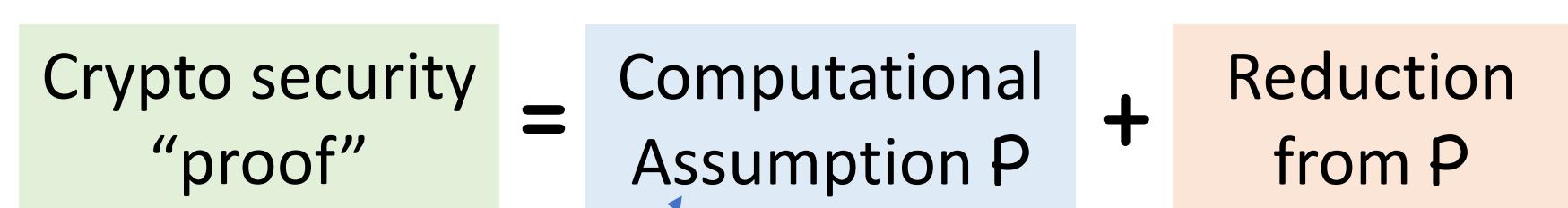


Security Reductions in A Quantum World

Mark Zhandry (Princeton & NTT Research)

Security Proofs



Should be well-studied and widely believed

Concrete assumptions: Hardness of FACTORING, DLOG, LWE

Generic assumptions: \exists OWF, \exists PKE

In other words, if you can
break scheme, you can solve P

Enter Quantum

Thm [Shor'94]: \exists Quantum polynomial time (QPT) algorithms solving FACTORING, DLOG

Post-Quantum Crypto = developing crypto secure against quantum attacks

Post-Quantum Security Proofs

Post-quantum
security “proof”

= *Post-quantum*
Assumption P

+ *Post-quantum*
Reduction

Should be well-studied and widely believed

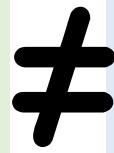
Concrete assumptions: (Quantum) hardness of LWE, ...

Generic assumptions: \exists (quantum immune) OWF, PKE

If you can break scheme *with a quantum computer*,
then you can solve P *with a quantum computer*

Main Takeaway

Post-quantum
security “proof”



Post-quantum
Assumption P

+

**Classical
Reduction**

BAD NEWS:

Most crypto literature
= classical reduction

Even those working with
post-quantum tools

GOOD NEWS:

Most results translate
to quantum trivially

BUT:

\exists notable
exceptions

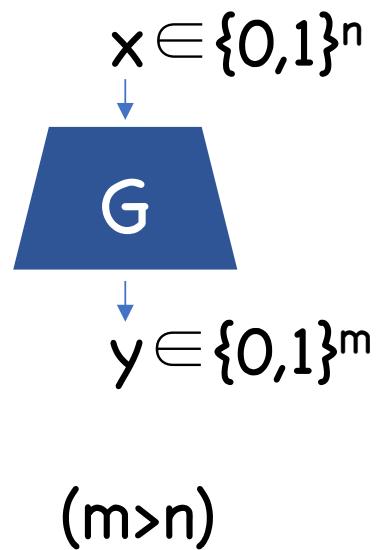
Outline for Today

1st hour: 4 illustrative examples

- Increasing PRG stretch – black box reductions
- PRFs – interaction
- Coin tossing – rewinding
- Goldreich-Levin – running adversary many times

2nd hour: Begin seeing new post-quantum techniques

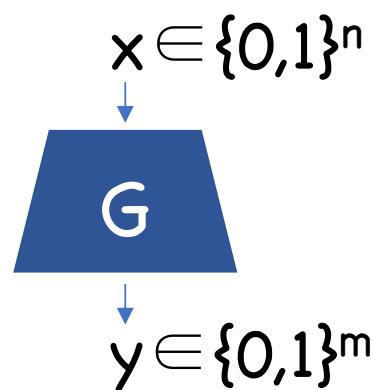
Example 1: PRG Length Extension



Def: G is a secure pseudorandom generator (PRG) if, \forall PPT A , \exists negligible ε such that $|\Pr[A(y)=1] - \Pr[A(G(x))=1]| < \varepsilon$

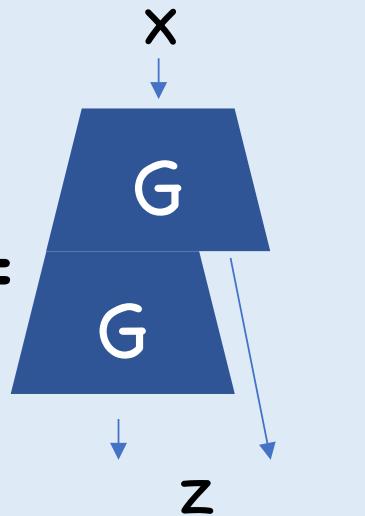
ε called “advantage” of A

Example 1: PRG Length Extension



Suppose $m=n+1$. How to get larger stretch?

