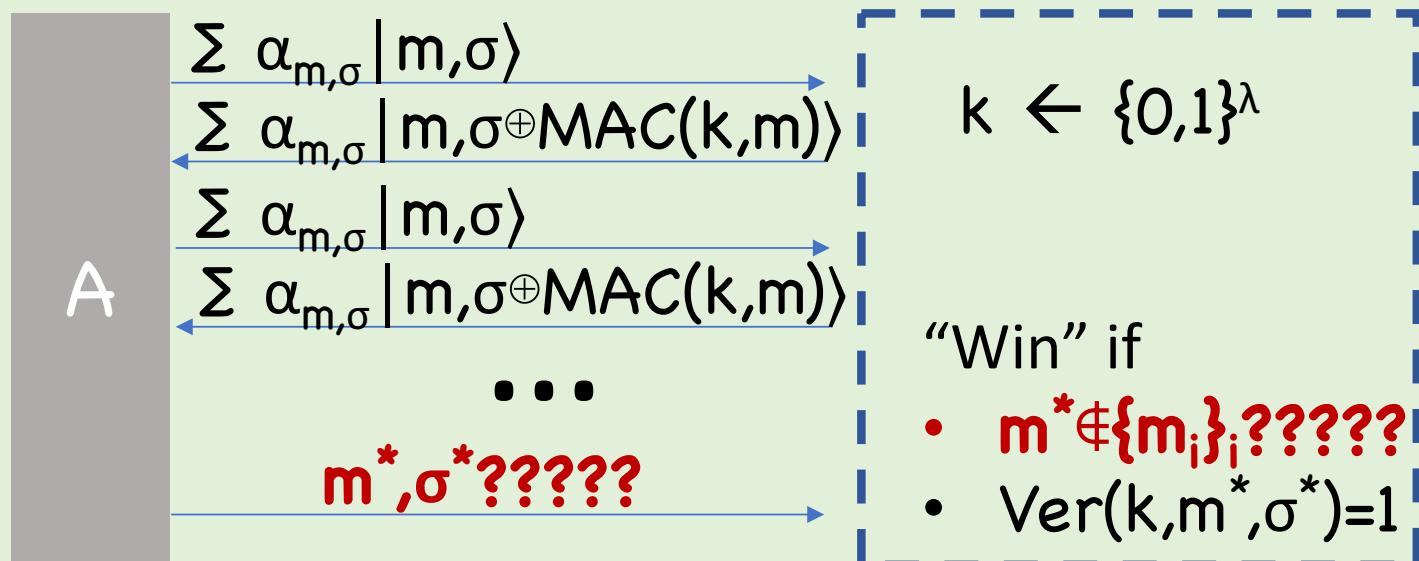
Defining MACs/Signatures

Classical Security:



Defining MACs/Signatures

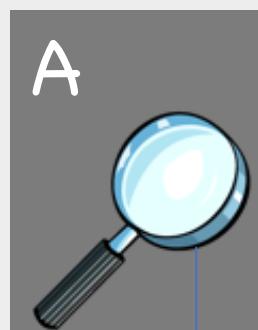
Fully Quantum Security?



Defining MACs/Signatures

What does it mean to be “new”?

Example:



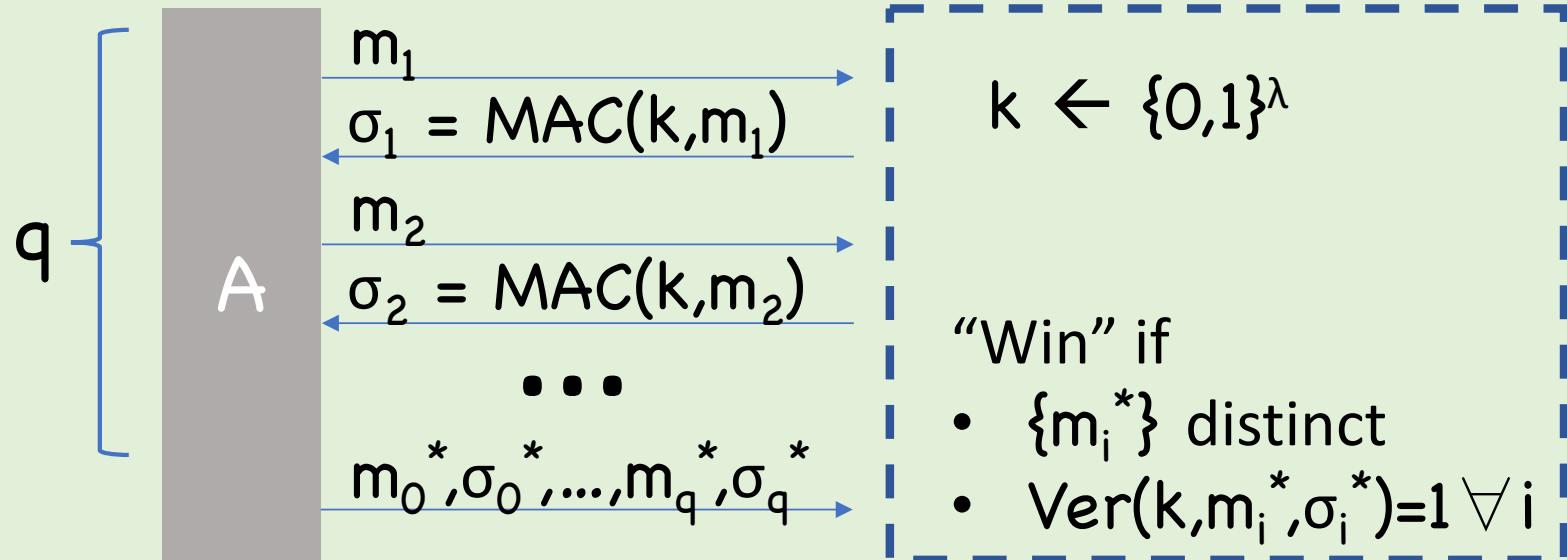
$$\sum \alpha_m |m,0\rangle$$

$$\sum \alpha_m |m,MAC(k,m)\rangle$$

Random m , $MAC(k,m)$

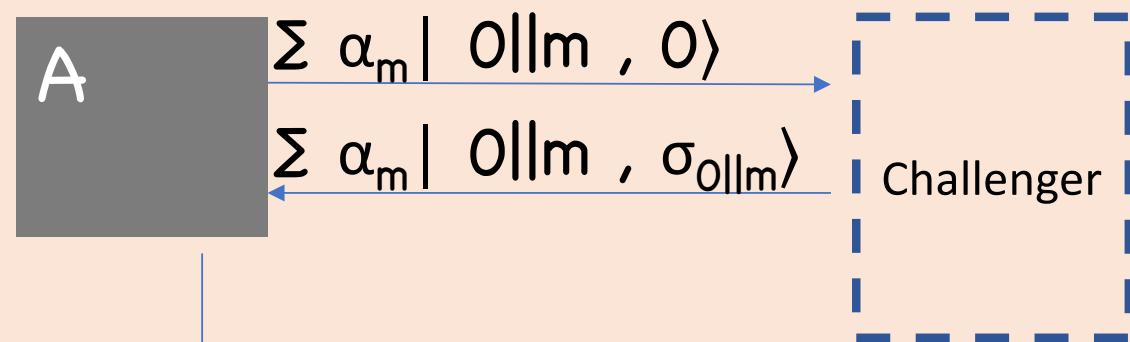
Defining MACs/Signatures

Partial Answer: One More Security [Boneh-Z'13a]



Defining MACs/Signatures

Limitation: Suppose:



