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Security	Proofs

Crypto	security	
“proof” = Computational	

Assumption	P
Reduction	
from	P+

Should	be	well-studied	and	widely	believed
Concrete	assumptions:	Hardness	of	FACTORING,	DLOG,	LWE
Generic	assumptions:∃OWF,	∃PKE

In	other	words,	if	you	can	
break	scheme,	you	can	solve	P



Enter	Quantum

Thm [Shor’94]:	∃ Quantum	polynomial	time	
(QPT)	algorithms	solving	FACTORING,	DLOG

Post-Quantum	Crypto	=	developing	crypto	
secure	against	quantum	attacks



Post-Quantum	Security	Proofs

Post-quantum
security	“proof” = Post-quantum	

Assumption	P
Post-quantum
Reduction+

Should	be	well-studied	and	widely	believed
Concrete	assumptions:	(Quantum)	hardness	of	LWE,	…
Generic	assumptions:∃(quantum	immune)	OWF,	PKE

If	you	can	break	scheme	with	a	quantum	computer,
then	you	can	solve	P with	a	quantum	computer



Main	Takeaway

Post-quantum
security	“proof”

Post-quantum	
Assumption	P

Classical
Reduction+≠

BAD	NEWS:
Most	crypto	literature	
=	classical	reduction

GOOD	NEWS:
Most	results	translate	
to	quantum	trivially

Even	those	working	with	
post-quantum	tools

BUT:
∃notable
exceptions



Outline	for	Today

1st hour:	4	illustrative	examples
• Increasing	PRG	stretch	– black	box	reductions
• PRFs	– interaction	
• Coin	tossing	– rewinding	
• Goldreich-Levin	– running	adversary	many	times

2nd hour:	Begin	seeing	new	post-quantum	techniques



Example	1:	PRG	Length	Extension

x∈{0,1}n

y∈{0,1}m

Def:	G is	a	secure	pseudorandom	generator	
(PRG)	if,	∀PPT	A,	∃negligible	ε such	that

| Pr[A(y)=1] – Pr[A(G(x))=1] | < ε

(m>n)

G

ε called	“advantage”	of	A



Example	1:	PRG	Length	Extension

x∈{0,1}n

y∈{0,1}m

Suppose	m=n+1.	How	to	get	larger	stretch?

G

Solution:	G2 =

x

z

G

G

Thm:	If	G is	secure,	then	so	is	G2



Proof:	Suppose	G2 insecure.	Then	∃PPT	A,	non-negl ε such	that
| Pr[A(y)=1] – Pr[A(G2(x))=1] | ≥ ε

Example	1:	PRG	Length	Extension

Hybrid	0

G

G

A b
p0:=Pr[b=1]

Hybrid	1

G

A b
p1:=Pr[b=1]

Hybrid	2

A b
p2:=Pr[b=1]



Proof:	Suppose	G2 insecure.	Then	∃PPT	A,	non-negl ε such	that
| p2 – p0 | ≥ ε

Example	1:	PRG	Length	Extension

Hybrid	0

G

G

A b
p0:=Pr[b=1]

Hybrid	1

G

A b
p1:=Pr[b=1]

Hybrid	2

A b
p2:=Pr[b=1]

Either:
|p1-p0|≥ε/2 

Or:
|p2-p1|≥ε/2 

B(y0,y1)=
A(G(y0),y1)

B(y0,y1)=
A(y0,y1,$)

In	either	case,	B has	
advantage	ε/2 against	

security	of	G



Example	1:	PRG	Length	Extension

What	about	quantum?

Def:	G is	a	post-quantum secure	PRG	if,	
∀QPT	A,	∃negligible	ε such	that

| Pr[A(y)=1] – Pr[A(G(x))=1] | < ε

Thm:	If	G is	post-quantum	secure,	then	so	is	G2



Proof:	Suppose	G2 PQ	insecure.	Then	∃QPT	A,	non-negl ε s.t.
| p2 – p0 | ≥ ε

Example	1:	PRG	Length	Extension

Hybrid	0

G

G

A b
p0:=Pr[b=1]

Hybrid	1

G

A b
p1:=Pr[b=1]

Hybrid	2

A b
p2:=Pr[b=1]

Either:
|p1-p0|≥ε/2 

Or:
|p2-p1|≥ε/2 

B(y0,y1)=
A(G(y0),y1)

B(y0,y1)=
A(y0,y1,$)

In	either	case,	B has	
advantage	ε/2 against	

PQ security	of	G



Example	1:	PRG	Length	Extension

Proof	for	G2 doesn’t	care	how	A works	internally,	
as	long	as	it	has	non-negligible	advantage

y by b

y by b

That	is,	proof	treats	A as	“black	box”



Example	1:	PRG	Length	Extension

Key	Takeaway:	As	long	as	reduction	
treats	A as	a	non-interactive single-run
black	box,	reduction	likely	works	in	
quantum	setting



Example	2:	PRFs

x

y

Def:	F is	a	secure	pseudorandom	function	
(PRF)	if,	∀PPT	A,	∃negligible	ε such	that

| Pr[AF(k, · )()=1] – Pr[AR( · )()=1] | < ε
F>k

Notes:
- k random
- R uniformly	random	function
- AO( · ) means	A makes	queries	on	x,	receives	O(x)



Example	2:	PRFs

What	is	a	post-quantum	PRF?