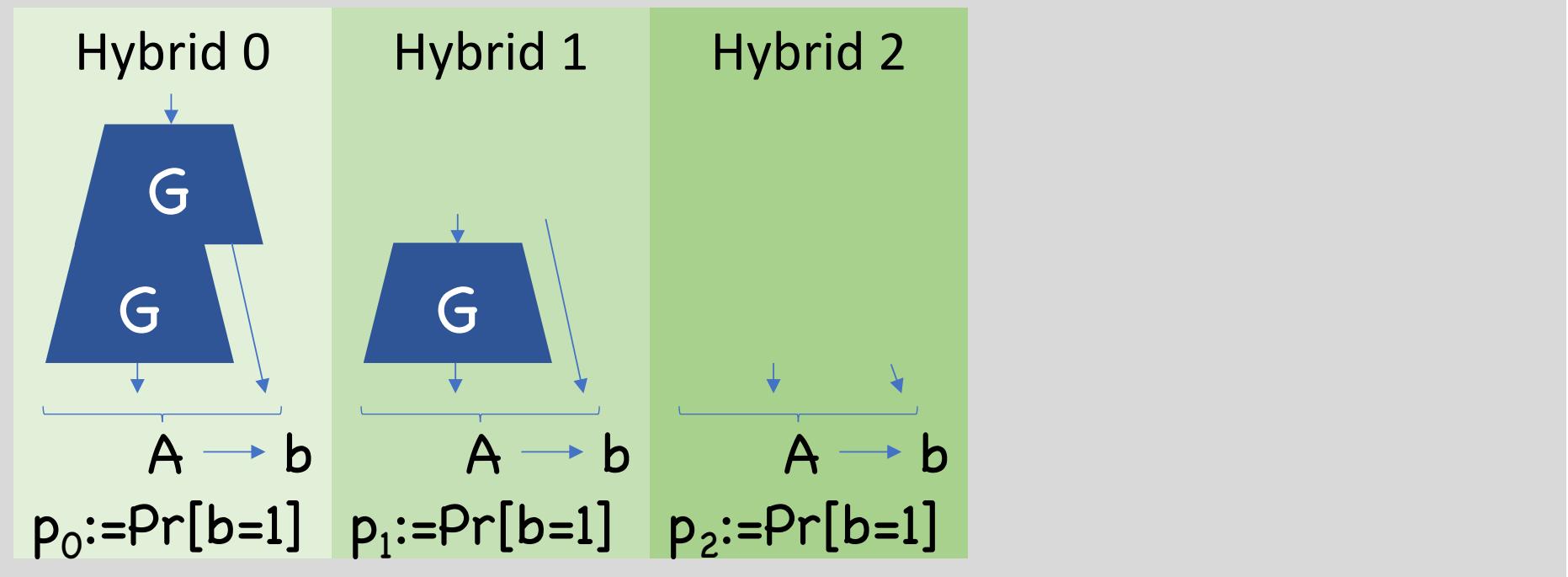
Solution: $G_2 =$



Thm: If G is secure, then so is G_2

Example 1: PRG Length Extension

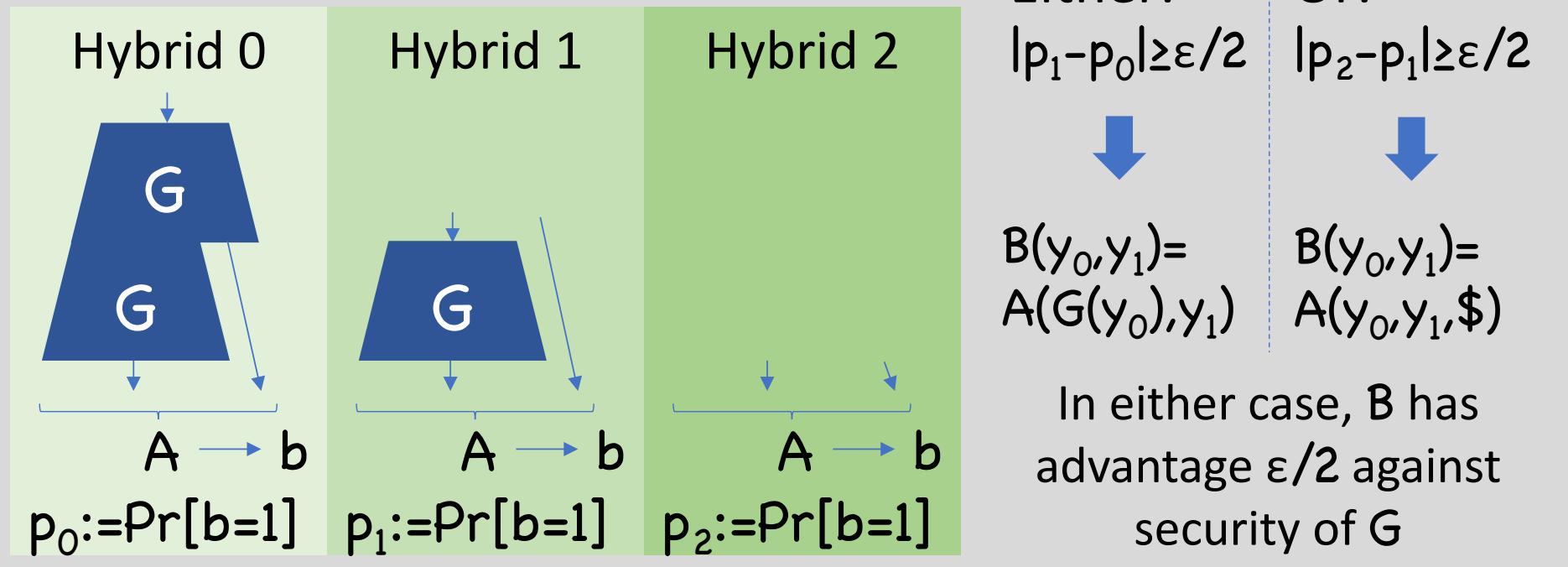
Proof: Suppose G_2 insecure. Then \exists PPT A , non-negl ε such that $|\Pr[A(y)=1] - \Pr[A(G_2(x))=1]| \geq \varepsilon$



Example 1: PRG Length Extension

Proof: Suppose G_2 insecure. Then \exists PPT A , non-negl ε such that

$$|p_2 - p_0| \geq \varepsilon$$



Example 1: PRG Length Extension

What about quantum?

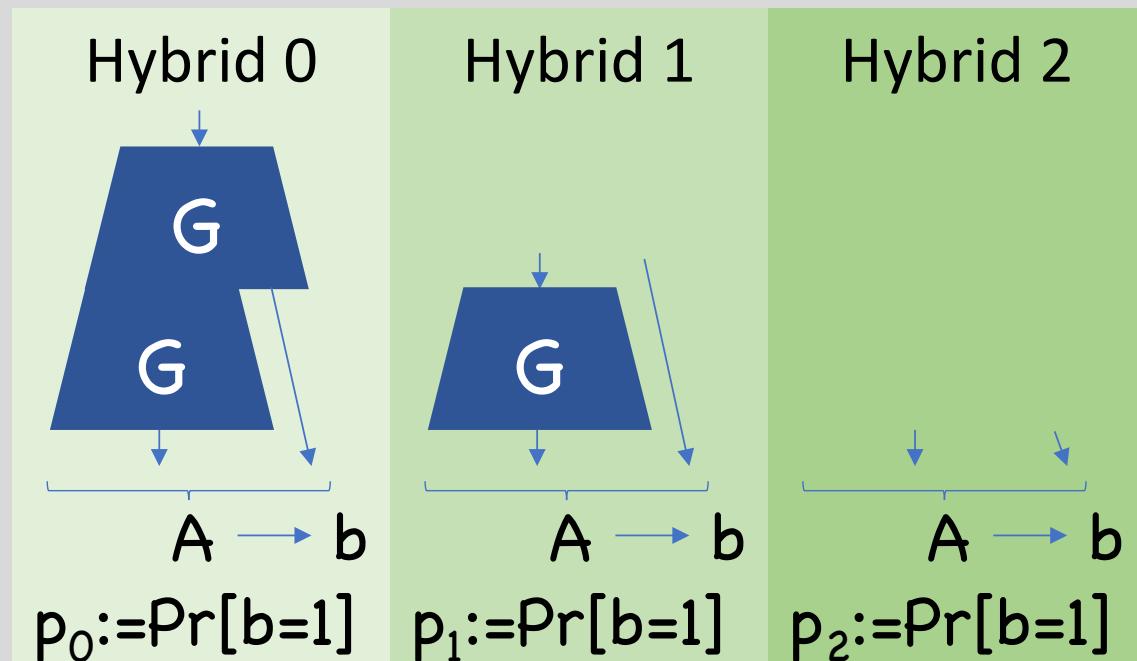
Def: G is a **post-quantum** secure PRG if,
 $\forall \text{QPT } A, \exists \text{negligible } \varepsilon \text{ such that}$
 $|\Pr[A(y)=1] - \Pr[A(G(x))=1]| < \varepsilon$

Thm: If G is post-quantum secure, then so is G_2

Example 1: PRG Length Extension

Proof: Suppose G_2 **PQ** insecure. Then \exists QPT A , non-negl ε s.t.

$$|p_2 - p_0| \geq \varepsilon$$



Either:

$$|p_1 - p_0| \geq \varepsilon/2$$

$$B(y_0, y_1) = A(G(y_0), y_1)$$

Or:

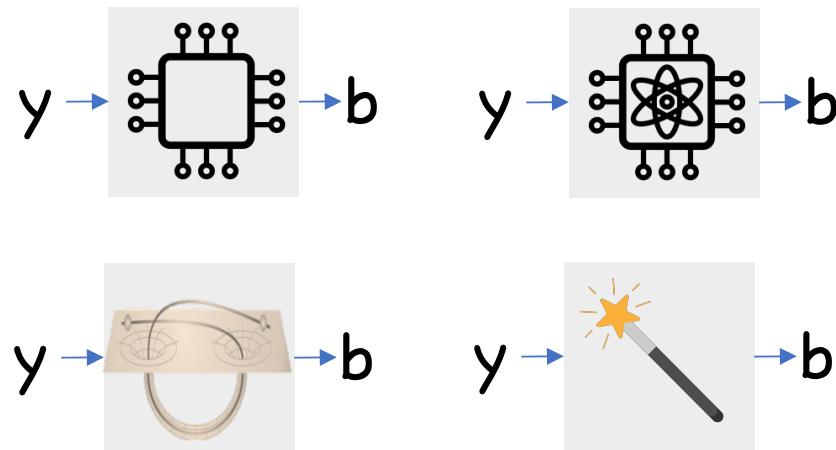
$$|p_2 - p_1| \geq \varepsilon/2$$

$$B(y_0, y_1) = A(y_0, y_1, \$)$$

In either case, B has advantage $\varepsilon/2$ against **PQ** security of G

Example 1: PRG Length Extension

Proof for G_2 doesn't care how A works internally, as long as it has non-negligible advantage

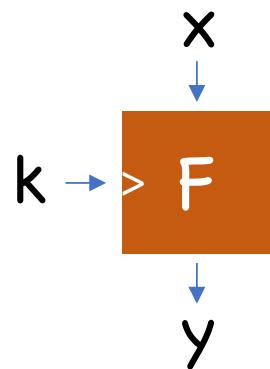


That is, proof treats A as “black box”

Example 1: PRG Length Extension

Key Takeaway: As long as reduction treats A as a *non-interactive single-run* black box, reduction likely works in quantum setting

Example 2: PRFs



Def: F is a secure pseudorandom function (PRF) if, \forall PPT A , \exists negligible ε such that $|\Pr[A^{F(k, \cdot)}()=1] - \Pr[A^{R(\cdot)}()=1]| < \varepsilon$

Notes:

- k random
- R uniformly random function
- $A^{O(\cdot)}$ means A makes queries on x , receives $O(x)$

Example 2: PRFs

What is a post-quantum PRF?

$A^{\{O(\cdot)\}}$ means
quantum queries:

$$\sum \alpha_{x,y} |x, y\rangle$$

↓

$$\sum \alpha_{x,y} |x, y \oplus O(x)\rangle$$

Def: F is a **PQ** secure PRF if, $\forall QPT A$,
 \exists negligible ε such that
 $|\Pr[A^{F(k, \cdot)}()=1] - \Pr[A^{R(\cdot)}()=1]| < \varepsilon$

Def: F is a **Fully Quantum** secure PRF if,
 $\forall QPT A$, \exists negligible ε such that
 $|\Pr[A^{\{F(k, \cdot)\}}()=1] - \Pr[A^{\{R(\cdot)\}}()=1]| < \varepsilon$

Example 2: PRFs

Is there a difference? YES!

Proof: Embed Simon's oracle/period finding

$$\text{PRF}'((k, z) , x) = \text{PRF}(k, \{x, x \oplus z\})$$

Example 2: PRFs

Ok. Which definition do we want?

It depends

Example 2a: PRFs \rightarrow CPA-secure encryption

$$\text{Enc}(k,m) = \begin{array}{l} r \leftarrow \$ \\ c = (r, F(k,r) \oplus m) \end{array}$$

Encrypter (honest) chooses $r \rightarrow$ always classical

PQ security suffices

Example 2: PRFs

Ok. Which definition do we want?

It depends

Example 2b: PRFs → MAC

$$\text{MAC}(k,m) = F(k,m)$$

Security model lets attacker choose m , but signer (honest) actually computes MAC

Can attacker force signer to MAC superpositions?

Example 2: PRFs

Ok. Which definition do we want?

It depends

Example 2c: PRFs → Pseudorandom quantum states

[Ji-Liu-Song'18,Brakerski-Shmueli'19]

$$\sum_x (-1)^{F(k,x)} |x\rangle$$

Generation of state makes superposition query to F

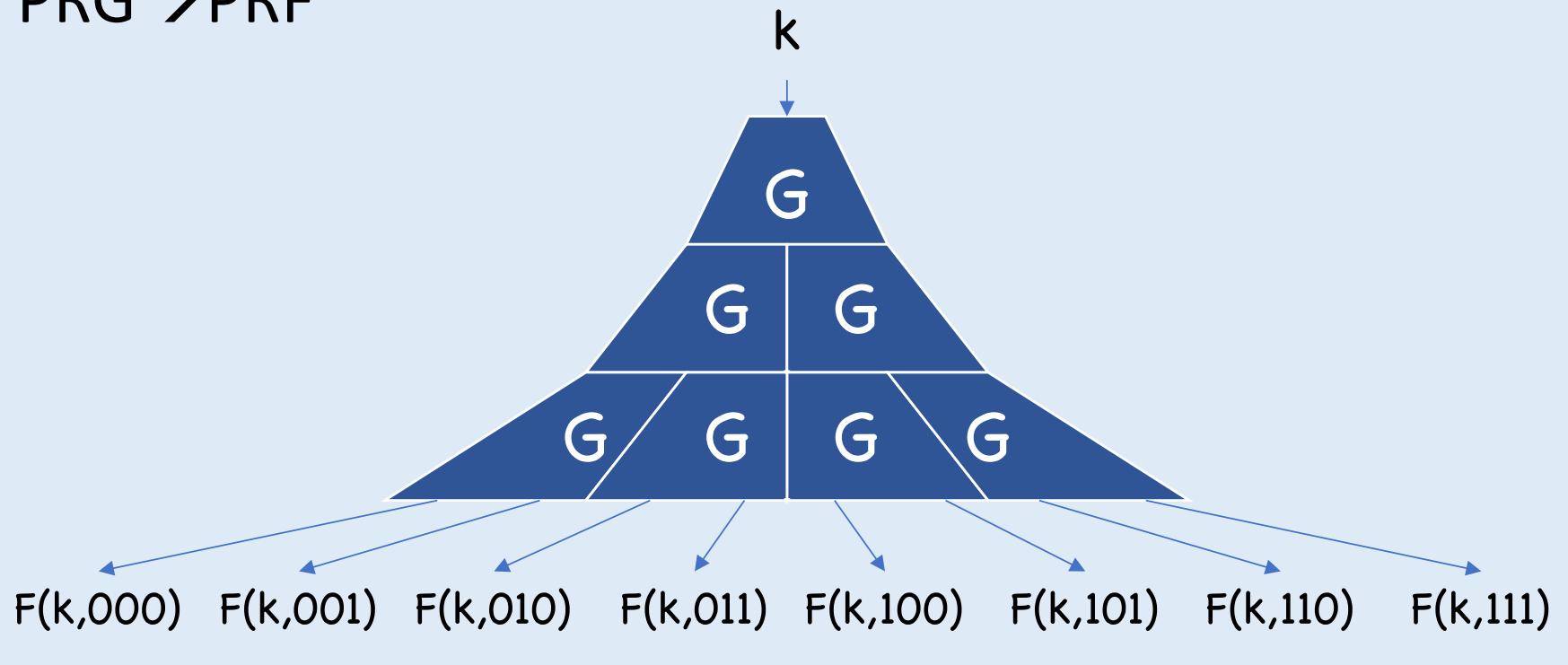
Need full quantum security

Example 2: PRFs

So then, what does a classical proof give us?

