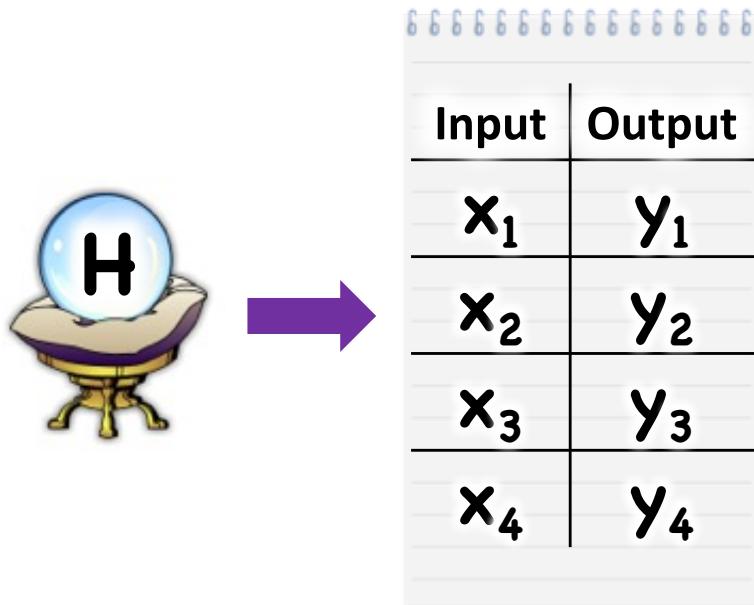


Quantum Random Oracle Model, Part 3

Mark Zhandry (Princeton & NTT Research)

Recall: Typical Classical ROM Proof:
On-the-fly Simulation



```

Query(x, D):
  If (x,y) ∈ D:
    Return(y,D)
  Else:
    y ← $ Y
    D' = D+(x,y)
    Return(y,D')

```

Recall: Typical Classical ROM Proof: On-the-fly Simulation

Allows us to:

- Know the inputs adversary cares about ✓
- Know the corresponding outputs ✓
- (Adaptively) program the outputs ✓

CPReds?

Allows us to:

- Know the inputs adversary cares about ✗
- Know the corresponding outputs ✗
- (Adaptively) program the outputs ✓ / ✗

Beyond Committed Programming

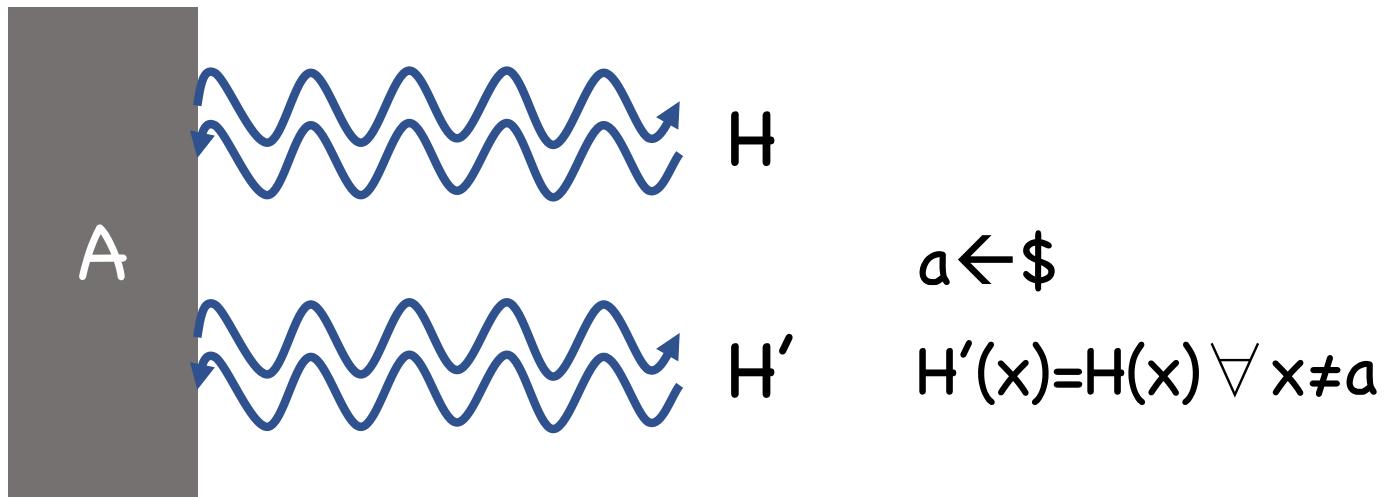
How do we change oracle without detection?

