
Dan Boneh and Valeria Nikolaenko

Maximal Extractable Value (MEV)
and Fair Ordering

BIU Winter School on cryptography Day 4 Lecture 3

Searchers

Ethereum gives rise to a new type of business: searchers

• Arbitrage: Uniswap DAI/USDC exchange rate is 1.001
whereas at Sushiswap the rate is 1.002

⇒ a searcher posts Tx to equalize the markets and profits

• Liquidation: suppose there is a liquidation opportunity on Aave
⇒ a searcher posts a liquidation Tx and profits

• Many other examples … often using a sequence of Tx (a bundle)

The MEV problem
What happens when a searcher posts a Tx to the mempool?

• Validator: create a new Tx’ with itself as beneficiary, and
place it before Sam’s Tx in the proposed block

• Another searcher: create a new Tx’ with itself as beneficiary,
and posts it with a higher maxPrioriyFee

⇒ this action is now mostly automated by bots
Tx’

Tx’: credit Alice
maxPrioriyFee: 2X

Tx: credit Sam
maxPrioriyFee: X

Sam

mempool

The result harms honest users
Price Gas Auctions (PGA): two or more searchers compete
• Repeatedly submit a Tx with higher and higher maxPriorityFee

until a validator chooses one … happens within a few seconds

⇒ causes congestion (lots of Tx in mempool) and high gas fees

Tx’

Tx’: credit Alice
maxPrioriyFee: 2X

Tx: credit Sam
maxPrioriyFee: X

Sam

mempool

The result harms consensus
Undercutting attack on longest-chain consensus:

block 1 block 3
3 MEV Tx

Rational miner: can cause a re-org by taking one MEV Tx for
itself and leave two for other miners

Miners incentivized
to build here

The problem: MEV Tx generate extra revenue for miners, higher than block rewards

miner #1 miner #2 miner #3

The result causes centralization
Validators can steal MEV Tx from searchers

Searchers only send Tx to a validator they trust
(have a business relation with)

These validators do not propagate Tx to the network,
but put them in blocks themselves

In the long run: a few validators will handle the bulk of all Tx

⇒ Private mempools

How big are MEV rewards?
MEV payments to validators:

source: explore.flashbots.net

What to do??

Proposer Builder Separation (PBS)

Goals:
• Eliminate price gas auctions in the public mempool
• Instead, create an off-chain market for searchers to compete

on the position of their bundles in a block

• Prevent validator concentration: make it possible for every
validator to earn MEV payments from searchers

Current PBS implementation: MEV-boost

The participants in PBS (as in MEV-boost)

Users have Tx and searchers have bundles (sequence of Tx)
• searcher wants its bundle posted in a block unmodified

searchers
builder A

builder B

mempool
user

bundle

Tx

relay 1

relay 2

validator
(the current

block
proposer)

block

block

block

blockHdr

send block to
eth network

bundle

signature
blockHdr

bundle

build block from
Tx and bundles choose best block

MEV-boost
Builder: collects bundles and Tx, builds a block (≈300 bundles/block)

• includes a MEV offer to validator (feeRecipient)

Relay: collects blocks, chooses block with max MEV offer
• sends block header (and MEV offer) to block proposer
• Can’t expose Tx in block to proposer (proposer could steal Tx)

Proposer: chooses best offer and signs header with its staking key
⇒ Then Relay sends block to network, making it public
⇒ Now, proposer cannot steal MEV (would be exposed to slashing)

https://writings.flashbots.net/searching-post-merge

Many block options per slot
A relay might receive 500 blocks per slot from builders
• Each builder might send 20 blocks to relay for one slot
• Why? The longer builder waits the more MEV opportunities …

credit: Justin Drake and Shea Ketsdever

slot 5,680,917

builder’s bid goes
up the longer it waits

Operating relays
Flashbots: Filters out OFAC sanctioned addresses,

aims to maximize validator payout
(so that many validators will work with it)

BloXroute: no censorship
aims to maximize validator payout

UltraSound: not for profit, non censoring

…

An example: flashbots relay

fee to validator

An example: flashbots relay

address of validator who proposed the block

Are we done? Not quite …

Builder concentration: three builders build 75% of all blocks !!
• Clear centralization in the builder market
• Enables censorship by builders

Proposers hold all the power (First price auction among builders)
⇒ Most MEV profits flow to proposers

MEV-boost is not designed for cross-chain MEV
• For cross-chain arbitrage, no atomicity guarantee for bundle

(builder0x69,beaverbuild,Flashbots)

https://www.relayscan.io/

The next step: SUAVE

Goals:
• Tx should be private (encrypted) until signed by block proposer

... but should be available to all block builders to build blocks

Seems contradictory! crypto to the rescue:

⇒ requires a massive MPC or secure HW enclaves

The SUAVE Multiparty Computation

Ideal
Functionality

Sam

Sue

searchers

Bob

Brooke

builders

bundle
and prefs

bundle

and prefs

building
strategy

building
strategy

block proposer (signing key)

signed
block

Fair Ordering of Transactions

MEV - accept or try to stop?

Two schools of thought:

1. Accept MEV as inevitable and develop processes to
democratize MEV extraction:
a. efficient (no gas wars),
b. decentralized (no censorship) and
c. transparent (keep clients’ trust)

2. Stop MEV with techniques that make order manipulation
impossible or very costly

How can we stop MEV?

