

Part I

Bellare-Rogaway Model (Passive Adversaries)

TECHNISCHE
UNIVERSITÄT
DARMSTADT

0110111010010111 Cryptoplexity

Cryptography & Complexity Theory
Technische Universität Darmstadt
www.cryptoplexity.de

8th BIU Winter School on Key Exchange, 2018

Marc Fischlin

Diffie-Hellman Key Exchange (1976)



KDF=Key Derivation Function

Security Models

Game-based

Bellare-Rogaway `93, `95

...

Bellare-Pointcheval-
Rogaway `00

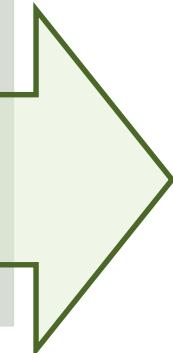
password-based

Simulation-based

Bellare-Canetti-Krawczyk `98
Shoup `99
Canetti-Krawczyk `02

...

Boyko-MacKenzie
-Patel `00

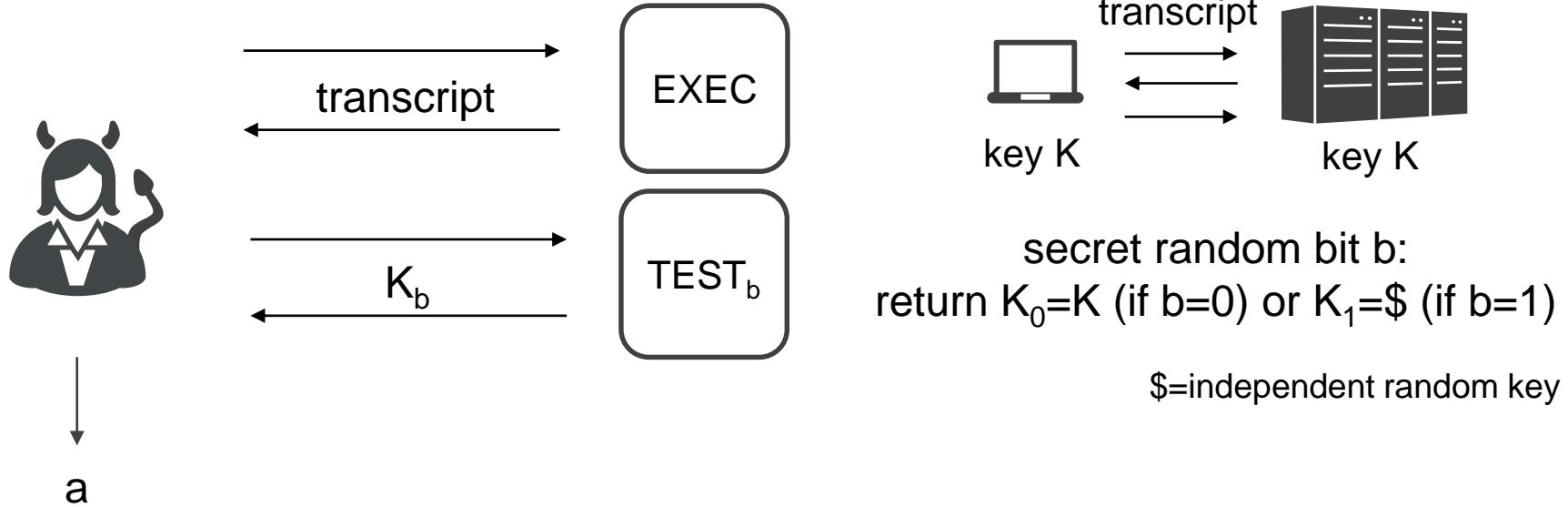


„The“ Bellare-Rogaway (BR) Model

Bellare-Rogaway (BR93)	Two-party scenario	Crypto '93
Bellare-Rogaway (BR95)	Three-party scenario	STOC '95
Bellare-Pointcheval- Rogaway (BPR00)	Password-based scenario	Eurocrypt 2000

