"

HKDF: Key Derivation and Extraction in Practice

Hugo Krawczyk
IBM Research

Main reference: https://eprint.iacr.org/2010/264

(more references at the end)

https://eprint.iacr.org/2010/264

" S
Key Derivation Functions (plan)

. KDFs: What? Why? How?
. Extract-then-Expand approach

- HKDF (new KDF standard)

- WhatsApp, Facebook Messenger, Google QUIC and Allo,
Signal, TLS 1.3, NIST, ..

- HKDF design and rationale
. Sample results

- Applications

" I
Key Derivation Functions (KDF)

m A truly fundamental primitive in applied cryptography

[A process producing cryptographic keys out of some initial input

1 A somewhat overlooked crucial component of key exchange

m Zillion GppliCGTiOhS (over-charged notion).

[Key expansion, key extraction, key hierarchies

[Key-exchange protocols, Hybrid encryption, Key wrapping,
Physical RNGs, System PRNGs, Password-derived keys

m So what is it, really?

m Can we have a single scheme for a// these uses?

" SN
Surprisingly Little Formal Work

m Research: Surprisingly little literature

m Practice: Plagued by multiple schemes, almost all ad-hoc,
little or naive rationale

m Dominated by hash-based schemes that treat hash as
perfect function (“random oracle”)

m Needed: Widely accepted mu/ti-purpose standard
mechanism

"
The Challenge

m A practical but theoretically well-founded KDF scheme

1 But we do not even have definitions (or a full understanding of
the extensive meaning/requirements of KDFs)

m Prudent use of hash functions: Minimize as much as
possible assumptions on underlying hash scheme

1 Different uses > different requirements

m Single scheme, simple, efficient, hash-based

m Suitable for industry-wide standard

" B
KDF: Two Main Functionalities

m Key Extraction: Derive a cryptographically strong key
from an “imperfect source of key material”

Imperfect RNG, system entropy sources, Diffie-Hellman (KE), ...

m Key Expansion: Given a cryptographically strong key
derive more keys

m Two fundamentally different functionalities

m Often mixed/confused in ad-hoc KDF schemes
(a recipe for weaknesses and pitfalls)

Keys = Hash(s || “1”) || Hash(s || “27) |] ...

" S
Example of Sources of Key Material

m A uniform random and secret master key (say, 256 bits)
The key expansion case

m Imperfect physical RNG (random number generators)
e.g., bit O with ~0.45 probability

m Software PRNG

Entropy source: e.g. sampled events, user’s key strokes, etc

Attacker has partial knowledge, can even influence source, yet
conditional entropy (attacker’s uncertainty) assumed to be significant

m A Diffie-Hellman value g output by a key exchange

restricted/computational entropy

" S
DH as a source of randomness

m Diffie-Hellman key exchange outputs g*¥ in a group G from which
one needs to “extract” a cryptographic key.

1 We freat g¥¥ as a source of “imperfect randomness”
m DDH: g¥ indistinguishable from random element in G

01 Example. G over Zp* of order q, |q|=256, |p|=2048

-~ g*¥ has 256 bits of entropy “trapped” in a 2048 long number

01 Very non-uniform in Zp* but sufficient entropy (256-bit) to extract key

m Sufficient entropy? Statistical entropy of g*¥ is O (attacker knows g,gY)
But computationally (by DDH) attacker has no information on g*Y

> sufficient computational entropy for extracting a key
See [Gennaro-K-Rabin, Eurocrypt 2004]

" SN
The DH Example (cont.)

m What if DDH does not hold, or protocol does not
guarantee indistinguishability from uniform?

m Can only rely on CDH: g*¥ hard to guess but not
necessarily indistinguishable from uniform

[Need to extract keys based on unpredictability of g*

1 Hard-core function as extractor (can use dedicated functions,
e.g Isb’s, or cryp’c hash functions under suitable assumptions)

m Other considerations: Independence of samples (g vs gx(*1),
(independence of samples an issue for all extractor applications)

Imperfect Source of Randomness
(source key material)

m Imperfect: non-uniform, partial knowledge by attacker

m But substantial conditional entropy, e.qg. 160 bits, though
not necessarily uniform

Entropy is conditioned on knowledge by attacker

Entropy can be computational (e.g. Diffie-Hellman)
m Computational hardness as a source of randomness (uncertainty)
m HILL entropy (indistinguishable from a high-entropy source, DDH)
m Unpredictability entropy (one-wayness, e.g. COH)

10

"

Source Entropy: min-entropy

m Large Shannon entropy of source not sufficient to
guarantee close-to-uniform output

[Can have a high-probability element in the source which implies
a high-probability value in the output, i.e. far from uniform.

m Need min-entropy: No input assighed too high probability

[A probability distribution X has min-entropy m if for all x,
Proby(x) ¢<2m (i.e. m = -log, of highest probability)

m In our applications, computational min-entropy suffices

[Source is computationally indistinguishable from a distribution
that has that amount of true min-entropy

11

" S
Module I: Key Extraction

m Key Extraction: Derive a cryptographically strong key
from a given source of keying material

