BIU Winter School on cryptography Day 4 Lecture 3

Maximal Extractable Value (MEV)

and Fair Ordering

Dan Boneh and Valeria Nikolaenko



Ethereum gives rise to a new type of business: searchers

* Arbitrage: Uniswap DAI/USDC exchange rate is 1.001

whereas at Sushiswap the rate is 1.002
= a searcher posts Tx to equalize the markets and profits

Liquidation: suppose there is a liquidation opportunity on Aave
= a searcher posts a liquidation Tx and profits

Many other examples ... often using a sequence of Tx (a bundle)



The MEV problem

What happens when a searcher posts a Tx to the mempool?

* Validator: create a new Tx” with itself as beneficiary, and
place it before Sam’s Tx in the proposed block

* Another searcher: create a new Tx’ with itself as beneficiary,
and posts it with a higher maxPrioriyFee

= this action is now mostly automated by bots @

o
)

q&




The result harms honest users

Price Gas Auctions (PGA): two or more searchers compete

* Repeatedly submit a Tx with higher and higher maxPriorityFee
until a validator chooses one ... happens within a few seconds

= causes congestion (lots of Tx in mempool) and high gas fees




The result harms consensus

Undercutting attack on longest-chain consensus:

Rational miner: can cause a re-org by taking one MEV Tx for
itself and leave two for other miners

_m_ Miners incentivized
) to build here

miner #1 miner #2 miner #3

The problem: MEV Tx generate extra revenue for miners, higher than block rewards



The result causes centralization

Validators can steal MEV Tx from searchers = Private mempools

Searchers only send Tx to a validator they trust
(have a business relation with)
These validators do not propagate Tx to the network,

but put them in blocks themselves

In the long run: a few validators will handle the bulk of all Tx



How big are MEV rewards?

MEV payments to validators:

Cumulative Sum of Miner Payments for MEV

247.7M
238.1v240.5M241.9M246 1M

7.4M
3.41 642.25 16.0k 23.3k 564.2k

source: explore.flashbots.net






Proposer Builder Separation (PBS)

Goals:
* Eliminate price gas auctions in the public mempool

* Instead, create an off-chain market for searchers to compete
on the position of their bundles in a block

* Prevent validator concentration: make it possible for every
validator to earn MEV payments from searchers

Current PBS implementation: MEV-boost



The participants in PBS (asin MEV-boost)

Users have Tx and searchers have bundles (sequence of Tx)

* searcher wants its bundle posted in a block unmodified

build block from

choose best block
searchers Tx and bundles

pundle blo
—_— <k blockHdr
W’ — :
Y
bundl ot
@ undie _. blockHdr
\ﬁ""”k
Tx ,
a . send block to

user eth network




MEV-boost

Builder: collects bundles and Tx, builds a block (=300 bundles/block)
* includes a MEV offer to validator (feeRecipient)

Relay: collects blocks, chooses block with max MEV offer
* sends block header (and MEV offer) to block proposer
 Can’t expose Tx in block to proposer (proposer could steal Tx)

Proposer: chooses best offer and signs header with its staking key
= Then Relay sends block to network, making it public
= Now, proposer cannot steal MEV (would be exposed to slashing)

https://writings.flashbots.net/searching-post-merge



Many block options per slot

A relay might receive 500 blocks per slot from builders

Each builder might send 20 blocks to relay for one slot

« Why? The longer builder waits the more MEV opportunities ...

builder bid value

0.04 ETH

0.03 ETH

0.02 ETH

0.01 ETH

0.00 ETH

slot 5,680,917

builder’s bid goes
up the longer it waits

sec 7sec

8 sec

9 sec

10 sec 11 sec

12sec 13sec 14sec

e 0x69

e beaver
bloxroute

e buildai

e eth-builder

e fc

flashbots
lightspeed
payload

sOe

credit: Justin Drake and Shea Ketsdever



Operating relays

Flashbots:

BloXroute:

UltraSound:

Filters out OFAC sanctioned addresses,
aims to maximize validator payout
(so that many validators will work with it)

no censorship

aims to maximize validator payout

not for profit, non censoring



An example: flashbots relay

Recently Delivered Payloads fee to validator

Epoch Slot Block number Value (ETH) W Num tx
165,046 5,281,503 16,115,184 0.0759673152 186
165,046 5,281,501 16,115,182 0.05098935853 142
165,046 5,281,499 16,115,180 0.1902791095 167
165,046 5,281,498 16,115,179 0.103438972 295
165,046 5,281,496 16,115,177 0.07159735143 199
165,046 5,281,495 16,115,176 0.04034671944 125




An example: flashbots relay

Epoch:

Slot:

Block Number:

MEV Reward Recipient:

MEV Block Reward:

165,046 &

5,281,503 &

16115184 |k

Oxebec795c9c8bbd61ffc14a6662944748f299cacf

0.07596 Ether

address of validator who proposed the block



Are we done? Not quite ...

Builder concentration: three builders build 75% of all blocks !!

e (Clear centralization in the builder market

* Enables censorship by builders (builderOx69,beaverbuild,Flashbots)

Proposers hold all the power (First price auction among builders)
= Most MEV profits flow to proposers

MEV-boost is not designed for cross-chain MEV
* For cross-chain arbitrage, no atomicity guarantee for bundle


https://www.relayscan.io/

The next step: SUAVE

Goals:
 Tx should be private (encrypted) until signed by block proposer

... but should be available to all block builders to build blocks

Seems contradictory! crypto to the rescue:

= requires a massive MPC or secure HW enclaves



The SUAVE Multiparty Computation

Sam
—2undle
and prefs
Sue

M’

8

1

searchers

Bob

building
—rotesy
building BrOOke
‘W a
signed
block 1
builders

block proposer (signing key)



Fair Ordering of Transactions




MEYV - accept or try to stop?

Two schools of thought:

1. Accept MEV as inevitable and develop processes to
democratize MEV extraction:
a. efficient (no gas wars),
b. decentralized (no censorship) and
c. transparent (keep clients’ trust)

2. Stop MEV with techniques that make order manipulation
impossible or very costly



How can we stop MEV?

1. Applications-specific MEV prevention
(e.g. automatically collect arbitrage, A2ZMM)
Downside: application-specific

2. Trusted execution environments (TEEs) to order transactions
Downside: hardware assumption

3. Randomize transactions before executing

Downside: spamming with identical extracting transaction

. Time-Based Order—® Causal ordering: a transaction tx2
5. Blind Order-Fairness derived from tx1 should not be

sequenced before tx1.



https://arxiv.org/pdf/2106.07371.pdf

Time-Based Order-Fairness: Aequitas

Intuitively: if most (y) miners received tx1 before tx2, then tx1 should
precede tx2 in the final ordering.

Challenge of Condorcet cycles:
* miner #1: [tx1, tx2, tx3]

I miner #2: [tx2, tx3, tx1] A majority received (tx1 before tx2) AND
miner #3: [tx3, X1, tx2] (44> hefore tx3) AND (tx3 before tx1)!

Solution: place cycles that can’t be resolved in the same block.
Block-Order-Fairness: If tx1 was received before tx2 by most miners, then
tx1 will be placed in the same block with tx2 or in some preceding block.

Kelkar-Zhang-Goldfeder-juels-2020



https://eprint.iacr.org/2020/269.pdf

Time-Based Order-Fairness: Aequitas

Block-Fair-Ordering protocol idea:

1. Miners broadcast their order preferences.
2. Miners agree on the subset of miners whose orderings to
consider.

3. Build a graph of transactions:
a. Vertices = transactions present in a large number of orderings,
. Edge(tx1l - tx2) = tx1 stands before tx2 in most orderings.

