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Definition of LDC
Motivation

A an error correcting code C is a mapping C : F n 7→ F N ,
C(x1, x2, . . . xn) 7→ (w1,w2, . . .wN) :

Decoding: D(w1,w2, . . .wN) = (x1, . . . xn)

Error-Correction: D can handle up to d errors

What happens if we want just one symbol xi and not the entire
massage?
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Definition of LDC

Definition: Locally Decodable Codes
C(x1, x2, . . . , xn) = (w1,w2, . . . ,wN)
is (q, δ, ε)-LDC if xi can be recovered from q entries of C(~x)
Even if C(x) is corrupted in up-to δN coordinates
With high probability (w.p 1− ε)

There exists a decoding algorithm di s.t. di(w1,w2, . . . ,wN) = xi

di reads only q symbols of ~w
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Definition of LDC

Definition: Smooth LDC
A code is q-smooth LDC iff

di makes q queries
Smoothness: each query of di is uniformly distributed
Completeness: di(C(x1, x2, . . . , xn)) = xi

Theorem
q-smooth-LDC is (q, δ,qδ)-LDC
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LDC vs PIR

LDC⇒ PIR
Two round PIR when reply
of servers small⇒ LDC
PIR stronger: Large reply,
many rounds.
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Applications

PIR, MPC.
Worst Case average case reductions.
Pseudo-randomness
PCP.
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Lower Bounds

Lower Bounds
[KT00]: Lower bound N = Ω(nq/(q−1))

[GKST01]: q=2 for linear codes N = 2Ω(n)

[KdW03]: q=2 any codes N = 2Ω(n)

for q > 2, N = Ω
(

( n
log n )1+1/(dq/2e−1)

)
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Upper Bounds

Upper Bounds
Hadamard code is a two-query LDC N = 2n

[KSY11, KMZS16] RM and multiplicity codes LDC
approaching the optimal rate. Query complexity: 2

√
log n,

Rate 1− ε

This Talk
4-query LDC’s N = exp exp(O(

√
log n log log n))

reduce to 3 query.
2-server PIR.
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Upper and Lower Bounds(LDC)

# queries Lower Bounds Upper Bounds
1 Do not exist
2 2k 2k

> 2 k1+ε(q) ≈ exp(exp O( log q
√

log k)) MVC
polylog(k) - Poly(k), RM

2
√

log k - 1 + δ(ε)k , [KSY11, KMZS16]
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Hadamard Code

Definition
CHAD : Fn

2 7→ F2n

2

Let ~m ∈ Fn
q

CHAD(~m) = (〈~x , ~m〉)x∈Fn
2

is a linear code

CHAD calculates all linear functionals on ~m
CHAD is a [ 2n︸︷︷︸

codeword
, n︸︷︷︸
message

, 2n−1︸︷︷︸
minimal distance

]2
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Hadamard Code

CHAD is 2-query locally decodable

Decoding procedure
Let ~w ∈ F2n

2 be an encoding of ~m with δ2n errors
Choose random x1 ∈ Fn

2
Let x2 = x1 + êi , where ei i th unit vector
Output w(x2)− w(x1) as a value of mi
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Hadamard Code

Theorem
Hadamard code is (2, δ,2δ)− LDC

Proof
Queries are uniformly distributed
C(~m)x2 − C(~m)x1 = 〈~m, x2〉 − 〈m, x1〉 = 〈~m, x2 − x1〉 =
〈~m, êi〉 = mi

Hadamard code is a 2-smooth-LDC
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Overview of the construction

Plan
The definition of S-matching vectors
The construction of S-matching vectors
The construction of LDCs based on S-matching vectors
The construction of S-decoding polynomials
The decoding algorithm
Alphabet reduction
2 server PIR.
Representation Theory and LDCs.
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S-matching vectors

Fix odd number m = p1p2 . . . pk

Definition
{ui}n

i=1,ui ∈ (Zm)h is S-matching :
〈ui ,ui〉 = 0 for every i ∈ [n].
〈ui ,uj〉 ∈ S for every i 6= j .
0 /∈ S

We want n >> h, |S| to be small
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Construction of S-matching vectors

Lemma(Grolmusz 2000)
For every integer m = p1p2 . . . pr there exists a set Sm of size
2r − 1 s. t. for every n there exists a family of S-matching
vectors {ui}n

i=1,ui ∈ (Zm)h s.t. h ≤ exp(c r
√

log n log logr−1 n).

We will now prove a weaker theorem.

Klim Efremenko ( Ben Gurion University ) Matching Vectors, Locally Decodable Codes and PIR February 17, 2020 16 / 38



Construction of S-matching vectors

Lemma(Grolmusz 2000)
For set S6 = {1,3,4} there exists a family of S-matching vectors
{ui}n

i=1,ui ∈ (Z6)h s.t. h ≤ exp(c 2
√

log n log log n).

