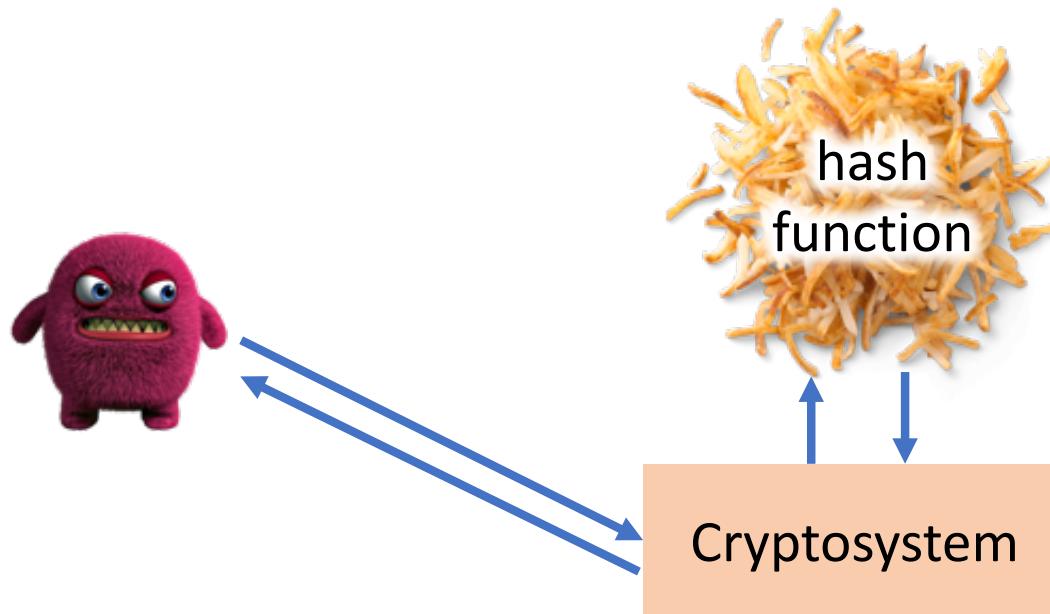


Quantum Random Oracle Model, Part 2

Mark Zhandry (Princeton & NTT Research)

Recap: Classical ROM

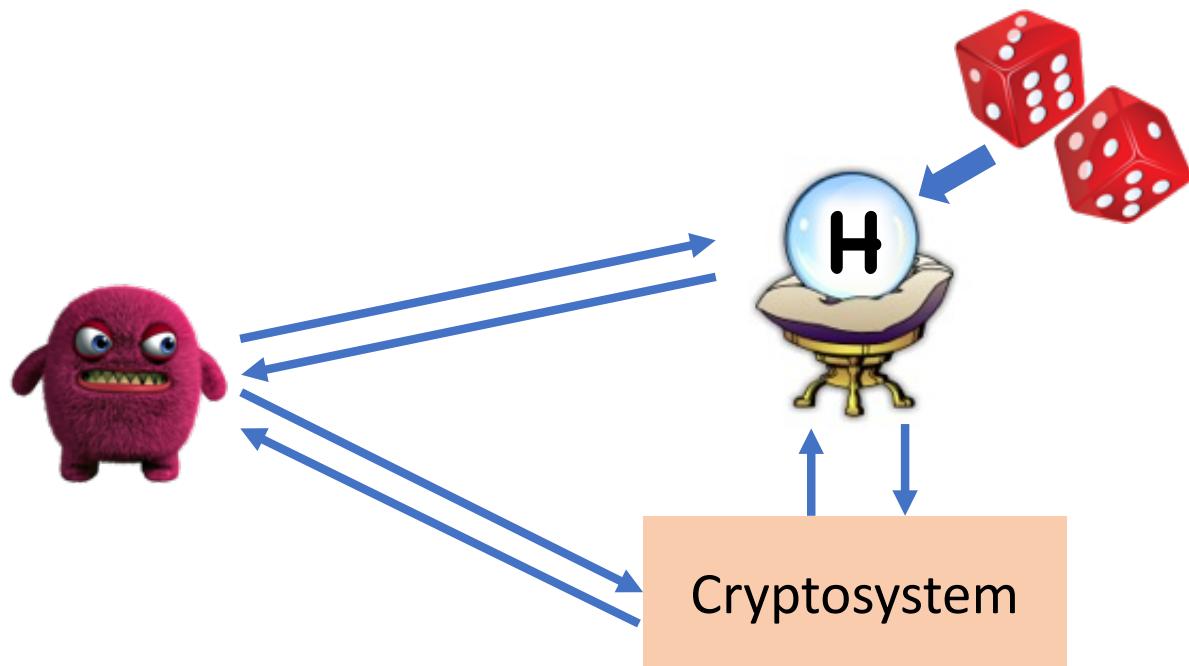
[Bellare-Rogaway'93]



Examples: OAEP, Fujisaki-Okamoto, Full-Domain Hash, ...