Def:	F is	a	PQ secure	PRF	if,	∀QPT	A,	
∃negligible	ε such	that

| Pr[AF(k, · )()=1] – Pr[AR( · )()=1] | < ε

Def:	F is	a	Fully	Quantum	secure	PRF	if,	
∀QPT	A,	∃negligible	ε such	that
| Pr[A |F(k,·)⟩ ()=1] – Pr[A |R(·)⟩ ()=1] | < ε

A|O(·)⟩ means	
quantum	queries:	

∑αx,y|x,y⟩

∑αx,y|x,y⊕O(x)⟩



Example	2:	PRFs

Is	there	a	difference? YES!

Proof: Embed	Simon’s	oracle/period	finding

PRF’( (k,z) , x ) = PRF( k, {x,x⊕z} )



Example	2:	PRFs

Ok.	Which	definition	do	we	want? It	depends

Example	2a:	PRFs	à CPA-secure	encryption

Enc(k,m) = r ß $
c = (r, F(k,r)⊕m)

Encrypter (honest)	chooses	r à always	classical

PQ	security	suffices



Example	2:	PRFs

Ok.	Which	definition	do	we	want? It	depends

Example	2b:	PRFs	àMAC

MAC(k,m) = F(k,m)

Security	model	lets	attacker	choose	m,	but	
signer	(honest)	actually	computes	MAC

Can	attacker	force	signer	to	MAC	superpositions?



Example	2:	PRFs

Ok.	Which	definition	do	we	want? It	depends

Example	2c:	PRFs	à Pseudorandom	quantum	states

∑x (-1)F(k,x) |x⟩

Generation	of	state	makes	superposition	query	to	F

Need	full	quantum	security

[Ji-Liu-Song’18,Brakerski-Shmueli’19]



Example	2:	PRFs

So	then,	what	does	a	classical	proof	give	us?



Example	2:	PRFs

PRGàPRF

G

k

G G

GG G G

F(k,000) F(k,001) F(k,010) F(k,011) F(k,100) F(k,101) F(k,110) F(k,111)



Example	2:	PRFs

PRGàPRF

G

k

G G

GG G G

F(k,000) F(k,001) F(k,010) F(k,011) F(k,100) F(k,101) F(k,110) F(k,111)



Example	2:	PRFs

Classical	proof,	step	1:	Hybrid

G
G G

GG G G

Hybrid	0	(	F(k, · ) ):



Example	2:	PRFs

Classical	proof,	step	1:	Hybrid

G G

GG G G

Hybrid	1:



Example	2:	PRFs

Classical	proof,	step	1:	Hybrid

GG G G

Hybrid	2:



Example	2:	PRFs

Classical	proof,	step	1:	Hybrid

Hybrid	n (	R( · ) ):



Example	2:	PRFs

Classical	proof,	step	1:	Hybrid

∃i s.t. | Pr[AHybrid i+1() = 1] - Pr[AHybrid i() = 1] | ≥ ε/n 

vs
Step	1	makes	sense	if	A classical,	
post-quantum,	or	fully	quantum



Example	2:	PRFs

Classical	proof,	step	2:	Another	hybrid

Hybrid	i.0 = i:



Example	2:	PRFs

Classical	proof,	step	2:	Another	hybrid

Hybrid	i.1:



Example	2:	PRFs

Classical	proof,	step	2:	Another	hybrid

Hybrid	i.2:



Example	2:	PRFs

Classical	proof,	step	2:	Another	hybrid

Hybrid	i.3:



Example	2:	PRFs

Classical	proof,	step	2:	Another	hybrid

Hybrid	i.2i = i+1:

Problem:	2i loss	potentially	exponential



Example	2:	PRFs

Classical	proof,	step	2:	Another	hybrid

Solution:	lazy/on-the-fly	sampling

q queries	à Only	hybrid	over	q “active”	positions



Example	2:	PRFs

Proof	doesn’t	care	how	A works	internally,	
as	long	as	it	has	non-negligible	advantage

x
y

x
y

x
y

x
y

è Also	post-quantum	reduction



Example	2:	PRFs

What	about	full	quantum	security?

Even	single	query	touches	everything

Lazy	sampling? Embedding	challenges?