1. Applications-specific MEV prevention
(e.g. automatically collect arbitrage, A2MM)
Downside: application-specific

2. Trusted execution environments (TEEs) to order transactions
Downside: hardware assumption

3. Randomize transactions before executing
Downside: spamming with identical extracting transaction

4. Time-Based Order-Fairness
5. Blind Order-Fairness

Causal ordering: a transaction tx2
derived from tx1 should not be
sequenced before tx1.

https://arxiv.org/pdf/2106.07371.pdf

Time-Based Order-Fairness: Aequitas
Intuitively: if most (γ) miners received tx1 before tx2, then tx1 should
precede tx2 in the final ordering.
Challenge of Condorcet cycles:
* miner #1: [tx1, tx2, tx3]
* miner #2: [tx2, tx3, tx1]
* miner #3: [tx3, tx1, tx2]

[Kelkar-Zhang-Goldfeder-Juels-2020]

A majority received (tx1 before tx2) AND
(tx2 before tx3) AND (tx3 before tx1)!

Solution: place cycles that can’t be resolved in the same block.
Block-Order-Fairness: If tx1 was received before tx2 by most miners, then
tx1 will be placed in the same block with tx2 or in some preceding block.

https://eprint.iacr.org/2020/269.pdf

Block-Fair-Ordering protocol idea:

1. Miners broadcast their order preferences.
2. Miners agree on the subset of miners whose orderings to

consider.
3. Build a graph of transactions:

a. Vertices = transactions present in a large number of orderings,
b. Edge(tx1 → tx2) = tx1 stands before tx2 in most orderings.

4. Collapse strongly connected (CSC) components.
5. Topologically sort.
6. Final ordering respects the sort.

Time-Based Order-Fairness: Aequitas

[Kelkar-Zhang-Goldfeder-Juels-2020]

https://eprint.iacr.org/2020/269.pdf

More Time-Based Order-Fairness Protocols

From “Themis: Fast, Strong Order-Fairness in Byzantine Consensus” by Kelkar-Deb-Long-Juels-Kannan 2021

● Large communication: O(n2)
● Does not mitigate attackers with better connectivity
● Weaker definitions

https://eprint.iacr.org/2021/1465.pdf

Three phases:

● Commit transactions: users commit to their transactions.

● Order commitments: validators order commitments into a block.

● Reveal transactions: commitments are revealed (by users
themselves, or by validators, or “automatically”).

Blind Order-Fairness

Hiding

Blind Order-Fairness
Three phases:

● Commit transactions (by users)
● Order commitments (by validators)
● Reveal transactions (by ?)

Solution #1 (warm-up) - collateral based commitments

● Commit (tx):
○ Lock collateral
○ Output ct = Commit(tx)

● Reveal (ct) (by users):
○ User reveals tx = Open(ct), otherwise loses collateral

Blind Order-Fairness

Three phases:

● Commit transactions (by users)
● Order commitments (by validators)
● Reveal transactions (by ?)

Solution #2 - threshold cryptography:

● Setup: validators generate pk, threshold share a secret key sk
● Commit (tx):

○ Output ct = Encrypt(pk, tx)
● Reveal (ct) (by validators):

○ Validators run MPC: tx = Decrypt(sk, ct) Reiter-Birman-1994
Cachin-Kursawe-Petzold-Shoup-2001

Blind Order-Fairness

Three phases:

● Commit transactions (by users)
● Order commitments (by validators)
● Reveal transactions (by ?)

Solution #3 - secret dissemination

● Commit (tx):
○ Generate symmetric secret key k
○ Using IDA share k to validators
○ Output ct = Encrypt(k, tx)

● Reveal (ct) (by validators):
○ Validators run MPC: tx = Decrypt(k, ct)

Malkhi-Szalachowski-2022

Blind Order-Fairness

Three phases:

● Commit transactions (by users)
● Order commitments (by validators)
● Reveal transactions (by ?)

Solution #4 - time-lock-puzzle commitments
Example: trapdoor Verifiable Delay Functions - tVDF

● Commit (tx):
○ Generate tVDF parameters: (pp, msk)
○ VDF.Eval_quickly(msk, Δ, x) → k // takes constant time
○ Output ct = [pp, Encrypt(k, tx)]

● Reveal (ct) (by anybody):
○ Computes (anybody) VDF.Eval_slowly(pp, x) → k // takes time Δ
○ Output tx = Decrypt(k, ct)

How can we stop MEV?
1. Applications-specific MEV prevention

(e.g. automatically collect arbitrage, A2MM)
Downside: application-specific

2. Trusted execution environments (TEEs) to order transactions
Downside: hardware assumption

3. Randomize transactions list for execution with a randomness beacon
Downside: spamming with identical extracting transaction

4. Time-Based Order-Fairness
Downside: yet practically inefficient, not preventing well connected
extractor

5. Blind Order-Fairness
Downside: threshold cryptography or VDFs, does not prevent front-running

6. More ideas?

https://arxiv.org/pdf/2106.07371.pdf

How can we stop MEV?
1. Applications-specific MEV prevention

(e.g. automatically collect arbitrage, A2MM)
Downside: application-specific

2. Trusted execution environments (TEEs) to order transactions
Downside: hardware assumption

3. Randomize transactions list for execution with a randomness beacon
Downside: spamming with identical extracting transaction

4. Time-Based Order-Fairness
Downside: yet practically inefficient, not preventing well connected
extractor

5. Blind Order-Fairness
Downside: threshold cryptography or VDFs, does not prevent front-running

6. More ideas?

https://arxiv.org/pdf/2106.07371.pdf

THE END