Problem: repeated queries?

Problem: distinguishing attack

$$\frac{\sum |x,0\rangle}{\sum |x,V_1\rangle} \quad \text{vs} \quad \frac{\sum |x,0\rangle}{\sum |x,O(x)\rangle}$$

Random points



Negligible query mass on a , so change undetectable

Used, e.g. for NIZKs [Unruh'16]

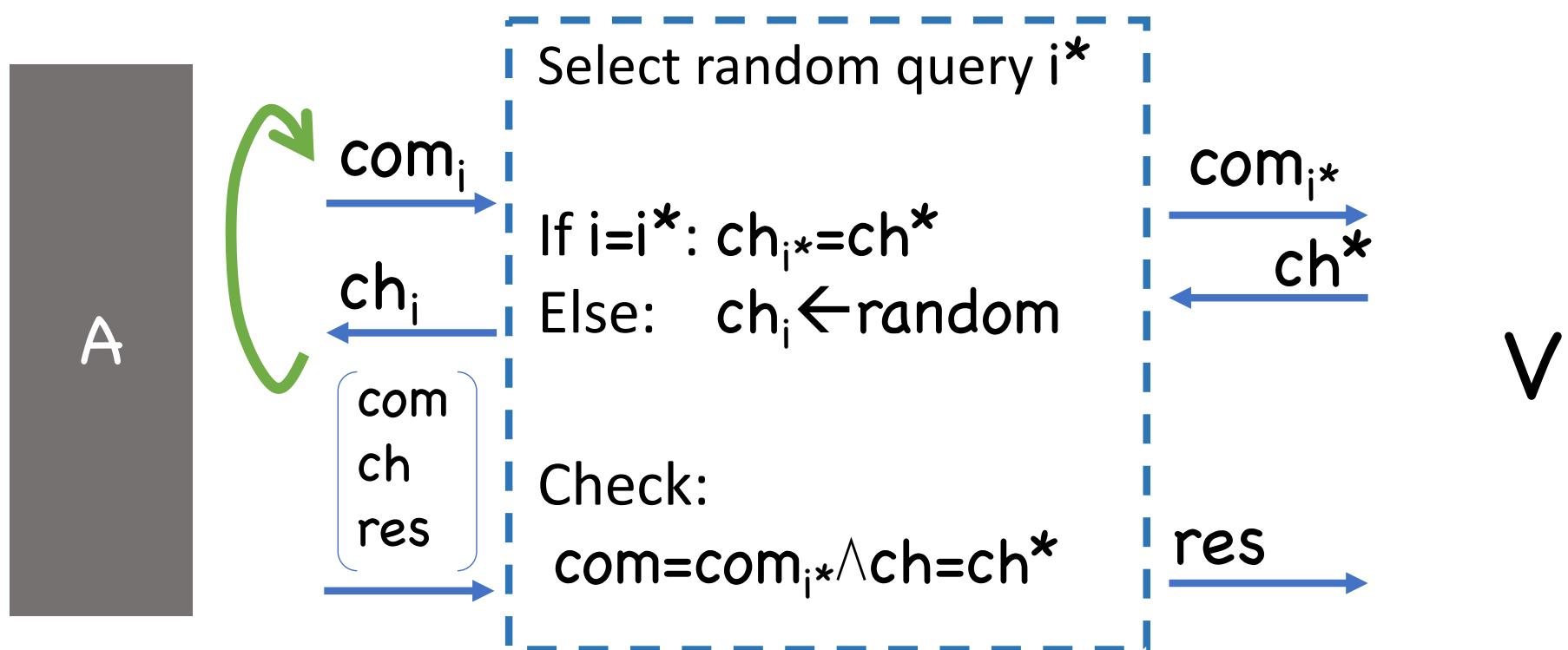
Newer Techniques

Very recently (last 2 years), new techniques have emerged that allow for better programming