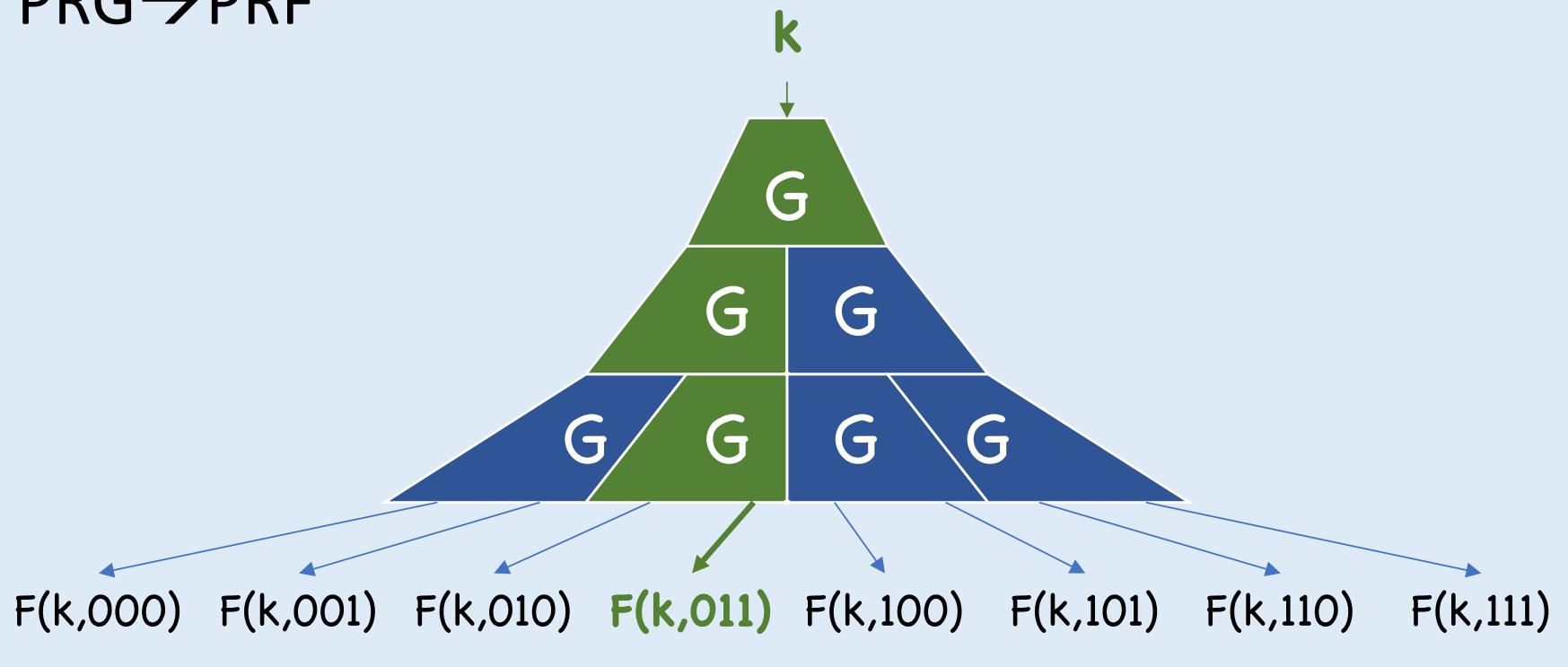
Example 2: PRFs

PRG \rightarrow PRF



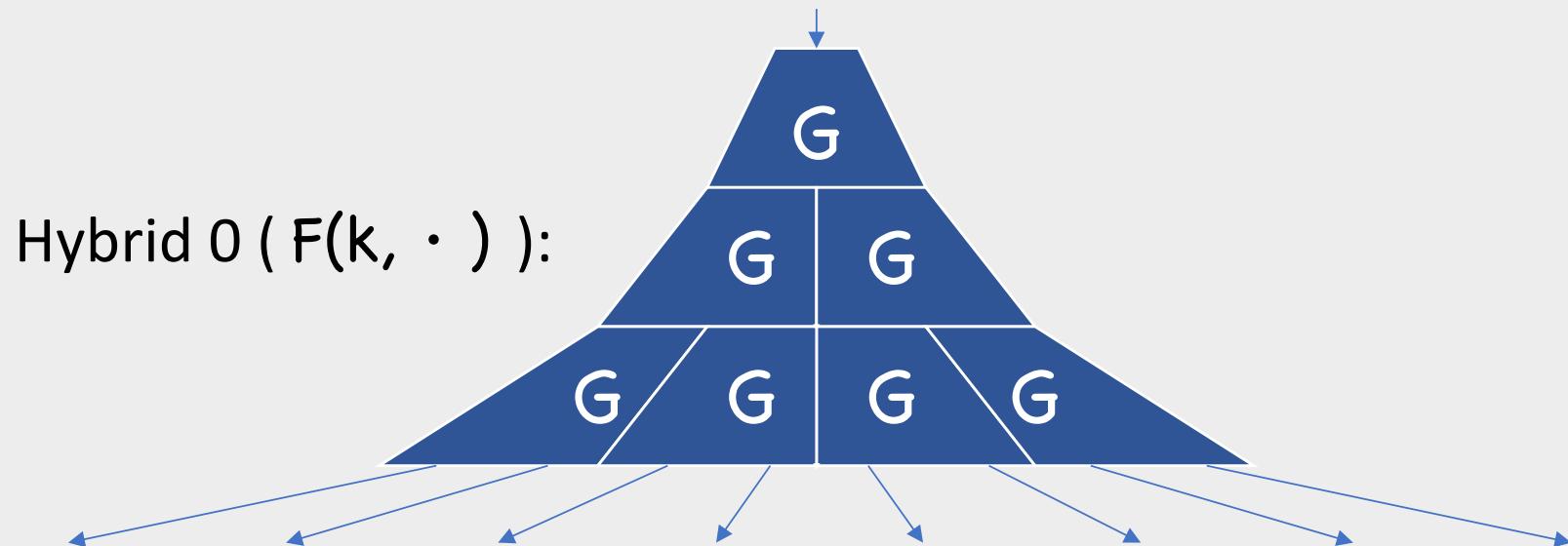
Example 2: PRFs

PRG \rightarrow PRF



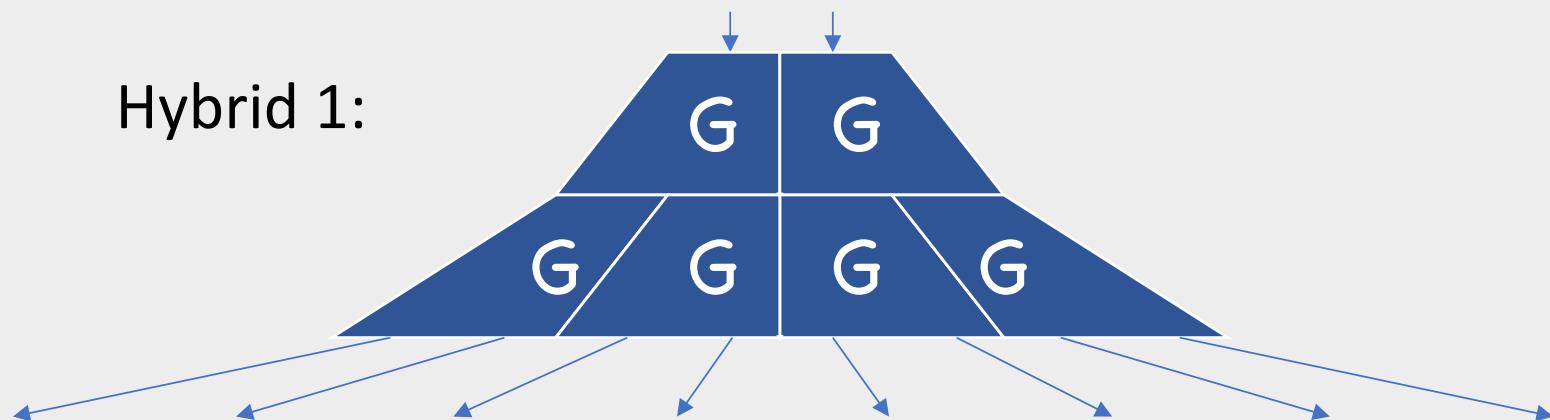
Example 2: PRFs

Classical proof, step 1: Hybrid



Example 2: PRFs

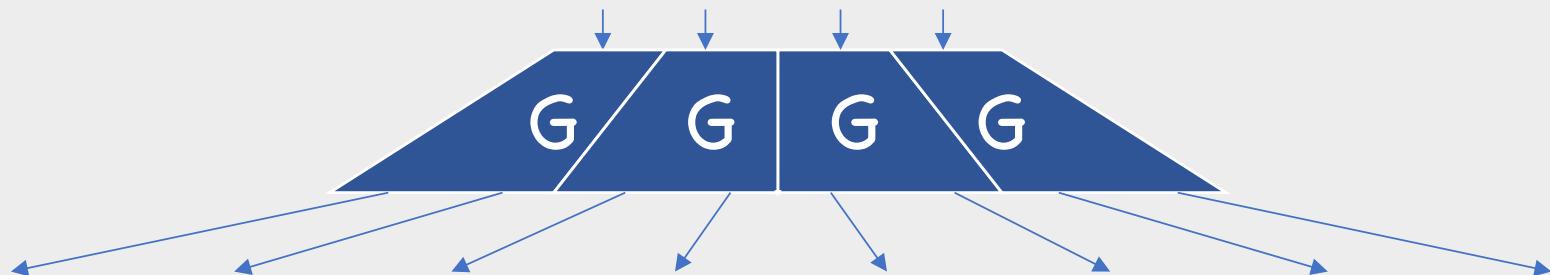
Classical proof, step 1: Hybrid



Example 2: PRFs