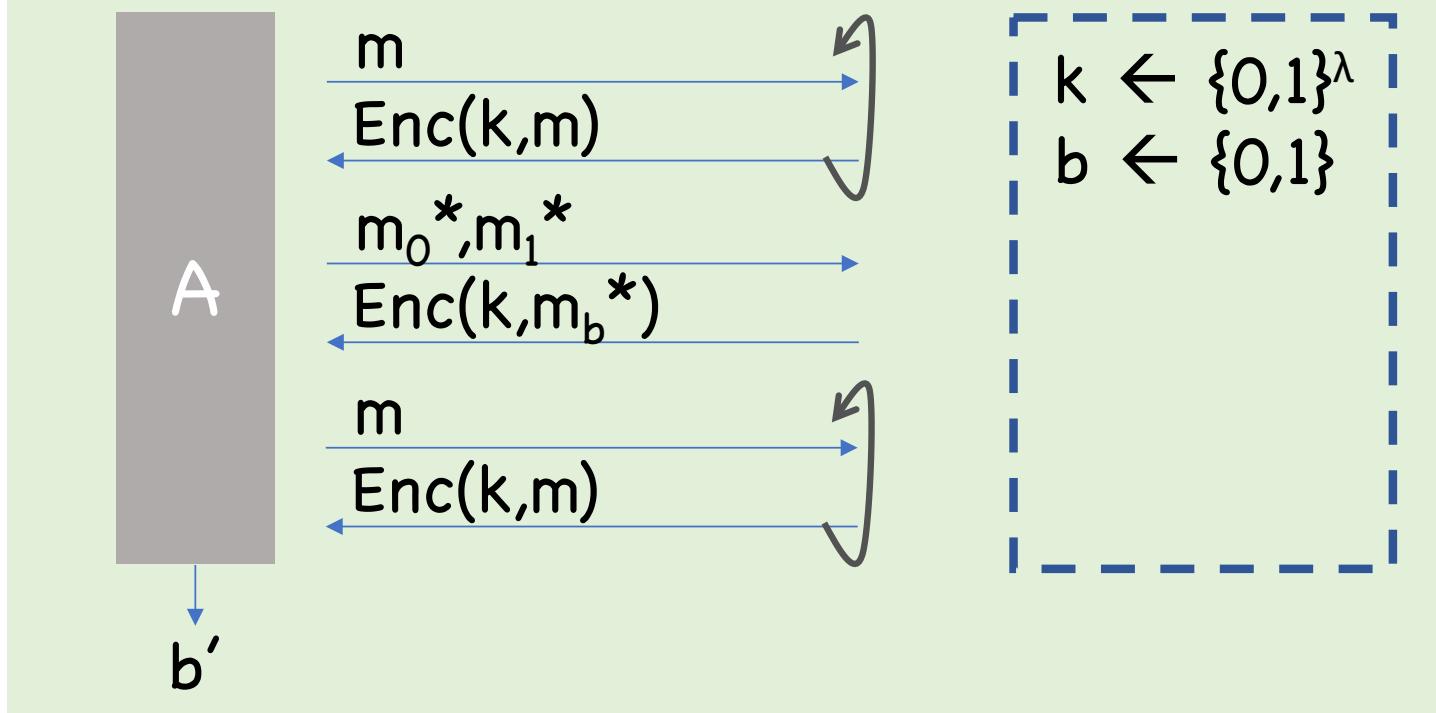
$1 \parallel m, \text{MAC}(k, 1 \parallel m)$ ← Doesn't violate
one-more security!

Defining MACs/Signatures

Other defs exist which fix this problem [Garg-Yuen-Z'17, Alagic-Majenz-Russell-Song'18], but IMO even satisfactory definition not yet solved

