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Security Proofs

Crypto security _ Computational Reduction
“roof” ~  Assumption P from P

/

Should be well-studied and widely believed
Concrete assumptions: Hardness of FACTORING, DLoG, LWE
Generic assumptions: I OWF, = PKE

In other words, if you can
break scheme, you can solve P



Enter Quantum

Thm [Shor’94]: 9 Quantum polynomial time
(QPT) algorithms solving FACTORING, DLOG

\ 4

Post-Quantum Crypto = developing crypto
secure against quantum attacks



Post-Quantum Security Proofs

Post-quantum _ Post-quantum Post-quantum
security “proof” ~  Assumption P Reduction

/

Should be well-studied and widely believed
Concrete assumptions: (Quantum) hardness of LWE, ...
Generic assumptions: 3 (quantum immune) OWF, PKE

If you can break scheme with a gquantum computer,
then you can solve P with a quantum computer



Main Takeaway

Post-quantum Post-quantum
security “proof” Assumption P
BAD NEWS: GOOD NEWS:

Most crypto literature Most results translate

= classical reduction  to quantum trivially

Even those working with
post-quantum tools

Classical
Reduction

BUT:
T notable
exceptions



Outline for Today

15t hour: 4 illustrative examples

* Increasing PRG stretch — black box reductions

* PRFs —interaction

* Coin tossing — rewinding

* Goldreich-Levin — running adversary many times

29 hour: Begin seeing new post-quantum techniques



Example 1: PRG Length Extension

X 40,1}
ﬂ Def: G is a secure pseudorandom generator

(PRG) if, V' PPT A, dnegligible € such that
| PriA(y)=1] - PrlA(G(x))=1] | < €

v
yE1{0,1}"

(m>n) e called “advantage” of A



Example 1: PRG Length Extension

Suppose m=n+1. How to get larger stretch?

X E40,1}"
} X

}
yE10,13m Solution: G, =

2

Z

Thm: If G is secure, then so is G,



Example 1: PRG Length Extension

Proof: Suppose G, insecure. Then = PPT A, non-negl € such that
| PriA(y)=1] - PrlA(G,(x))=1] | > €

Hybrid O Hybrid 1 Hybrid 2

Rn

A—~b A b A b
Po:=Pr(b=1] p;:=Pr[b=1] p,:=Pr[b=1]




Example 1: PRG Length Extension
Proof: Suppose G, insecure. Then = PPT A, non-negl € such that

- >
P2 = pol2e Either:  Or:
Hybrid 0 Hybrid 1 Hybrid 2 Ip,-pol2e/2  |p,-p,l2€/2

U i
BlyoY)=  B(Yoyi)=
AG(Yo)Y))  AlYoy.$)
\ v b

, , A . ' In either case, B has
A—b A b A-—Db advantage £/2 against
Po:=Pr(b=1] p;:=Pr[b=1] p,:=Pr[b=1] security of G




Example 1: PRG Length Extension

What about quantum?

Def: G is a post-quantum secure PRG if,
Y QPT A, Jnegligible € such that
| PrlA(y)=1] - PrlA(G(x))=1] | < &

Thm: If G is post-quantum secure, then so is G,



Example 1: PRG Length Extension
Proof: Suppose G, PQ insecure. Then =QPT A, non-negl € s.t.

- >
P2 = pol2e Either:  Or:
Hybrid 0 Hybrid 1 Hybrid 2 Ip,-pol2e/2  |p,-p,l2€/2

U i
BlyoY)=  B(Yoyi)=
AG(Yo)Y))  AlYoy.$)
\ v b

, , A . ' In either case, B has
A—Db A b A b  advantage £/2 against
Po:=Pr[b=1] p;:=Pr[b=1] p,:=Pr[b=1] PQ security of G




Example 1: PRG Length Extension

Proof for G, doesn’t care how A works internally,
as long as it has non-negligible advantage

29¢ £9¢
y=-4 E-b y &L b
346 3446

->--/\—> —> —>
y= )P vy NP

That is, proof treats A as “black box”



Example 1: PRG Length Extension

Key Takeaway: As long as reduction
treats A as a non-interactive single-run
black box, reduction likely works in
guantum setting



Example 2: PRFs

Def: F is a secure pseudorandom function
(PRF) if, ¥ PPT A, Jnegligible € such that
| Pr{AFk -)()=1] - Pr[ARC-)()=1] | < €

Notes:

- Kk random

- R uniformly random function

- A%(-) means A makes queries on X, receives O(x)



Example 2: PRFs

What is a post-quantum PRF?