+many derivates

Key Indistinguishability / Secrecy (I)

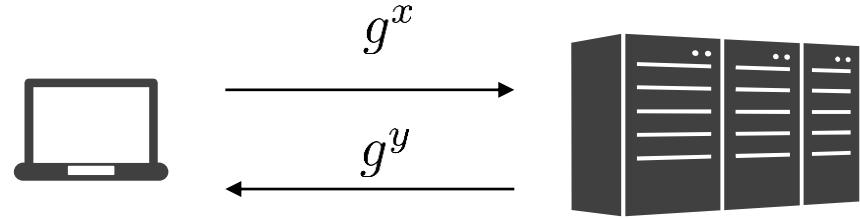
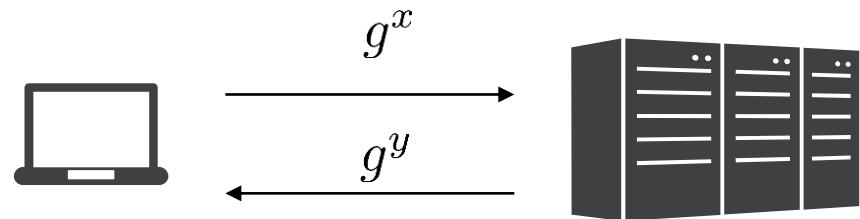
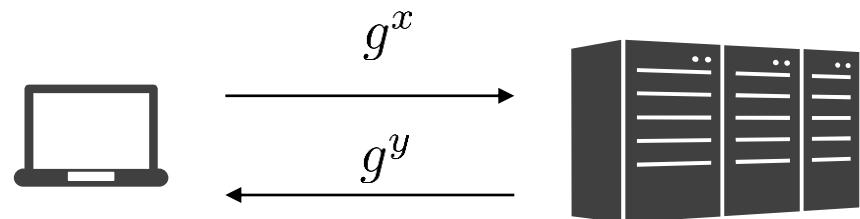


Adversary wins if
 $a=b$

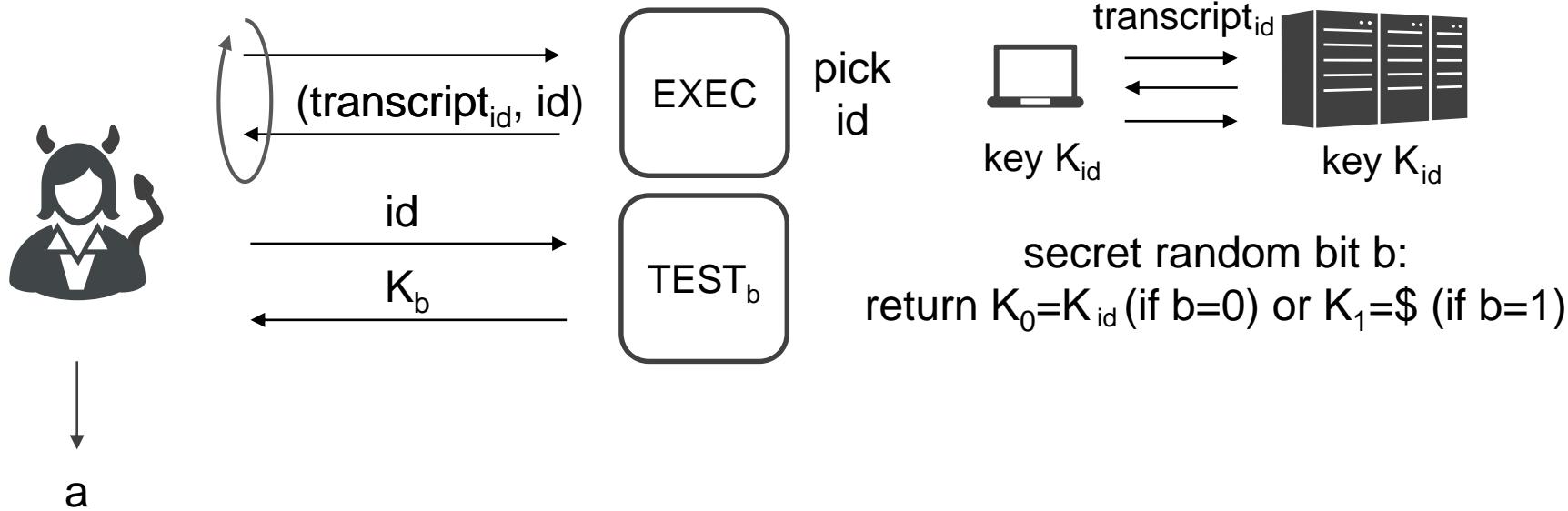
KE is secure against passive adversaries if
for any efficient adversary: $\Pr[A \text{ wins}] \leq \frac{1}{2} + \text{neg}$