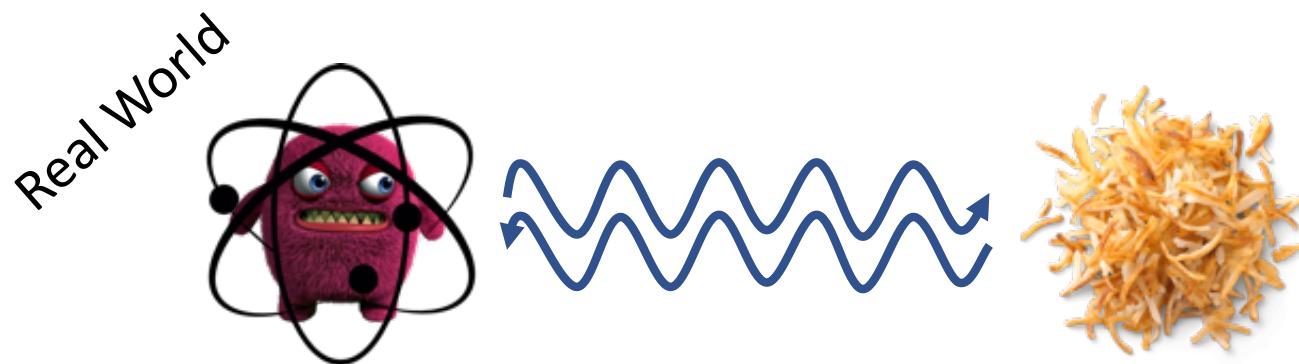
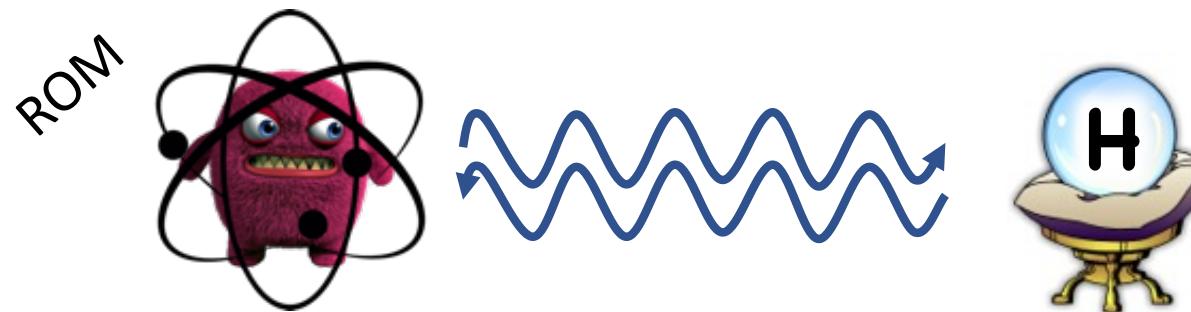
Recap: Classical ROM

[Bellare-Rogaway'93]



The Quantum Random Oracle Model (QROM)

[Boneh-Dagdelen-Fischlin-Lehmann-Schaffner-Z'11]



Now standard in post-quantum crypto

Security Proof Challenges

Typical QROM reductions commit to entire function
 H at beginning, remain consistent throughout

[Zhang-Yu-Feng-Fan-Zhang'19]: "Committed programming reductions"

Limits of Committed Programming Reductions

What classical ROM proofs admit CPReds, and which don't?