[imperfect source but with sufficient min-entropy

m Process: Source--> Sample --> Extract --> Key

1 Output key used to bootstrap the key expansion stage

12

"
Module ITI: Key Expansion

m Given a first strong key derive more keys

0 K-> Ki, K2, K3 (e.g. keys for MAC, encryption, etfc)

[Requirement: pseudo-randomness (even given partial knowledge)
(pseudorandom = computationally indistinguishable from uniform)

01 Standard implementation via PRG/PRF

m Usually additional “context parameter” (9 need for PRF)

01 For example: Ki = PRFy (i, “context”)

[“context” could be a functionality (“mac”), a protocol name (“ssl”),
a session or user identity, etc. (a.k.a. domain separation)

13

" S
Extract-then-Expand

m Two well differentiated modules, for the two well
differentiated functionalities

m Basis for design and analysis

1 modules are orthogonal and replaceable

O can implement both with same underlying cryptographic
primitive (hash functions or block ciphers)

1 HKDF: a specific hash-based design, uses HMAC for both

m First, we need some definitions

14

" S
Formalizing KDFs

m KDF: A transformation from a (weak) source of keying
material to a pseudorandom key. But

1 Attacker has full knowledge of source distribution and partial
knowledge on specific sample

1 Attacker can influence output by choosing context information
(e.g. user identities, nonces, etc.)

m T am skipping formal definitions for this class

1 See next hidden slides and HKDF paper

15

"
Extract-then-Expand

m “Extract-then-expand” paradigm

Kors = Extract(salt™, skm) skm= source key material

Keys = Expand(K,.s , Keys-length, ctxt_info)
\ J

Binds key fo the application “context”

salt: practice jargon for “a random non-secret quantity” . in our
setting it works as an extractor seed (- strong extractor)

19

"
Instantiating Extract-then-Expand

m Expand: Just a PRF (with variable input/output length)
m Extract: (strong) randomness extractors

m Limitations of info-theoretic/combinatorial extractors

practical schemes require large salt (~ |input|)
entropy loss* (e.g. 256-bit DH > 160-bit SHA: security of 2-48)

unsuited for extraction-from-unpredictability (e.g. only CDH)
or deterministic extraction (“hard-core functions")

some crypto scheme proven only with RO-derived keys

cases where independence of samples is not ensured

20

" S
Idea: Use a PRF for both Expand
and Extract

m We need a PRF for expand, can we use it for extract?

m Replace PRF's key with a random, but known, seed (sa/?)

Extract(salt, sample) = PRF,:(sample)

m Unfortunately, a PRF w/ a known key has no guarantee

Counter-examples use artificial (PK-based) constructions
Maybe practical hash-based PRFs do work (somehow)?
HMAC: The standard hash-based PRF

m We'll see: HMAC enjoys good extraction properties

- HKDF

21

NMAC
A 2-slide HMAE Primer

"
Merkle-Damgard Hash Functions

m Compression function
X =512 bits

EN

K =160 bits o » fx(%)=160 bits

" S
Merkle-Damgard Hash Functions

m Compression function

X =512 bits
K =160 bits o » fx(%)=160 bits

m (QDbkeyed) Merkle-Damgard iterated hash
X1 X2 X L-1 Xr

NN NN

xX— | r | I N { f — &y

24

NMAC: PRF mode for Merkle-Damgard

m NMAC ¢a(x) = fra(Fra(x))

f= comp. function, F= keyed M-D

X L\ XLL\

Fys(X)

KJ_’f_’..._’f

K2

™

1/

— NMACKLKZ(X)

m Provable PRF if compression function is PRF

m HMAC = Same with K1, K2 derived from a single K (and
black box use of hash function)

25

" A
HKDF: HMAC-based KDF
(HMAC as extractor and PRF)

Ko = HMAC(salt, skm) skm= source key material

~
~
—
~_
~
~
~_
~_
~
~—
~
~_
~
-5

Keys = HMAC*(Kprf , keys_length, ctxt_info)

pr

where Keys = K; || Kz | . ..
Ki+1 = HMAC(KPPf, Ki || CTXT_infO || |) Feedback

mode

Note use of a PRF with salt, a random but non-secret “key"

(sometimes we'll set salt = 0)

HKDF: HMAC-based KDF
(HMAC as extractor and PRF)

~
~
—
~_
~
~
~_
~_
~
~—
~
~_
~

where Keys = K; || Kz | . ..
Ki+1 = HMAC(KPPf, Ki || CTXT_infO || |) Feedback

mode

Note use of a PRF with salt, a random but non-secret “key"

(sometimes we'll set salt = 0)

27

" S
Properties of HMAC to support
HKDF

m Results that back HMAC in a variety of relevant
applications:
01 Single function (hash, random oracle)
O Family of functions with secret or public keys

1 Functionalities: PRF, extractor, random oracle, collision resistance

m Results in the form of: If compression function has
property A then HMAC has property A’

1 Examples: PRF, delta-AU, extractor, RO
1 Note: NMAC vs HMAC

28

" S
PRF and RO-based results

m If compression function f is PRF then NMAC is a PRF

m If fis aRO family then HMAC is indifferentiable from
RO (‘indifferentiable” = indistinguishability for ideal objects)

m Corollary: If fis RO, HMAC is a good extractor and a
good hard-core (on distributions that are independent from f)

