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Motivation

∑αx,y|x,y⟩
∑αx,y|x,y⊕F(x)⟩

Higher	level	quantum					
protocol

Quantum	random	
oracle	model
(starting	tomorrow)



Security	Proof	Challenges

A

∑αx,y|x,y⟩

∑αx,y|x,y⊕O(x)⟩
Expects: B Hard	

Problem

What	does	hybrid	over	queries	look	like?



Security	Proof	Challenges

Take	1:	Per	QUERY

A

∑αx,y|x,y⟩
∑αx,y|x,y⊕V1⟩

B
∑αx,y|x,y⟩

∑αx,y|x,y⊕V2⟩

Problem:	repeated	queries?

Problem:	distinguishing	attack
∑|x,0⟩
∑|x,V1⟩

∑|x,0⟩
∑|x,O(x)⟩VS



Security	Proof	Challenges

Typical	reductions	are	commit	to	entire	function	
O at	beginning,	remain	consistent	throughout	

[Zhang-Yu-Feng-Fan-Zhang’19]:	“Committed	programming	reductions"

Non-committing	reductions:	topic	for	later	class



Security	Proof	Challenges

Take	2:	Per	VALUE

A
∑αx,y|x,y⟩

∑αx,y|x,y⊕Vx⟩ B
Problem:	exp-many	values
• Exponential	loss	in	hybrid
• How	to	simulate	efficiently?



PRF	Recap

Def:	F is	a	Fully	Quantum	secure	PRF	if,	
∀QPT	A,	∃negligible	ε such	that
| Pr[A |F(k,·)⟩ ()=1] – Pr[A |R(·)⟩ ()=1] | < ε

A|O(·)⟩ means	quantum	queries:	

∑αx,y|x,y⟩ ∑αx,y|x,y⊕O(x)⟩



PRF	Recap

PRGàPRF

G

k

G G

GG G G

F(k,000) F(k,001) F(k,010) F(k,011) F(k,100) F(k,101) F(k,110) F(k,111)



PRF	Recap

Proof,	step	1:	Hybrid

G
G G

GG G G

Hybrid	0	(	F(k, · ) ):



PRF	Recap

Proof,	step	1:	Hybrid

G G

GG G G

Hybrid	1:



PRF	Recap

Proof,	step	1:	Hybrid

GG G G

Hybrid	2:



PRF	Recap

Proof,	step	1:	Hybrid

Hybrid	n (	R( · ) ):



PRF	Recap

Proof,	step	1:	Hybrid

∃i s.t. | Pr[AHybrid i+1() = 1] - Pr[AHybrid i() = 1] | ≥ ε/n 

vs
Step	1	makes	sense	if	A classical,	
post-quantum,	or	fully	quantum



Another	View

Def:	G is	Quantum	Oracle	Secure	if,	∀QPT	
A,	∃negligible	ε such	that

| Pr[A |R⟩ =1] – Pr[A |G∘O⟩ =1] | < ε

R,O random	oracles

Quantum	PRF	
adv A

Classical	reduction Oracle	
Security	adv B



Another	View

How	to	complete	reduction	from	plain	(post-quantum)	PRGs?		

Classical	Proof: A

Only	q queries Can	simulate	with	q samples
Hybrid	over	q values



Another	View

How	to	complete	reduction	from	plain	(post-quantum)	PRGs?		

Quantum? A

Need	exponentially-many	samples	for	perfect	simulation



Reducing	#	of	Hybrids

Goal:	Simulate	query	responses	
using	only	poly-many	samples



Simulating	with	Few	Samples

Extreme	1:	Same	sample	in	all	positions
V   V   V   V   V   V   V   V   V   V   V   V   V   V

Extreme	2:	Independent	sample	in	each	position
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13  V14

Exponential	loss!

Distinguishable!

Middle	ground:	Several	samples	in	random	positions
V1 V5 V3 V5 V2 V1 V4 V3 V2 V1 V4 V5 V2 V3



Small	Range	Distributions

Domain Range

Size	r

Random Random,	obtained	from	samples

How	big	of	r to	be	indistinguishable	from	truly	random?