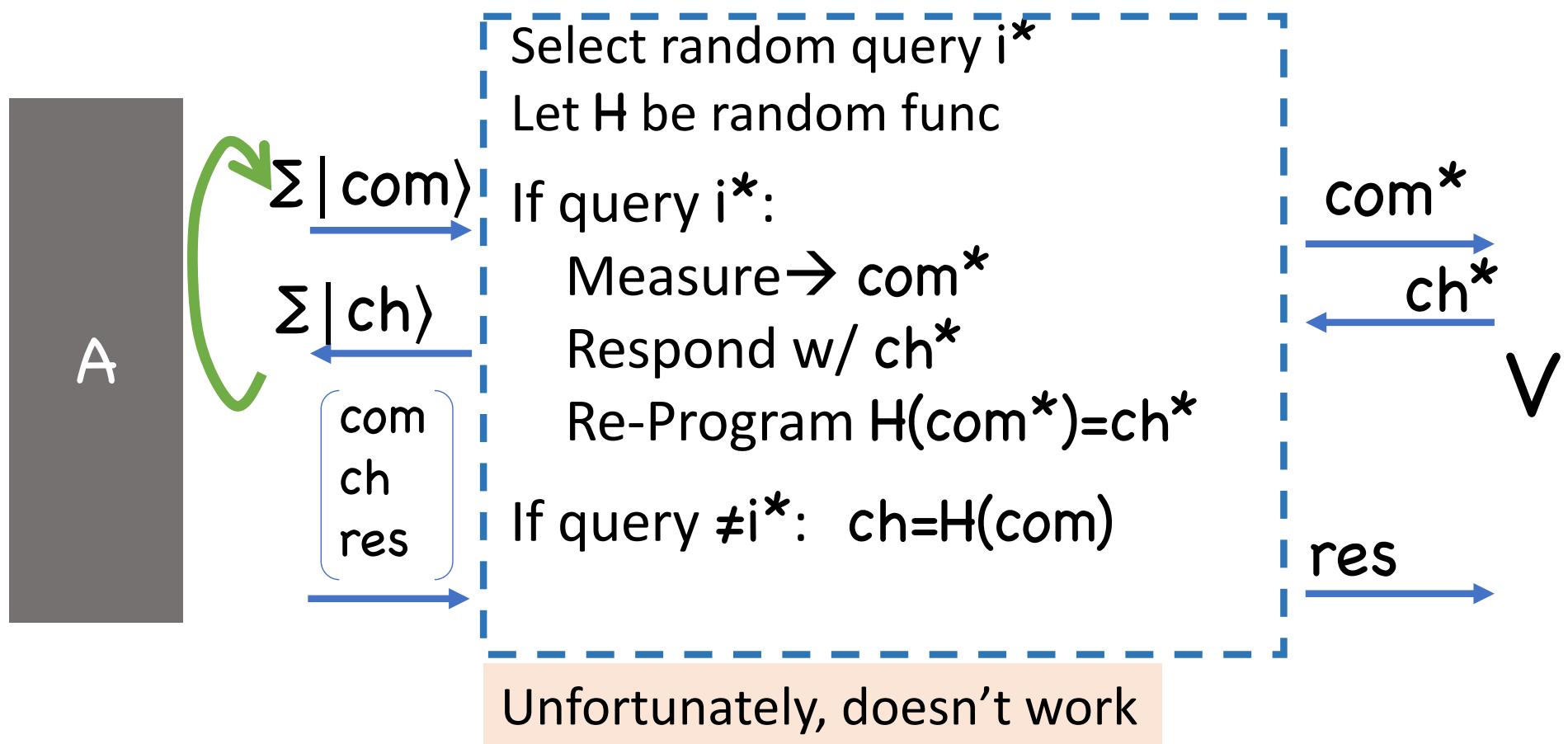
Will highlight some techniques

Fiat Shamir