We will do it in two steps:
Simple construction of Matching vectors for large set S.
Reduction of the set S to size 3.
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Simple S-matching vectors

Fix some m = p1p2 and h̃ > m.
Let [h̃] = [1,2, . . . h̃] set of size h̃

Let {Ai}n
i=1 be all subsets of size m − 1 of [h̃]

i.e. n =
( h̃

m−1

)
Let ũi ∈ (Zm)h̃ be an indicator vector of Ai

Add an additional coordinate to ũi which is 1 for all ũi
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Simple S-matching vectors

Claim
〈ũi , ũi〉 = 0 mod m
〈ũi , ũj〉 6= 0 mod m

Proof
〈ũi , ũi〉 = 0 mod m since ũi have exactly m ones
〈ũi , ũj〉 = 1 + |Ai

⋂
Aj |. Since Ai ,Aj are two different sets of

size m − 1⇒ |Ai
⋂

Aj | < m − 1.
Therefore, 〈ũi , ũj〉 6= 0 mod m.
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S-matching sets
Tensor product

Definition
Let ~u ∈ Rn, ~v ∈ Rm be two vectors then u ⊗ v ∈ Rnm such that
(u ⊗ v)(i , j) = u(i) · v(j)

u0 u1 u2 u3 u4

v0 v0 · u0 v0 · u1 v0 · u2 v0 · u3 v0 · u4

v1 v1 · u0 v1 · u1 v1 · u2 v1 · u3 v1 · u4

v2 v2 · u0 v2 · u1 v2 · u2 v2 · u3 v2 · u4
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Tensor Product

Fact
〈u1 ⊗ v1,u2 ⊗ v2〉 = 〈u1,u2〉 · 〈v1, v2〉
〈u⊗`, v⊗`〉 = 〈u, v〉`

Proof

〈u⊗`, v⊗`〉 =
∑

1≤i1,i2,...il≤m

(∏`
j=1 uij

∏`
j=1 vij

)
=(∑

1≤i1≤m ui1vi1

)
. . .
(∑

1≤i`≤m ui`vi`

)
= 〈u, v〉`.
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Reducing S

The set {ũi}n
i=1 is an S-matching set with S = Zm\0

Problem is that set S is too large.

Little Fermat Theorem
If x 6= 0 mod p then xp−1 ≡ 1 mod p

Solution
Let us look at {ũ⊗(p1−1)

i } then:

〈ũ⊗(p1−1)
i , ũ⊗(p1−1)

j 〉 = 〈ui ,uj〉p1−1 = 0 or 1 mod p1

It is 0 only iff 〈ui ,uj〉 ≡ 0(p1)
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Reducing S

Definition
Set ui , (p2ũ⊗(p1−1)

i ,p1ũ⊗(p2−1)
i ) ui ∈ (Zm)h, where

h = h̃p1−1 + h̃p2−1

Claim
Set {ui}n

i=1 is an S-matching set with |S| = 3.
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Reducing S

Proof
Let us prove that 〈ui ,ui〉 = 0

〈ui ,ui〉 =

〈(p2ũ⊗p1−1
i ,p1ũ⊗p2−1

i ), (p2ũ⊗p1−1
i ,p1ũ⊗p2−1

i )〉 =

p2〈ũi , ũi〉p1−1 + p1〈ũi , ũi〉p2−1 = 0
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Reducing S

Chinese Reminder Theorem (CRT)
For every a,b there exists an unique x ∈ Zm s.t.
x ≡ a mod p1 and x ≡ b mod p2.

Proof cont.
Let us now prove that 〈ui ,uj〉 may take only 3 values.

〈ui ,uj〉 = p2〈ũi , ũj〉p1−1 + p1〈ũi , ũj〉p2−1mod p1p2

Modulo p1 it is either p2 or 0. The same for p2. We have 4
possibilities for (〈ui ,uj〉 mod p1, 〈ui ,uj〉 mod p2)
(0,0) happens only if 〈ũi , ũj〉 = 0 mod p1p2.
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Reducing S

Proof: the size of MV
We will prove only for r = 2.
Take p1 ≈ p2. We have constructed n =

( h̃
p1p2−1

)
(∼∼ h̃m)

S-matching vectors ui ∈ (Zm)h where
h = h̃p1−1 + h̃p2−1(∼ h̃p2 = h̃

√
m).

We will get the desired result.
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Construction of the code

Fix γ ∈ F2t generator of the mult. group of size m
i.e. γm = 1, γ i 6= 1 for i < m
Fix S-matching vectors {ui}n

i=1,ui ∈ (Zm)h

Definition
A code C : Fn 7→ Fmh is a linear code
C(m1,m2, . . . ,mn) =

∑
miC(êi) by linearity

C(êi) = (γ〈ui ,x〉)x∈(Zm)h

Rate
N = mh ≤ exp exp(c r

√
log n log logr−1 n)
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S-decoding polynomials

Definition
A polynomial P ∈ F[x ] is called an S-decoding iff:
∀s ∈ S P(γs) = 0,
P(γ0) = P(1) = 1.