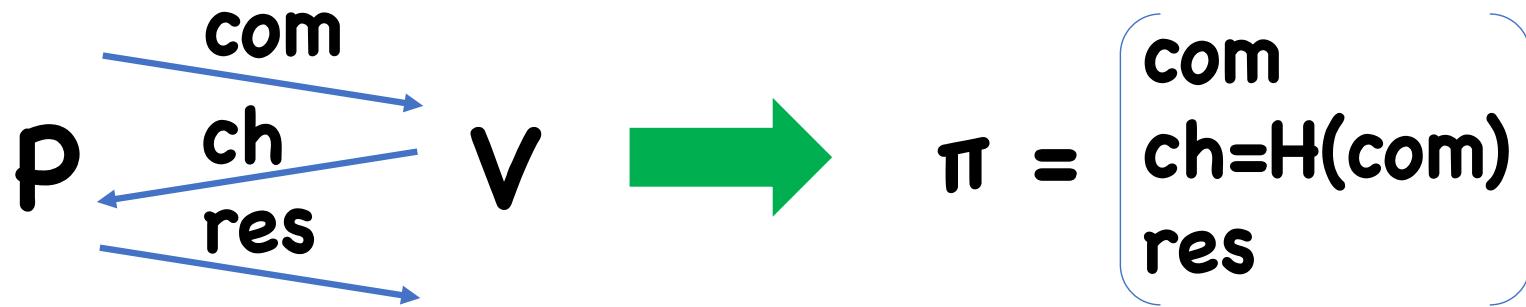
What to do if no CPRed?

Example: The Fiat-Shamir Transform

[Fiat-Shamir'87]

(public coin, HV)
3-Round Proof (of Knowledge)

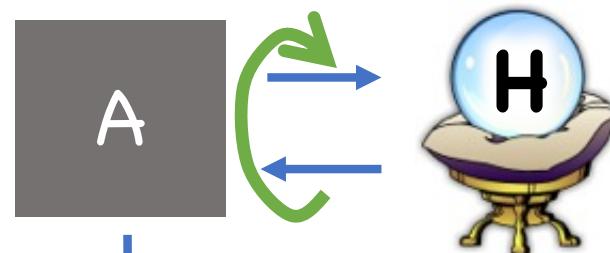
NI Proof (of Knowledge)



