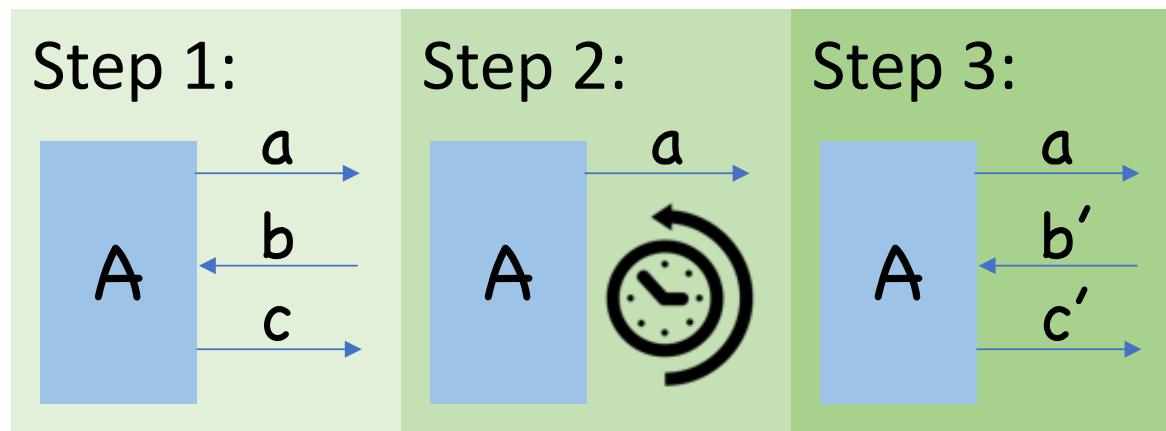


Quantum Rewinding

Mark Zhandry (Princeton & NTT Research)

Classical Rewinding

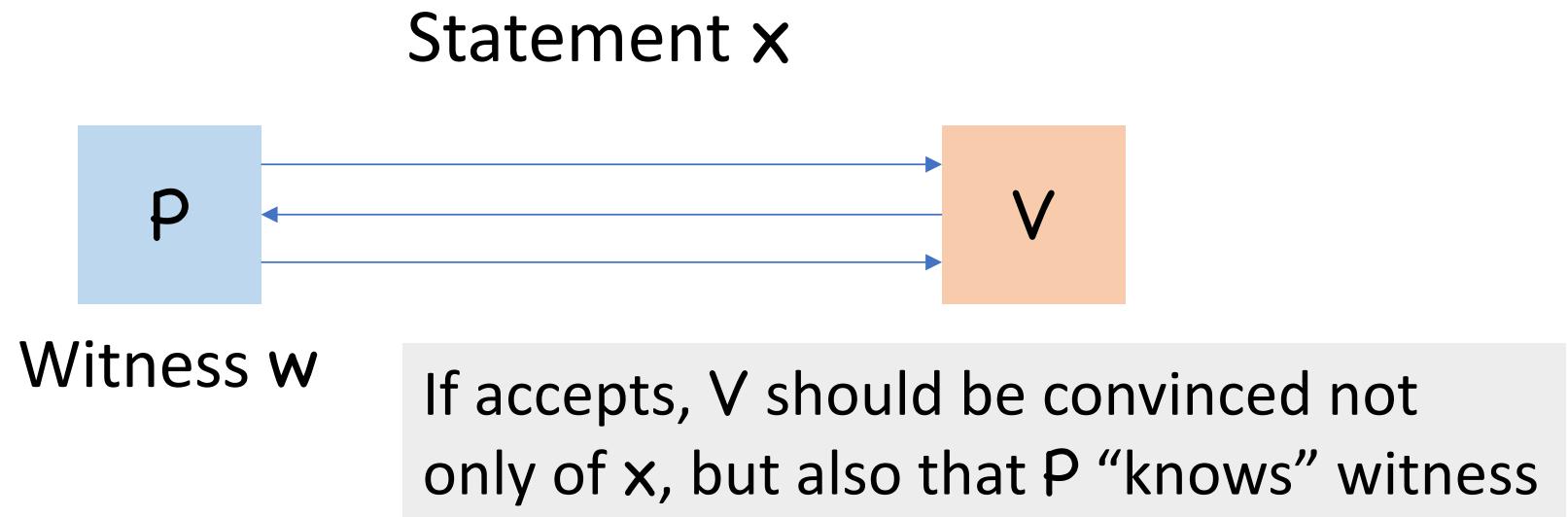


Zero knowledge

Commitments

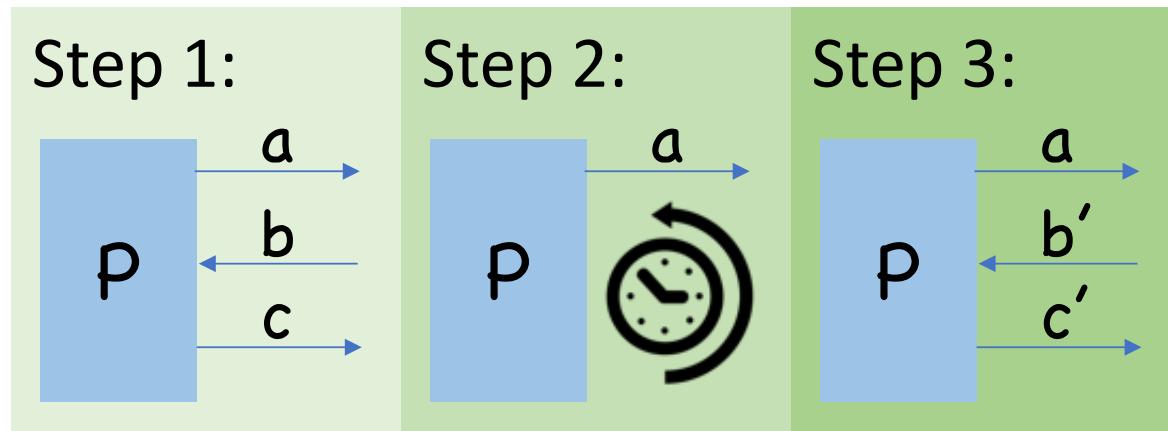
Proofs of knowledge

Proof of Knowledge (PoK)



Usually combine with other properties like zero knowledge

Rewinding for PoK



(a, b, c, b', c') , $b \neq b'$

“special soundness”

What Does Rewinding *Really* Mean

```
function check(n)
{
    // check if the number n is a prime
    var factor; // if the checked number is not a prime, this is its first factor
    var c;
    factor = 0;
    // try to divide the checked number by all numbers till its square root
    for (c=2 ; (c <= Math.sqrt(n)) ; c++)
    {
        if (n%c == 0) // is n divisible by c ?
        {
            factor = c;
            break;
        }
    }
    return (factor);
} // end of check function

function communicate()
{
    // communicate with the user
    var i; // i is the checked number
    var factor; // if the checked number is not a prime, this is its first factor
    i = document.primitetest.number.value; // get the checked number
    // is it a valid input?
    if (isNaN(i)) || (i <= 0) || (Math.floor(i) != i))
    {
        alert ("The checked object should be a whole positive number");
    }
    else
    {
        factor = check (i);
        if (factor == 0)
        {
            alert (i + " is a prime");
        }
        else
        {
            alert (i + " is not a prime, " + i + "=" + factor + "X" + i/factor);
        }
    }
} // end of communicate function
```

Given state here,

can we remember
state here?

