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Key Derivation Functions (plan)

• KDFs: What? Why? How?

• Extract-then-Expand approach

• HKDF (new KDF standard) 

• WhatsApp, Facebook Messenger, Google QUIC and Allo, 

Signal, TLS 1.3, NIST, …

• HKDF design and rationale

• Sample results

• Applications
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Key Derivation Functions (KDF)

 A truly fundamental primitive in applied cryptography

 A process producing cryptographic keys out of some initial input

 A somewhat overlooked crucial component of key exchange

 Zillion applications (over-charged notion):

 Key expansion, key extraction, key hierarchies

 Key-exchange protocols, Hybrid encryption, Key wrapping, 

Physical RNGs, System PRNGs, Password-derived keys

 So what is it, really? 

 Can we have a single scheme for all these uses? 
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Surprisingly Little Formal Work

 Research: Surprisingly little literature

 Practice: Plagued by multiple schemes, almost all ad-hoc, 

little or naïve rationale

 Dominated by hash-based schemes that treat hash as 

perfect function (“random oracle”)

 Needed: Widely accepted multi-purpose standard

mechanism
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The Challenge

 A practical but theoretically well-founded KDF scheme

 But we do not even have definitions (or a full understanding of 

the extensive meaning/requirements of KDFs)

 Prudent use of hash functions: Minimize as much as 

possible assumptions on underlying hash scheme

 Different uses  different requirements

 Single scheme, simple, efficient, hash-based 

 Suitable for industry-wide standard
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KDF: Two Main Functionalities

 Key Extraction: Derive a cryptographically strong key 

from an  “imperfect source of key material ”

 Imperfect RNG, system entropy sources, Diffie-Hellman (KE), ... 

 Key Expansion: Given a cryptographically strong key 

derive more keys

 Two fundamentally different functionalities

 Often mixed/confused in ad-hoc KDF schemes                  
(a recipe for weaknesses and pitfalls)

Keys = Hash(s || “1”)  ||  Hash(s || “2”)  || …
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Example of Sources of Key Material

 A uniform random and secret master key (say, 256 bits)

 The key expansion case

 Imperfect physical RNG 

 e.g., bit 0 with ~0.45 probability

 Software PRNG

 Entropy source: e.g. sampled events, user’s key strokes, etc

 Attacker has partial knowledge, can even influence source, yet 
conditional entropy (attacker’s uncertainty) assumed to be significant

 A Diffie-Hellman value gxy output by a key exchange

 restricted/computational entropy

(random number generators)
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DH as a source of randomness

 Diffie-Hellman key exchange outputs gxy in a group G from which 

one needs to “extract” a cryptographic key.

 We treat gxy as a source of “imperfect randomness”

 DDH: gxy indistinguishable from random element in G 

 Example. G over Zp
* of order q, |q|=256, |p|=2048

 gxy has 256 bits of entropy “trapped” in a 2048 long number 

 Very non-uniform in Zp
* but sufficient entropy (256-bit) to extract key

 Sufficient entropy? Statistical entropy of gxy is 0 (attacker knows gx,gy)                               

But computationally  (by DDH) attacker has no information on gxy

 sufficient computational entropy for extracting a key
See [Gennaro-K-Rabin, Eurocrypt 2004]

G     ● gxy

|G|=2256

{0,1}2048
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The DH Example (cont.)

 What if DDH does not hold, or protocol does not 

guarantee indistinguishability from uniform?

 Can only rely on CDH: gxy hard to guess but not 

necessarily indistinguishable from uniform

 Need to extract keys based on unpredictability of gxy

 Hard-core function as extractor (can use dedicated functions, 

e.g lsb’s, or cryp’c hash functions under suitable assumptions)

 Other considerations: Independence of samples (gxy vs gx(y+1)), 

(independence of samples an issue for all extractor applications)
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Imperfect Source of Randomness
(source key material)

 Imperfect: non-uniform, partial knowledge by attacker 

 But substantial conditional entropy, e.g. 160 bits, though 

not necessarily uniform

 Entropy is conditioned on knowledge by attacker

 Entropy can be computational (e.g. Diffie-Hellman)

 Computational hardness as a source of randomness (uncertainty)

 HILL entropy (indistinguishable from a high-entropy source, DDH)

 Unpredictability entropy (one-wayness, e.g. CDH)
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Source Entropy: min-entropy

 Large Shannon entropy of source not sufficient to 

guarantee close-to-uniform output

 Can have a high-probability element in the source which implies 

a high-probability value in the output, i.e. far from uniform. 