Also: Identification protocols \rightarrow signatures

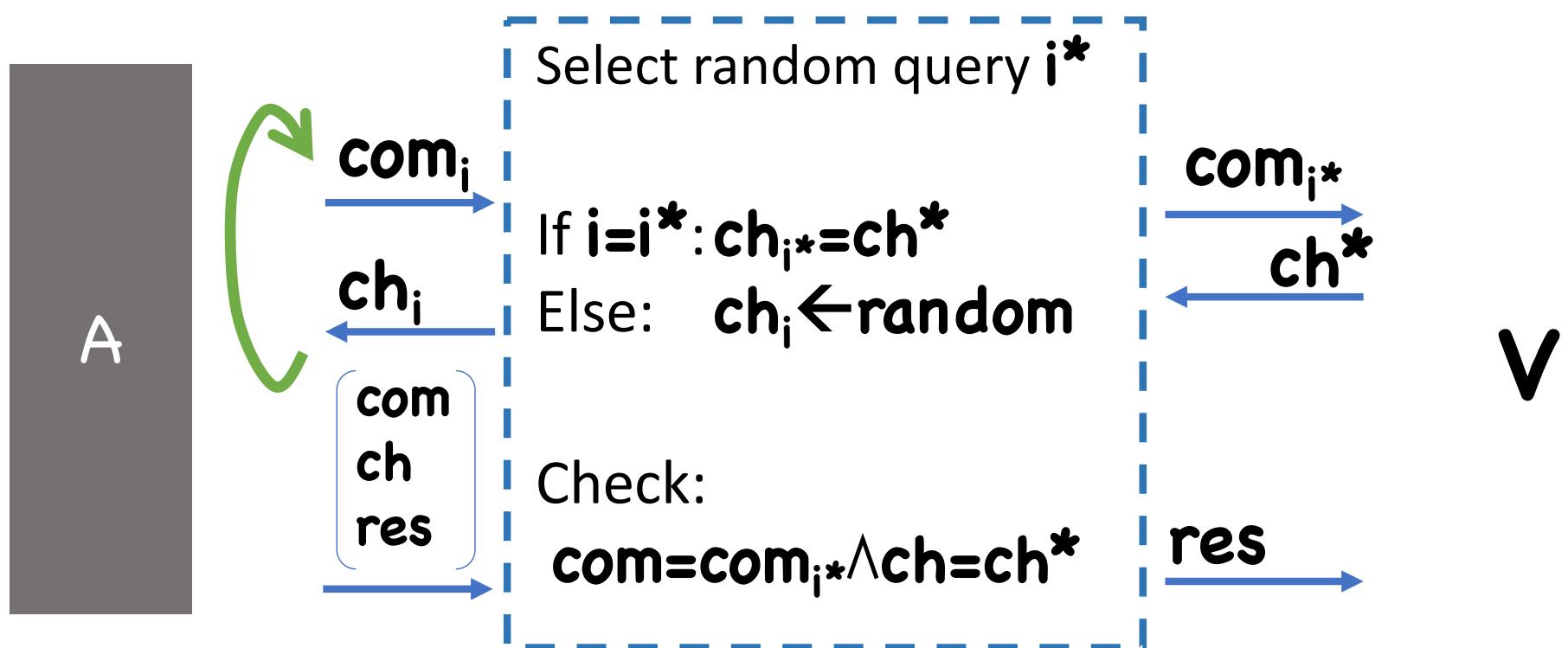
Classical Fiat-Shamir Proof

Assume:



com
ch=H(com)
res

Classical Fiat-Shamir Proof



Problems with Fiat-Shamir in QROM

Quantum analog of
selecting random query?

Use small range
distributions!?

Query extraction:
A's state disturbed
by extracting **com_i***

Adaptive Programming:
Can only set **H(com_i***) after
queries already made

Problems with Fiat-Shamir in QROM

Thm [Dagdelen-Fischlin-Gagliardoni'13]:
There is no CPRed for Fiat-Shamir

Intuition: two cases:

- (1) H committed before sending com to V
 $\rightarrow V$'s ch independent of A 's ch
- (2) H committed after sending com to V
 $\rightarrow A$'s com independent of reduction's com

Solutions?

[Unruh'15]: Use different conversion

Idea: A commits to all possible responses → can open using knowledge of RO

Problem: Less efficient

[Dagdelen-Fischlin-Gagliardoni'13, Unruh'17, Kiltz-Lyubashevsky-Schaffner'18]: Assume extra properties (e.g. statistical soundness) of proof system

Problem: Less efficient, maybe only proof (not PoK)

A Different Conversion

[Unruh'15]

Rough idea: $\pi = \left[\begin{array}{l} \text{com} \\ \{ H(\text{res}(ch)) \}_{ch} \end{array} \right]$

Proof sketch:

- Simulate RO s.t. reduction can efficiently invert
- Invert π on verifier's ch
- Lots of details to make sure A doesn't cheat

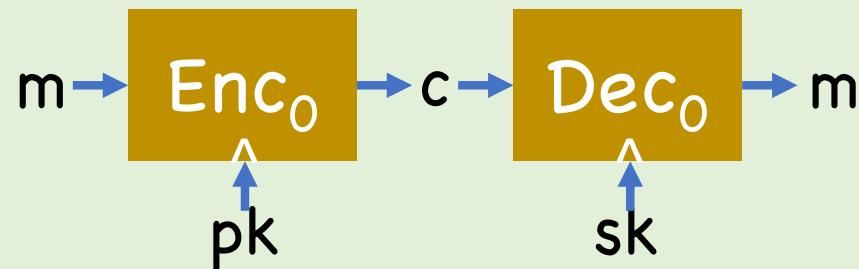
Simulating Invertible Random Oracles

How to simulate H so that reduction can invert?

Recall: already simulating as $2q$ -wise independent function
→ Can use degree $2q$ polynomial over finite field
→ Invertible by solving polynomial equations