Classical programs not
necessarily “reversible”

But can be *made* reversible
by recording program trace

What Does Rewinding *Really* Mean

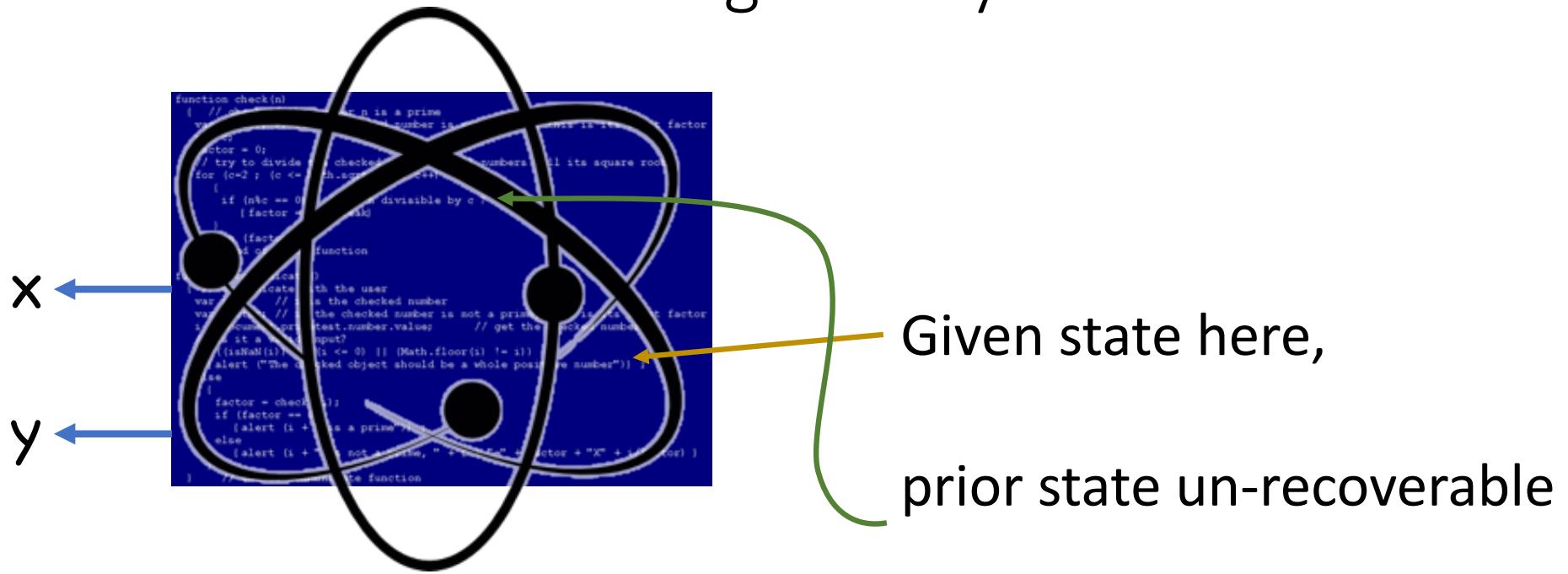
But isn't quantum computing already reversible?

Only until a measurement...

Uncertainty Principle: once measurement is performed, quantum state irreversibly altered

No Cloning: can't record program trace for later

What Does Rewinding *Really* Mean

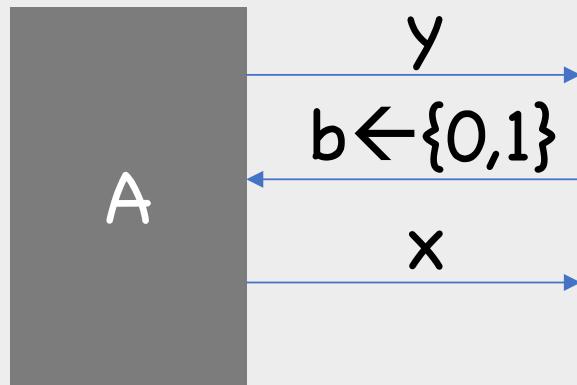


Interactive quantum programs ***cannot***
in general be made reversible

Impossibility of Quantum Rewinding

[Ambainis-Rosmanis-Unruh'14]

Coin flipping/commitment game



Win if
• $H(x) = y$
• $x_1 = b$

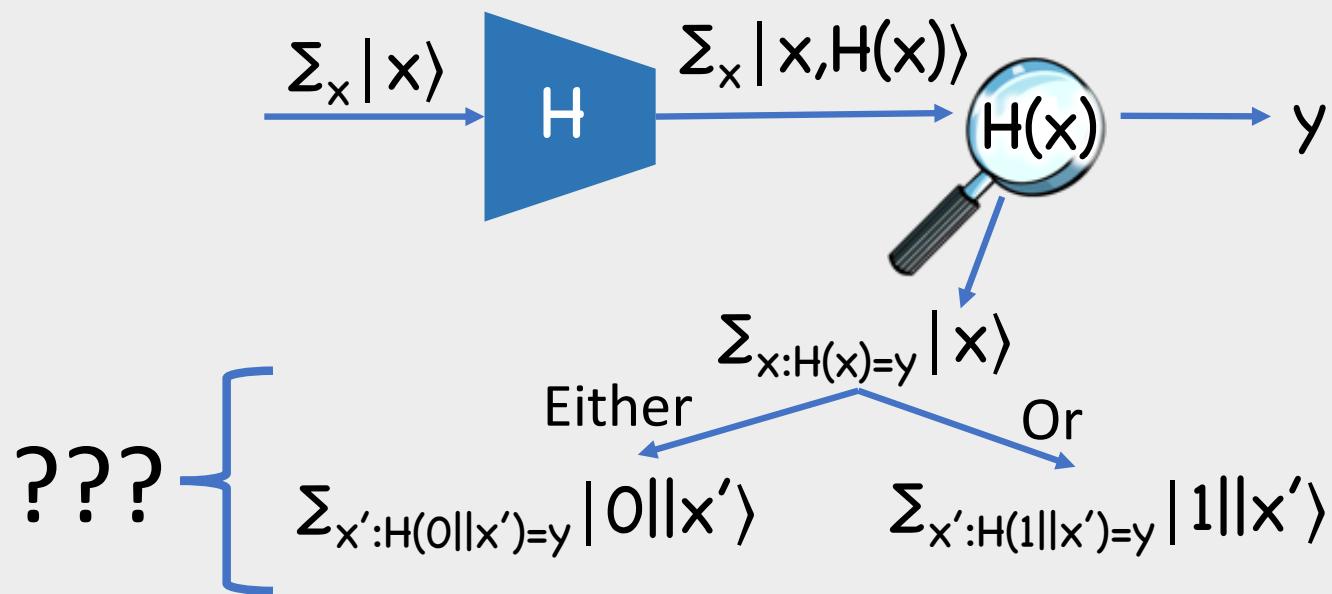
Classically:
 $\Pr[A \text{ wins}] \geq \frac{1}{2} + \varepsilon$
+ Rewinding
 $= \Pr[\text{collision}] \geq \text{poly}(\varepsilon)$

Goal: devise *quantum A* and col. res. H where $\Pr[A \text{ wins}] \approx 1$

Impossibility of Quantum Rewinding

[Ambainis-Rosmanis-Unruh'14]