 Need min-entropy: No input assigned too high probability

 A probability distribution X has min-entropy m if for all x, 

ProbX(x) ≤2-m            (i.e. m = -log2 of highest probability)

 In our applications, computational min-entropy suffices

 Source is computationally indistinguishable from a distribution 

that has that amount of true min-entropy
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Module I: Key Extraction

 Key Extraction: Derive a cryptographically strong key 

from a given source of keying material 

 imperfect source but with sufficient min-entropy

 Process: Source--> Sample --> Extract --> Key 

 Output key used to bootstrap the key expansion stage
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Module II: Key Expansion

 Given a first strong key derive more keys

 K  K1, K2, K3 (e.g. keys for MAC, encryption, etc)

 Requirement: pseudo-randomness (even given partial knowledge)

(pseudorandom = computationally indistinguishable from uniform)

 Standard implementation via PRG/PRF

 Usually additional “context parameter” ( need for PRF)

 For example: Ki = PRFK (i, “context”)    

 “context” could be a functionality (“mac”), a protocol name (“ssl”), 

a session or user identity, etc. (a.k.a. domain separation)
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Extract-then-Expand

 Two well differentiated modules, for the two well 

differentiated functionalities

 Basis for design and analysis

 modules are orthogonal and replaceable

 can implement both with same underlying cryptographic  

primitive (hash functions or block ciphers)

 HKDF: a specific hash-based design, uses HMAC for both 

 First, we need some definitions
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Formalizing KDFs

 KDF: A transformation from a (weak) source of keying 

material to a pseudorandom key. But

 Attacker has full knowledge of source distribution and partial 

knowledge on specific sample

 Attacker can influence output by choosing context information 

(e.g. user identities, nonces, etc.)

 I am skipping formal definitions for this class 

 See next hidden slides and  HKDF paper
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Extract-then-Expand

 “Extract-then-expand” paradigm

Kprf = Extract(salt*, skm)   skm= source key material              

Keys = Expand(Kprf , Keys-length, ctxt_info)

• salt: practice jargon for “a random non-secret quantity” ;  in our 

setting it works as an extractor seed ( strong extractor)

.

Binds key to the application “context”



Instantiating Extract-then-Expand

 Expand: Just a PRF (with variable input/output length)

 Extract: (strong) randomness extractors

 Limitations of info-theoretic/combinatorial extractors

 practical schemes require large salt (~ |input|)

 entropy loss* (e.g. 256-bit DH  160-bit SHA:  security of 2-48)

 unsuited for extraction-from-unpredictability (e.g. only CDH) 

or deterministic extraction (“hard-core functions”)

 some crypto scheme proven only with RO-derived keys

 cases where independence of samples is not ensured
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Idea: Use a PRF for both Expand 
and Extract

 We need a PRF for expand, can we use it for extract?

 Replace PRF’s key with a random, but known, seed (salt)

 Extract(salt, sample) = PRFsalt(sample)

 Unfortunately, a PRF w/ a known key has no guarantee

 Counter-examples use artificial (PK-based) constructions

 Maybe practical hash-based PRFs do work (somehow)?

 HMAC: The standard hash-based PRF

 We’ll see: HMAC enjoys good extraction properties
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 HKDF



A 2-slide HMAC Primer
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NMAC
_____



Merkle-Damgard Hash Functions

 Compression function

fK =160 bits

x =512 bits

fK(x) =160 bits



Merkle-Damgard Hash Functions

 Compression function

 (Unkeyed) Merkle-Damgard iterated hash          
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f f ff ● ● ●

x 1 x 2 x L-1 x L

IV H(X)

fK =160 bits

x =512 bits

fK(x) =160 bits

K

X

FK(X)

X

Keyed via IV

X
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NMAC: PRF mode for Merkle-Damgard

 NMACK1,K2(x) = fK2(FK1(x))  

 f= comp. function, F= keyed M-D 

 Provable PRF if compression function is PRF 

 HMAC = Same with K1, K2 derived from a single K (and 

black box use of hash function)

f

x 1

K1 f

f

● ● ●

x L

FK1(X)

K2 NMACK1,K2(X)
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HKDF: HMAC-based KDF            
(HMAC as extractor and PRF)

Kprf = HMAC(salt, skm)        skm= source key material

Keys = HMAC*(Kprf , keys_length, ctxt_info)

where Keys = K1 || K2 || . . .

Ki+1  = HMAC(Kprf, Ki || ctxt_info || i)

Note use of a PRF with salt, a random but non-secret “key”  

(sometimes we’ll set salt = 0)

Feedback 

mode



27

HKDF: HMAC-based KDF            
(HMAC as extractor and PRF)

Kprf = HMAC(salt, skm)        skm= source key material

Keys = HMAC*(Kprf , keys_length, ctxt_info)

where Keys = K1 || K2 || . . .

Ki+1  = HMAC(Kprf, Ki || ctxt_info || i)

Note use of a PRF with salt, a random but non-secret “key”  

(sometimes we’ll set salt = 0)

Feedback 

mode
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Properties of HMAC to support 
HKDF

 Results that back HMAC in a variety of relevant 

applications:

 Single function (hash, random oracle)

 Family of functions with secret or public keys

 Functionalities: PRF, extractor, random oracle, collision resistance

 Results in the form of:  If compression function has 
property A then HMAC has property A’

 Examples: PRF, delta-AU, extractor, RO

 Note: NMAC vs HMAC 
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PRF and RO-based results

 If compression function f is PRF then NMAC is a PRF

 If f is a RO family then HMAC is indifferentiable from 

RO (“indifferentiable” = indistinguishability for ideal objects)

 Corollary:  If f is RO, HMAC is a good extractor and a 

good hard-core (on distributions that are independent from f)

 Useful in restricted cases: CDH-only, small gap, no salt, …

 f(HK(x)) is a good extractor if f is RO and HK is d-AU

 d-AU is implied by collision resistance (design goal for hash f’n)



Non-idealized Assumptions

 If {fk} is a good extractor family and also a PRF then NMAC is a 

good k-bit extractor on any distribution w/ blockwise entropy k

 Application to IKE/DH with safe primes

 If {fk} is strongly universal and {Hk} is coll. resistant against 

linear-size circuits, then NMAC truncated by c bits is (n2-c/2)-

statistically close to unif.