Classical proof, step 1: Hybrid

Hybrid 2:



Example 2: PRFs

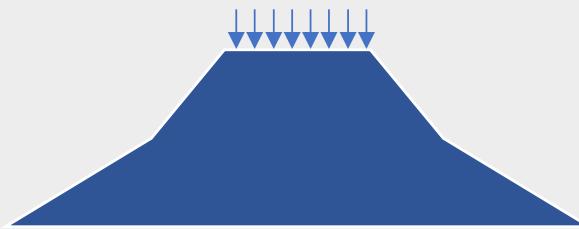
Classical proof, step 1: Hybrid

Hybrid $\mathsf{n}(\mathsf{R}(\cdot))$:

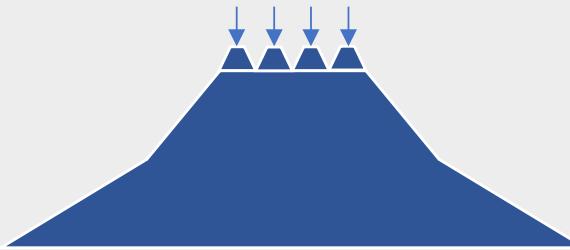
Example 2: PRFs

Classical proof, step 1: Hybrid

$$\exists i \text{ s.t. } |\Pr[A^{\text{Hybrid } i+1}() = 1] - \Pr[A^{\text{Hybrid } i}() = 1]| \geq \varepsilon/n$$