Problem: No Dependencies in Model

assume parties
always use the
same secrets



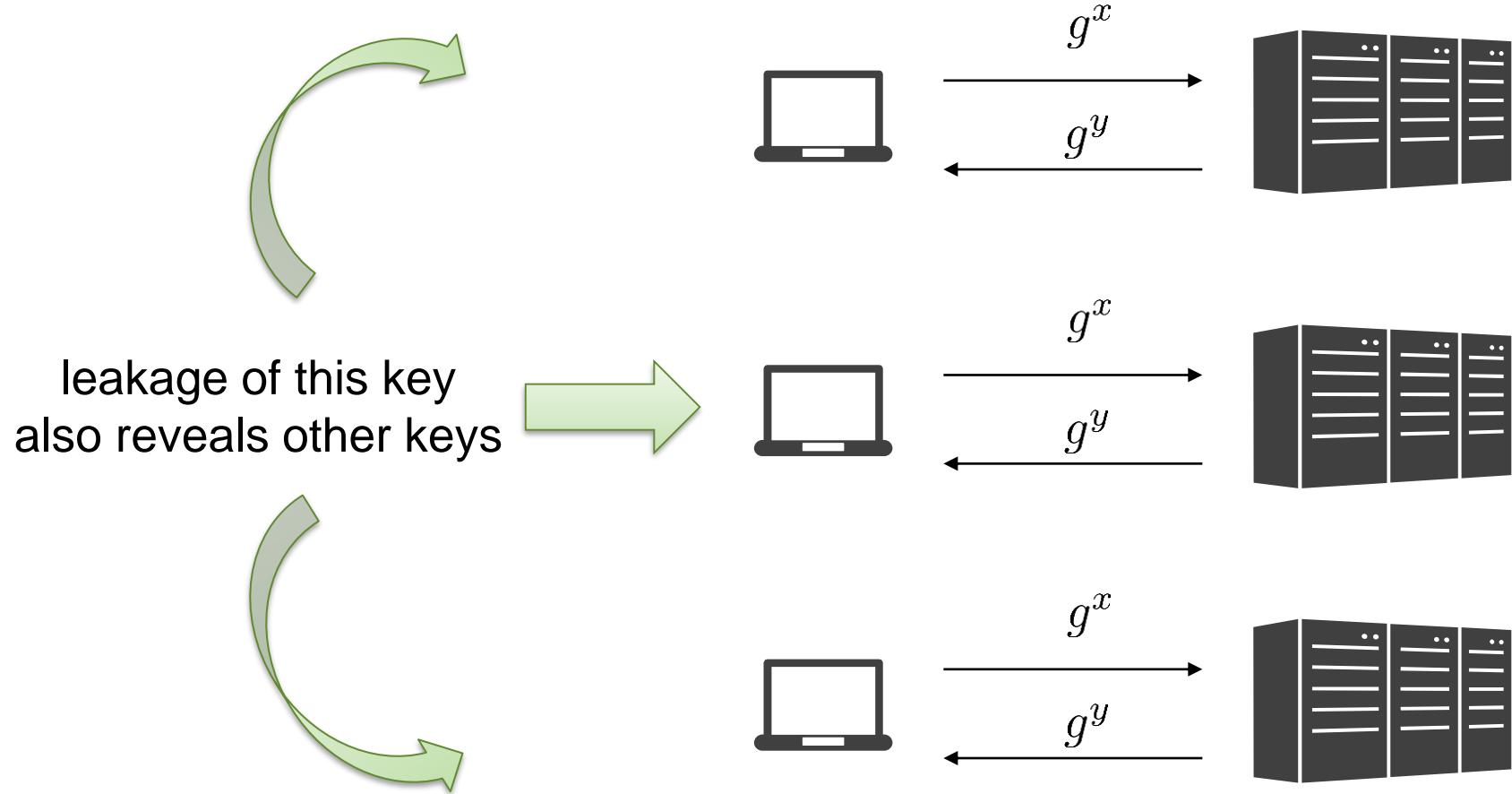
Key Indistinguishability / Key Secrecy