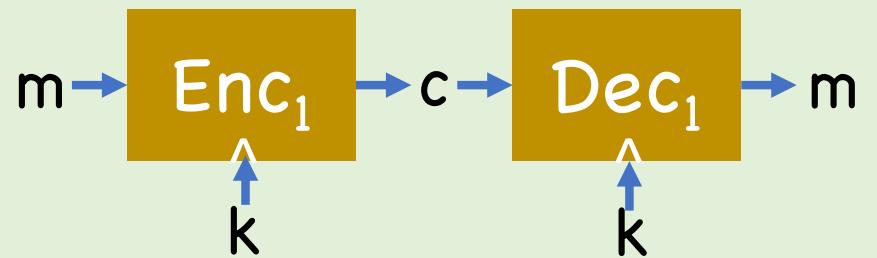
Example: Fujisaki-Okamoto

Building Block: One-way PKE



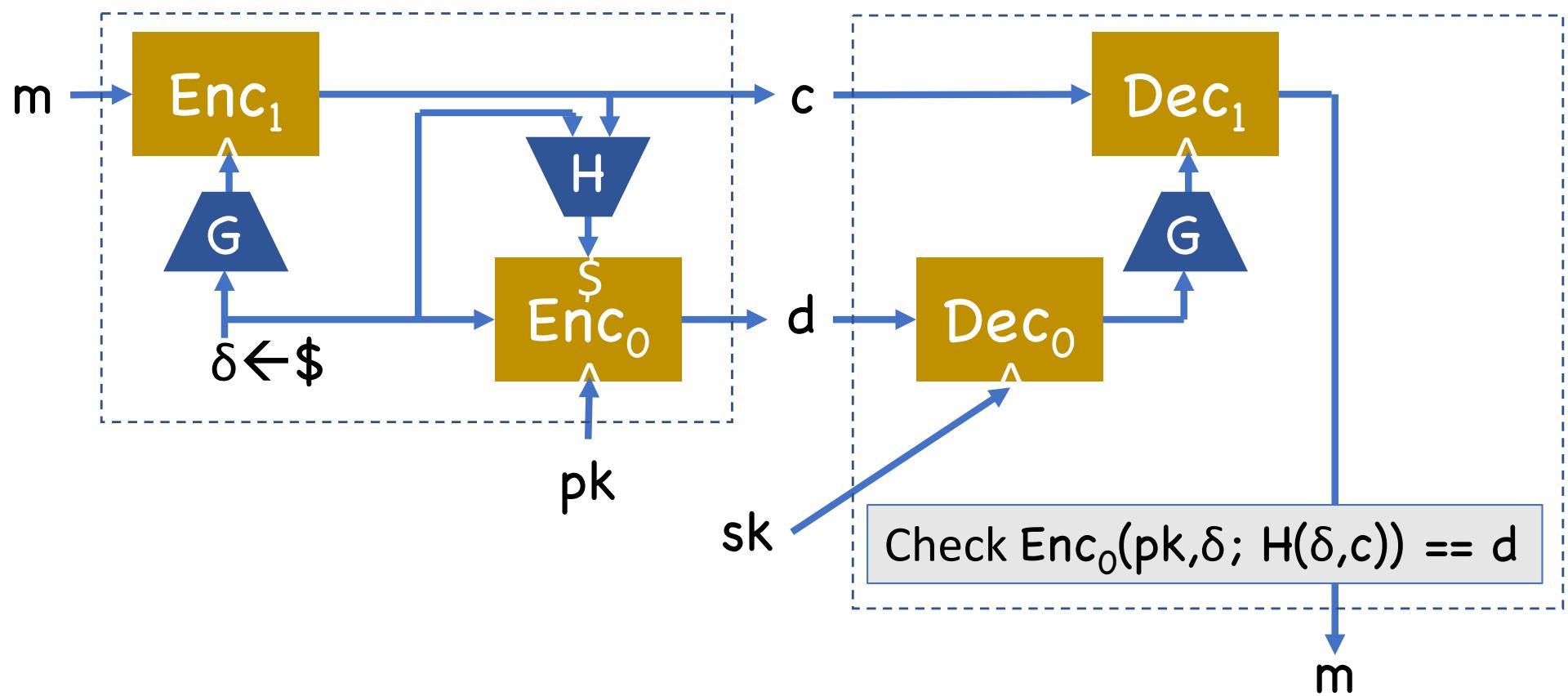
Security: $Enc_0(pk, m)$ one-way

Building Block: One-time SKE

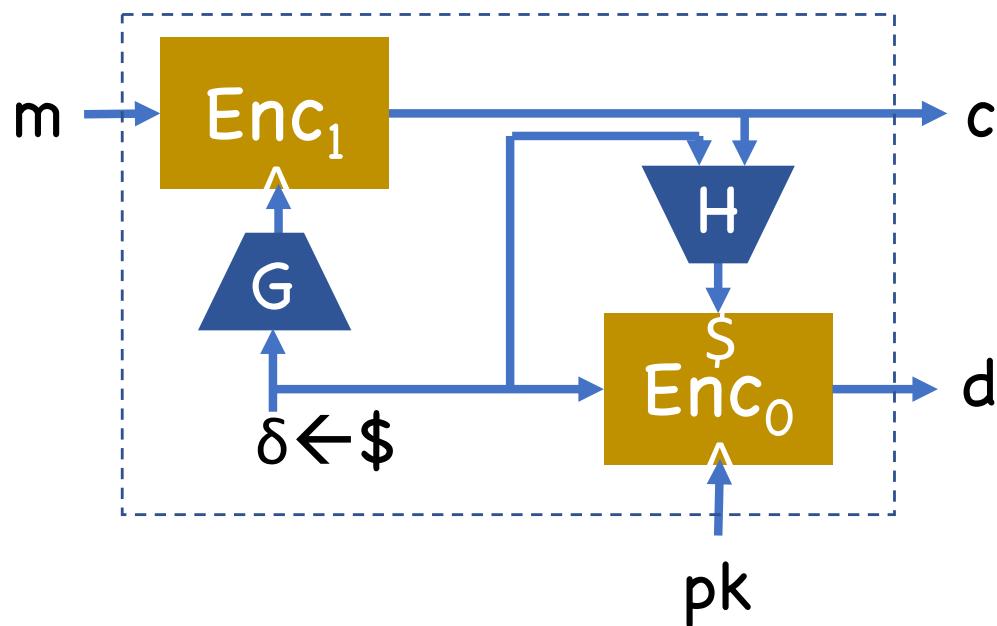


Security: $Enc_1(k, m_0) \approx Enc_1(k, m_1)$,
 $H_\infty(Enc(k, m))$ large

Example: Fujisaki-Okamoto



Example: Fujisaki-Okamoto