4. Collapse strongly connected (CSC) components.

5. Topologically sort.

6. Final ordering respects the sort.

Kelkar-Zhang-Goldfeder-juels-2020



https://eprint.iacr.org/2020/269.pdf

More Time-Based Order-Fairness Protocols

e Large communication: O(n?)
e Does not mitigate attackers with better connectivity
e Weaker definitions

; Comm. : :
Protocol Transagtlon Complexity Corruption Liveness Cen@rsh1p Synchronized
Ordering Optimisti Resistance Clocks?
ptimistic | Worst
~v-batch-
Aequitas [19] order-fairness O(n?) O(n?) n > ﬁ_f—l ® Weak Yes No
(Definition III.1)
Timed-
Wendy [21] Relative-Fairness? O(n?) O(n?) n>3f+1 Standard Yes Yes®
(Section VI-A)
Ordering
Pompé [38] Linearizability® O(n?) O(n?) n>3f+1 Standard No Yes
(Section VI-A)
c~di i Only when all nodes
Quick-Fairness [9] Or"dgr‘_fgirf:;"s'f:,) O(n?) Om?) | n>3f+r+1 y g No
Themis (This Work ~~batch- O(n? O(n? 4
SNARK-Ther(nis (This V\)’ork) orer-faimess<4> O((n)) O((n f)) n> gzl @ | Standard L e

Themis: Fast, Strong Order-Fairness in Byzantine Consensus



https://eprint.iacr.org/2021/1465.pdf

Blind Order-Fairness

e Commit transactions: users commit to their transactions.

e Order commitments: validators order commitments into a block.

o Reveal transactions: commitments are revealed (by users
themselves, or by validators, or “automatically”).



Blind Order-Fairness

Three phases:

e Commit transactions (by users)
e Order commitments (by validators)
e Reveal transactions (by ?)

Solution #1 (warm-up) - collateral based commitments

o Commit (tx):
o Lock collateral
o Output ct = Commit(tx)
e Reveal (ct) (by users):
o User reveals tx = Open(ct), otherwise loses collateral



Blind Order-Fairness

Three phases:

e Commit transactions (by users)
® Order commitments (by validators)
® Reveal transactions (by ?)

Solution #2 - threshold cryptography:

e Setup: validators generate pk, threshold share a secret key sk
e Commit (tx):

o Output ct = Encrypt(pk, tx)
e Reveal (ct) (by validators):

o Validators run MPC: tx = Decrypt(sk, ct)



Blind Order-Fairness

Three phases:

e Commit transactions (by users)
® Order commitments (by validators)
® Reveal transactions (by ?)

Solution #3 - secret dissemination

e Commit (tx):
o Generate symmetric secret key k
o Using IDA share k to validators
o Output ct = Encrypt(k, tx)

e Reveal (ct) (by validators):

o Validators run MPC: tx = Decrypt(k, ct)
Malkhi-Szalachowski-2022



Blind Order-Fairness

Three phases:

® Commit transactions (by users)
® Order commitments (by validators)
® Reveal transactions (by ?)

Solution #4 - time-lock-puzzle commitments
Example: trapdoor Verifiable Delay Functions - tVDF

e Commit (tx):
o Generate tVDF parameters: (pp, msk)
o VDF.Eval_quickly(msk, A, x) = k // takes constant time
o Output ct = [pp, Encrypt(k, tx)]
e Reveal (ct) (by anybody):
o Computes (anybody) VDF.Eval_slowly(pp, x) = k //takestime A
o Output tx = Decrypt(k, ct)



How can we stop MEV?

1. Applications-specific MEV prevention
(e.g. automatically collect arbitrage, A2ZMM)

2. Trusted execution environments (TEEs) to order transactions
3. Randomize transactions list for execution with a randomness beacon

4. Time-Based Order-Fairness

5. Blind Order-Fairness

6. More ideas?


https://arxiv.org/pdf/2106.07371.pdf

How can we stop MEV?

1. Applications-specific MEV prevention
(e.g. automatically collect arbitrage, A2ZMM)

2. Trusted execution environments (TEEs) to order transactions

3. Randomize transactions list for execution with a randomness beacon

4. Time-Based Order-Fairness

5. Blind Order-Fairness

6. More ideas?



https://arxiv.org/pdf/2106.07371.pdf

THE END