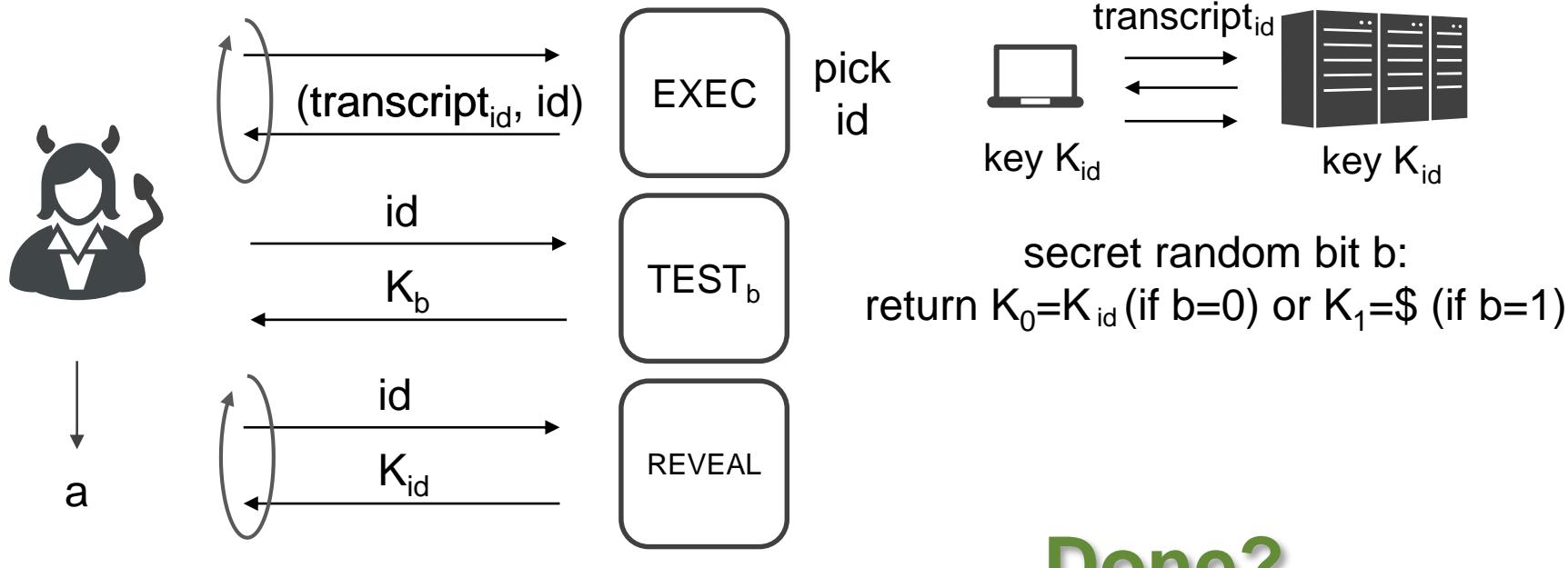
Adversary wins if
 $a=b$

KE is secure against passive adversaries if
for any efficient adversary: $\Pr[A \text{ wins}] \leq \frac{1}{2} + \text{neg}$