VS

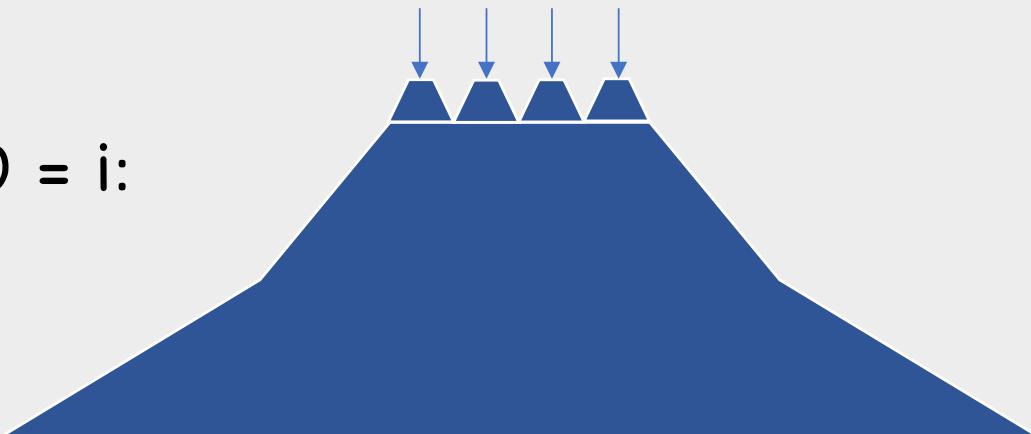


Step 1 makes sense if A classical,
post-quantum, or fully quantum

Example 2: PRFs

Classical proof, step 2: Another hybrid

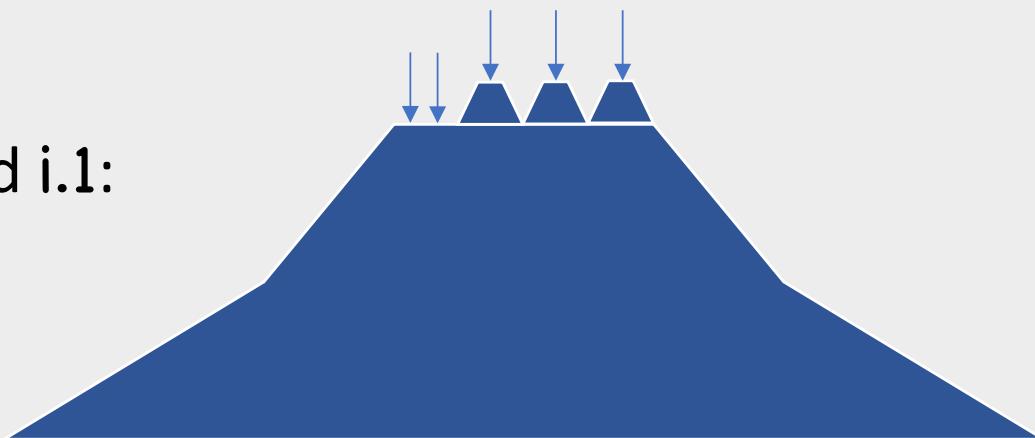
Hybrid $i.0 = i:$



Example 2: PRFs

Classical proof, step 2: Another hybrid

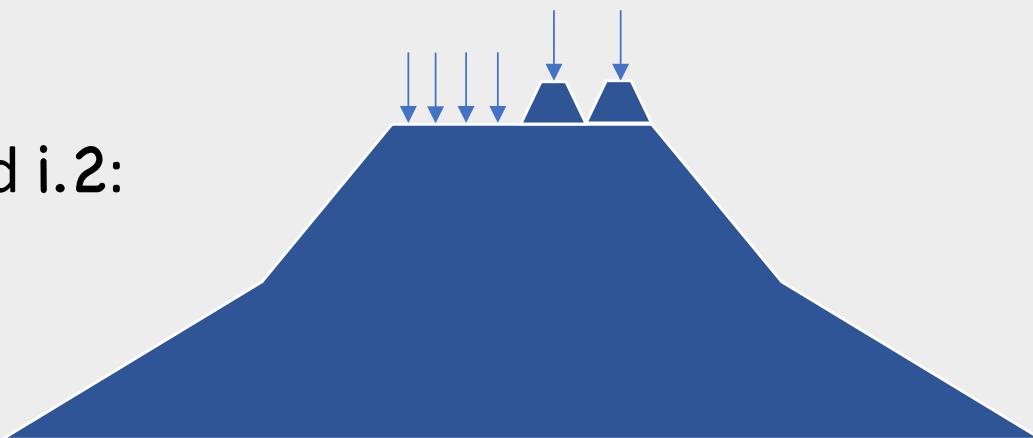
Hybrid i.1:



Example 2: PRFs

Classical proof, step 2: Another hybrid

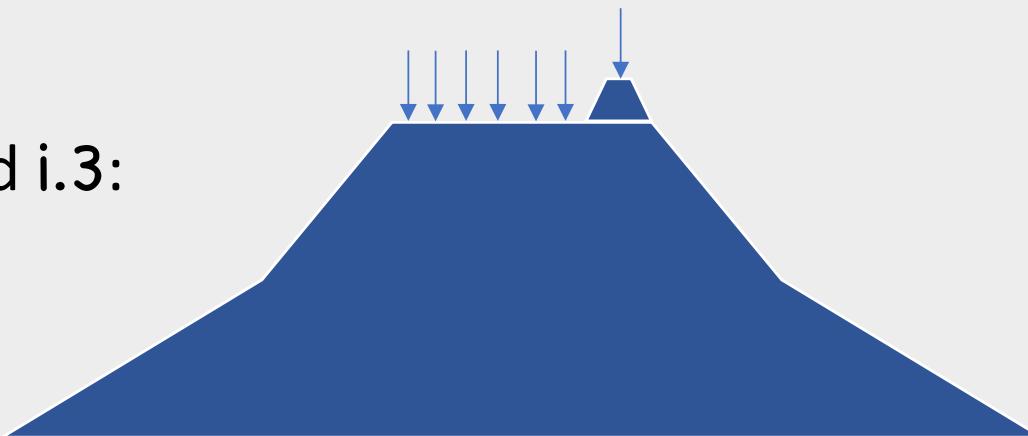
Hybrid i.2:



Example 2: PRFs

Classical proof, step 2: Another hybrid

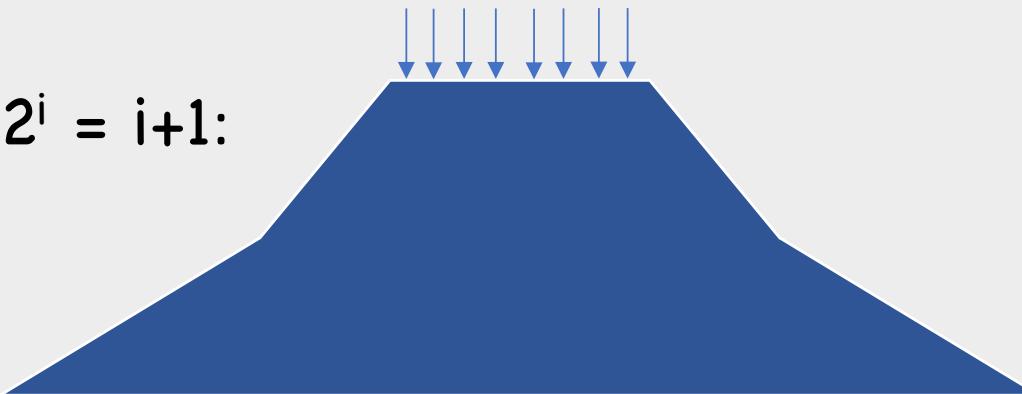
Hybrid i.3:



Example 2: PRFs

Classical proof, step 2: Another hybrid

Hybrid $i \cdot 2^i = i+1$:

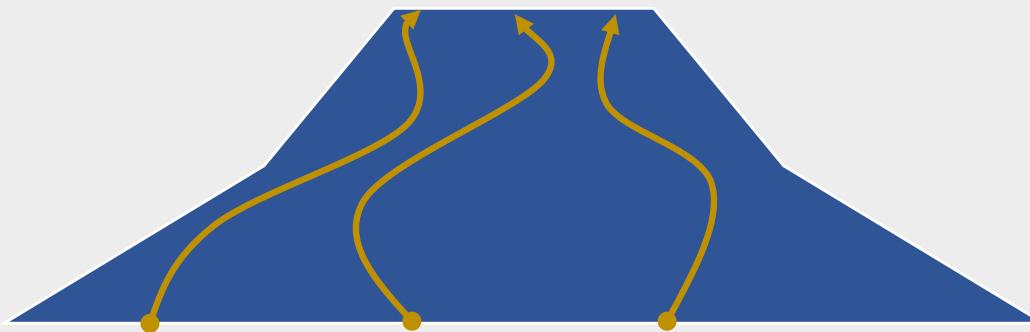


Problem: 2^i loss potentially exponential

Example 2: PRFs

Classical proof, step 2: Another hybrid

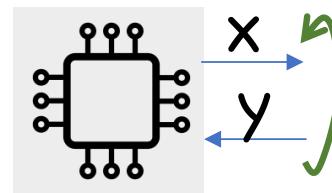
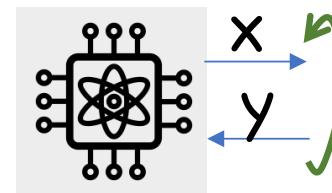
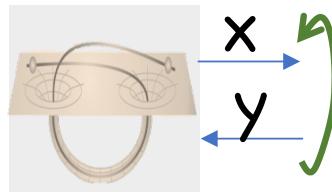
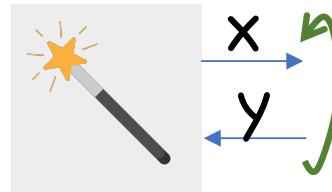
Solution: lazy/on-the-fly sampling



q queries → Only hybrid over q “active” positions

Example 2: PRFs

Proof doesn't care how A works internally,
as long as it has non-negligible advantage