Small	Range	Distributions

Thm [Z’12b]:	No	q quantum	query	alg can	distinguish	
SRr from	random,	except	with	probability	O(q3/r).	
Holds	for	any	output	distribution.

Quantum	collision	finding									bound	tight

r=q3? r=q4? r=q20? r=1.01q?



Quantum	Proof

Uniform G(uniform)

G(uniform)Uniform

O(q3/r)

≥ε

O(q3/r)



Quantum	Proof

| Pr[A |R⟩ =1] – Pr[A |G∘O⟩ =1] | ≥ ε

| Pr[B(y1,…,yr) =1] – Pr[B(G(x1),…,G(xr)) =1] | ≥ ε-O(q3/r)

| Pr[C(y) =1] – Pr[C(G(x)) =1] | ≥ ε/r-O(q3/r2)

Optimize	by	setting	r = O(q3/ε)     Final	advantage	O(ε2/q3)



Notes

Requires	knowing	ε

ε2 means	much	bigger	security	loss

Can	fix	by	guessing	ε=2-i for	random	i



Proving	SR	Theorem

Thm [Z’12a]:	If	A makes	q quantum	queries	to OßD,	then	
Pr[AD()=1] = ∑ Pr[D(xi)=yi∀i∈[2q]]

x1,…,x2q
y1,…,y2q

(Restatement	of	polynomial	method	[Beals-Buhrman-Cleve-Mosca-de	Wolf’01])

Thm [Z’12b]:	For	SRr ,	the	Pr[D(xi)=yi∀i∈[k]] are	degree	
k polynomials	in	1/r

Pr[ASRr()=1] = degree	2q polynomial	in	1/r



Proving	SR	Theorem

Pr[ASRr()=1] = P(1/r) = degree	2q polynomial

Additional	observations:
• SR∞ = Truly	random	function
• 0 ≤ P(1/r) ≤ 1 ∀positive	integers	r

Goal:	bound	| P(1/r) – P(0) |



Proving	SR	Theorem

1½¼ ⅓

1

degree	1



Proving	SR	Theorem

1½¼ ⅓

1

degree	2



Proving	SR	Theorem

1½¼ ⅓

1

degree	3



Proving	SR	Theorem

1½¼ ⅓

1

degree	4



Proving	SR	Theorem

1½¼ ⅓

1

Can’t	move	too	fast!



Proving	SR	Theorem

Thm [Z’12b]:	If	P(1/r) satisfies:
•Degree	≤k
•0 ≤ p(1/r) ≤ 1 ∀positive	integers	r
Then	|P(1/r) – P(0)| ≤ 27k3/r

(Asymptotically	tight)



Remaining	Step

SRr requires	random	functions;	how	to	simulate?

Only	2q-wise marginals matter
à2q-wise	independent	functions	“look”	random



What	else	is	out	there?

Encryption

Authentication

PRPs MPC

Secret	sharing

IBE

Remainder	of	lecture:	definitional	issues



Defining	MACs/Signatures

Classical	Security:

A

k ß {0,1}λ
m1
σ1 = MAC(k,m1)
m2
σ2 = MAC(k,m2)…
m*,σ*

“Win”	if	
• m*∉{mi}i
• Ver(k,m*,σ*)=1



Defining	MACs/Signatures

Fully	Quantum	Security?

A

k ß {0,1}λ

…
m*,σ*?????

“Win”	if	
• m*∉{mi}i?????
• Ver(k,m*,σ*)=1

∑ αm,σ│m,σ⟩
∑ αm,σ│m,σ⊕MAC(k,m)⟩
∑ αm,σ│m,σ⟩
∑ αm,σ│m,σ⊕MAC(k,m)⟩



Defining	MACs/Signatures

What	does	it	mean	to	be	“new”?