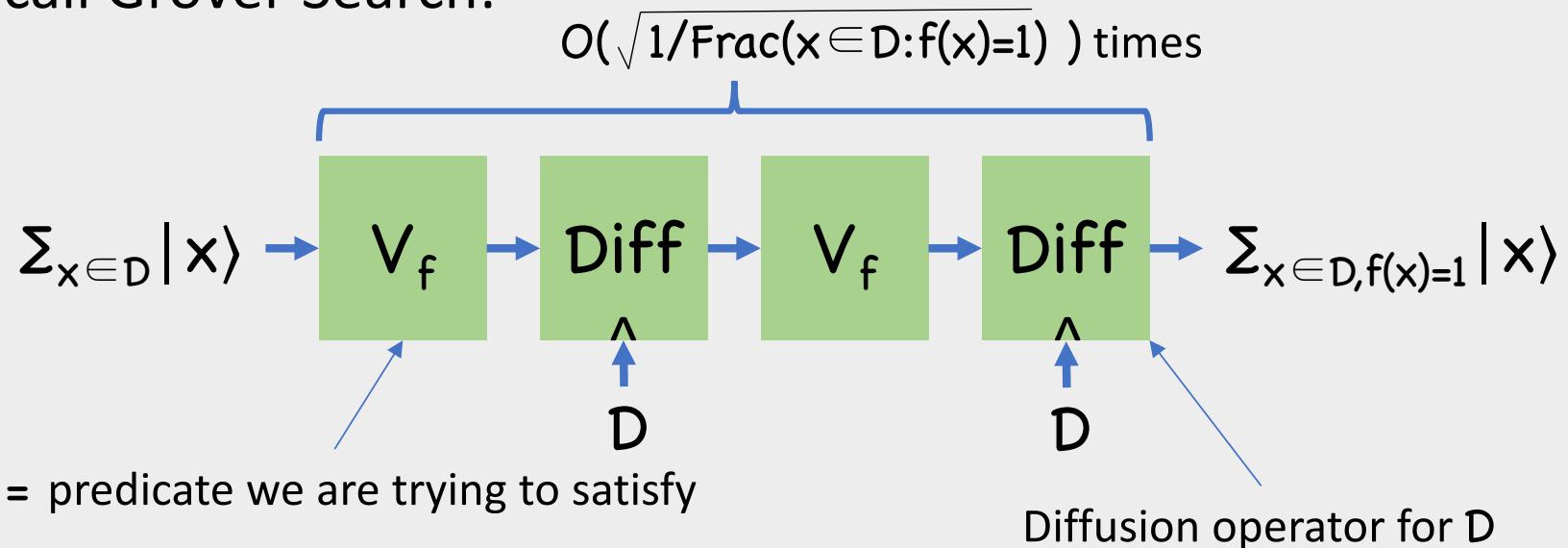
Idea:



Impossibility of Quantum Rewinding

[Ambainis-Rosmanis-Unruh'14]

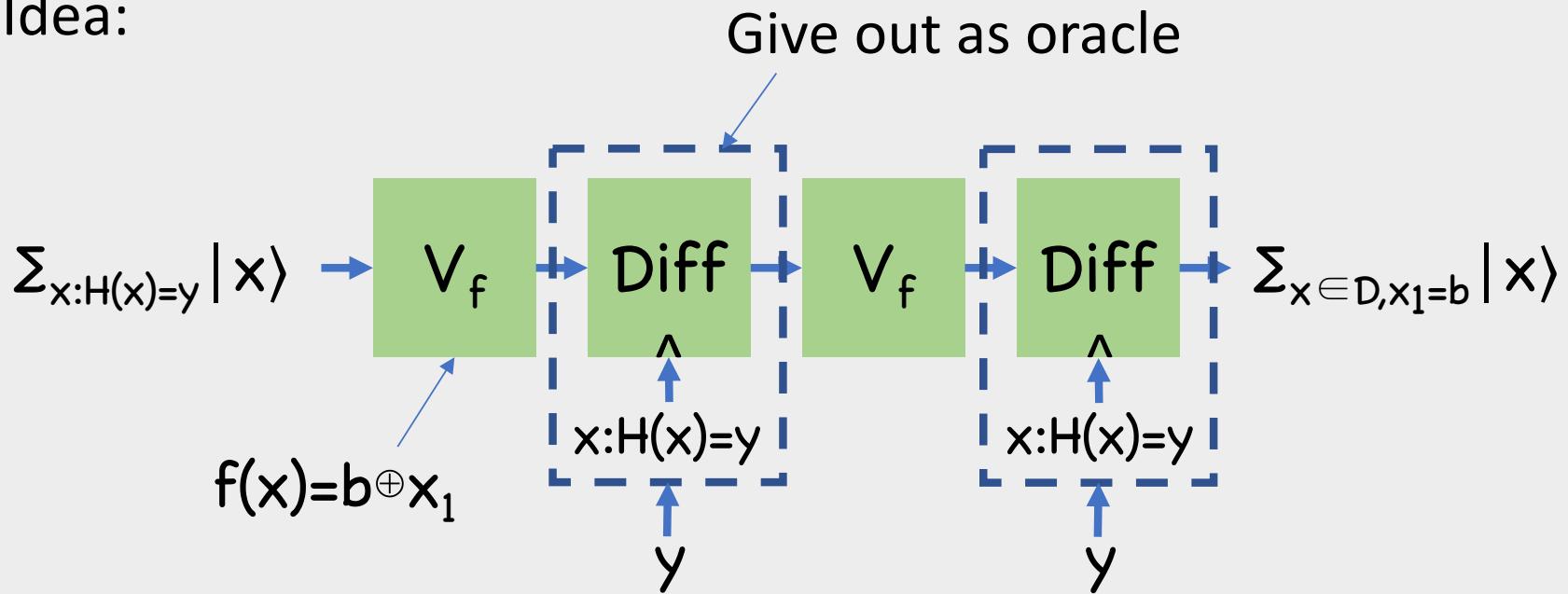
Recall Grover Search:



Impossibility of Quantum Rewinding

[Ambainis-Rosmanis-Unruh'14]

Idea:



Impossibility of Quantum Rewinding

[Ambainis-Rosmanis-Unruh'14]

Thm: A random function H (given as oracle) is collision resistant, even if additionally given Diff oracle

H is not a good commitment, despite being collision resistant

PoK cannot quantumly be justified based on special soundness alone

Ingredient 1: Rewinding Lemma

Lemma [Unruh'10]:

Suppose:

- (1) c is a single bit
- (2) Defer all measurements except c
- (3) $\Pr[c=1 \mid a] = \varepsilon$

Then:

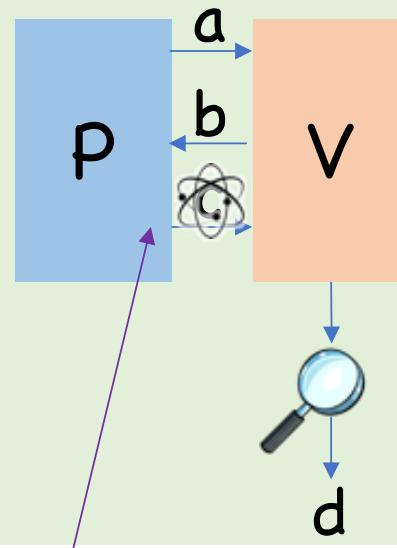
$$\Pr[c=c'=1 \mid a] \geq \varepsilon^3$$

Compare to
 ε^2 classically

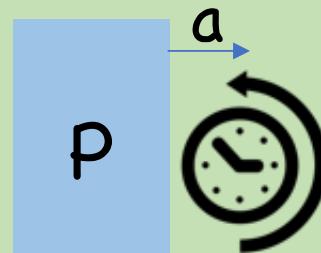
Really need $\Pr[c=c'=1 \mid (b \neq b'), a]$,
Unruh gives better bound

