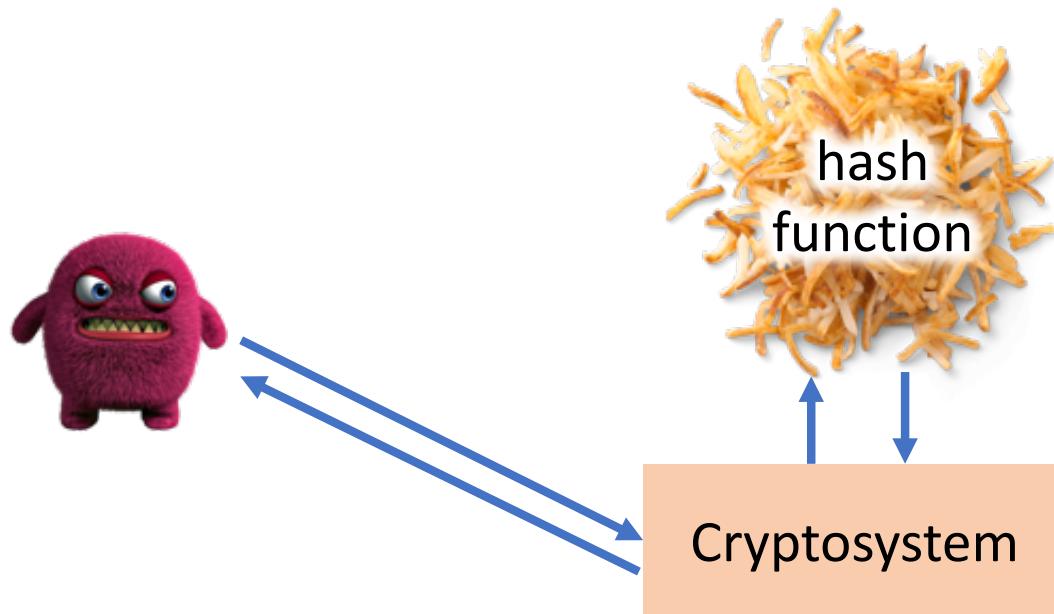


Quantum Random Oracle Model, Part 1

Mark Zhandry (Princeton & NTT Research)

(Classical) Random Oracle Model (ROM)

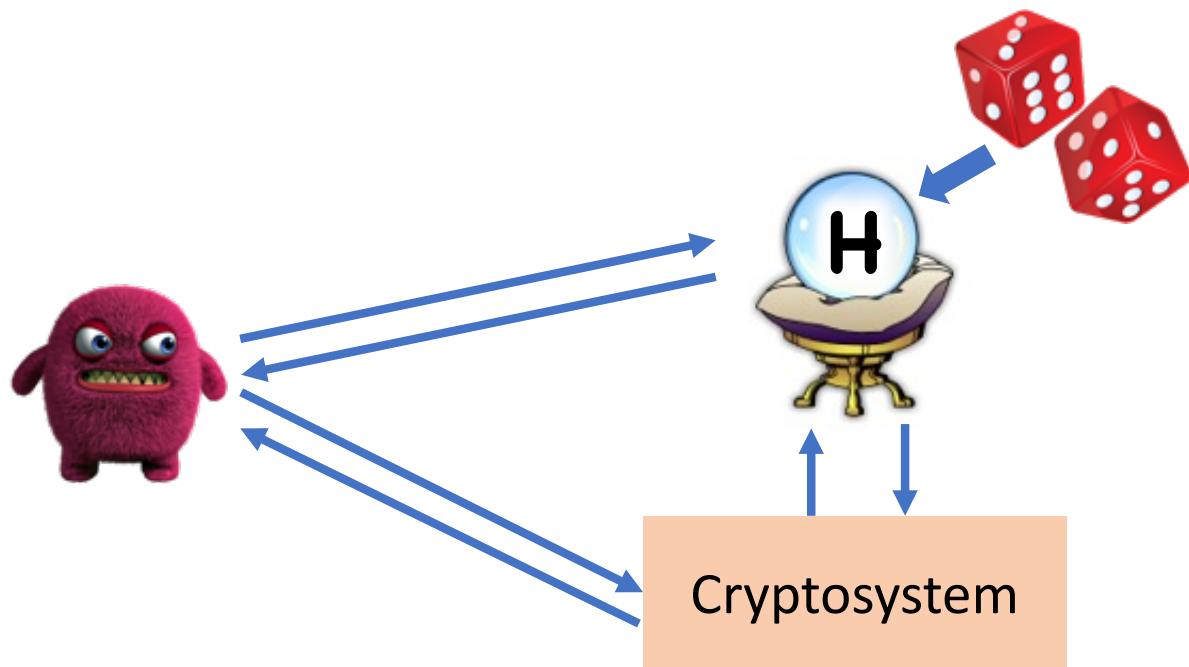
[Bellare-Rogaway'93]



Examples: OAEP, Fujisaki-Okamoto, Full-Domain Hash, ...

(Classical) Random Oracle Model (ROM)

[Bellare-Rogaway'93]



(Classical) Random Oracle Model (ROM)

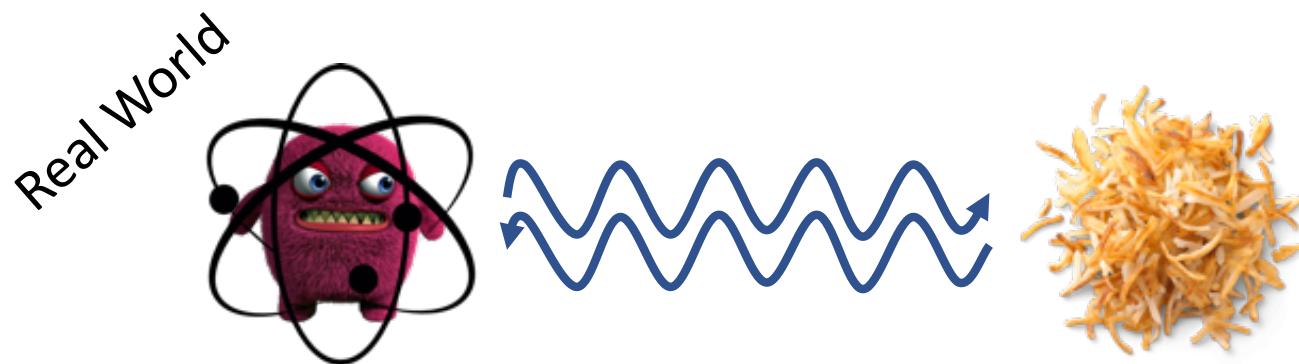
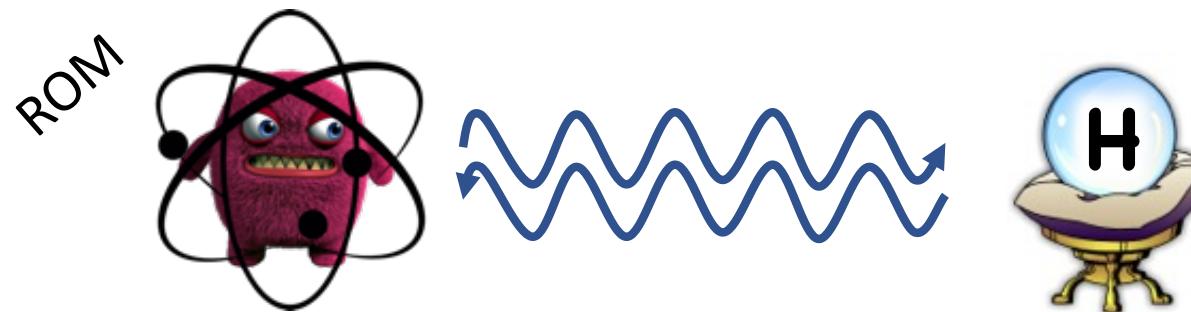
[Bellare-Rogaway'93]