Example:

A ∑ αm│m,0⟩
∑ αm│m,MAC(k,m)⟩

Random	m, MAC(k,m)

Challenger



Defining	MACs/Signatures

Partial	Answer:	One	More	Security	[Boneh-Z’13a]

A

k ß {0,1}λ
m1
σ1 = MAC(k,m1)
m2
σ2 = MAC(k,m2)…
m0

*,σ0
*,…,mq

*,σq
*

“Win”	if	
• {mi

*} distinct
• Ver(k,mi

*,σi
*)=1∀i

q



Defining	MACs/Signatures

Limitation:	Suppose:

A ∑ αm│ 0||m , 0⟩
∑ αm│ 0||m , σ0||m⟩

1||m, MAC(k, 1||m )

Challenger

Doesn’t	violate	
one-more	security!



Defining	MACs/Signatures

Other	defs exist	which	fix	this	problem	[Garg-
Yuen-Z’17,	Alagic-Majenz-Russell-Song’18],	but	
IMO	even	satisfactory	definition	not	yet	solved



Defining	Encryption
Classical	CPA	Security:

A
m0*,m1*
Enc(k,mb*)

m
Enc(k,m)

m
Enc(k,m)

b’

k ß {0,1}λ
b ß {0,1}



Defining	Encryption
Quantum	CPA	Attacks?

A
m0*,m1*
Enc(k,mb*)

∑αm,c│m,c⟩
∑αm,c│m,c⊕cm⟩

∑αm,c│m,c⟩
∑αm,c│m,c⊕cm⟩

b’

k ß {0,1}λ
b ß {0,1}

Everything	is	
fine	so	far



Defining	Encryption
Quantum	Challenge	Queries????

A

k ß {0,1}λ
b ß {0,1}

∑αm0*,m1*,c│m0*,m1*,c⟩
∑αm0*,m1*,c│m0*,m1*,c⊕cmb*⟩

∑αm,c│m,c⟩
∑αm,c│m,c⊕cm⟩

∑αm,c│m,c⟩
∑αm,c│m,c⊕cm⟩

b’



Defining	Encryption
Attack:

∑m0*,m1*│m0
*,m1

*,0⟩
∑m0*,m1*,│m0

*,m1
*,cmb*⟩

QFT/
H⊗n

z0

QFT/
H⊗n

z1

z1-b=0n and	whp zb≠0n

c



Defining	Encryption

Classical	encryption	schemes	are	not	secure	for	
encrypting	quantum	messages,	if	the	attacker	
gets	to	see	the	original	message	registers

[Boneh-Z’13b]:	don’t	allow	
quantum	challenge	queries

[Gagliardoni-Hülsing-Schaffner’16]:	
make	sure	quantum	challenge	
query	never	returned

More	subtle	than	it	sounds



Defining	Encryption
Quantum	CCA	Attacks?

A

k ß {0,1}λ
b ß {0,1}

∑αc,m│c,m⟩
∑αm,c│c,m⊕Dec(k,m)⟩

b’

m0*,m1*
c* = Enc(k,mb*)
∑αc,m│c,m⟩

∑αm,c│c,m⊕Dec(k,m)⟩

Must	not	decrypt	c*



Defining	Encryption

“Not	decrypting	c*”	problematic	
for	quantum	challenges

[Chevalier-Ebrahimi-Vu’20]:	
Formalize	quantum	CCA+Challenge



Defining	Traitor	Tracing

encrypted	
broadcast

Authorized	
users

Goal:	identify	source	
of	pirate	decoder



Defining	Traitor	Tracing

Classical	Def	(modulo	details):

A

kß{0,1}λ
idi
kidi

D SßTraceD(pk)
Win	if
•S empty,	or
•S∩{idi} not	empty

Pr[D(Enc(k,m)) = m] 
non-negl



Defining	Traitor	Tracing

Problem:	most	prior	work	assumes	
D is	stateless/can	be	rewound

Somewhat	inherent:	single	query	
to	D usually	not	enough	to	accuse

But	if	decoder	has	quantum	state,	
single	query	may	alter	decoder

[Z’20]:	Formalize	quantum	analog	of	“stateless”



Tomorrow:	Unavoidable	Quantum	Attacks

So	far,	issues	concern	new	
quantum	attack	models

My	remaining	lectures:	attacks/issues	
even	under	existing	attack	model

Rewinding Quantum	Random	
Oracle	Model