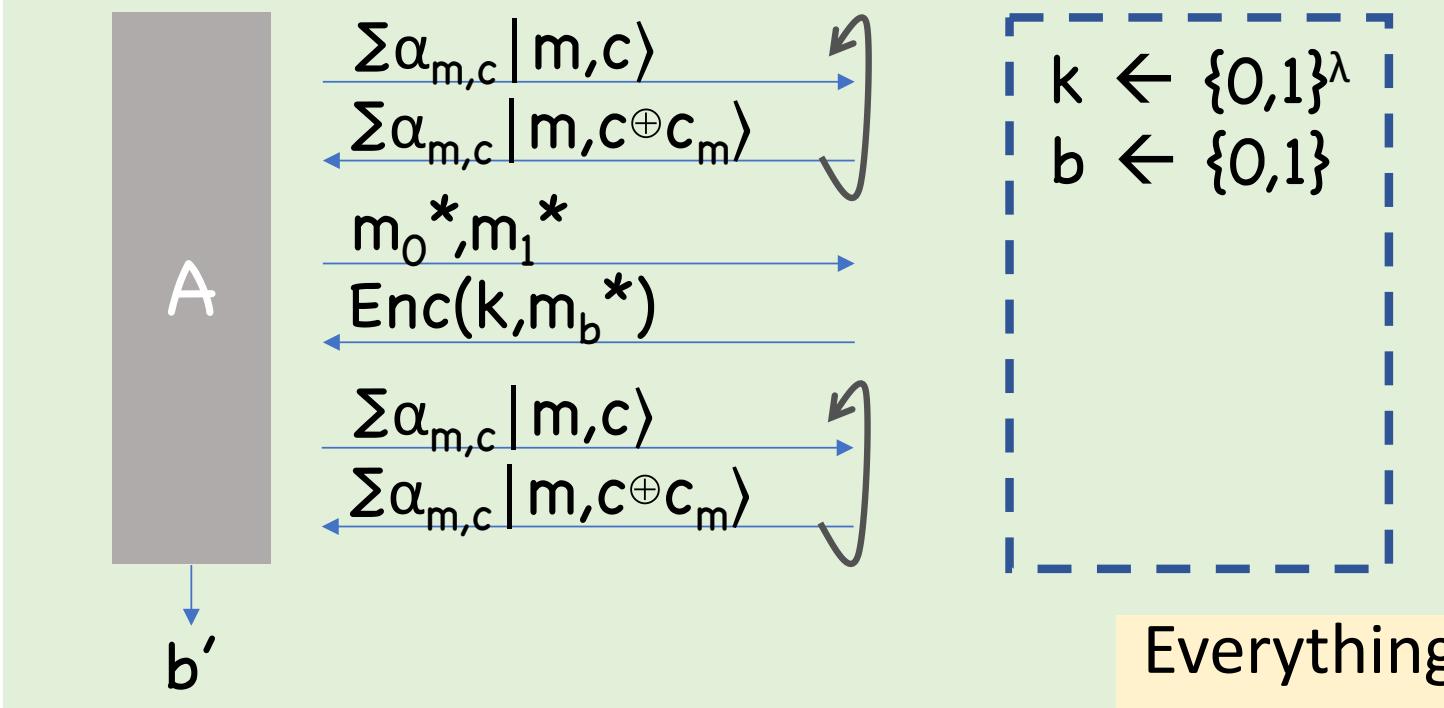
Defining Encryption

Classical CPA Security:

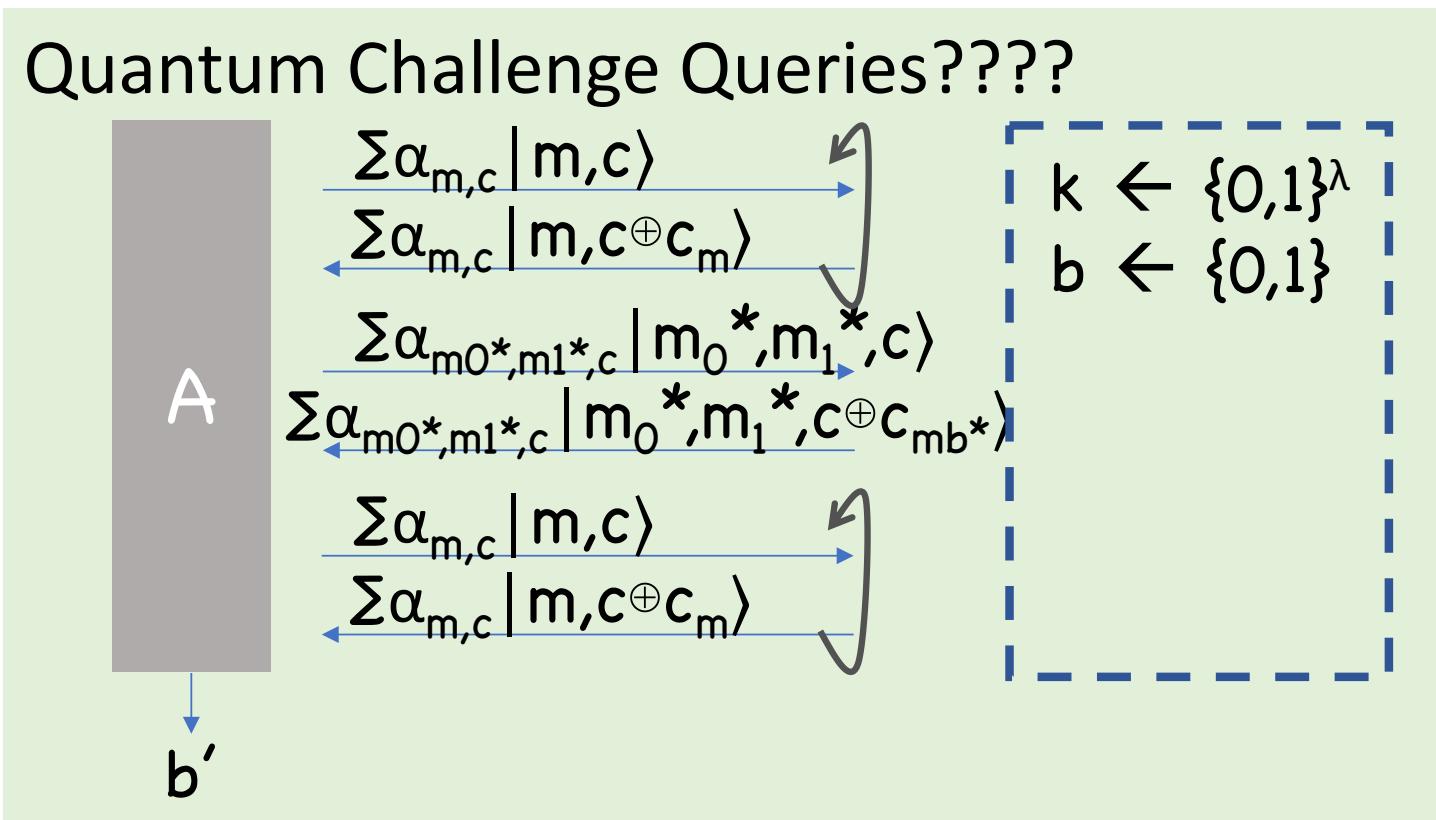


Defining Encryption

Quantum CPA Attacks?

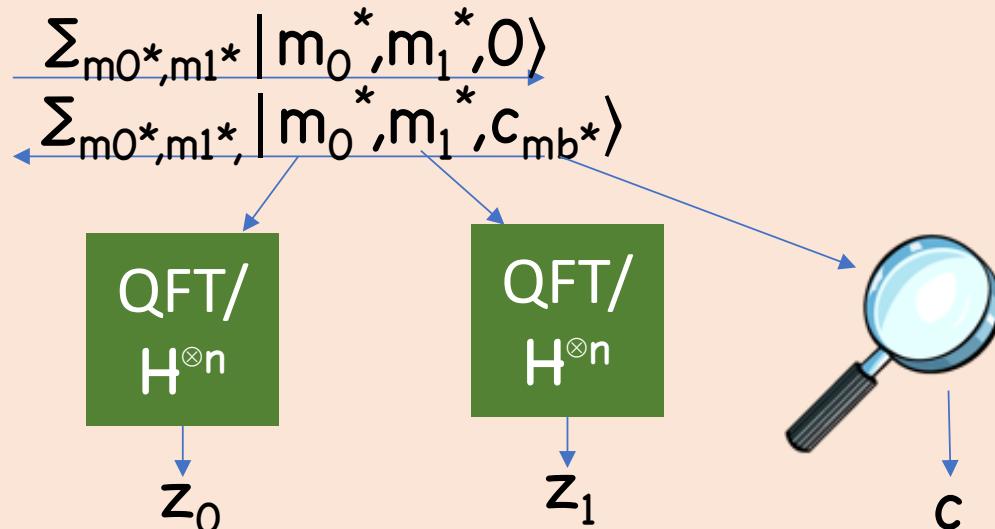


Defining Encryption



Defining Encryption

Attack:



$$z_{1-b} = 0^n \text{ and whp } z_b \neq 0^n$$

Defining Encryption

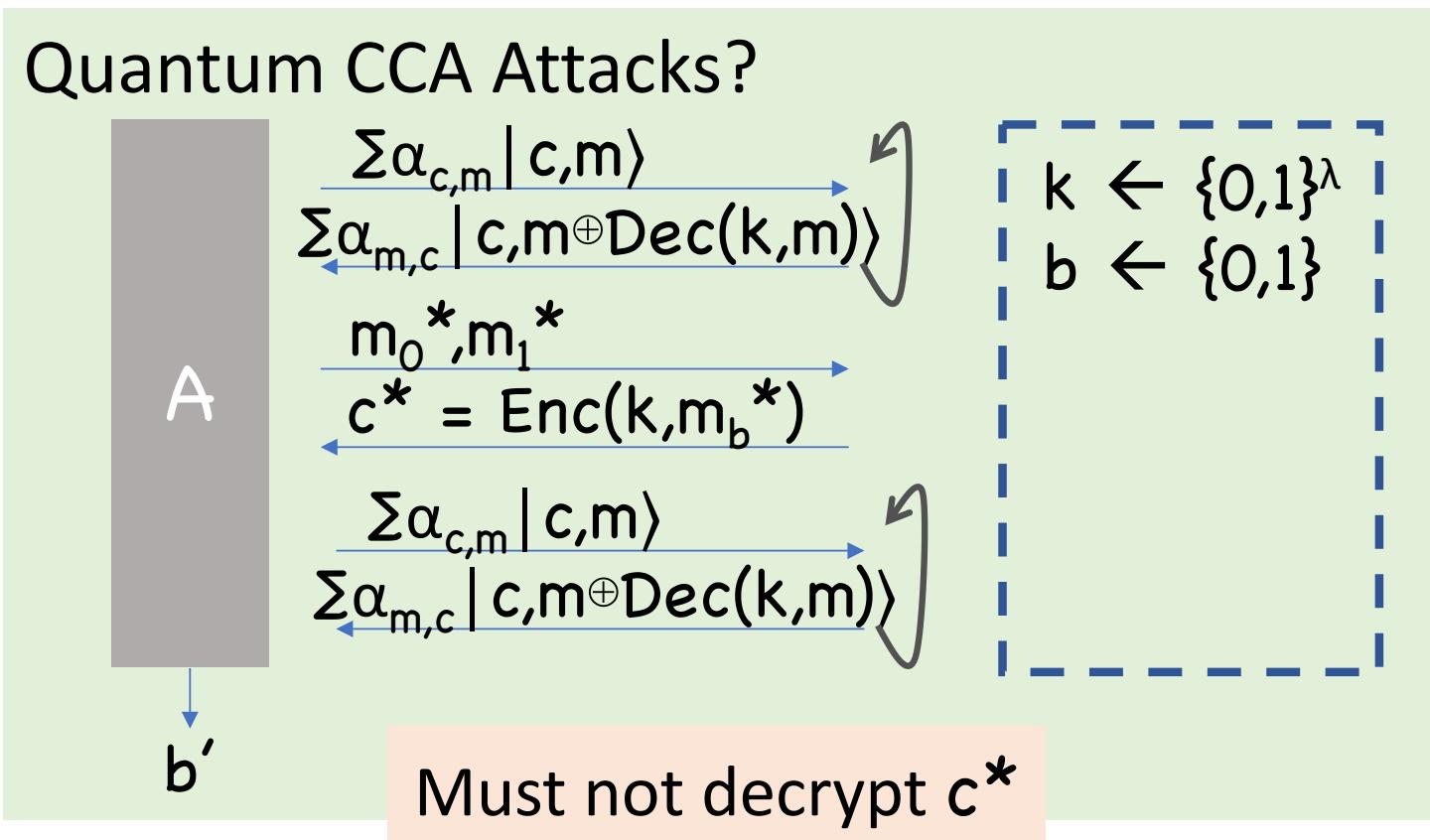
Classical encryption schemes are not secure for encrypting quantum messages, *if the attacker gets to see the original message registers*