Def: F is a PQ secure PRF if, ¥V QPT A,

T negligible € such that
| PriAFk -)()=1] - Pr[ARC-)()=1] | < €

AlOG) means
guantum queries:
S0, IX,Y) Def: F is a Fully Quantum secure PRF if,

'; Y QPT A, dnegligible € such that
Sa. Ixye0(x)) | PrA kD ()=1] - PrlA RO ()=1] | < €



Example 2: PRFs

s there a difference?  YES!

Proof: Embed Simon’s oracle/period finding
PRF( (k,z) , x ) = PRF( k, {x,x®z} )



Example 2: PRFs

Ok. Which definition do we want? It depends
Example 2a: PRFs - CPA-secure encryption

r< $

Enclkm) = . _ (. F(k.r)em)

Encrypter (honest) chooses r = always classical

PQ security suffices



Example 2: PRFs
Ok. Which definition do we want? It depends
Example 2b: PRFs 2 MAC

MAC(k,m) = F(k,m)

Security model lets attacker choose m, but
signer (honest) actually computes MAC

Can attacker force signer to MAC superpositions?



Example 2: PRFs

Ok. Which definition do we want? It depends

Example 2c: PRFs = Pseudorandom quantum states
[Ji-Liu-Song’18,Brakerski-Shmueli’19]

2, (-1)F) [x)

Generation of state makes superposition query to F

Need full guantum security



Example 2: PRFs

So then, what does a classical proof give us?



Example 2: PRFs

PRG—>PRF

e/ O\ T~

F(k,000) F(k,001) F(k,010) F(k,011) F(k,100) F(k,101) F(k,110) F(k,111)



Example 2: PRFs

PRG—>PRF

AR

F(k,000) F(k,001) F(k,010) F(k,011) F(k,100) F(k,101) F(k110) F(k,111)



Example 2: PRFs

Classical proof, step 1: Hybrid
!

Hybrid O (F(k, - ) ):

e/ O\ T~



Example 2: PRFs

Classical proof, step 1: Hybrid

Hybrid 1:

e/ O\ T~



Example 2: PRFs

Classical proof, step 1: Hybrid

Hybrid 2:

AL
N e



Example 2: PRFs

Classical proof, step 1: Hybrid

Hybridn (R( - )):

— /N T



Example 2: PRFs

Classical proof, step 1: Hybrid

i s.t. | Pr{AMErd i) = 1] - PrARErdi) = 1] | > e/n
Wi iiiX
A ° A

Step 1 makes sense if A classical,
post-quantum, or fully quantum




Example 2: PRFs

Classical proof, step 2: Another hybrid

Ll
AAAA

Hybrid i.0 = I:



Example 2: PRFs

Classical proof, step 2: Another hybrid

Lk

Hybrid i.1:



Example 2: PRFs

Classical proof, step 2: Another hybrid

Uik

Hybrid i.2:



Example 2: PRFs

Classical proof, step 2: Another hybrid

Hybrid i.3:



Example 2: PRFs

Classical proof, step 2: Another hybrid

iyl

Hybrid i.2/ = i+1:

Problem: 2! loss potentially exponential



Example 2: PRFs

Classical proof, step 2: Another hybrid

Solution: lazy/on-the-fly sampling

q queries = Only hybrid over q “active” positions



Example 2: PRFs

Proof doesn’t care how A works internally,
as long as it has non-negligible advantage

9% X 9% X
-0 o B
2y R v

3446 3446

?9¢

?9¢

._( \,L» L»
», «V:) N\ «Lj

=» Also post-quantum reduction



Example 2: PRFs

What about full guantum security?