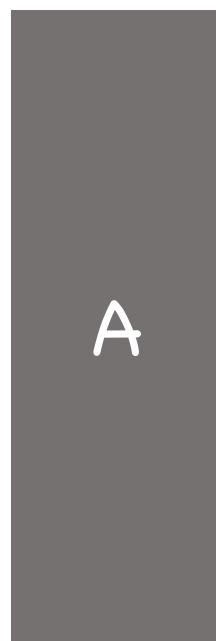
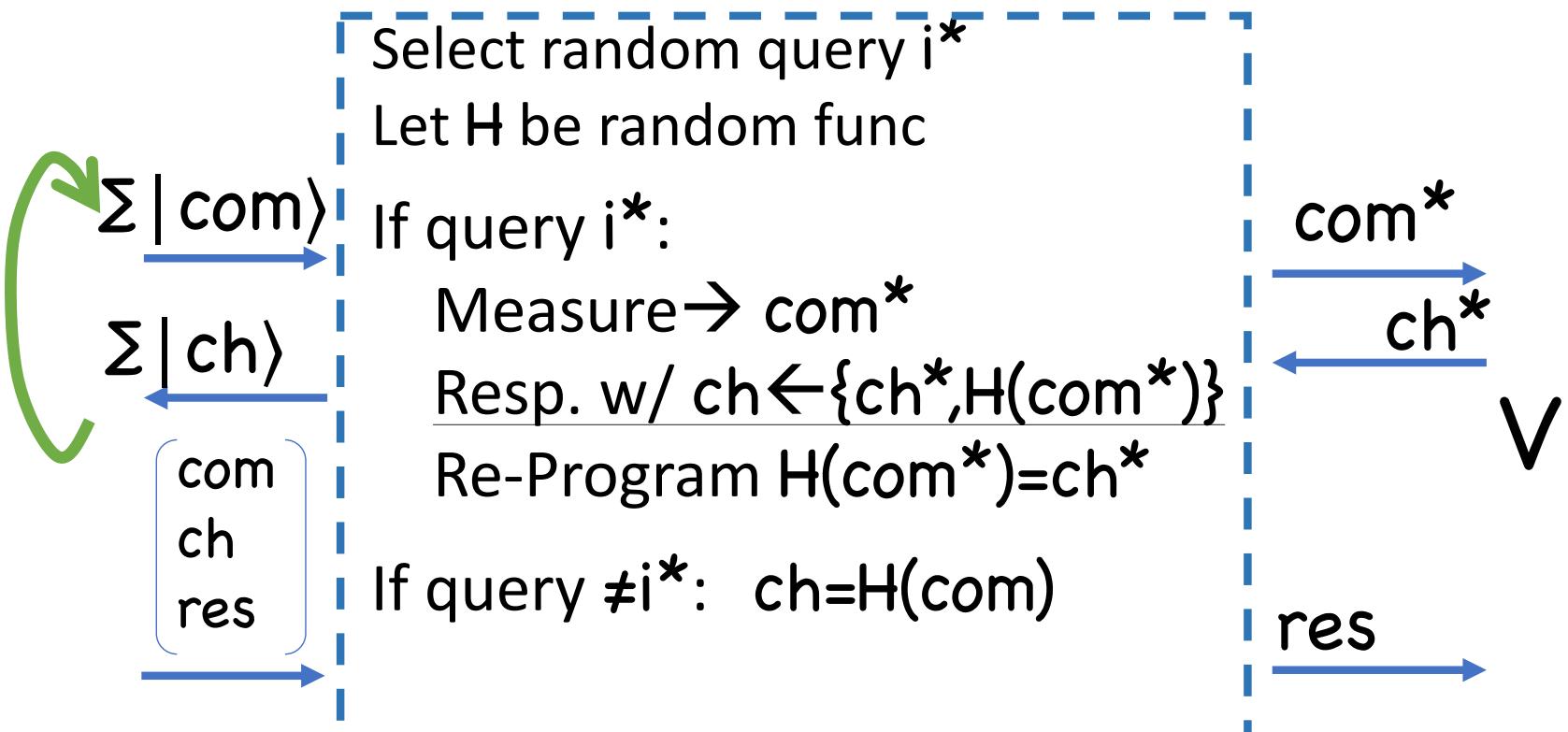
Recall: Classical Fiat-Shamir Proof