[Boneh-Z'13b]: don't allow quantum challenge queries

[Gagliardoni-Hülsing-Schaffner'16]: make sure quantum challenge query never returned

More subtle than it sounds

Defining Encryption

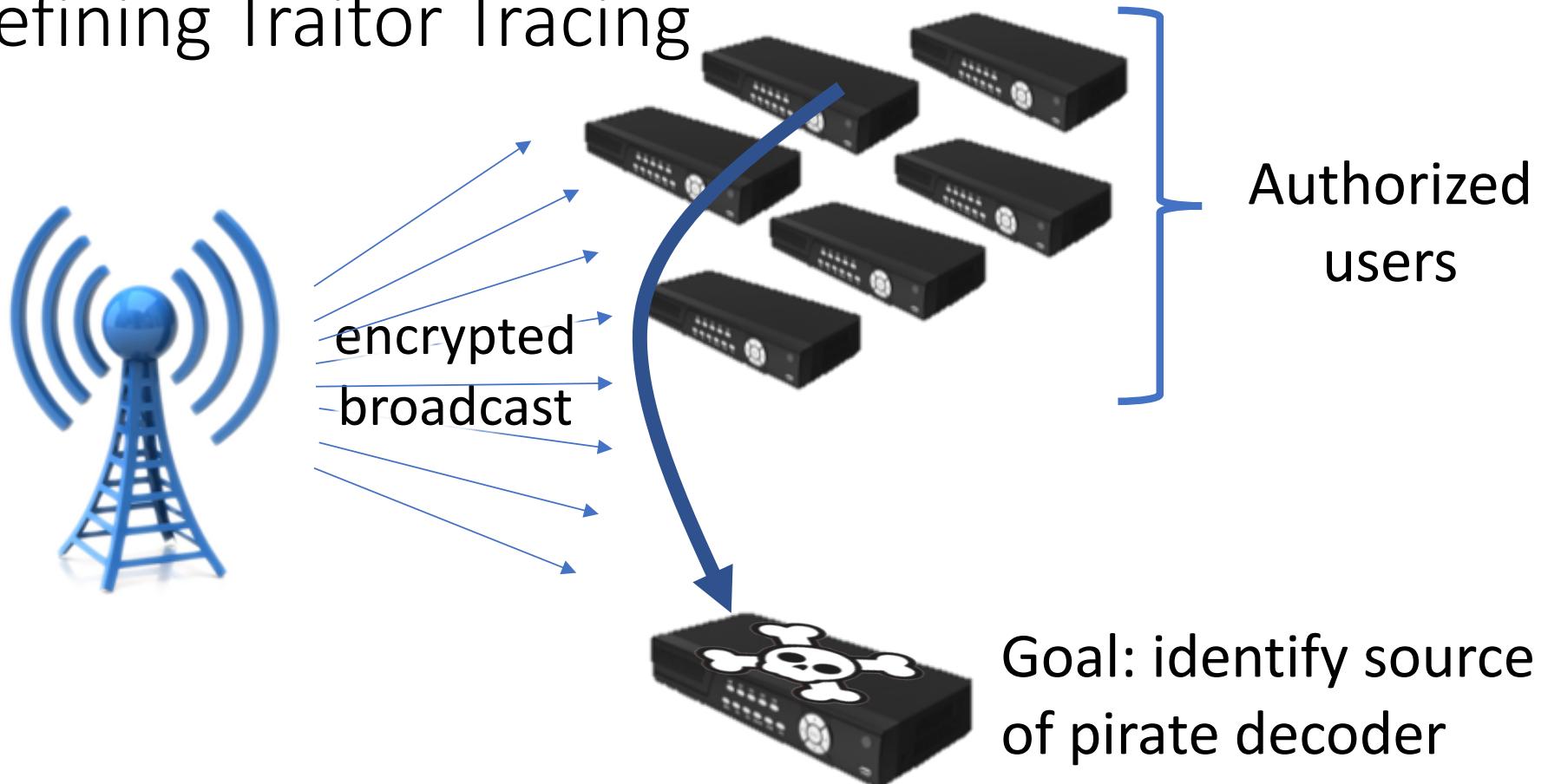


Defining Encryption

“Not decrypting c^* ” problematic
for quantum challenges

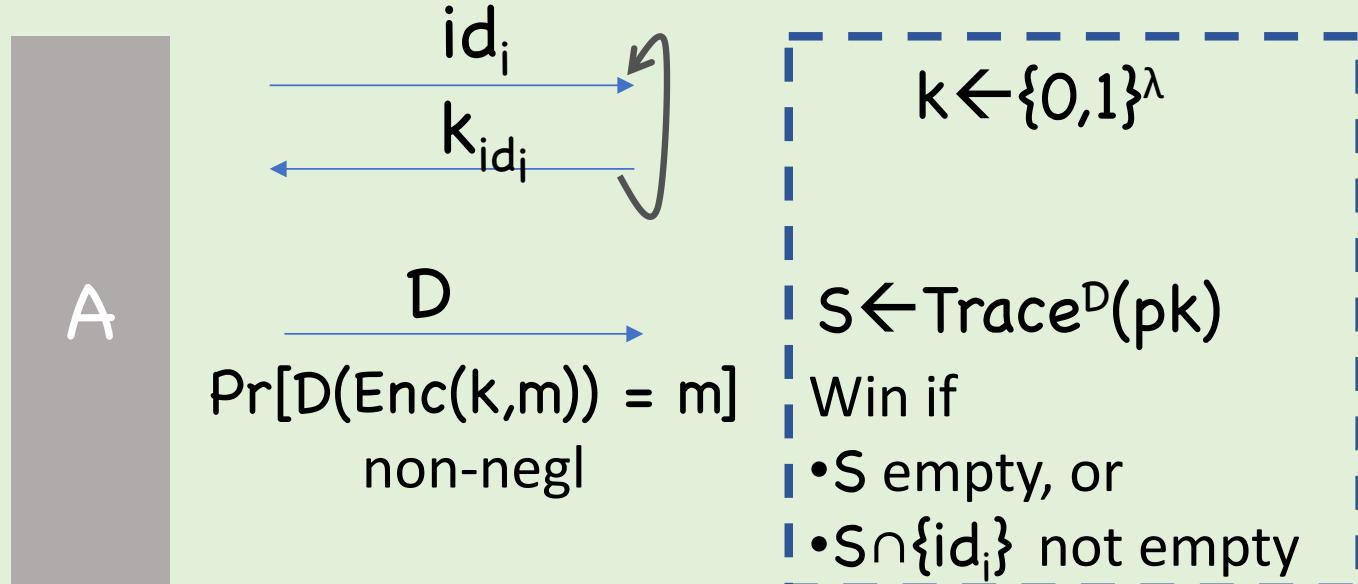
[Chevalier-Ebrahimi-Vu’20]:
Formalize quantum CCA+Challenge

Defining Traitor Tracing



Defining Traitor Tracing

Classical Def (modulo details):



Defining Traitor Tracing

Problem: most prior work assumes
 D is stateless/can be rewound

Somewhat inherent: single query
to D usually not enough to accuse

But if decoder has quantum state,
single query may alter decoder

[Z'20]: Formalize quantum analog of “stateless”

Tomorrow: Unavoidable Quantum Attacks

So far, issues concern new quantum attack models

My remaining lectures: attacks/issues even under existing attack model

Rewinding

Quantum Random Oracle Model