Key Observation
Given S-matching vectors:

P(γ〈ui ,ui 〉) = 1 for all i , since 〈ui ,ui〉 = 0
P(γ〈ui ,uj 〉) = 0 for all i 6= j , since 〈ui ,uj〉 ∈ S
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S-decoding polynomials

Lemma
For every set S there exists an S-decoding polynomial with at
most |S|+ 1 monomials

Proof
Set P̃(x) =

∏
s∈S(x − γs) then:

∀s ∈ S P̃(γs) = 0
P̃(1) = P̃(γ0) 6= 0, since 0 /∈ S
Set P(x) = P̃(x)/P̃(1)
degree P(x) = |S|, so P(x) has |S|+ 1 monomials
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Decoding Algorithm

Set S-decoding polynomial
P(x) = a0 + a1xb1 + a2xb2 . . . aq−1xbq−1

Decoding algorithm
Given i and a codeword w :

Choose v ∈ (Zm)h at random.
Query w(v),w(v + b1ui), . . .w(v + bq−1ui)

ci = a0w(v) + a1w(v + b1ui) . . . + aq−1w(v + bq−1ui).

Output γ−<ui ,v>ci
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Decoding algorithm
Given i and a codeword w :

Choose v ∈ (Zm)h at random.
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Note v + bjui are uniformly distributed
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Decoding Algorithm

Lemma
The algorithm decodes the i th symbol of the code

Proof
The decoding algorithm is a linear mapping di : FN 7→ F
Therefore, di(C(

∑
j mj êj)) =

∑
j mjdi(C(êj))

It is enough to prove that di(C(êj)) = δij
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Decoding Algorithm

Recall
C(êj) = γ〈uj ,x〉, P(γ〈ui ,uj 〉) = δij

Proof.(Continue)

di(C(êj)) =

γ−<ui ,v>(a0γ
〈uj ,v〉 + a1γ

〈uj ,v+b1ui 〉 + a2γ
〈uj ,v+b2ui 〉 . . .) =

γ<uj−ui ,v>(a0 + a1γ
〈uj ,ui 〉b1 + a2γ

〈uj ,ui 〉b2 . . .) =

γ<uj−ui ,v>P(γ〈uj ,ui 〉) = δij
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LDC

Theorem
The code defined above is (q, δ.qδ)-LDC where q is the number
of monomials of the S-decoding polynomial

Proof
The decoding algorithm makes q queries
Each query is uniformly distributed
Decoding alg. returns the correct answer if all queries are
not damaged
The code is q-smooth LDC
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3-Query LDC

3-Query LDC
We can set m = 511 = 7 ∗ 73 and construct an S-decoding
polynomial with 3-monomials.
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2- server PIR

Private Information Retrieval
Note that LDCs imply 3 server PIR.
No sub-exponential 2-query LDC exist.
2 server PIR exist with sub-linear CC.
Before [Dvir-Gopi] believed not to exist.
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2- server PIR

Private Information Retrieval: The scheme
Servers has database D1, . . .Dn of bits.
Let {ui}n

i=1,ui ∈ (Z6)h is S-matching vectors.
〈ui ,ui〉 = 0, 〈ui ,uj〉 ∈ {1,3,4}.
User pick r ∈ (Z2)h and send to one server r and to the
second one r + ui

Each server on query r replies:
C(r) =

∑n
j=1 Dj(−1)〈uj ,r〉

V (r) =
∑n

j=1 Djuj(−1)〈uj ,r〉

Compute
2(−1)〈ui ,r〉Di = C(r) + C(r + ui)− 〈V (r),ui〉 − 〈V (r + ui),ui〉.
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2- server PIR

Private Information Retrieval: Proof
C(r) + C(r + ui)− 〈V (r),ui〉 − 〈V (r + ui),ui〉 =∑n

j=1 Dj(−1)〈uj ,r〉 +
∑n

j=1 Dj(−1)〈uj ,r+ui 〉−∑n
j=1 〈uj ,ui〉Dj(−1)〈uj ,r〉 −

∑n
j=1 〈uj ,ui〉Dj(−1)〈uj ,r+ui 〉=∑n

j=1 Dj(−1)〈uj ,r〉{1 + (−1)〈uj ,ui 〉−〈ui ,uj〉 − 〈ui ,uj〉(−1)〈uj ,ui 〉}
Check that if 〈ui ,uj〉 = 0 red part is 2. Else if
〈ui ,uj〉 ∈ {1,3,4} red part is zero modulo 3.

Klim Efremenko ( Ben Gurion University ) Matching Vectors, Locally Decodable Codes and PIR February 17, 2020 37 / 38



Alphabet Reduction

The code we have defined is over some field F2n . We can
reduce the alphabet size to 2.
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