(1 Useful in restricted cases: CDH-only, small gap, no salt, ...

m f(H¢(x))is a good extractor if f is RO and Hy is 5-AU

1 8-AU is implied by collision resistance (design goal for hash f'n)

29

"
Non-idealized Assumptions

m If {f,}is agood extractor family and also a PRF then NMAC is a

good k-bit extractor on any distribution w/ blockwise entropy k

01 Application to IKE/DH with safe primes

m If {f}is strongly universal and {H,} is coll. resistant against

linear-size circuits, then NMAC truncated by ¢ bitsis (n2-</2)-

statistically close to unif.

01 Application: HKDF with SHA-512 for extraction, SHA-256 for PRF

- 128-bit security under very mild assumptions

31

" S
(versatile) application of HKDF

m TKE (IPsec Key Exchange)

SK = HKDF(nonces, g¥¥) - (nhonces exch'd and auth'd during KE)
Dual use of HKDF:

m cleartext nonces > HKDF as extractor (nonces = salt)

m Secret nonces > HKDF as PRF (PKE mode of IKE)
m TLS 1.3 with shared key K (e.g. resumption)
SK = HKDF(K, g¥)
random
If K revealed, K acts as'salt and HKDF as extractor (PFS)
If K secret and g~ revealed, HKDF acts as PRF.

32

" S
Application Example (OPTLS KDF)

C g" S S (s.9°

g¥, cert(gs), MAC.(g%, 9Y)
<

m SK < derived from g*s (static) and g*¥ (ephemeral/PFS) via HKDF
K, = HKDF(O, g*s)
K., = HKDF(0,)

m SK = HKDF(K,s, K,,): Secure as long as one of g*s, g*¥ not exposed

33

" S
Application Example (OPTLS KDF)

C g" S S (s.9°

g¥, cert(gs), MAC.(g%, 9Y)

<€

m SK < derived from g*s (static) and g*¥ (ephemeral/PFS) via HKDF
K. = HKDF(O, g*s): Implemem‘xs) for CCA security (~DHIES)
K., = HKDF(O, gv): Implements Extract(g) with salt=0

m SK = HKDF(K,s, K,): Secure as long as one of g*, g*¥ not expose.ch@ s
(Y
If g*s not compromised then HKDF(K,., ...) N\‘;\\QQN\
0

If g*s eventually compromised-(the forward secrecy case) then
HKDF(Ks, ...) works asw/ random but public salt K,
= K. was generated by honest parties, hence uniform
34

"
Note: Why salt=0 in K,, and K, ?

m Because we don't have authenticated randomess to use
as extractor seed

m Unauthenticated seed can be chosen by attacker and
break source-seed independence or chosen as
"weak seed” (e.g. DRST13)

[Contrast IKE where salt = (nonce,,honceg) which are signed
before use

= Note: KE guarantees security of a key only with honest peer

35

"
Example (TLS 1.3 Resumption
C 9" 5

>

gy’ MACKm(gxf gy)
<€

m SK € derived fr'oms‘ra‘ric) and g*¥ (ephemeral/PFS) via HKDF

Kys = HKDF(O Implements ROif K. is low entropy, e.g pwd

K., = HKDF(O, gv): Implements Extract(g) with salt=0

m SK= HKDFXY): Secure as long as one of g*s, g not exposed
If K., not compromised then HKDF(K.., ...) a PRF

If K..s eventually compromised (the forward secrecy case) then
HKDF(K.s, ...) works as extractor w/ random but public salt K,

= K. was generated by honest parties, hence uniform
36

" SN
HKDF as Collision Resistant

m TLS 1.3: Simultaneous RO, PRF, Extractor,... CRHF

m Use case: Binding resumption key to original HS session
0 bind(C,S, session-id), Macy,(bind(...), ...
01 bind can be CRHF(C, S, session-id) but allows traceability
0 Instead: Kging = HKDF(g~, C, S, session-id) at orig session

[During resumption use K,;,q as a key to create a one-time bind
value MACinq (...)

m Crucial point: Derivation of K4 requires ¢R key deriv.
= Another HKDF goodie (derives from underlying hash)

37

"
Standards and Deployments

m Becoming the industry-wide standard for KDF

m TETF (RFC 5869): Already 18 RFC's use it + many
internet drafts (incl. TLS 1.3)

m NIST: NIST SP 800-56C (Recommendation for Key
Derivation through Extraction-then-Expansion)

m Industry implementations: TLS 1.3, Google QUIC,
WhatsApp, Facebook Messenger, "Snowden's" Signal, ...

m Bonus: "extract” made it into IETF jargon/notion...

38

" S
Theory and Practice

m Theory: understanding requirements, formalizing,
weaknesses in existing solutions, generalization, design,
analysis, minimize RO

m Practice: Engineering considerations, minimize
compromise, conservative design

1 minimize RO, "bad adviser”

m Combination: Proof-driven design®

39