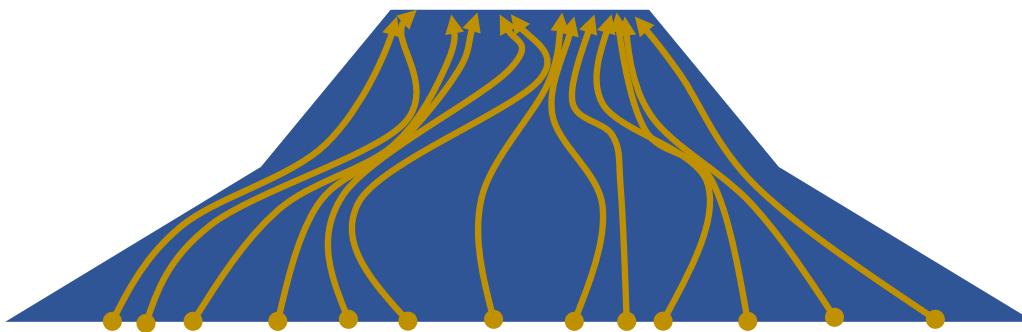


→ Also post-quantum reduction

Example 2: PRFs

What about full quantum security?

Even single query touches **everything**



Lazy sampling?

Embedding challenges?

Example 2: PRFs

What about full quantum security?

Classical proof is black box, but requires classical queries

Can the proof be fixed for full quantum security?

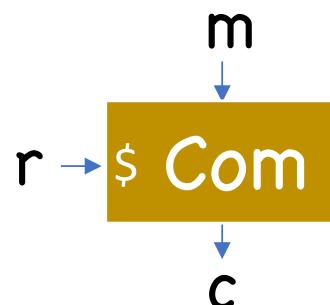
Topic for 2nd hour...

Example 2: PRFs

Key Takeaway: As long as reduction treats A as a *single-run* black box (potentially w/ *classical* interaction), reduction likely works in quantum setting

! But if interaction is quantum, all bets are off

Example 3: Coin Tossing



Def: Com is (computationally) binding if, \forall PPT A,
 \exists negligible ϵ such that

$$\Pr[\begin{array}{c} m_0 \neq m_1 \wedge \\ \text{Com}(m_0, r_0) = \text{Com}(m_1, r_1) : (m_0, r_0, m_1, r_1) \leftarrow A() \end{array}] < \epsilon$$

Also want hiding, but we will ignore

Example 3: Coin Tossing

Simple protocol:

$$b_A \leftarrow \{0,1\}$$
$$r \leftarrow \$$$

$$c = \text{com}(b_A, r)$$

$$b_B$$

$$b_A, r$$

$$b_B \leftarrow \{0,1\}$$

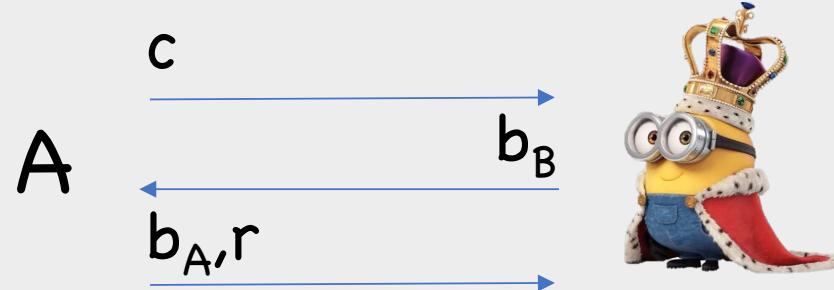
$$\text{Verify } c = \text{com}(b_A, r)$$

$$\begin{array}{ll} \text{pass} & \text{fail} \\ b = b_A \oplus b_B & b = \perp \end{array}$$

Example 3: Coin Tossing

Proof that Alice can't bias b :

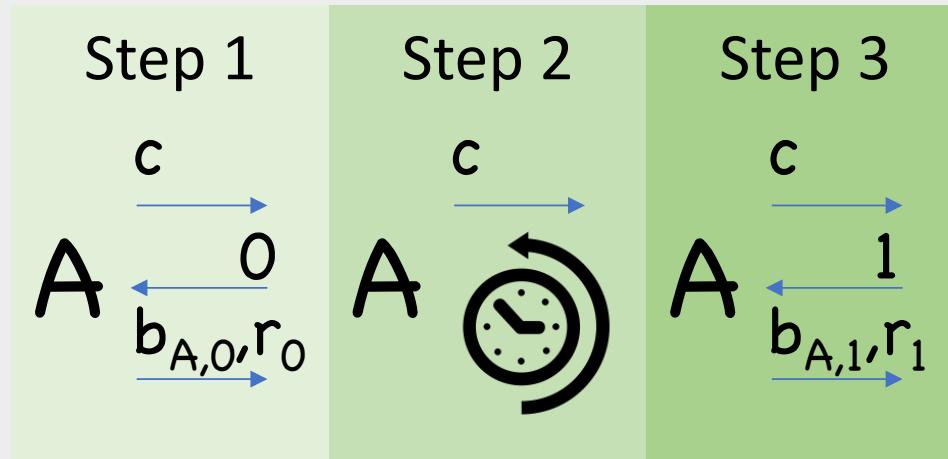
Let A be supposed adversary



$\Pr[b=0] > \frac{1}{2} + \varepsilon \rightarrow$ For both $b_B=0$ and $b_B=1$, good chance $b_A=b_B$ and $\text{Com}(b_A, r)=c$

Example 3: Coin Tossing

Proof that Alice can't bias b :



$$\Pr[b_{A,0} = 0 \wedge b_{A,1} = 1 \wedge \text{Com}(b_{A,0}, r_0) = \text{Com}(b_{A,1}, r_1) = c] \geq \text{poly}(\varepsilon)$$

Example 3: Coin Tossing

What if A is quantum?