Failed Quantum Fiat-Shamir Proof



Fixed Quantum Fiat-Shamir Proof



[Don-Fehr-Majenz-Schaffner'19]: Amazingly works

Other Applications

[Don-Fehr-Majenz'20]: Multi-round Fiat-Shamir

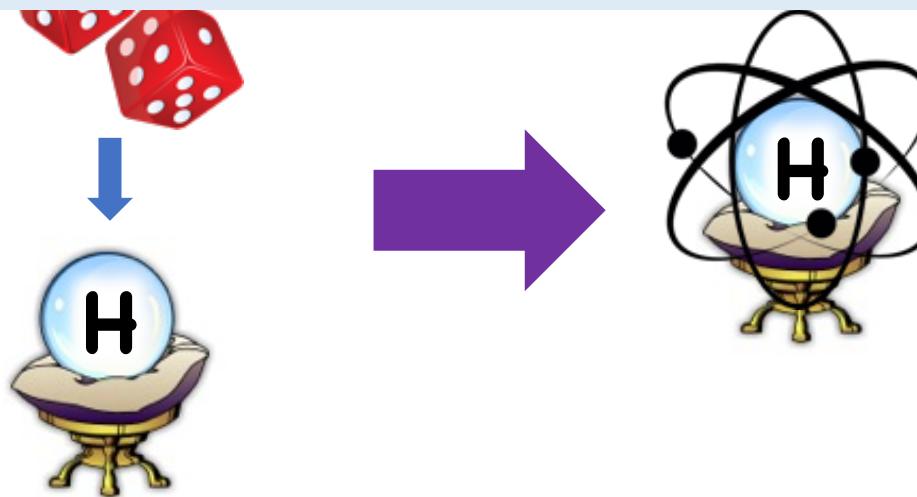
“Lifting Theorem” [Yamakawa-Z’20]:
If *search-type* game, and challenger
makes *constant* number of queries to RO,
classical ROM proof \rightarrow QROM proof
(w/ polynomial security loss)

Compressed Oracles

Step 1: Quantum-ify (aka Purify)

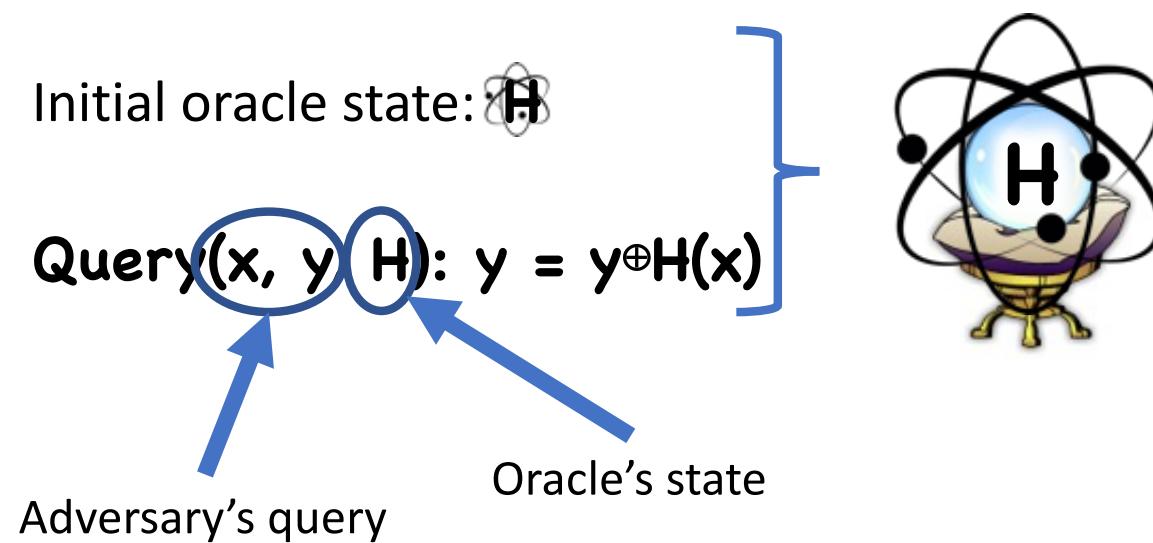
Quantum-ifying (aka purifying) random oracle:

→ $A + \text{oracle}$ now single quantum system

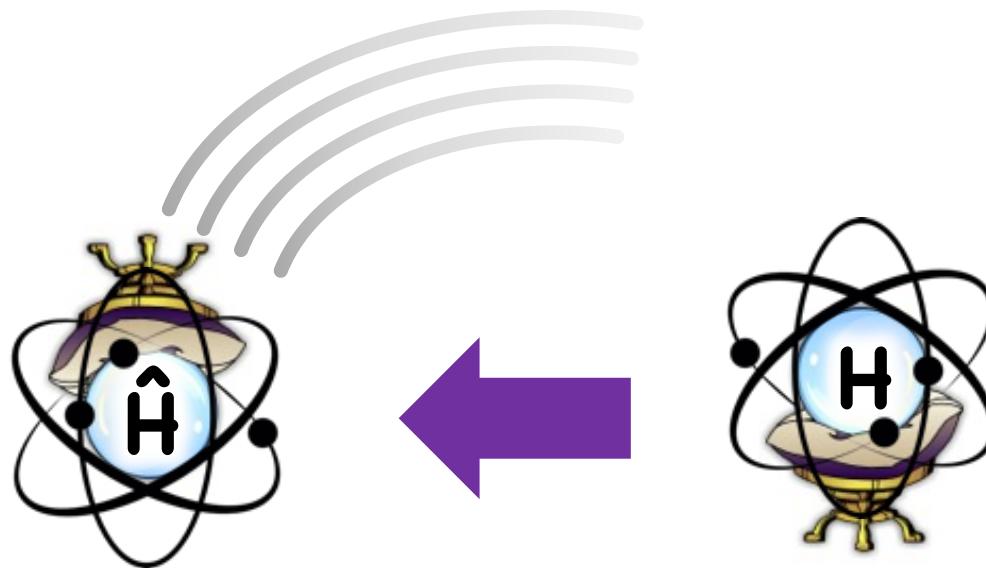


Reminiscent of old impossibilities for unconditional quantum protocols [Lo'97,Lo-Chau'97,Mayers'97,Nayak'99]

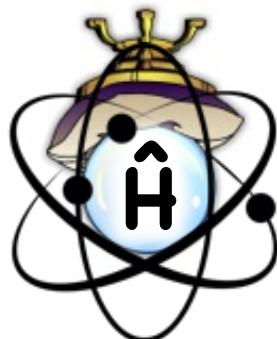
Step 1: Superposition of Oracles



Step 2: Look at Fourier Domain



Step 2: Look at Fourier Domain



Initial oracle state: $Z(x) = 0$

Query(x, y, \hat{H}): $\hat{H} = \hat{H} \oplus P_{x,y}$

$$P_{x,y}(x') = \begin{cases} y & \text{if } x=x' \\ 0 & \text{else} \end{cases}$$

Proof:

$$\begin{array}{|c|c|} \hline & A \\ \hline \end{array}$$

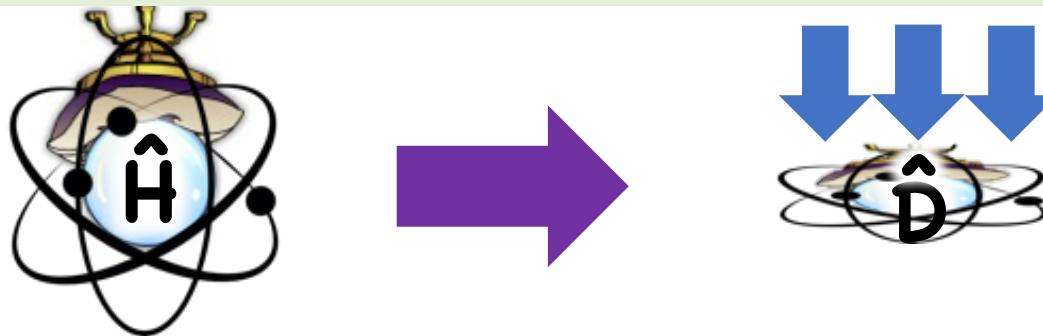
Fourier
Transform

$$\begin{array}{|c|c|} \hline & A^{-T} \\ \hline \end{array}$$

Step 3: Compress

Observation:

After q queries, \hat{H} is non-zero on at most q points



Step 3: Compress

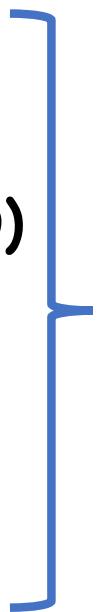
Initial oracle state: $\{\}$

Query(x, y, \hat{D}):

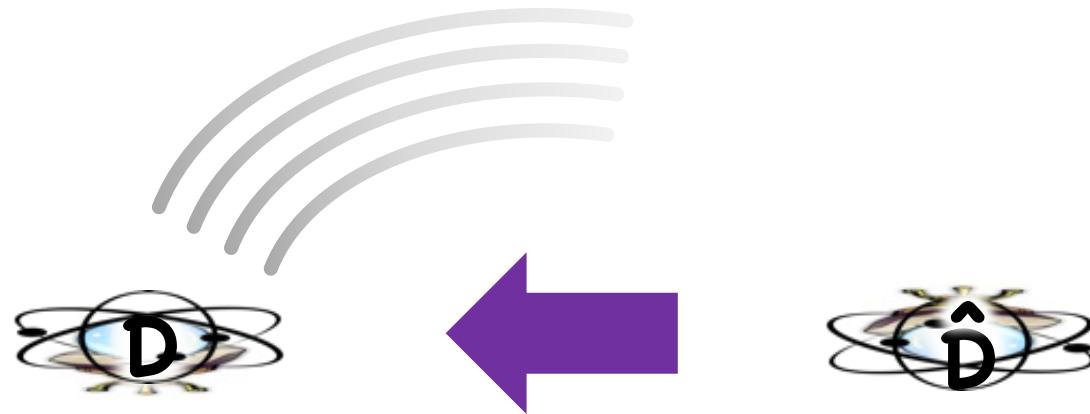
(1) If $\nexists (x, y') \in \hat{D}$: $\hat{D} = \hat{D} + (x, 0)$