 Application: HKDF with SHA-512 for extraction, SHA-256 for PRF   

 128-bit security under very mild assumptions
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(versatile) application of HKDF

 IKE (IPsec Key Exchange)

 SK = HKDF(nonces, gxy)  - (nonces exch’d and auth’d during KE)

 Dual use of HKDF: 

 cleartext nonces  HKDF as extractor (nonces = salt)

 Secret nonces HKDF as PRF   (PKE mode of IKE)

 TLS 1.3 with shared key K (e.g. resumption)

 SK = HKDF(K, gxy)

 If K revealed, K acts as salt and HKDF as extractor (PFS) 

 If K secret and gxy revealed, HKDF acts as PRF.
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Application Example (OPTLS KDF)

 SK  derived from gxs (static) and gxy (ephemeral/PFS) via HKDF

 Kxs = HKDF(0, gxs)

 Kxy = HKDF(0, gxy)

 SK = HKDF(Kxs, Kxy): Secure as long as one of gxs, gxy not exposed
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gy, cert(gs), MACKm(gx, gy)

S (s,gs)C gx



 SK  derived from gxs (static) and gxy (ephemeral/PFS) via HKDF

 Kxs = HKDF(0, gxs):  Implements RO(gxs) for CCA security (~DHIES)

 Kxy = HKDF(0, gxy):  Implements Extract(gxy)  with salt=0 

 SK = HKDF(Kxs, Kxy): Secure as long as one of gxs, gxy not exposed

 If gxs not compromised then HKDF(Kxs, …) a PRF

 If gxs eventually compromised  (the forward secrecy case) then 

HKDF(Kxs, …) works as extractor w/ random but public salt Kxs

 Kxs was generated by  honest parties, hence uniform
34

Application Example (OPTLS KDF)

gy, cert(gs), MACKm(gx, gy)

S (s,gs)C gx



Note: Why salt=0 in Kxy and Kxs ?

 Because we don’t have authenticated randomess to use 

as extractor seed

 Unauthenticated seed can be chosen by attacker and 

break source-seed independence or chosen as        

“weak seed” (e.g. DRST’13)

 Contrast IKE where salt = (nonceA,nonceB) which are signed 

before use

 Note: KE guarantees security of a key only with honest peer
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Example (TLS 1.3 Resumption)

 SK  derived from Kres (static) and gxy (ephemeral/PFS) via HKDF

 Kxs = HKDF(0, Kres):  Implements RO(Kres) if Kres is low entropy, e.g pwd 

 Kxy = HKDF(0, gxy):  Implements Extract(gxy)  with salt=0 

 SK = HKDF(Kres, Kxy): Secure as long as one of gxs, gxy not exposed

 If Kres not compromised then HKDF(Kres, …) a PRF

 If Kres eventually compromised  (the forward secrecy case) then 

HKDF(Kres, …) works as extractor w/ random but public salt Kres

 Kres was generated by  honest parties, hence uniform
36

gy, MACKm(gx, gy)

C gx
Kres

Kres
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HKDF as Collision Resistant 

 TLS 1.3: Simultaneous RO, PRF, Extractor,…  CRHF

 Use case: Binding resumption key to original HS session

 bind(C,S, session-id),  MacKm(bind(…), …)

 bind can be CRHF(C, S, session-id) but allows traceability

 Instead:  Kbind = HKDF(gxy, C, S, session-id) at orig session

 During resumption use Kbind as a key to create a one-time bind 

value MACKbind (…)

 Crucial point: Derivation of Kbind requires CR key deriv. 

 Another HKDF goodie  (derives from underlying hash)
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Standards and Deployments

 Becoming the industry-wide standard for KDF

 IETF (RFC 5869): Already 18 RFC’s use it + many 

internet drafts (incl. TLS 1.3)

 NIST: NIST SP 800-56C (Recommendation for Key 

Derivation through Extraction-then-Expansion)

 Industry implementations: TLS 1.3, Google QUIC, 

WhatsApp, Facebook Messenger, "Snowden's" Signal, …

 Bonus: “extract” made it into IETF jargon/notion…
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Theory and Practice

 Theory: understanding requirements, formalizing, 

weaknesses in existing solutions, generalization, design, 

analysis, minimize RO

 Practice: Engineering considerations, minimize 

compromise, conservative design 

 minimize RO, “bad adviser”

 Combination: Proof-driven design®
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