Idea: If \exists ROM security proof, any attack must exploit structure of hash function

Hopefully not possible for well-designed hash

The Quantum Random Oracle Model (QROM)

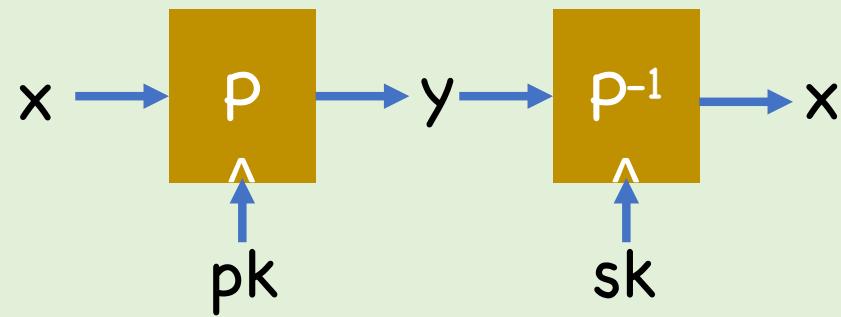
[Boneh-Dagdelen-Fischlin-Lehmann-Schaffner-Z'11]



Now standard in post-quantum crypto

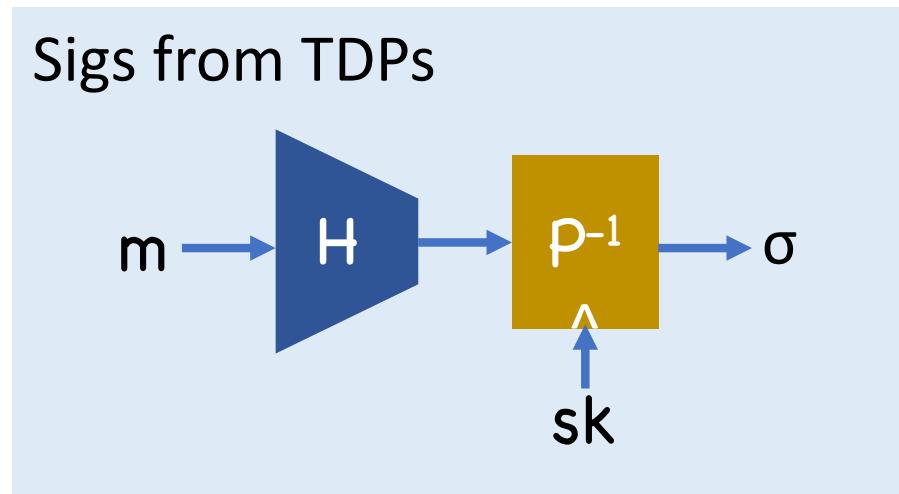
Example: Full Domain Hash

Building Block: Trapdoor Permutations



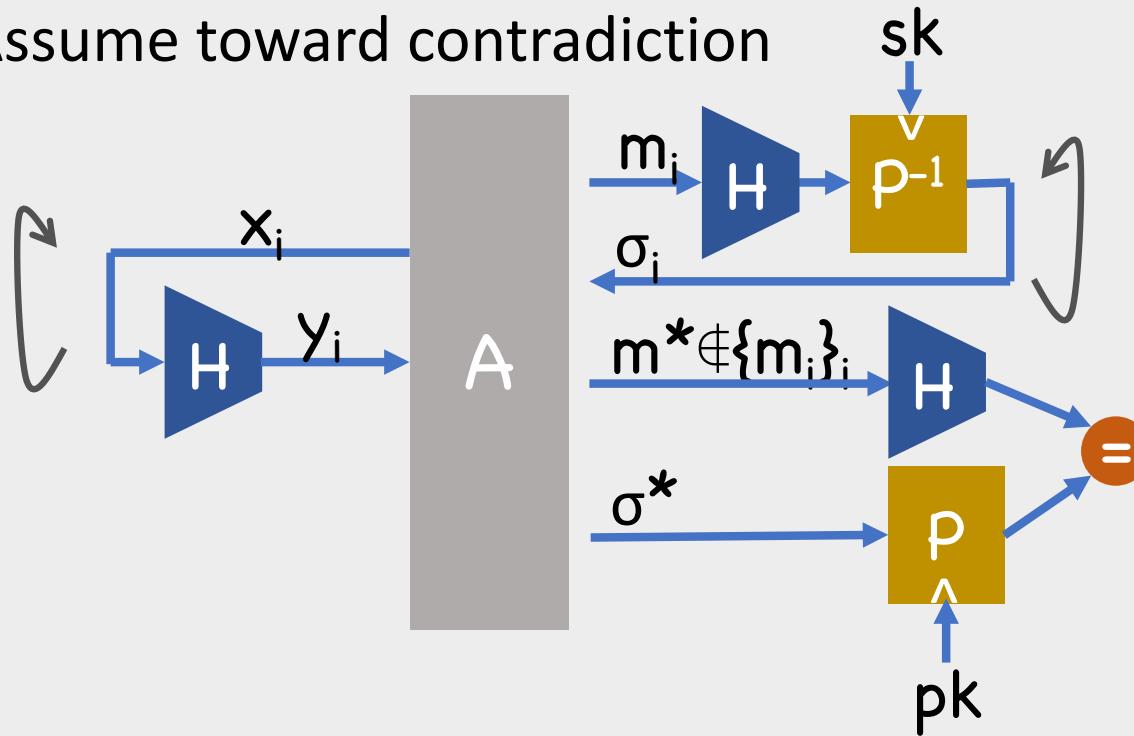
Security: \forall PPT A , $\Pr[A(pk, y) = x] < \text{negl}$