CCA security intuition:
Only way to obtain valid (c,d) is
to have queried H on some (δ,c)
→ Look at prior queries to H to
answer CCA queries

QROM problem: CPReds can't look at prior RO queries!

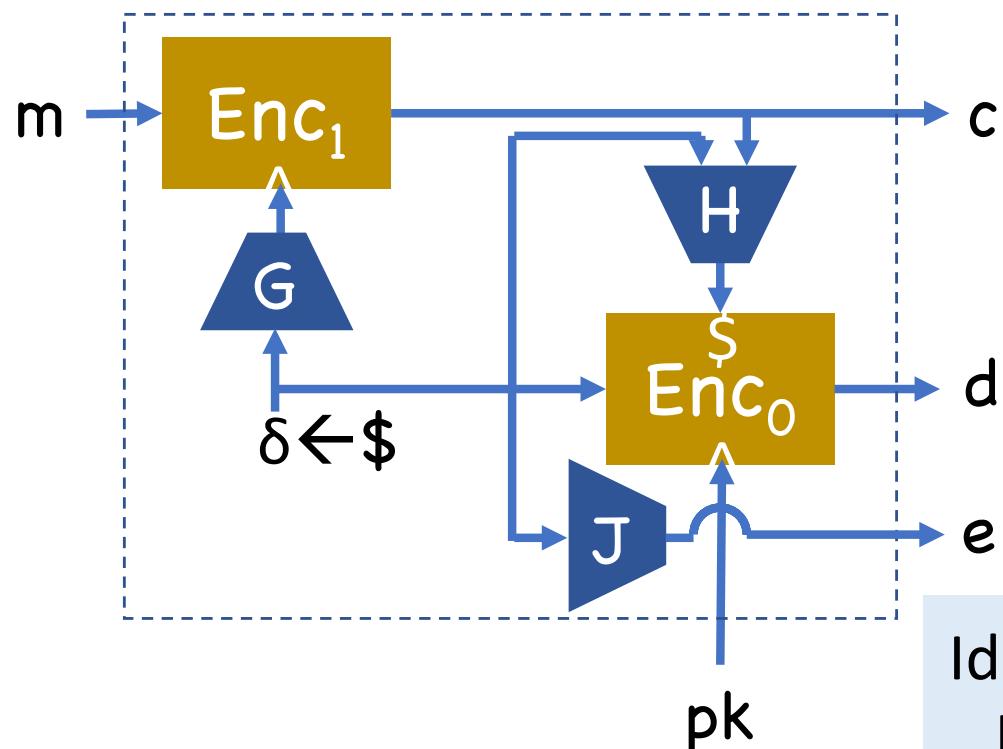
Example: Fujisaki-Okamoto

CPRed Impossibility? Open for FO, but I expect one exists
Given (c,d) , no way to even tell which RO inputs or
outputs used
→ RO seems useless

