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Security Proof Challenges
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Problem

What does hybrid over queries look like?



Security Proof Challenges

Take 1: Per QUERY

20, [%y)
zax,y | le@V].)

20, [%,y)
Z?x,y | le®v2>




Security Proof Challenges

Typical reductions are commit to entire function
O at beginning, remain consistent throughout

[Zhang-Yu-Feng-Fan-Zhang’19]: “Committed programming reductions"

Non-committing reductions: topic for later class



Security Proof Challenges

Take 2: Per VALUE
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PRF Recap

Def: F is a Fully Quantum secure PRF if,
Y QPT A, Jnegligible € such that
| PriA FkD ()=1] - Pr[ARD ()=1] | < €

AlOC) means quantum queries:

Sa,,Ixy) ® Za,,lxye0(x))



PRF Recap

PRG—>PRF
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F(k,000) F(k,001) F(k,010) F(k,011) F(k,100) F(k,101) F(k,110) F(k,111)



PRF Recap

Proof, step 1: Hybrid

Hybrid O (F(k, - ) ):

e/ O\ T~



PRF Recap

Proof, step 1: Hybrid




PRF Recap

Proof, step 1: Hybrid

Hybrid 2:



PRF Recap

Proof, step 1: Hybrid

Hybridn (R( - )):

— /N T



PRF Recap
Proof, step 1: Hybrid

i s.t. | Pr[ARybridi+l() = 1] - Pr[AHYbridi() = 1] | > €/n
Wb 1iiZ
y WU N

Step 1 makes sense if A classical,
post-quantum, or fully quantum




Another View

Def: G is Quantum Oracle Secure if, ¥V QPT
A, dnegligible € such that

| Pr[A R =1] - Pr[Al6°O) =] | < ¢
R,O random oracles

Classical reduction

o



Another View

How to complete reduction from plain (post-quantum) PRGs?

/

Can simulate with q samples
Hybrid over q values

Classical Proof:

Only q queries =) -[



Another View

How to complete reduction from plain (post-quantum) PRGs?

uantum?
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Need exponentially-many samples for perfect simulation




Reducing # of Hybrids

Goal: Simulate query responses
using only poly-many samples



Simulating with Few Samples

Extreme 1: Same sample in all positions

Distinguishable!
Middle ground: Several samples in random positions

Extreme 2: Independent sample in each position

Exponential loss!



Small Range Distributions

Random Random, obtalned from samples
S|ze r
Domain Range

How big of r to be indistinguishable from truly random?



Small Range Distributions

Thm [Z"12b]: No q quantum query alg can distinguish
SR, from random, except with probability O(q3/r).
Holds for any output distribution.

Quantum collision finding ™» bound tight

r=q>?  r=q*? r=q®°?  r=1.019?



Quantum Proof
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Unif'orm G(uniform)
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Quantum Proof

| Pr[AR =1] - Pr[Al6°0)=1] | > €

4

| PriB(y,,....y,) =1] = Pr[B(G(x,),....G(x.)) =1] | > e-O(q3/r)

2
| PrlC(y) =1] - Pr[C(G(x)) =1] | > &/r-O(q3/r?)

Optimize by setting r = O(q3/€) ™ Final advantage O(£%/g?)



Notes

Requires knowing €
Can fix by guessing e=2-' for random i

£2 means much bigger security loss



Proving SR Theorem

Thm [Z’12a]: If A makes q quantum queries to O<D, then
Pr[AP()=1] = ZXPr[D(xi)=yi Vie([2q]]

)eeey 2q
yll--vqu

(Restatement of polynomial method [Beals-Buhrman-Cleve-Mosca-de Wolf’'01])

Thm [Z’12b]: For SR, the Pr[D(x,)=y; Vi< [K]] are degree
k polynomials in 1/r

==) Pr[ASRr()=1] = degree 2q polynomial in 1/r



Proving SR Theorem

Pr[ASRr()=1] = P(1/r) = degree 2q polynomial

Additional observations:
* SR = Truly random function
*0 < P(1/r) < 1 Y positive integers r

Goal: bound | P(1/r) - P(0) |



Proving SR Theorem

degree 1




Proving SR Theorem

degree 2




Proving SR Theorem

degree 3




Proving SR Theorem

degree 4




Proving SR Theorem

Can’t move too fast!