Example: Full Domain Hash



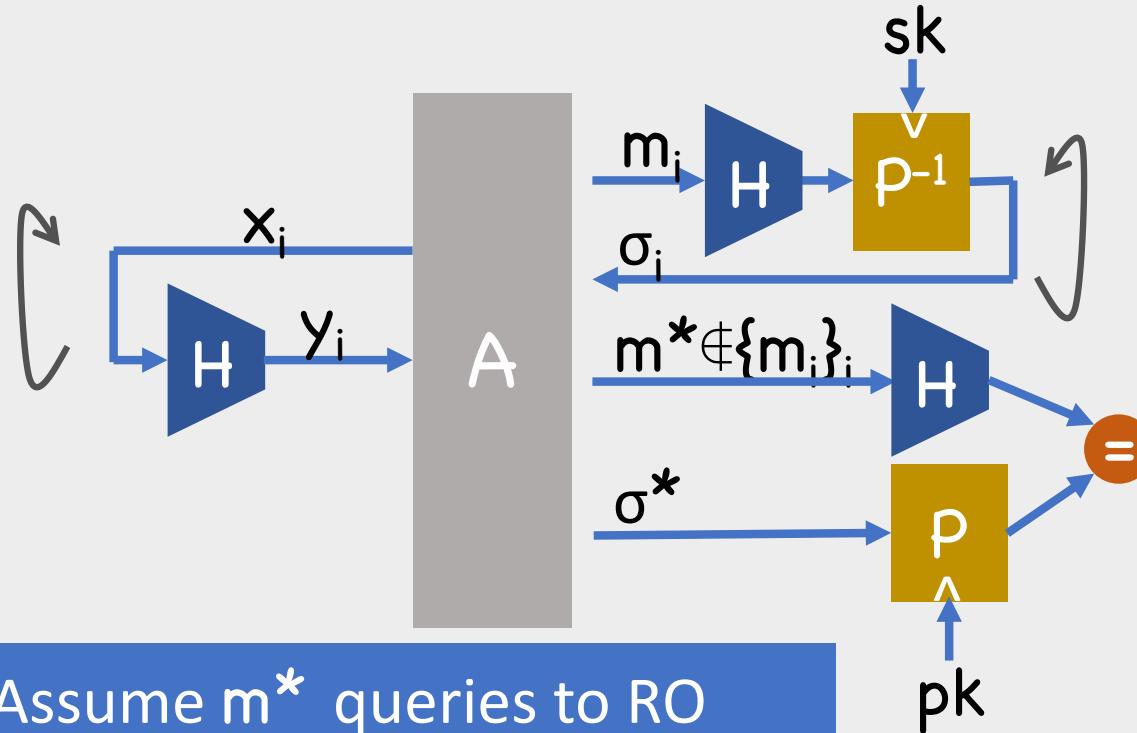
Example: Full Domain Hash

Proof: Assume toward contradiction



Example: Full Domain Hash

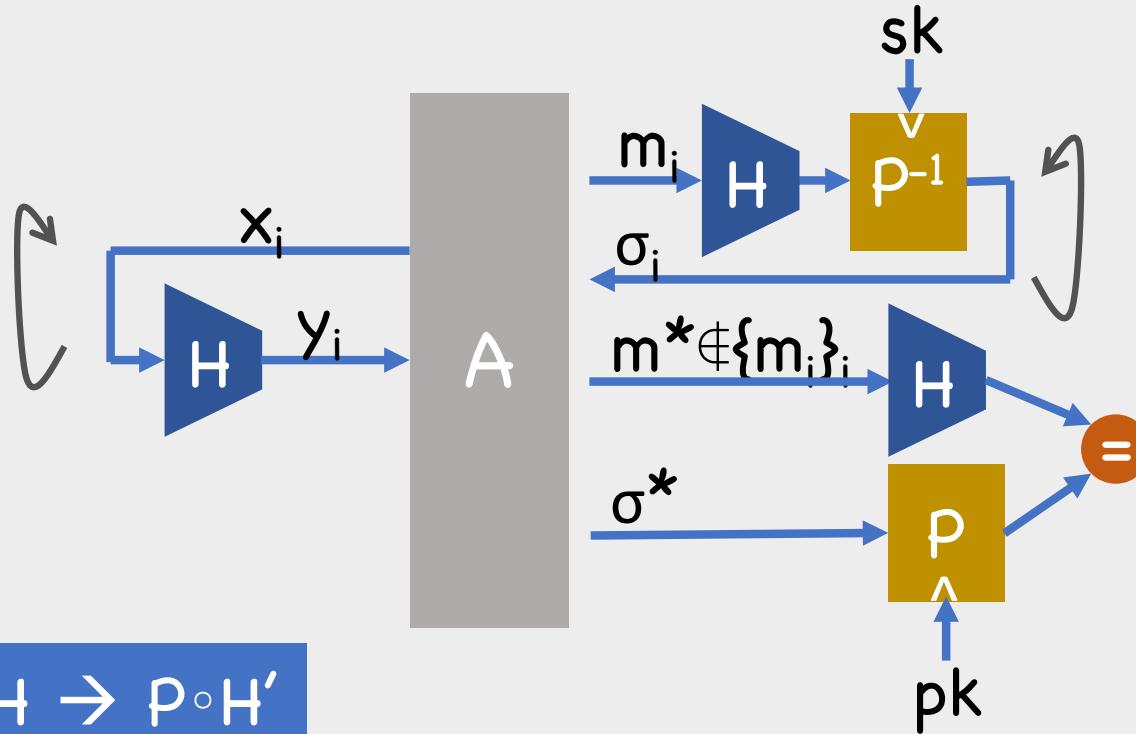
Proof:



Step 0: Assume m^* queries to RO

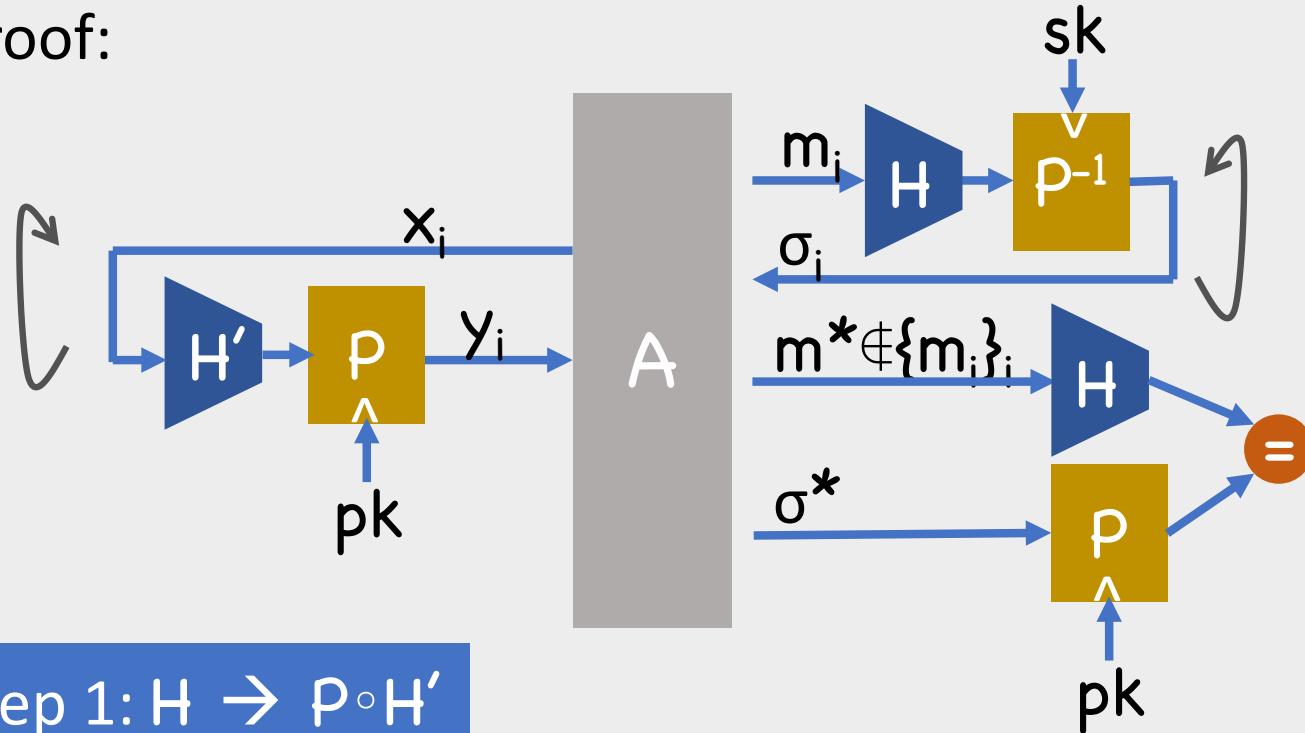
Example: Full Domain Hash

Proof:



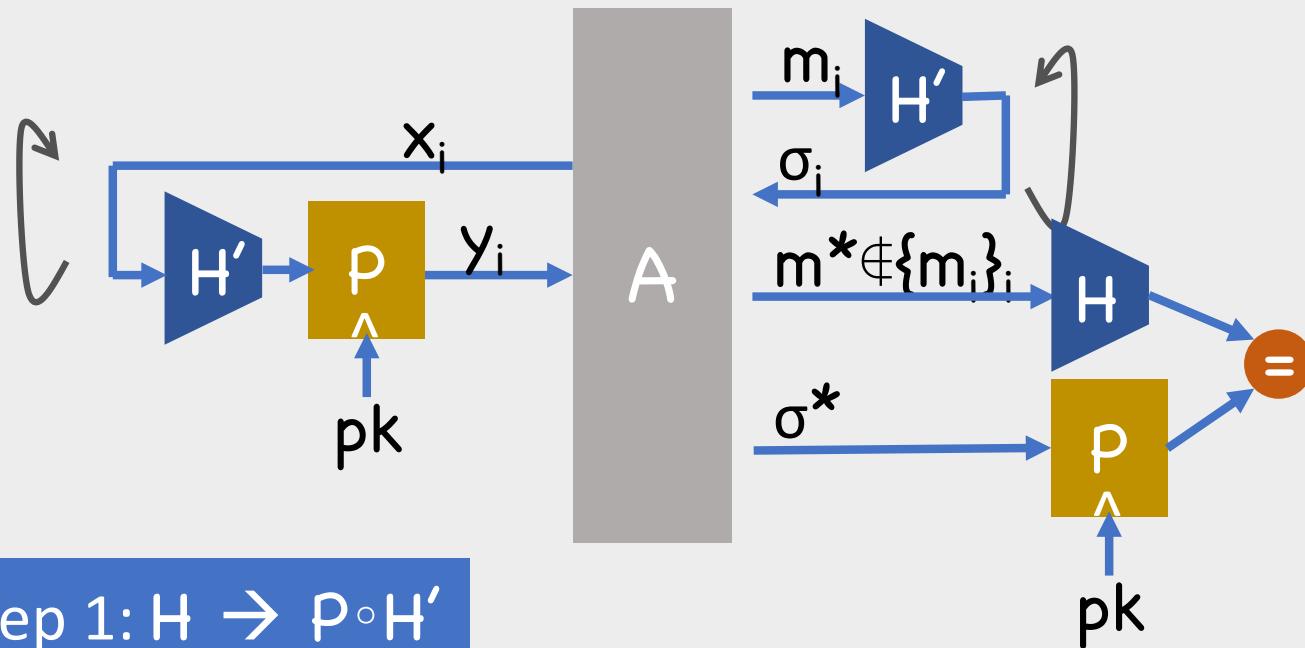
Example: Full Domain Hash

Proof:



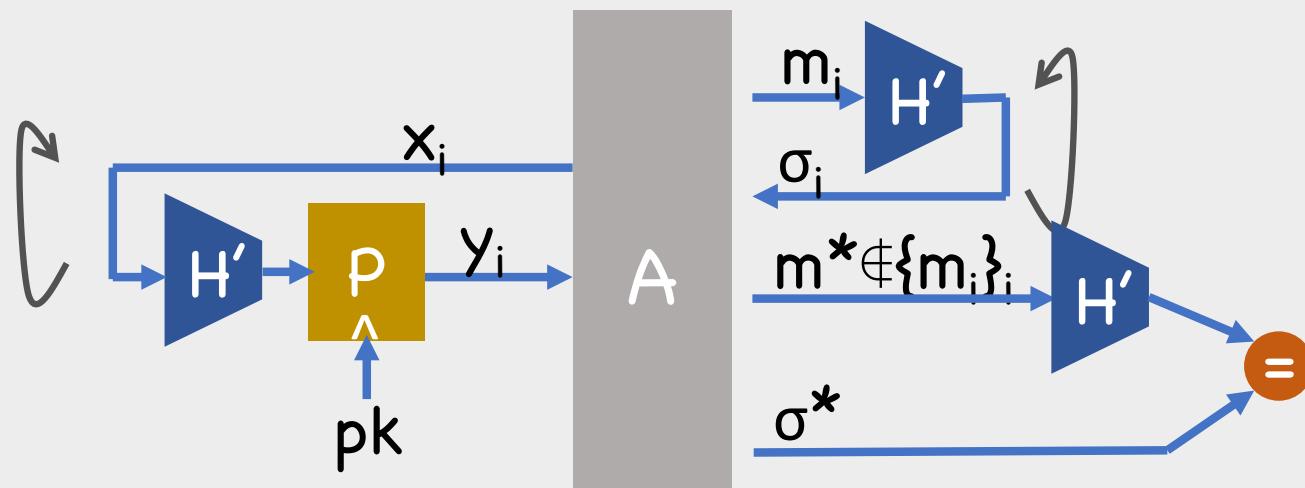
Example: Full Domain Hash

Proof:



Example: Full Domain Hash

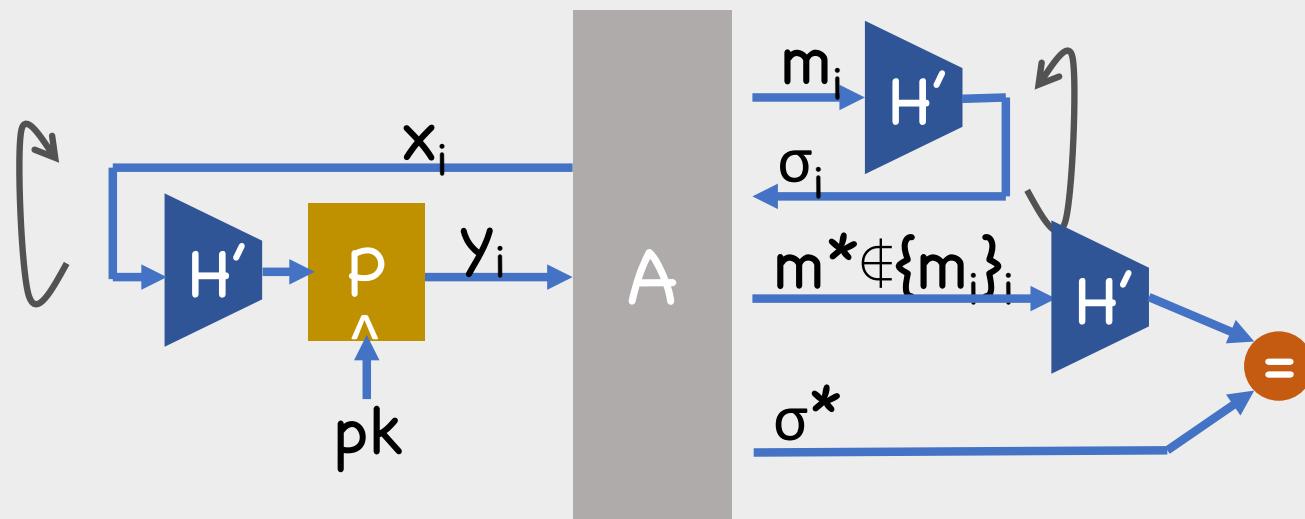
Proof:



Step 1: $H \rightarrow P \circ H'$

Example: Full Domain Hash

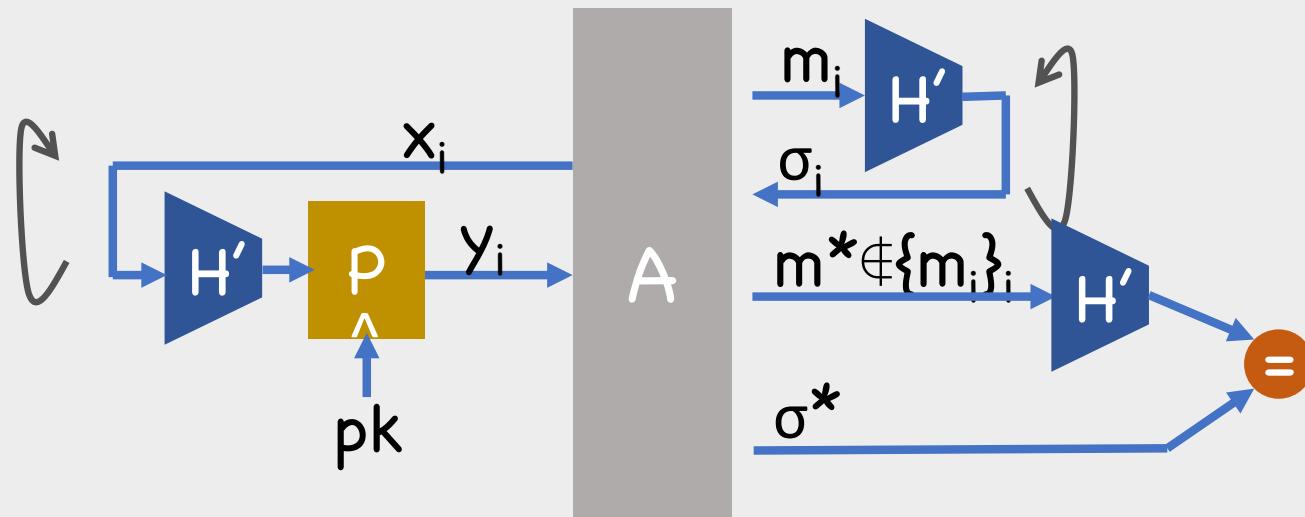
Proof:



Notice: A computes $H'(m^*)$, given only $P(pk, H'(m^*))$

Example: Full Domain Hash

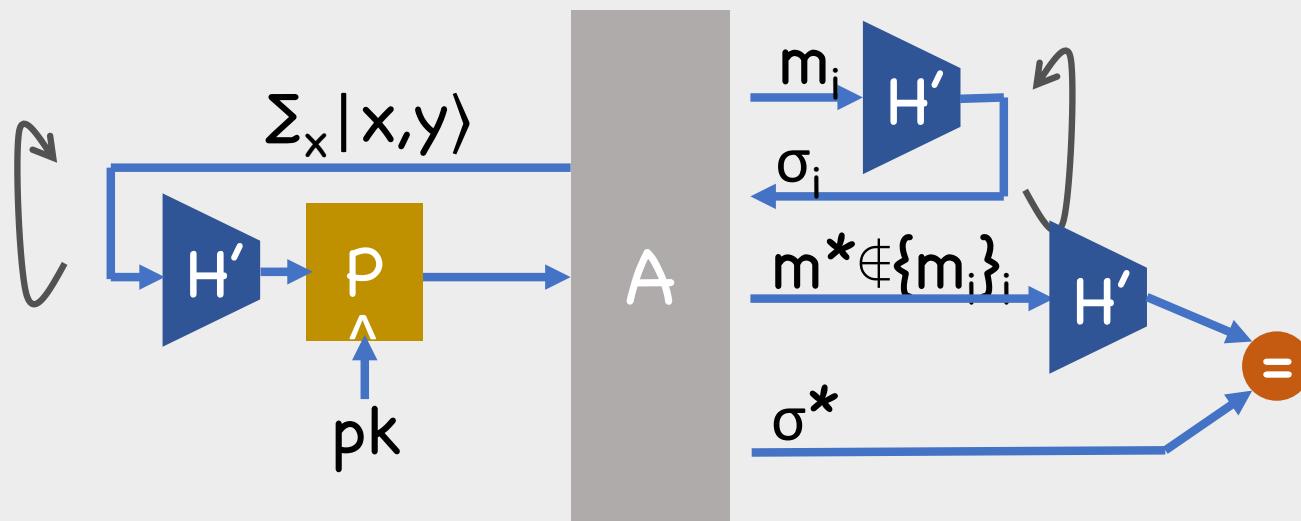
Proof:



$B(y)$: set $H'(x_i)=y$ for random query \rightarrow advantage ϵ/q

Example: Full Domain Hash

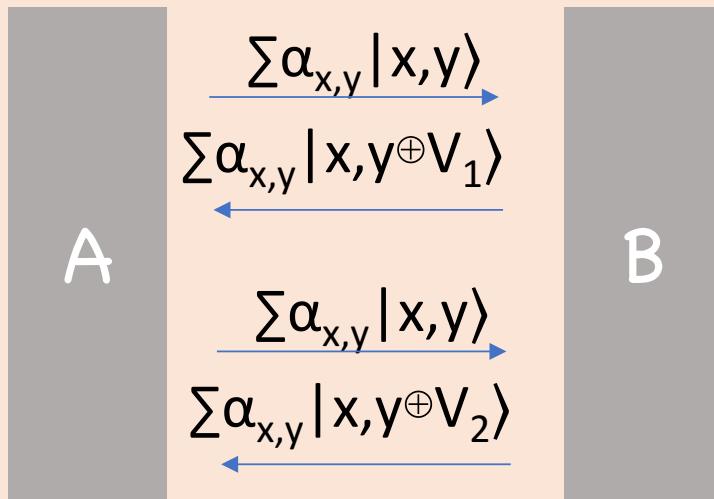
QROM Proof?



How does B insert challenge?

Challenges

Take 1: Per QUERY



Problem: repeated queries?

Problem: distinguishing attack

$$\frac{\sum |x,0\rangle}{\sum |x,V_1\rangle} \quad \text{vs} \quad \frac{\sum |x,0\rangle}{\sum |x,O(x)\rangle}$$

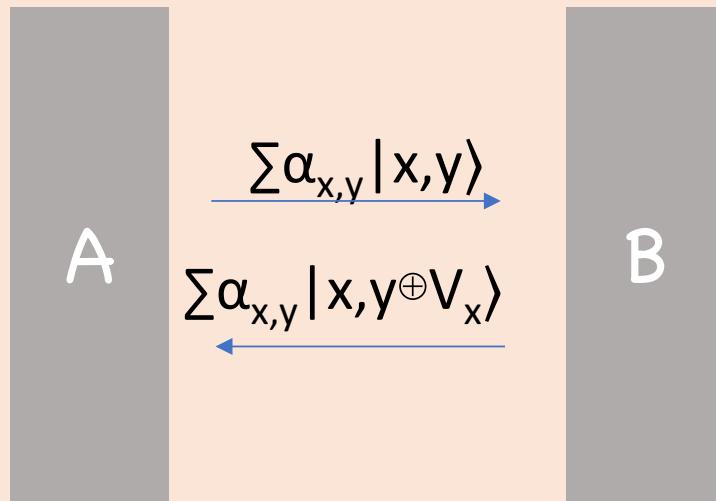
Security Proof Challenges

Typical QROM reductions commit to entire function
 H at beginning, remain consistent throughout

[Zhang-Yu-Feng-Fan-Zhang'19]: "Committed programming reductions"