The Problem, revisited



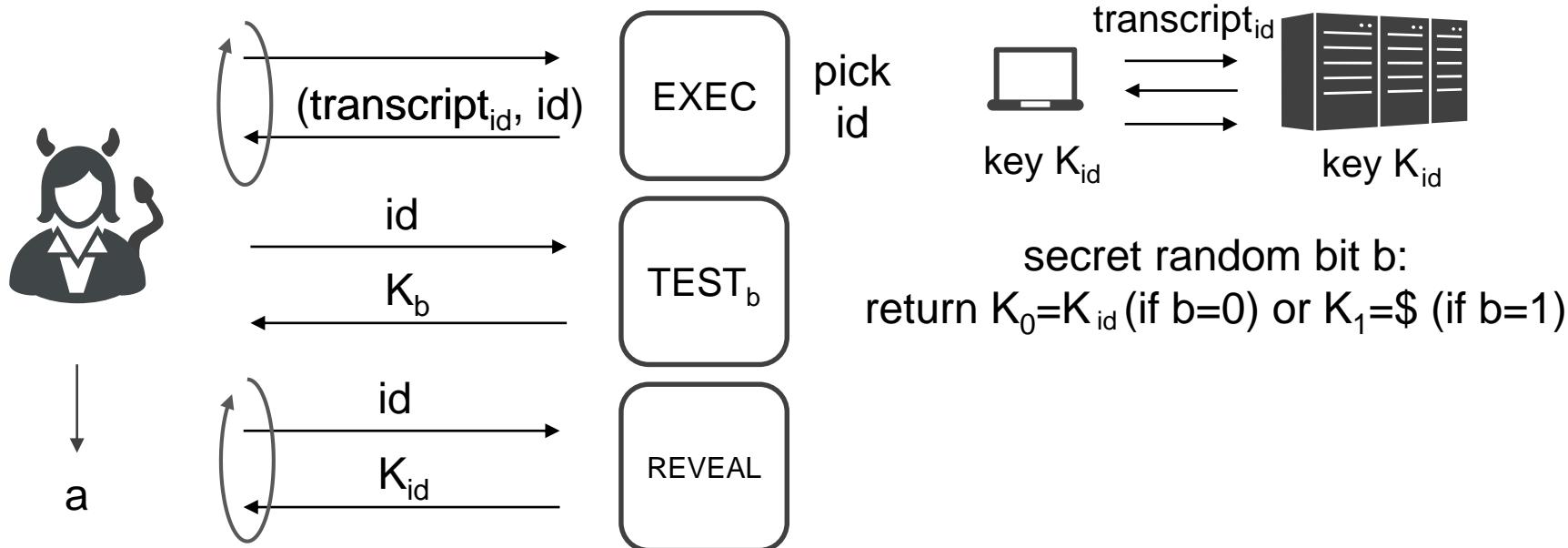
Adding Reveals



Adversary wins if
 $a=b$

KE is secure against passive adversaries if
for any efficient adversary: $\Pr[A \text{ wins}] \leq \frac{1}{2} + \text{neg}$

BR-Security (passive adversaries)