Applying Rewinding Lemma

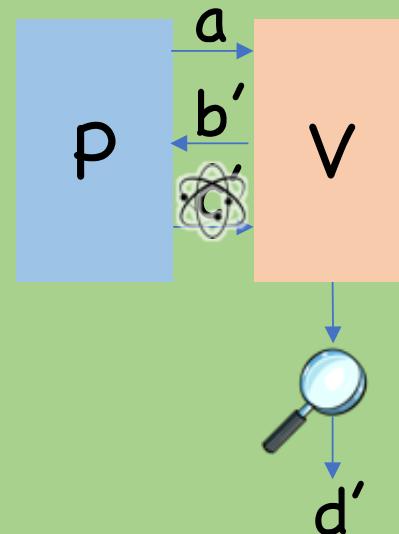
Step 1:



Step 2:



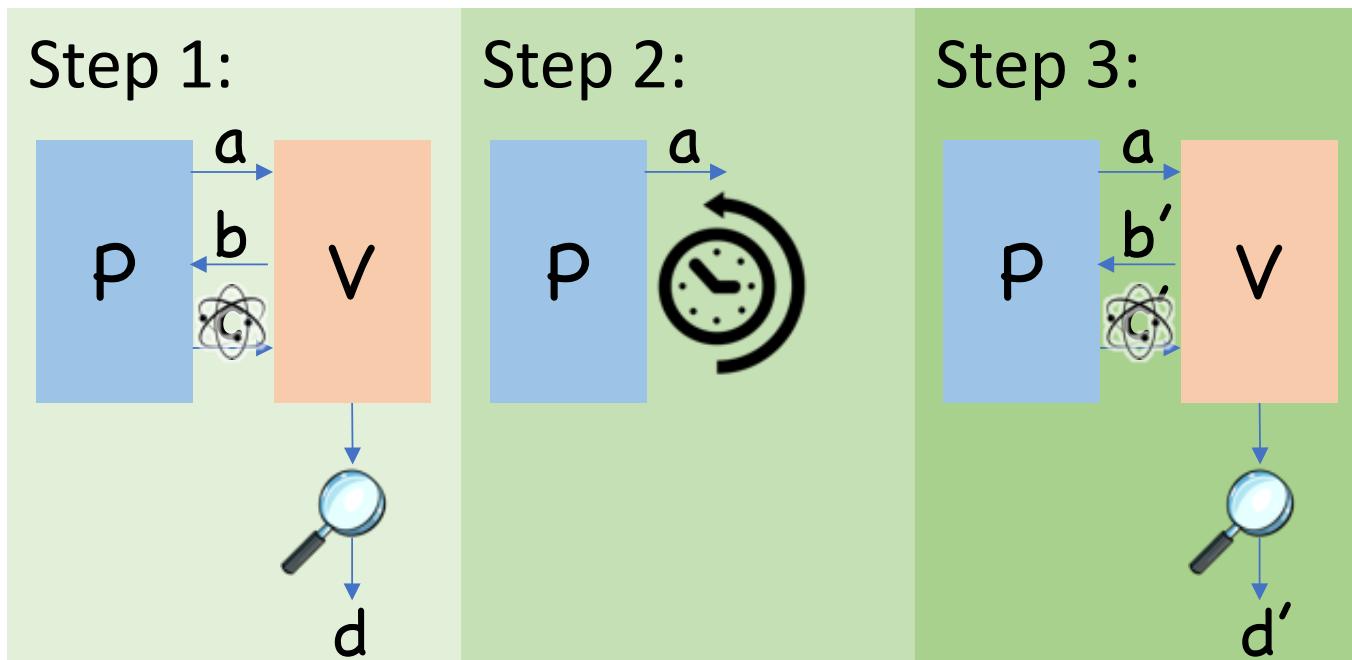
Step 3:



No measurement after b !

Rewinding Lemma: $\Pr[d=d']=1] \geq \varepsilon^3$

Applying Rewinding Lemma



Problem: Can't extract c, c' without changing d, d'

Ingredient 2: Additional Security Promises

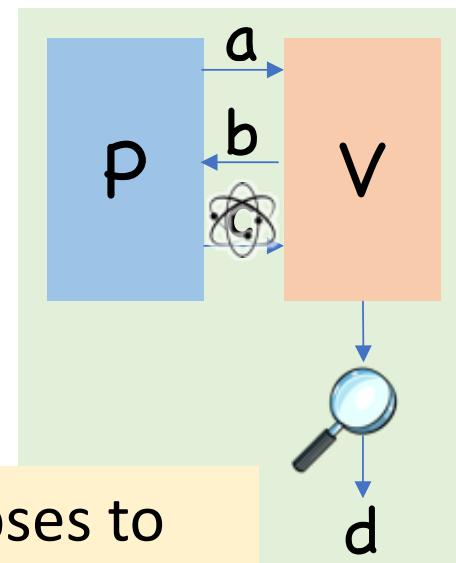
Option 1: **Injective H**

Unique “opening” x , can measure without any collapse

Ingredient 2: Additional Security Promises

Option 1 [Unruh'10]: **Strict Soundness:**

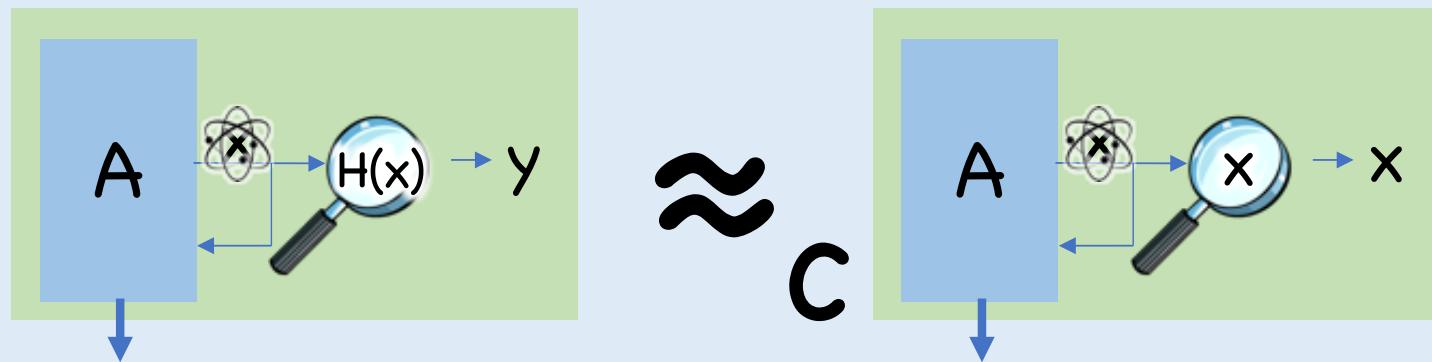
$$\forall a, b, \exists \text{unique } c \text{ s.t. } V(a, b, c) = 1$$