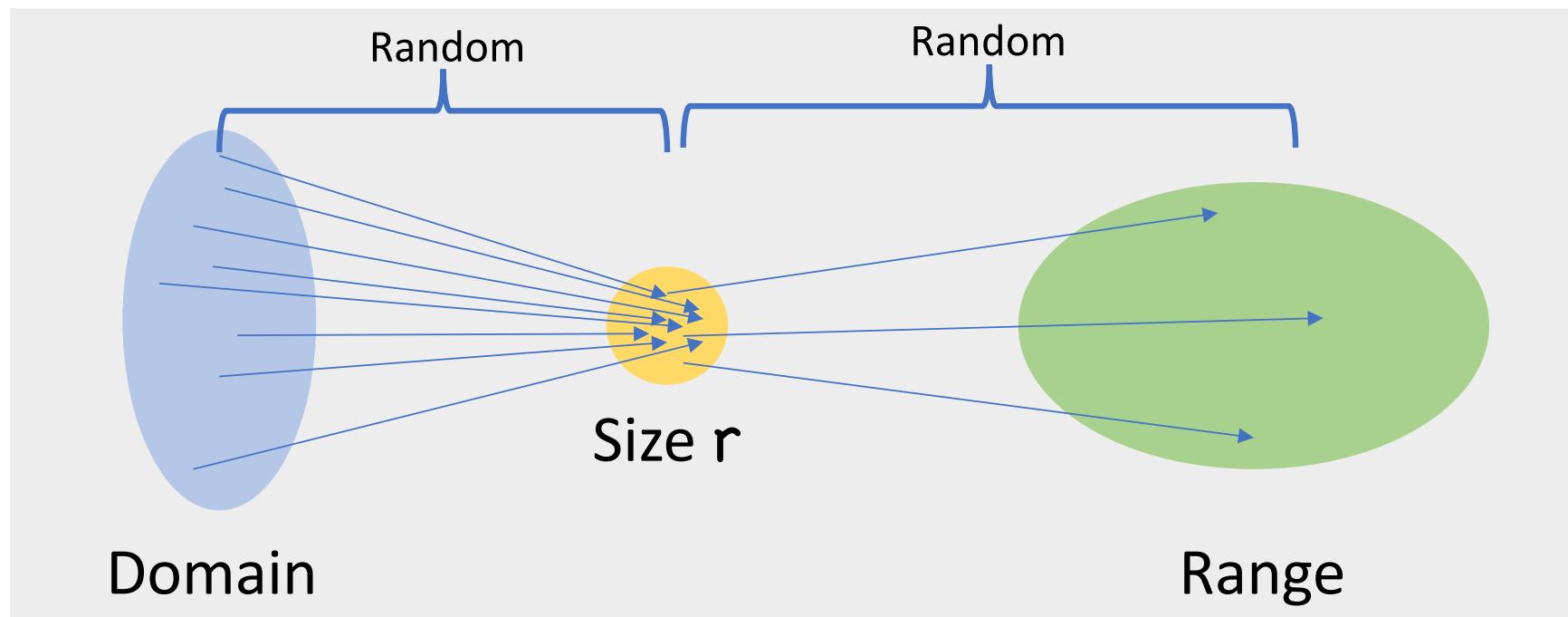
Security Proof Challenges

Take 2: Per VALUE



Problem: exp-many values
 $\rightarrow \Pr[\text{correctly guess } m^*] = \text{negl}$

Small Range Distributions



Small Range Distributions

Thm [Z'12b]: No q quantum query alg can distinguish SR_r from random, except with probability $O(q^3/r)$.

Quantum collision finding \rightarrow bound tight

Finishing The Proof

$$\Pr[A \text{ wins} \mid H' \text{ random}] \geq \varepsilon$$

$$\Pr[A \text{ wins} \mid H' = SR_r] \geq \varepsilon - O(q^3/r)$$

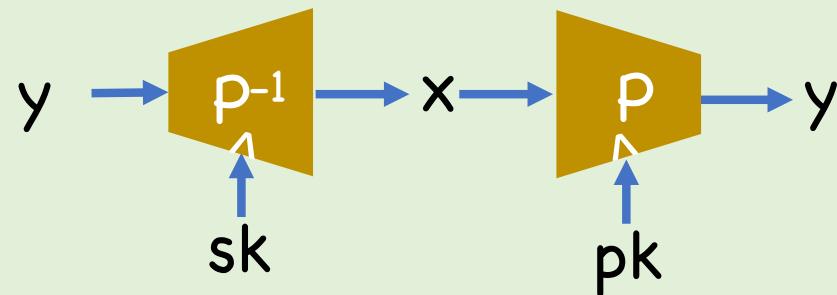
$B(y)$ inserts y into random output

$$\rightarrow \Pr[B \text{ inverts } y] \geq \varepsilon/r - O(q^3/r^2) = O(\varepsilon^2/q^3)$$

$$r = O(q^3/\varepsilon)$$

Example: Full Domain Hash, Take 2

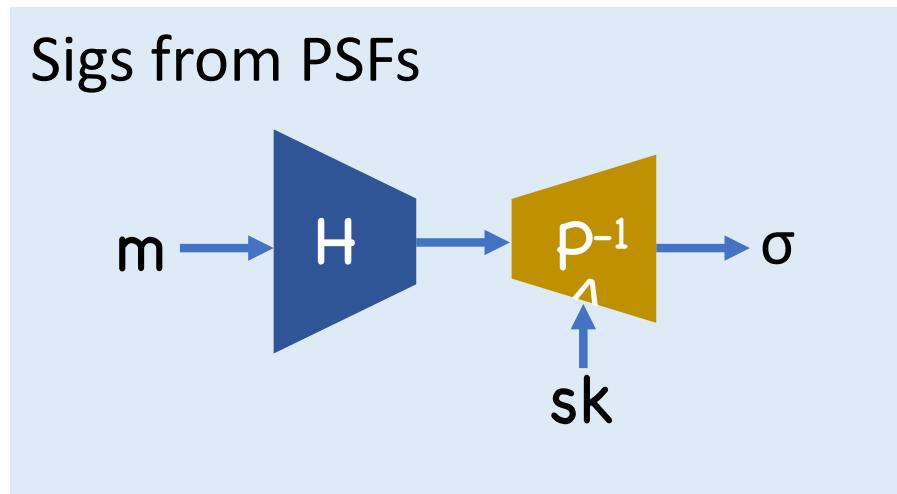
Building Block: Pre-image Sampleable Funcs