Proving SR Theorem

Thm [2’12b]: If P(1/r) satisfies:
* Degree <K

*0 < p(1/r) £ 1 V positive integers r
Then [P(1/r) - P(0)| < 27Kk3/r

(Asymptotically tight)



Remaining Step

SR, requires random functions; how to simulate?

Only 2g-wise marginals matter
- 2g-wise independent functions “look” random



What else is out there?

Secret sharing

Encryption

BE Authentication

PRPs MPC

Remainder of lecture: definitional issues



Defining MACs/Signatures

Classical Security:

L T
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. l

m2 (k ) > | I
0, = MAC(K,m

2 o 2 : ”Win” If :

* % | o m*EE{mi}i |

m ,O I :

* Ver(k,m’o")=1




Defining MACs/Signatures

Fully Quantum Security?
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Defining MACs/Signatures

What does it mean to be “new”?

Example:

2 a.|m,0) N I

— N |
; O | m’MAC(k'm» I Challenger |

Random m, MAC(k,m)



Defining MACs/Signatures

Partial Answer: One More Securlty [Boneh-Z’ 13a]
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Defining MACs/Signatures

Limitation: Suppose:
A 20,/ O0lm,0
[ [
42 Olml Ollm , c50||m> I Challenger |
[ [

1llm, MAC(K, 1llm ) g Doesn’t violate
one-more security!




Defining MACs/Signatures

Other defs exist which fix this problem [Garg-
Yuen-Z'17, Alagic-Majenz-Russell-Song’18], but
IMO even satisfactory definition not yet solved



Defining Encryption

Classical CPA Security:
m

_Enc(k,m)
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Defining Encryption

Quantum CPA Attacks?
20p,c|M,C) 1 ke o
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Everything is
fine so far
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Defining Encryption

Quantum Challenge Queries????
2am,c m,C> j k & {O,I}A I

20l c| M/ COCrr) b < {01} ,

zam()"‘,ml"‘,c | mO*lmI; IC>

[
[
I
I
zamo*m]* - | mo*,m]*,c@cmb*)
|
|
[

20, .|m,C) g
.20, .|m,Ccoc )
|

<4



Defining Encryption
Attack:
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Defining Encryption

Classical encryption schemes are not secure for
encrypting quantum messages, if the attacker
gets to see the original message registers

[Boneh-Z"13b]: don’t allow [Gagliardoni-Hulsing-Schaffner’16]:
guantum challenge queries make sure quantum challenge
guery never returned

More subtle than it sounds



Defining Encryption

Quantum CCA Attacks?

Zacmlcm>
m(.Icm Dec(k, m)

my*m,* g
c* = Enc(k,m,*)

Zarmlcm)
mr|cm Dec(k, m)

S =

Must not decrypt ¢*



Defining Encryption

“Not decrypting ¢*” problematic
for guantum challenges

[Chevalier-Ebrahimi-Vu’20]:
Formalize quantum CCA+Challenge



Defining Traitor Tracing

\broadcast

| Authorized
users

t-es-s Goal: identify source
< of pirate decoder



Defining Traitor Tracing

Classical Def (modulo details):

id, |
< kidi ﬂ

D

Pr[D(Enc(k,m)) = m]
non-negl|

' Win if
1°S empty, or
leSn{id.} not empty

l
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|
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| S&Trace®(pk) |
l
l
l
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Defining Traitor Tracing

Problem: most prior work assumes

D is stateless/can be rewound

Somewhat inherent: single query
to D usually not enough to accuse

But if decoder has quantum state,
single query may alter decoder

[Z’20]: Formalize quantum analog of “stateless”



Tomorrow: Unavoidable Quantum Attacks

So far, issues concern new
guantum attack models

My remaining lectures: attacks/issues
even under existing attack model
S L
Rewinding Quantum Random
Oracle Model