If $d=1$, c collapses to
classical value anyway

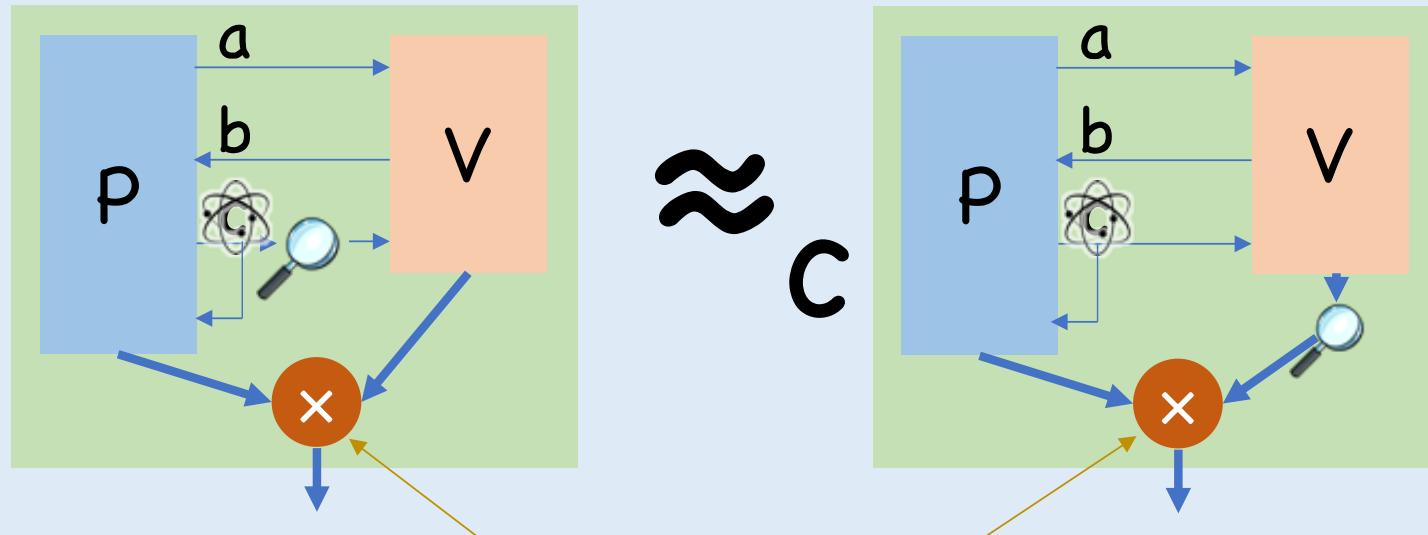
Ingredient 2: Additional Security Promises

Option 2 [Unruh'16]: **Collapsing Hashes:**



Ingredient 2: Additional Security Promises

Option 2 [Liu-Z'19,Don-Fehr-Majenz-Schaffner'19]:
Collapsing:

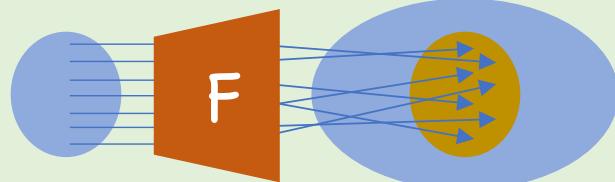


Justify Collapsing: Lossy Functions

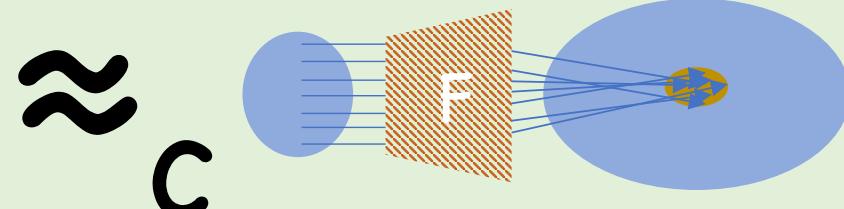
[Unruh'16]

Lossy functions:

Injective Mode:



Lossy Mode:



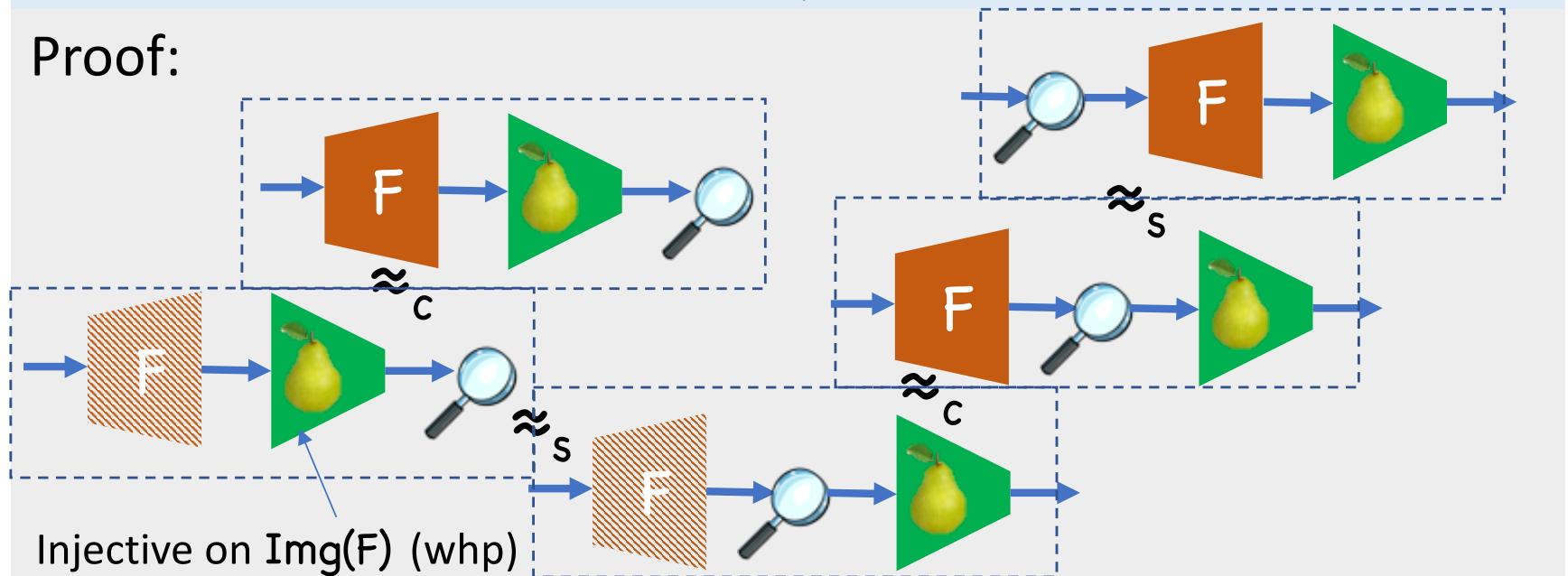
Can construct from LWE

Justify Collapsing: Lossy Functions

[Unruh'16]

Lossy \rightarrow Collapsing:

Proof:



Limitations

For PoK's, applying destroys structure, makes verification impossible

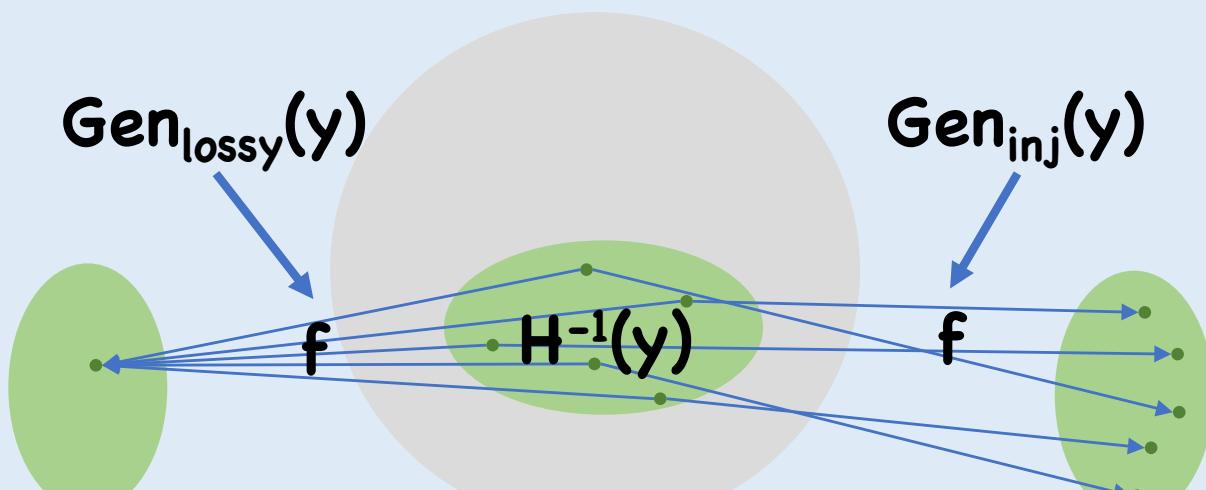
Can remove , but then c is large; bad for some application (e.g. signatures)

May be inefficient (large intermediate computation)

Improvement: Associated Lossy Funcs

[Liu-Z'19]

Def:



$$\text{Gen}_{\text{lossy}}(y) \approx_c \text{Gen}_{\text{inj}}(y)$$

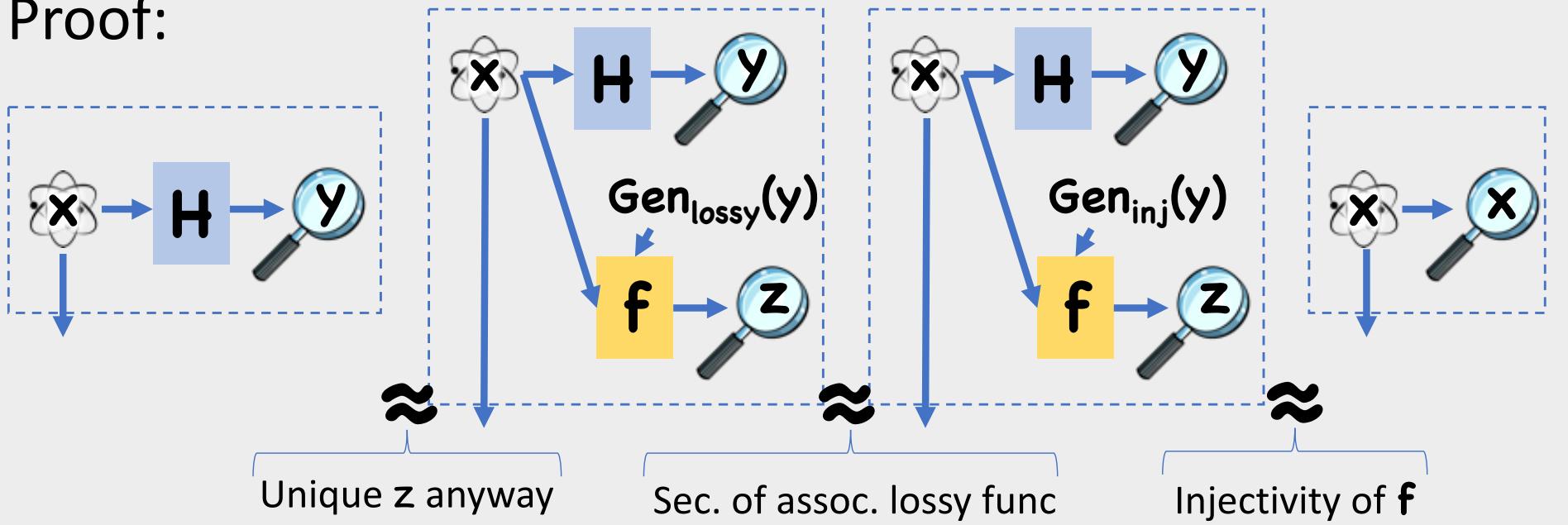
Improvement: Associated Lossy Funcs

[Liu-Z'19]

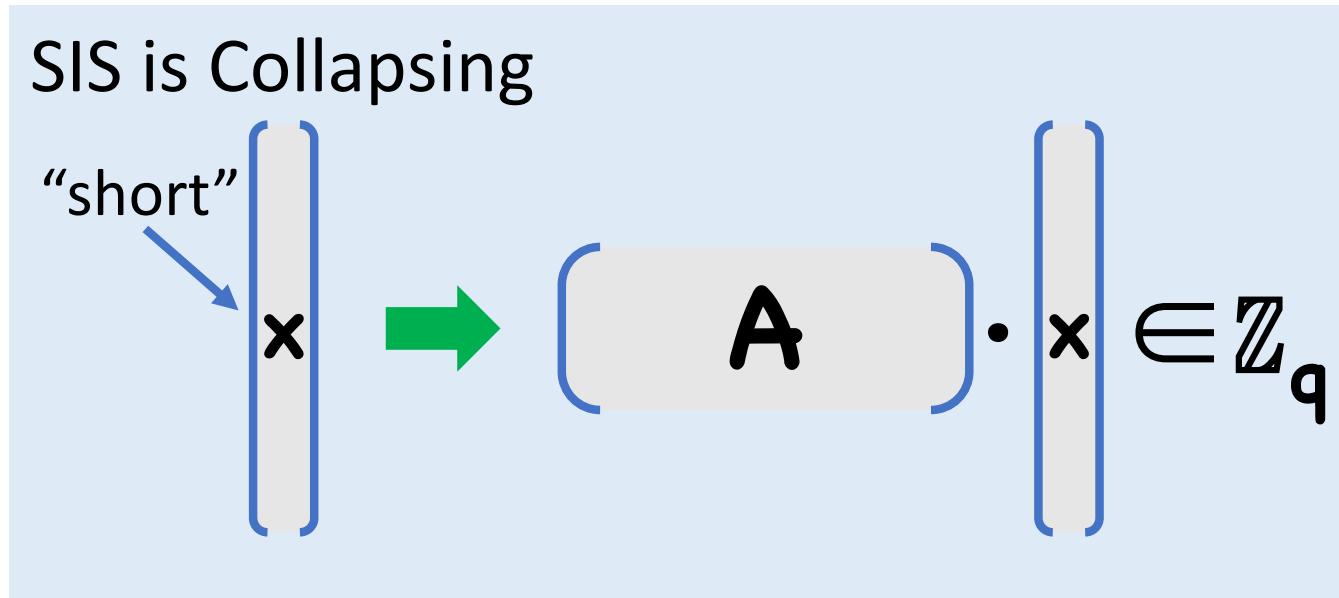
Thm:

H has associated lossy func $\rightarrow \mathsf{H}$ is collapsing

Proof:



Consequences



[Lyubashevsky'11] Is a PoK for SIS

Associated Lossy Functions for SIS

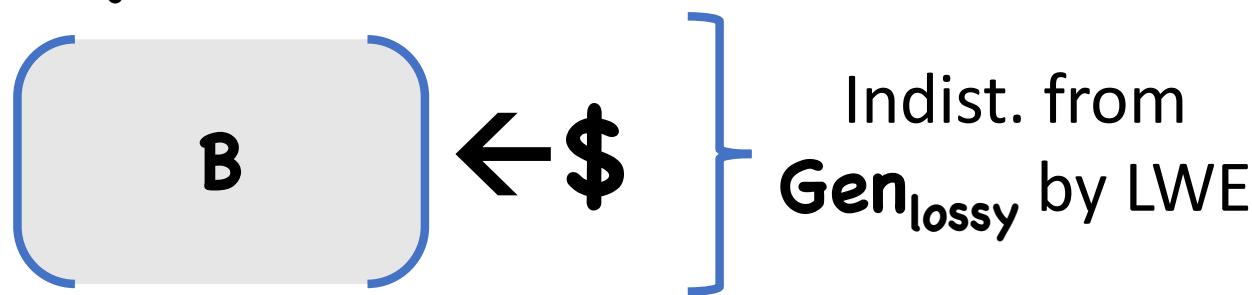
$\text{Gen}_{\text{lossy}}(y)$:

$$B = u \cdot A + e \text{ "short"}$$

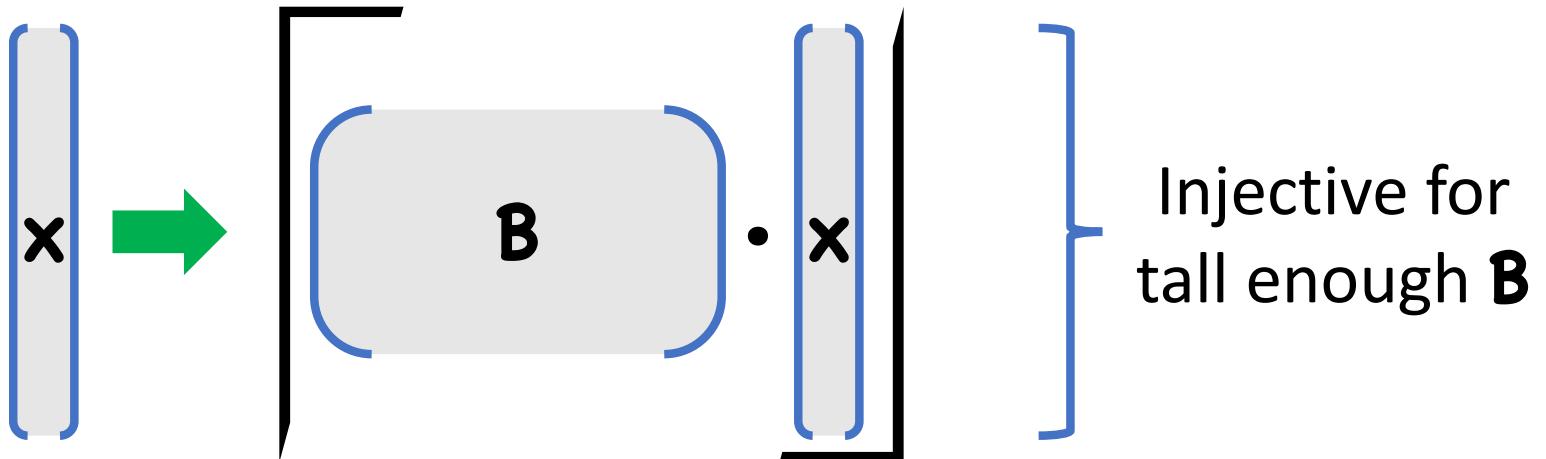
$$f_B(x): \begin{bmatrix} x \end{bmatrix} \xrightarrow{\text{green arrow}} \begin{bmatrix} B \cdot x \end{bmatrix} = \begin{bmatrix} u \cdot y \end{bmatrix}$$

Associated Lossy Functions for SIS

$\mathbf{Gen}_{\text{inj}}(y)$:



$f_B(x)$:



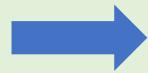
The Silver Lining...

Proofs of Quantumness

But, can't be verified by others

Thm [Brakerski-Christiano-Mahadev-Vazirani-Vidick'18]:

LWE



Designated verifier
(privately verifiable)
proof of quantumness

Doesn't require quantum-easy assumptions

Proofs of Quantumness

Suppose A wins coin-flipping game

Proof that A is quantum, relying
on collision resistance of H

Assuming honest verifier, anyone can tell that A won

Proofs of Unclonable State

PQ collision resistance of H

+

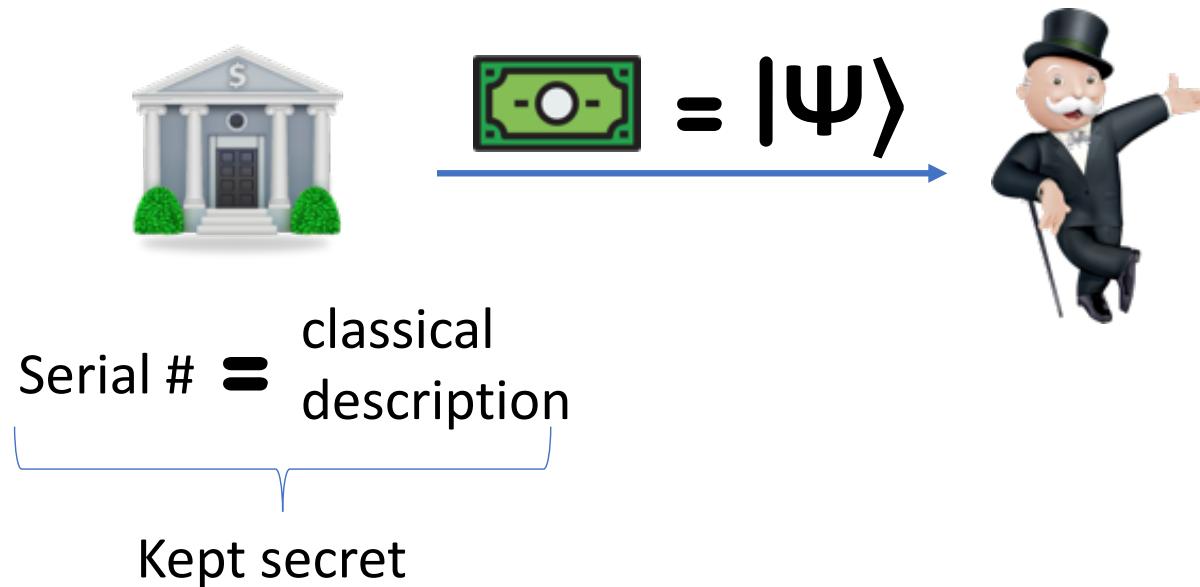
A wins coin-flipping game

State after commitment
can't be copied

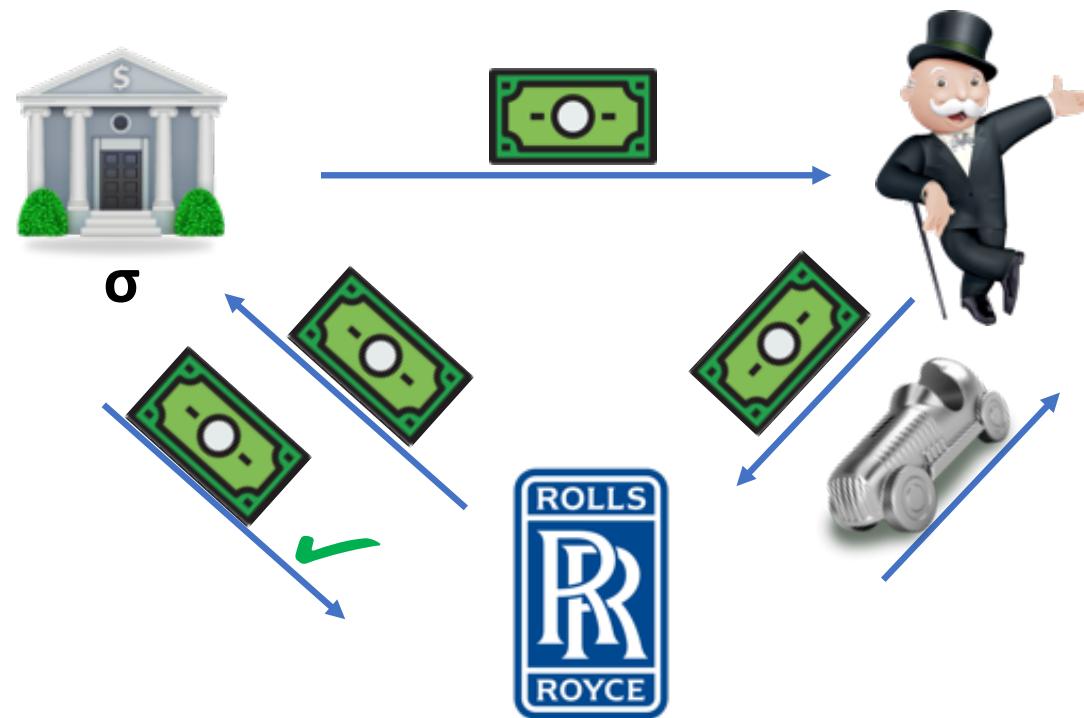
And, it can be verified

No-Cloning = Quantum Money

[Wiesner'70]

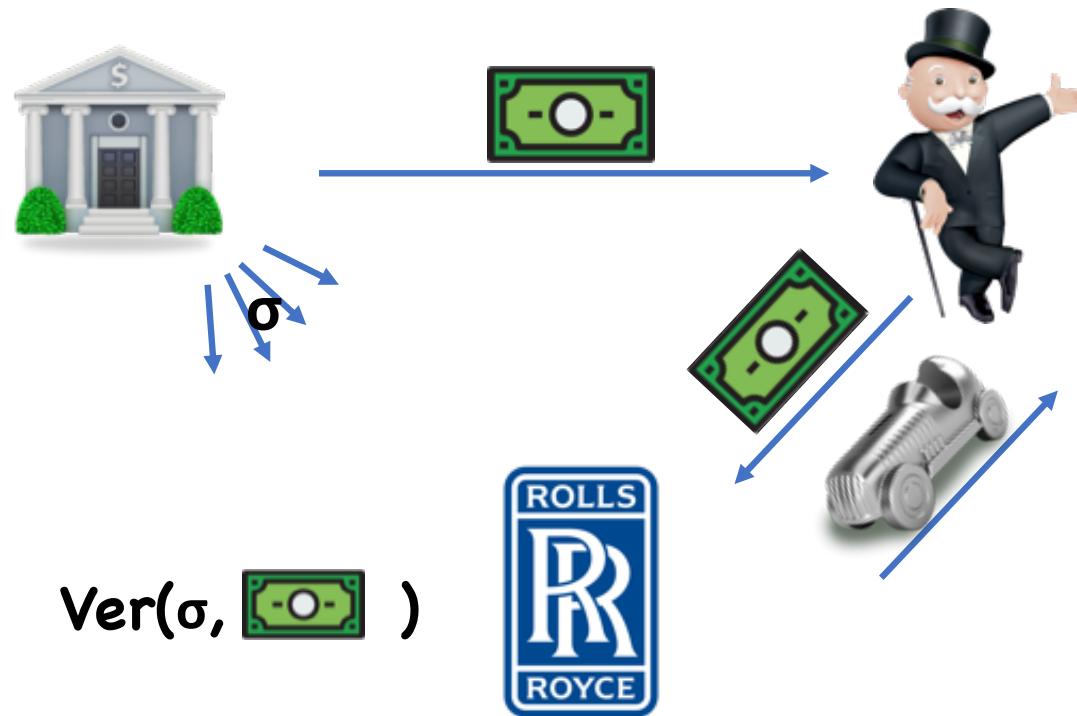


Limits of (Plain) Quantum Money



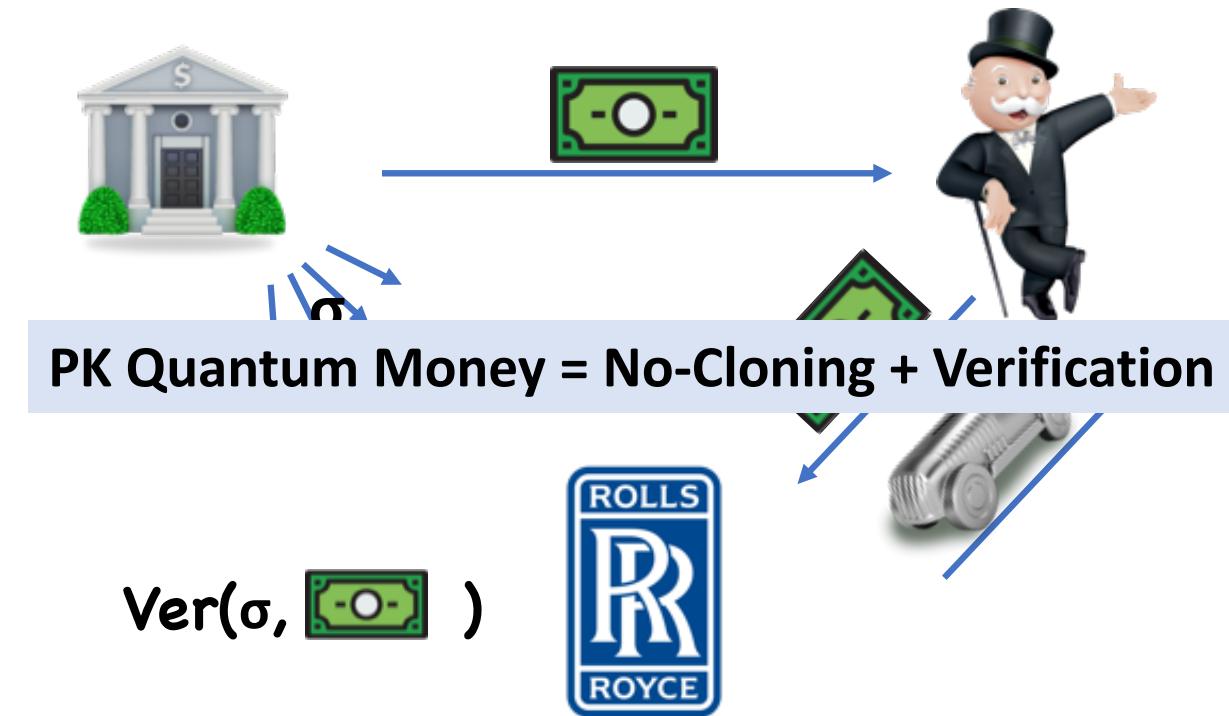
Public Key Quantum Money

[Aaronson'09]



Public Key Quantum Money

[Aaronson'09]



Constructing PK quantum money is a major goal in quantum cryptography

Public Key Quantum Money

PQ collision resistance of H

+

[Z'19]

PK Quantum Money

A wins coin-flipping game

Or more generally, H not collapsing

Takeaway: whenever post-quantum proofs fail,
look for interesting quantum crypto applications