Security: (1) Collision resistant
(2) random $y \rightarrow \approx$ random x

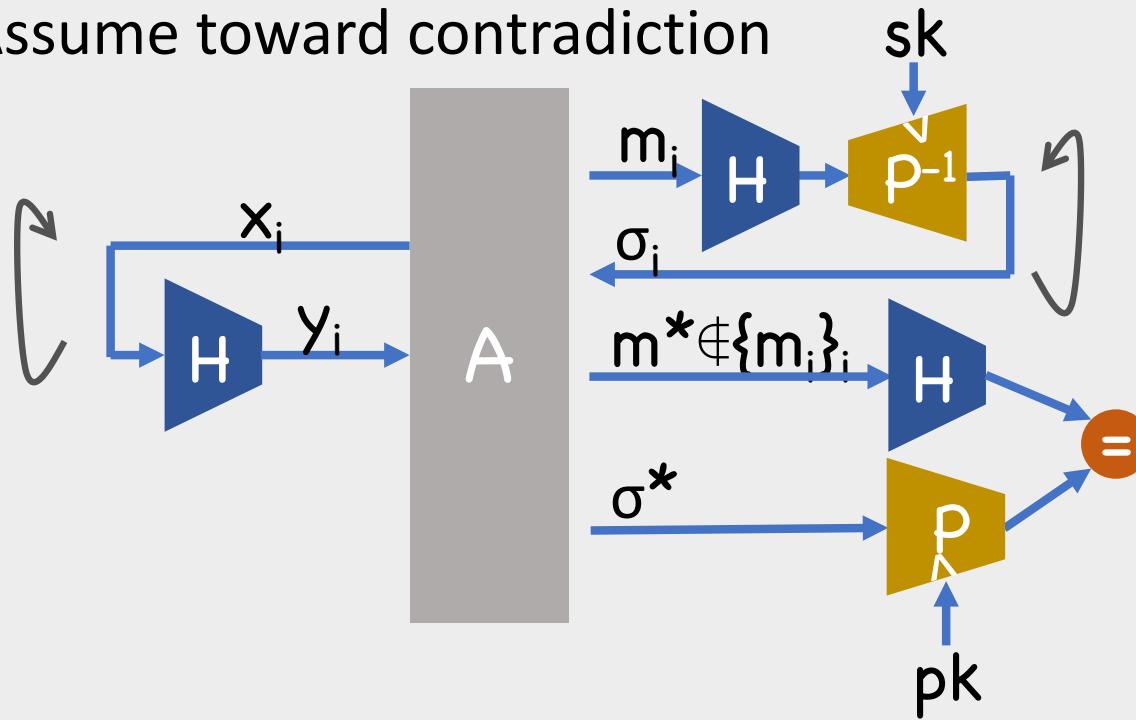
[Gentry-Peikert-Vaikuntanathan'08]: construction from LWE

Example: Full Domain Hash, Take 2



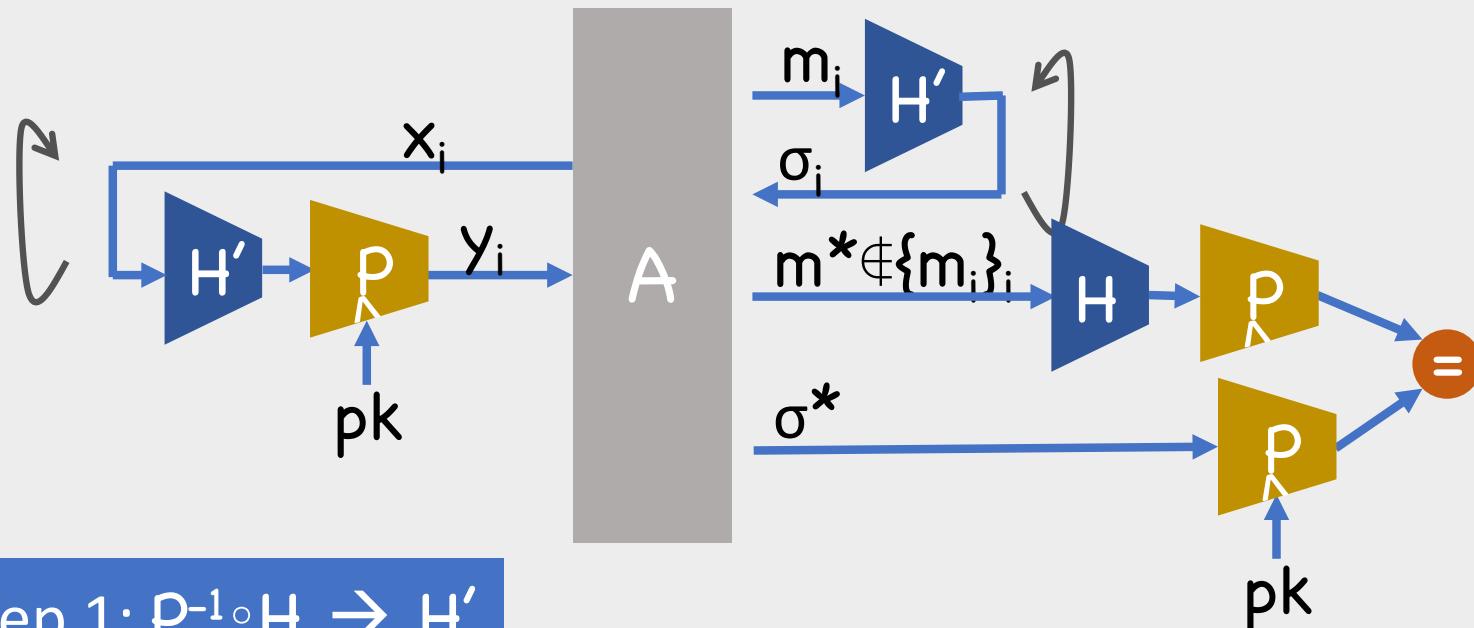
Example: Full Domain Hash, Take 2

Proof: Assume toward contradiction



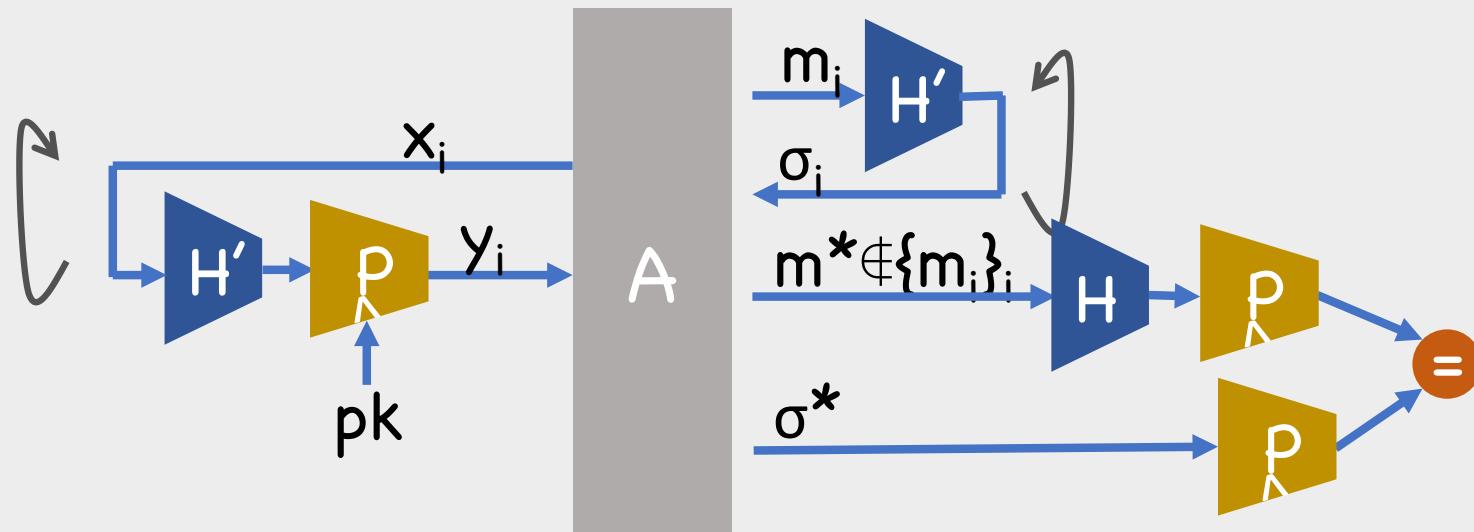
Example: Full Domain Hash, Take 2

Proof:



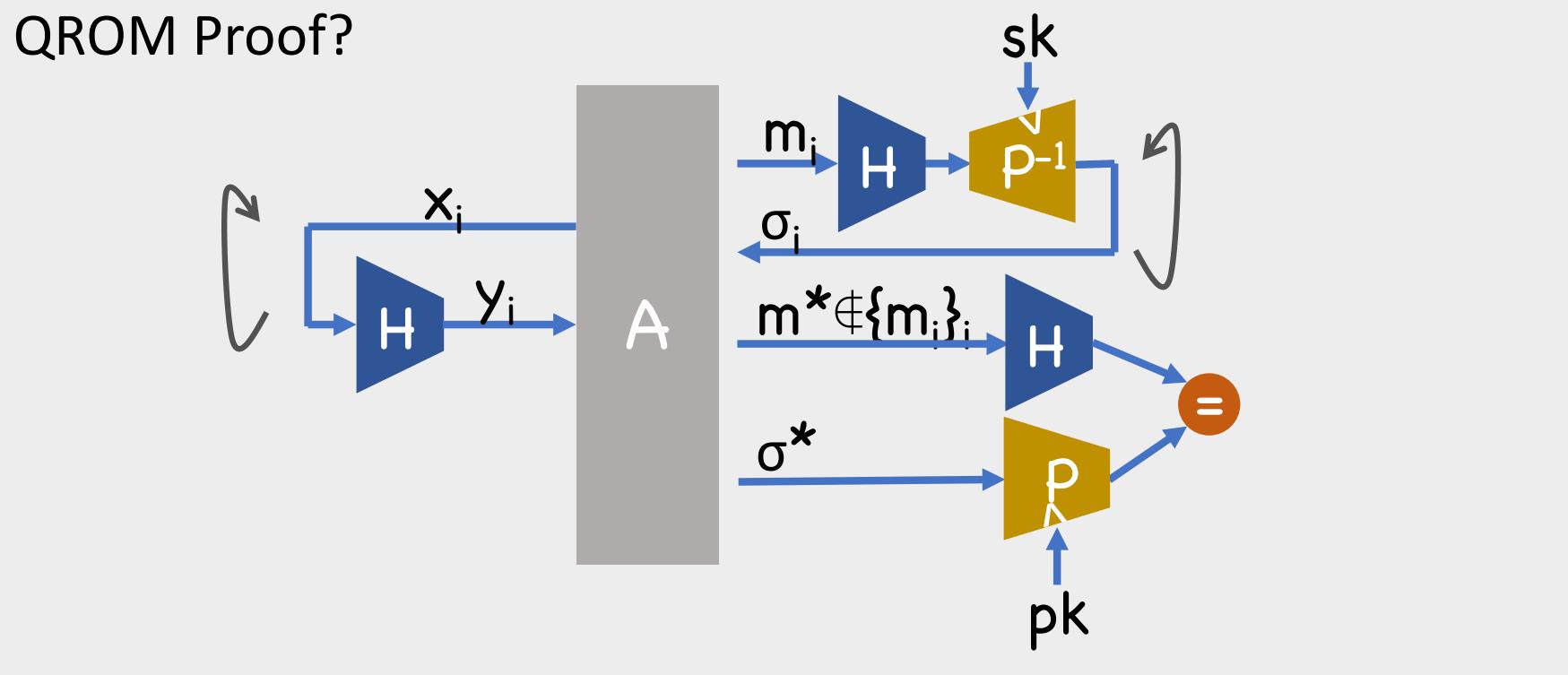
Example: Full Domain Hash, Take 2

Proof:



Notice: $H(m^*), \sigma^*$ form collision \rightarrow advantage ϵ

Example: Full Domain Hash, Take 2



Example: Full Domain Hash, Take 2

Main* QROM issue: simulating H' efficiently

As before, can do using $2q$ -wise independence

*some issues having to do with $P^{-1}(y)$ being only approximately uniform

Rule of Thumb

Rule of Thumb: If loss of classical reduction is independent of q , good chance we can upgrade to quantum security

No per query
hybrid

If loss in reduction depends on q , new reduction likely needed, maybe impossible

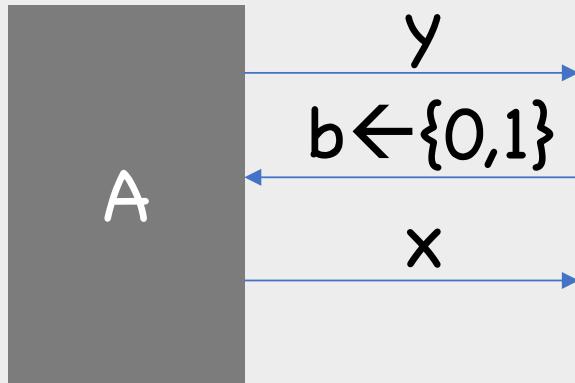
Can All ROM Proofs be Upgraded?

Thm [Yamakawa-Z'20]: No, assuming LWE or relative to an oracle

Recall: Impossibility of Quantum Rewinding

[Ambainis-Rosmanis-Unruh'14]

Coin flipping/commitment game



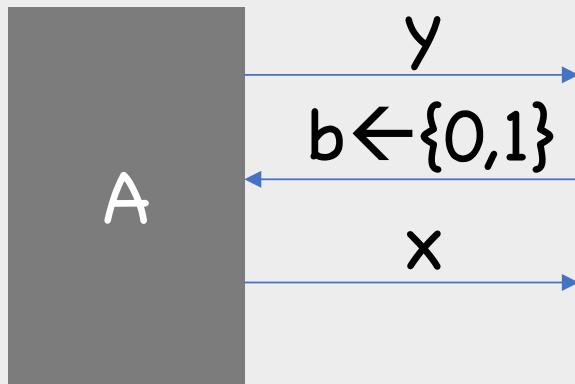
Win if

- $\text{Hash}(x) = y$
- $x_1 = b$

Devised *quantum A* and col. res. Hash where $\Pr[A \text{ wins}] \approx 1$

New Game

Coin flipping/commitment game



Win if

- $\text{Hash}(x) = y$
- $H(x) = b$ (1-bit RO)

Essentially same A,Hash work here

Quantum Alg

Idea:

Give out as oracle

$$\sum_{x: \text{Hash}(x)=y} |x\rangle \xrightarrow{V_f} \text{Diff} \xrightarrow{V_f} \sum_{x \in D, H(x)=b} |x\rangle$$

$$f(x) = H(x)$$

$$x: \text{Hash}(x)=y$$

$$y$$

$$\text{Diff}$$

$$x: \text{Hash}(x)=y$$

$$y$$

No Classical-Query Alg

Suppose \exists classical query quantum A s.t. $\Pr[A \text{ wins}] \geq \frac{1}{2} + \varepsilon$

- Consider H queries on x s.t. $\text{Hash}(x)=y$
- First such query x_0 has prob $\frac{1}{2}$ of $H(x_0)=b$
- If A only ever outputs x_0 , $\Pr[A \text{ wins}] \leq \frac{1}{2}$
- Therefore, A must sometimes output $x_1 \neq x_0$
- But then x_0, x_1 form collision for Hash

QROM Impossibility

[Yamakawa-Z'20]: More generally,
upgrade proofs of quantumness to
proofs of quantum access to RO

Up Next

Tomorrow, will look at further examples

In particular, we will see barriers/impossibilities for committed programming reductions, and how to overcome them