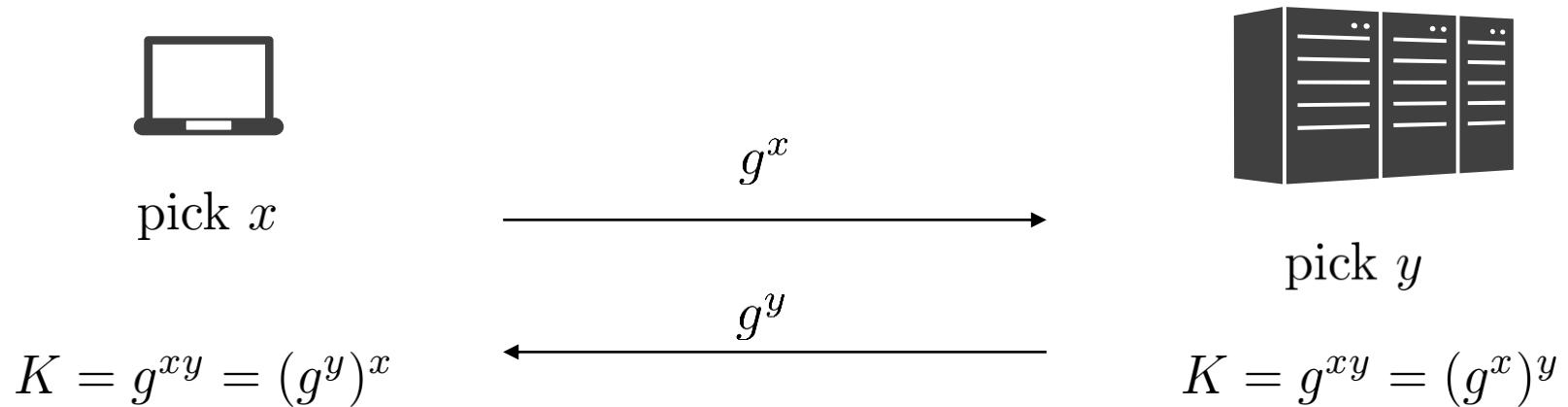


Adversary wins if
 $a=b$ and has not asked
TEST and **REVEAL**
about same id

„Freshness“ condition

KE is BR-secure against passive adversaries if for any efficient adversary: $\Pr[A \text{ wins}] \leq \frac{1}{2} + \text{neg}$

Example: Plain DH is passively BR-secure



...under the Decisional Diffie-Hellman (DDH) assumption:

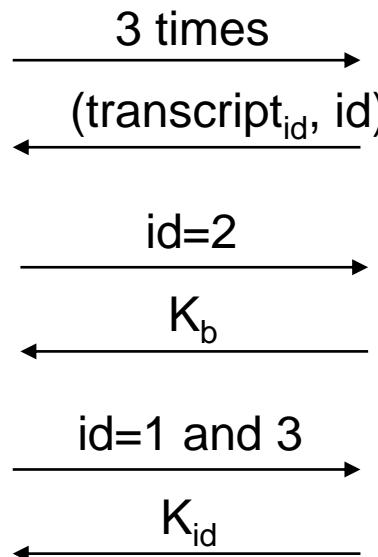
$$(g^a, g^b, g^{ab}) \approx (g^a, g^b, g^c)$$

Reduction (Idea)

suppose we know that A picks id=2 to TEST

$$(A, B, C) = (g^a, g^b, g^{ab}) \text{ or } (g^a, g^b, g^c)$$

Reduction to DDH



For id = 1 and 3
pick x_i, y_i and use (g^{x_i}, g^{y_i})

For id = 2 use (A, B)

use $K_b = C$

For id = i set $K_i = g^{x_i y_i}$

Teaser for the Break

We have defined:

KE is BR-secure against passive adversaries if
for any efficient adversary: $\Pr[A \text{ wins}] \leq \frac{1}{2} + \text{neg}$

Could we also define this equivalently as:

KE is BR-secure against passive adversaries if
for any efficient adversary: $|\Pr[A \text{ wins}] - \frac{1}{2}| \leq \text{neg}$

?