Impos. of CPReds for OAEP [Zhang-Yu-Feng-Fan-Zhang'19]

A Tweaked Conversion

[Targhi-Unruh'15]

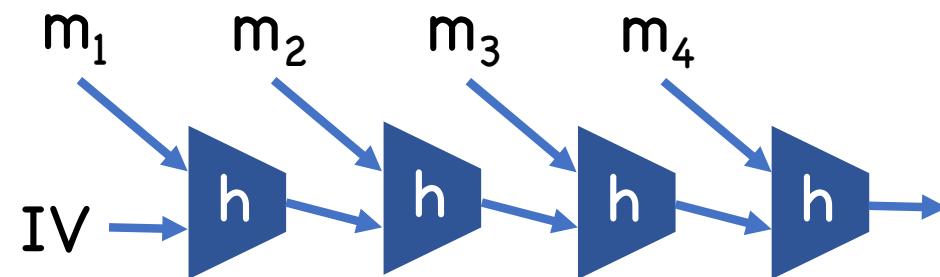


Idea: answer CCA queries
by computing $\delta = J^{-1}(e)$

Example: Domain Extension for RO

Most hash functions built from lower-level objects

E.g. Merkle-Damgård
(SHA1,SHA2)



Problem: sometimes structure can be exploited for attack, even if h is assumed ideal

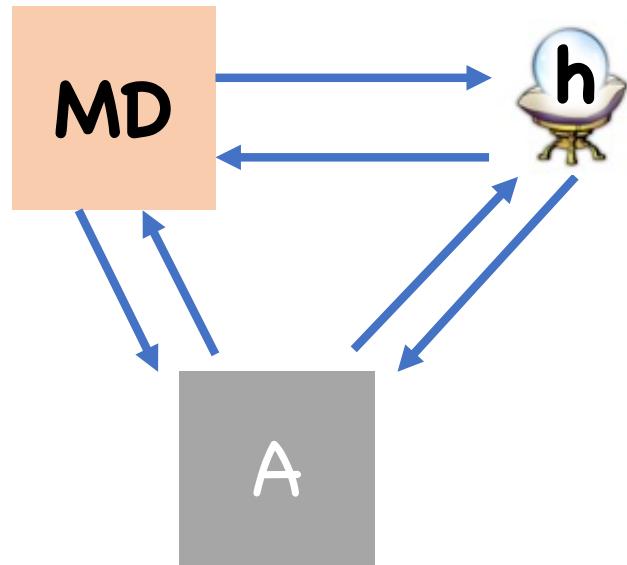
Example: Domain Extension for RO

Can we nevertheless justify the “RO Assumption”, despite structure?

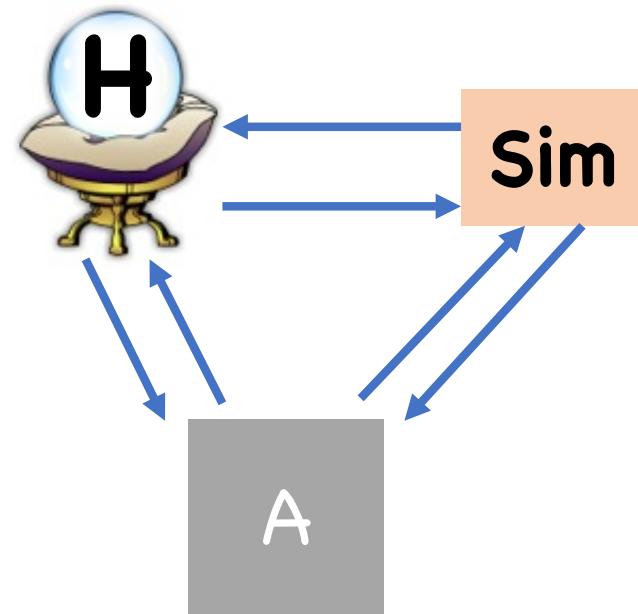
Yes(ish): indifferentiability
[Maurer-Renner-Holenstein’04]

Indifferentiability

Real World



Ideal World



Indifferentiability

Thm [Ristenpart-Shacham-Shrimpton'11]:

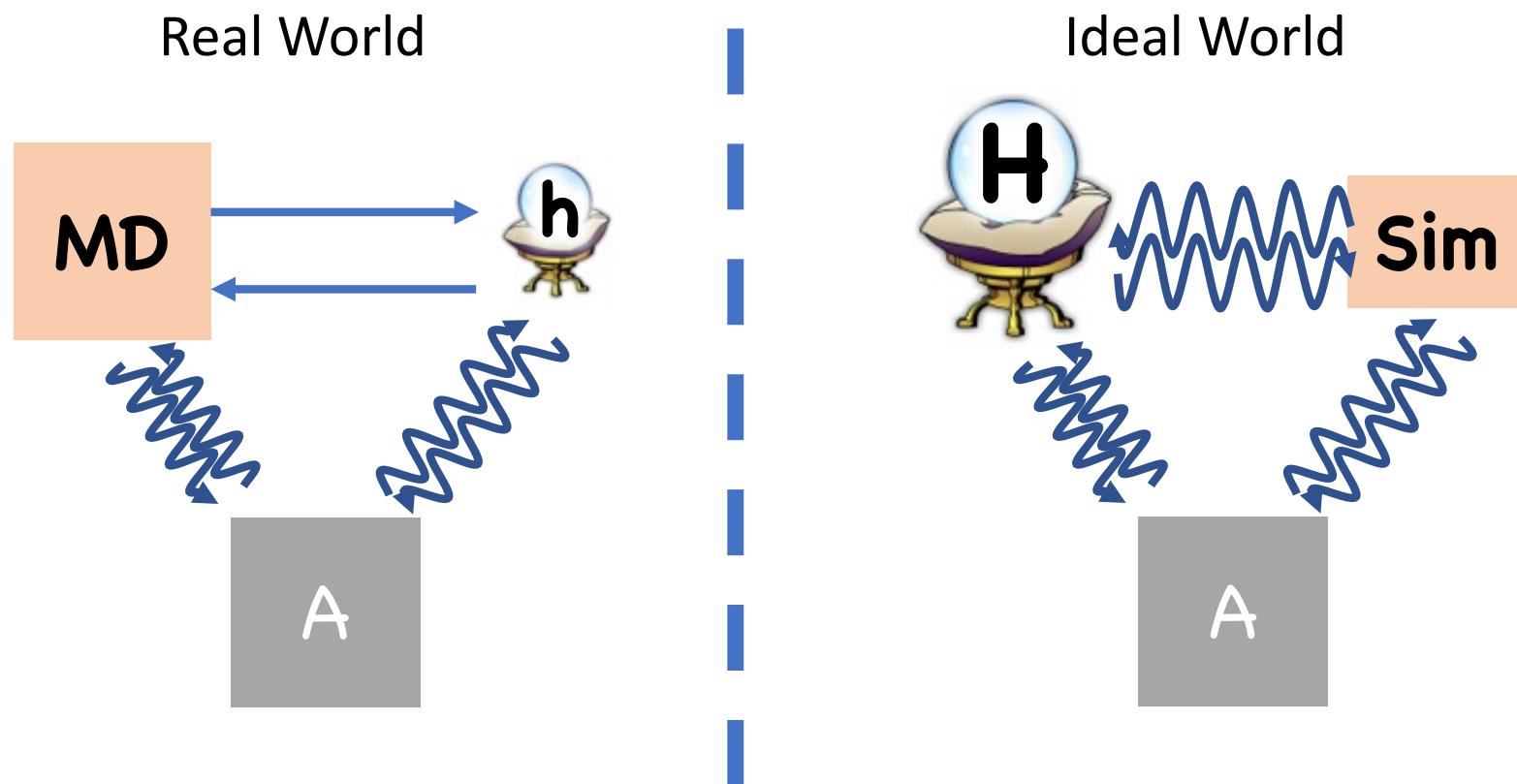
Indifferentiability \Rightarrow as good as RO for “single stage games”

Thm [Coron-Dodis-Malinaud-Puniya'05]

MD is classically indifferentiable under appropriate padding

Proof idea: Simulator can figure out when \mathcal{A} is trying to evaluate MD by looking at past oracle queries

Quantum Indifferentiability



Quantum Indifferentiability

Fact: No CPRed (stateless simulator) for indifferentiable domain extension, *regardless of construction*

Proof idea:

- $\text{Size}(\text{truth table of } \text{Sim}^H) \ll \text{Size}(\text{truth table of } H)$
- And yet, Sim^H allows for computing H
→ Compression for random strings

What's next?

Certain protocols, and even certain tasks, are unprovable under CPReds

Final hour: non-committed programming reductions