Def: Com is **post-quantum** (computationally) binding if, $\forall QPT A$, \exists negligible ϵ such that

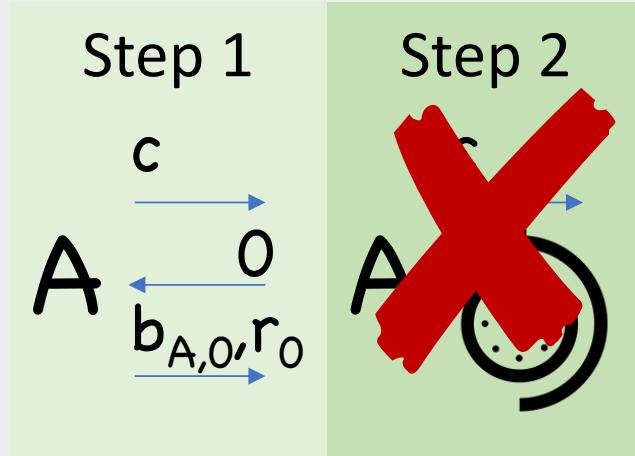
$$\Pr[\begin{array}{c} m_0 \neq m_1 \wedge \\ Com(m_0, r_0) = Com(m_1, r_1) : (m_0, r_0, m_1, r_1) \leftarrow A() \end{array}] < \epsilon$$

Define coin-tossing goal similarly

Note: adversary's interaction unchanged (unlike Ex 2)

Example 3: Coin Tossing

Proof that **quantum** Alice can't bias b ?



Measurement principle: extracting $b_{A,0}, r_0$ irreversibly altered A 's state

Example 3: Coin Tossing

Thm (Ambainis-Rosmanis-Unruh'14, Unruh'16):

\exists PQ binding Com s.t. Alice has a near-perfect strategy

I.e., quantumly, ability to produce either of two values isn't the same as ability to produce both simultaneously

Example + how to overcome topic for tomorrow

Example 3: Coin Tossing

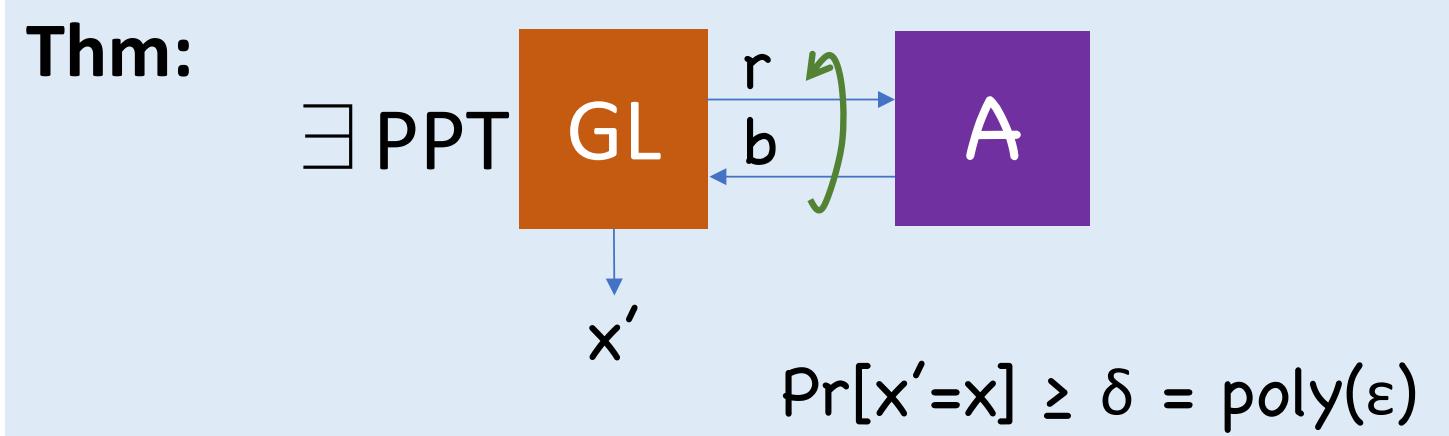
Key Takeaway: As long as reduction treats A as a *single-run* black box (potentially w/ *classical* interaction), reduction likely works in quantum setting

! But if interaction is quantum, all bets are off

! But if rewinding A , all bets are off

Example 4: Goldreich-Levin

“GL assumption”: A is PPT, $\exists x: \Pr[A(r) = \langle r, x \rangle] \geq \frac{1}{2} + \varepsilon$



Example 4: Goldreich-Levin

What happens in quantum setting?

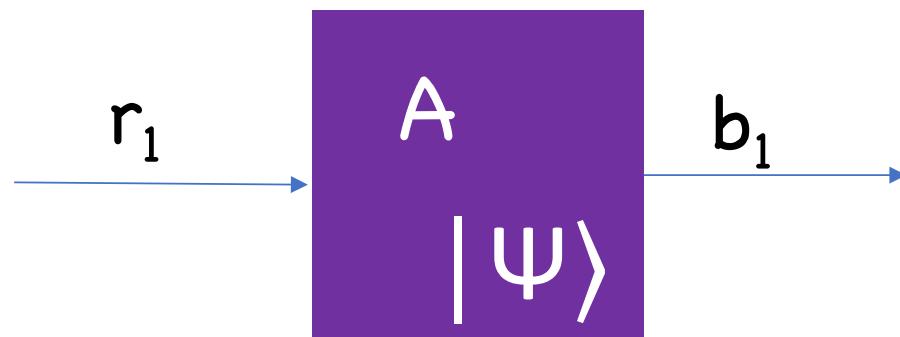
Proof of GL doesn't care how A works internally, as long as "GL Assumption" holds for **all** queries

A has classical description
(even if quantum alg.)

Good enough for most applications,
e.g. OWF \rightarrow PRG [HILL'99]

But what if A contains
quantum state?

Example 4: Goldreich-Levin



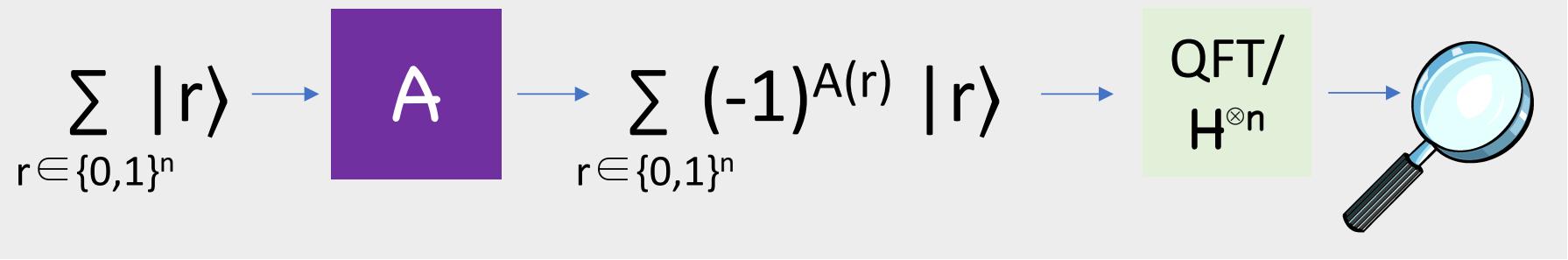
Measurement principle: extracting
 b_1 irreversibly altered $|\Psi\rangle$

GL assumption may not hold for 2nd query

Example 4: Goldreich-Levin

Thm (Adcock-Cleve'01): \exists single-query quantum GL algorithm

Proof:



Results in tighter security reductions!

Example 4: Goldreich-Levin

Key Takeaway: As long as reduction treats A as a black box, potentially w/ *classical* interaction or w/ rewinding to *classical* value, reduction likely works in quantum setting

! But if interaction is quantum, all bets are off

! If rewinding to *quantum* state, all bets are off

Roadmap

New Quantum Attack Models

Quantum rewinding

Quantum Random Oracle Model