(2) Replace $(x, y') \in \hat{D}$
with $(x, y'^{\oplus} y)$

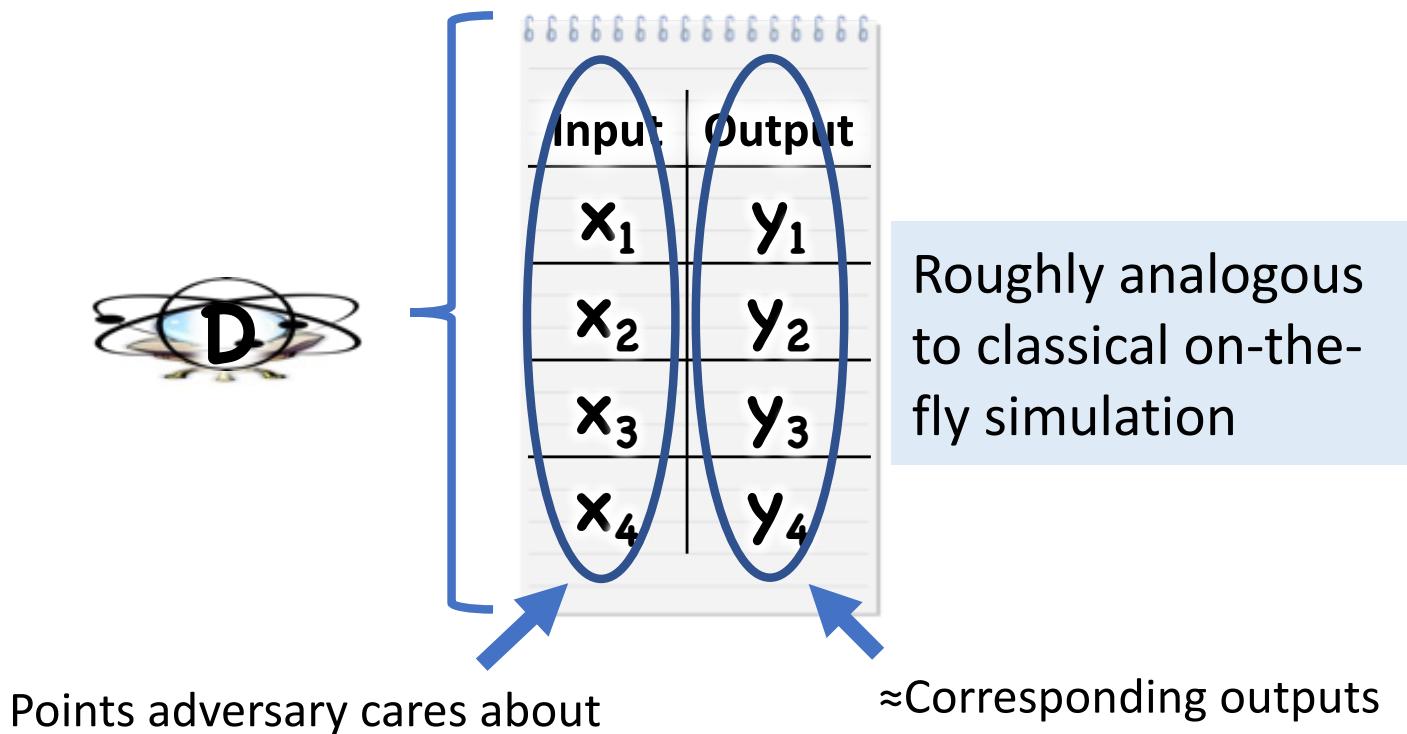
(3) If $(x, 0) \in \hat{D}$: remove it



Step 4: Revert back to Primal Domain



Step 4: Revert back to Primal Domain



Compressed Oracles

Allows us to:

- Know the inputs adversary cares about? ✓
- Know the corresponding outputs? ✓
- (Adaptively) program the outputs? ✓ (with some work)

So, what happened?

Observer Effect:

Learning anything about quantum system disturbs it

Motivation for CPReds:

answers obviously,
so no disturbance

Reduction must answer
obliviously, too?

Beyond CPReds:

A learns about through queries

gets disturbed

Compressed oracles decode such disturbance

Caveats

Outputs in database **#0** in Fourier domain

→ **y** values aren't exactly query outputs

Examining **x,y** values perturbs state

→ Still must be careful about how we use them

But, still good enough for many applications...

Some Applications

[Z'19]: Indifferentiability of MD

[Liu-Z'19a]: Tight bounds for
multi-collision problem

[Hosoyamada-Iwata'19]:
4-round Luby-Rackoff

[Chiesa-Manohar-Spooner'19]: zk-SNARKs

[Alagic-Majenz-Russell-Song'18]:
Quantum-secure signature separation

[Liu-Z'19b]: Fiat-Shamir
([Don-Fehr-Majenz-Schaffner'19]: direct proof)

[Unruh'21]: Collision resistance of Sponge

[Bindel-Hamburg-Hülsing-Persichetti'19]: Tighter CCA
security proofs

Summary

- Now have numerous techniques for proving QROM security
- Many schemes of interest now have QROM proof
- Major lingering issues:
 - Tightness of reductions
 - Indifferentiability (Sponge, ideal ciphers from RO)
 - Constant-query lifting theorem for indistinguishability?
 - Still various missing pieces