Even single query touches everything

Lazy sampling? Embedding challenges?



Example 2: PRFs

What about full guantum security?

Classical proof is black box, but requires classical queries

X Sa,,Ix,y) .
J O(x) VS x ‘Zax,ylx,y®0(x))

Can the proof be fixed for full quantum security?

Topic for 2" hour...



Example 2: PRFs

Key Takeaway: As long as reduction treats
A as a single-run black box (potentially w/
classical interaction), reduction likely
works in quantum setting

But if interaction is
e quantum, all bets are off



r »

Example 3: Coin Tossing

m
} Def: Com is (computationally) binding if, ¥ PPT A,
T negligible € such that

Mo#m, /\

Pr Com(m,,ry)=Com(m,,r,) : (mo'ro'mlfﬁ)éA()] < €

Also want hiding, but we will ignore



Example 3: Coin Tossing

Simple protocol:

r<s , by, Glim
bA/r . l‘.

Verify ¢ = com(b,,r)
paSAS/ \fall

bsz@bB sz_



Example 3: Coin Tossing

Proof that Alice can’t bias b:
Let A be supposed adversary

c g F

by Gais
A B e

4bp‘;lr‘ l‘—

»
>

- 1 For both bg=0 and bg=1, good
Prib=0] > %+e = chance b,=bg and Com(b,,r)=c



Example 3: Coin Tossing

Proof that Alice can’t bias b:
Step 1 Step 2 Step 3

c
.0
A bAO' A .) A bAllrl
Pr{ bpo=0 A By =1 A ] > poly(e)

Com(by o,1p) = Com(by 1) = €



Example 3: Coin Tossing

What if A is quantum?

Def: Com is post-quantum (computationally)
binding if, V QPT A, = negligible £ such that

Mo#m, /\

Pr Com(m,,ry)=Com(m,,r,) : (mO'rO'mI'rl)éA()] < €

Define coin-tossing goal similarly

Note: adversary’s interaction unchanged (unlike Ex 2)



Example 3: Coin Tossing

Proof that quantum Alice can’t bias b?

Step 1 Step 2
C

e

A O A

bp oo W

Measurement principle: extracting
b, o/ irreversibly altered A’s state



Example 3: Coin Tossing

Thm (Ambainis-Rosmanis-Unruh’14,Unruh’16):
3 PQ binding Com s.t. Alice has a near-perfect strategy

l.e., quantumly, ability to produce either of two values isn’t
the same as ability to produce both simultaneously

Example + how to overcome topic for tomorrow



Example 3: Coin Tossing

Key Takeaway: As long as reduction treats
A as a single-run black box (potentially w/
classical interaction), reduction likely
works in quantum setting

But if interaction is I But if rewinding A, all
e quantum, all bets are off 0 bets are off



Example 4: Goldreich-Levin

b
n— Stateless/rewindable

“GL assumption”: Ais PPT, I x: Pr[A(r) = <rx>] 2 % + ¢

Thm: r
l

/

r

—

Prix'=x] 2 & = poly(e)



Example 4: Goldreich-Levin

What happens in qguantum setting?

Proof of GL doesn’t care how A works internally,
as long as “GL Assumption” holds for all queries

A has classical description But what if A contains
(even if quantum alg.) guantum state?

Good enough for most applications,
e.g. OWF = PRG [HILL'99]



Example 4: Goldreich-Levin

Ty # A b,
| W)

Measurement principle: extracting
b, irreversibly altered | W)

4

GL assumption may not hold for 2nd query



Example 4: Goldreich-Levin

Thm (Adcock-Cleve’01): 3 single-query quantum GL algorithm

Proof:

FT
DR A B CI LA T
re{0,1}" re{0,1}

Results in tighter security reductions!




Example 4: Goldreich-Levin

Key Takeaway: As long as reduction treats A
as a black box, potentially w/ classical
interaction or w/ rewinding to classical value,
reduction likely works in quantum setting

But if interaction is If rewinding to quantum
guantum, all bets are off ° state, all bets are off



Roadmap

New Quantum Attack Models
Quantum rewinding

Quantum Random Oracle Model