Example	2:	PRFs

What	about	full	quantum	security?
Classical	proof	is	black	box,	but	requires	classical	queries

A
x

O(x) A
∑αx,y|x,y⟩
∑αx,y|x,y⊕O(x)⟩vs✓ ✘

Can	the	proof	be	fixed	for	full	quantum	security?
Topic	for	2nd hour…



Example	2:	PRFs

Key	Takeaway:	As	long	as	reduction	treats	
A as	a	single-run black	box	(potentially	w/	
classical interaction),	reduction	likely	
works	in	quantum	setting

But	if	interaction	is	
quantum,	all	bets	are	off!



Example	3:	Coin	Tossing

m

c

Also	want	hiding,	but	we	will	ignore

Com$r
Def:	Com is	(computationally)	binding	if,	∀PPT	A,	
∃negligible	ε such	that

Pr[                         : (m0,r0,m1,r1)ßA()] < εm0≠m1∧
Com(m0,r0)=Com(m1,r1) 



Example	3:	Coin	Tossing

Simple	protocol:

bAß{0,1}
r ß $

c = com(bA,r) bBß{0,1}
bB

bA,r
Verify	c = com(bA,r)

b = bA⊕bB

pass fail

b = ⟂



Proof	that	Alice	can’t	bias	b:
Let	A be	supposed	adversary

Example	3:	Coin	Tossing

c
bB

bA,r
A

Pr[b=0] > ½+ε For	both	bB=0 and	bB=1,	good	
chance	bA=bB and	Com(bA,r)=c



Proof	that	Alice	can’t	bias	b:

Example	3:	Coin	Tossing

Step	1

A
c

0
bA,0,r0

Step	2

A
c

Step	3

A
c

1
bA,1,r1

Pr[                              ] ≥ poly(ε)bA,0 = 0 ∧ bA,1 = 1 ∧
Com(bA,0,r0) = Com(bA,1,r1) = c



Example	3:	Coin	Tossing

What	if	A is	quantum?

Def:	Com is	post-quantum (computationally)	
binding	if,	∀QPT	A,	∃negligible	ε such	that

Pr[                         : (m0,r0,m1,r1)ßA()] < εm0≠m1∧
Com(m0,r0)=Com(m1,r1) 

Define	coin-tossing	goal	similarly

Note:	adversary’s	interaction	unchanged	(unlike	Ex	2)



Proof	that	quantum Alice	can’t	bias	b?

Example	3:	Coin	Tossing

Step	1

A
c

0
bA,0,r0

Step	2

A
c

✘
Measurement	principle:	extracting	
bA,0,r0 irreversibly	altered	A’s	state	



Example	3:	Coin	Tossing

Thm (Ambainis-Rosmanis-Unruh’14,Unruh’16):	
∃PQ	binding	Com s.t. Alice	has	a	near-perfect	strategy	

I.e.,	quantumly,	ability	to	produce	either	of	two	values	isn’t	
the	same	as	ability	to	produce	both	simultaneously	

Example	+	how	to	overcome	topic	for	tomorrow



Example	3:	Coin	Tossing

Key	Takeaway:	As	long	as	reduction	treats	
A as	a	single-run black	box	(potentially	w/	
classical interaction),	reduction	likely	
works	in	quantum	setting

But	if	interaction	is	
quantum,	all	bets	are	off! But	if	rewinding	A,	all	

bets	are	off!



Example	4:	Goldreich-Levin

Ar b

“GL	assumption”:	A is	PPT,	∃x: Pr[A(r) = <r,x>] ≥ ½ + ε

Thm:
GL

r
b A∃PPT

x’
Pr[x’=x] ≥ δ = poly(ε)

Stateless/rewindable



Example	4:	Goldreich-Levin

What	happens	in	quantum	setting?

Proof	of	GL	doesn’t	care	how	A works	internally,	
as	long	as	“GL	Assumption”	holds	for	all queries

A has	classical	description
(even	if	quantum	alg.)✓

Good	enough	for	most	applications,	
e.g.	OWF	à PRG	[HILL’99]

But	what	if	A contains	
quantum	state?



Example	4:	Goldreich-Levin

A

│Ψ⟩
r1 b1

Measurement	principle:	extracting	
b1 irreversibly	altered	│Ψ⟩

GL	assumption	may	not	hold	for	2nd	query



Example	4:	Goldreich-Levin

Thm (Adcock-Cleve’01):	∃ single-query	quantum	GL	algorithm

Proof:

∑ |r⟩
r∈{0,1}n

A ∑ (-1)A(r) |r⟩
r∈{0,1}n

QFT/
H⊗n

Results	in	tighter	security	reductions!



Example	4:	Goldreich-Levin

Key	Takeaway:	As	long	as	reduction	treats	A
as	a	black	box,	potentially	w/	classical
interaction	or	w/	rewinding	to	classical value,	
reduction	likely	works	in	quantum	setting

But	if	interaction	is	
quantum,	all	bets	are	off! If	rewinding	to	quantum

state,	all	bets	are	off!



Roadmap

Quantum	rewinding

New	Quantum	Attack	Models

Quantum	Random	Oracle	Model


