
Extreme minimality:

Implicitly Authenticated KE Protocols 
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A natural Authenticated DH 
Solution (ISO 9796)

A, gx

B, gy, SIGB(gx,gy,A)

SIGA(gy,gx,B)

BA

Simple, but 3 messages plus signatures [and certificates]
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The quest for Authenticated DH

 What is the inherent cost of authentication in     

Diffie-Hellman? In terms of

 Communication: number of messages, group elements, 

authentication information, actual message size

 Computation: algebraic operations and actual speed

 Security: What can we prove?

 How close can we get to the fundamental limits?      

And still prove security…



Implicitly Authenticated DH

 Authentication via session key computation

 No transmitted signatures, MAC values, etc

 Session key must involve long-term and ephemeral keys: 

K=F(PKA,PKB,SKA,SKB ,gx,gy,x,y) 

 Ability to compute key  authentication

 The simpler the trickier: many insecure proposals
4
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B, gy

A, gx



(Abuse of) Notation
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B=gb,  Y=gy

A=ga,  X=gxA B

Public key of A (resp. B) denoted A=ga (resp. B=gb)



Some Ideas

 Can we really have a non-replayable 2-msg protocol?

 Remember AB: gx, SIGA(gx,B), AB: gy, SIGB(gy,A) insecurity

 Combining A, B, X, Y:

 K=H(gab, gxy): Open to known key and interleaving attacks

 K=H(gab, gxy, gx, gy) works but open to “KCI attacks”                     

(a general weakness of protocols with gab )

 We want that no attack except if learning pair (x,a) or (y,b)

 Idea: K = g(a+x)(b+y) (computed by A as (BY)a+x, by B as (AX)b+y)

 Doesn’t work: Attacker sends X*=gx*/A, B sends Y, K=(BY)x*

(no need to know A)
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MQV

 Idea: set K = g(a+dx)(b+ey) and define d, e so that 

attacker cannot control e and Y, or d and X

 MQV:  d=half bits of X, e=half bits of Y

 Does not quite work 

 But a simple variation does
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The HMQV Protocol


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The HMQV Protocol

 Basic DH + special key computation

 Notation: G=<g> of prime order q; g in supergroup G’ (eg. EC, Z*
p)

 Alice’s PK is A=ga and Bob’s is B=gb (private keys are a, b, resp.)

 Exchanged ephemeral DH values are X=gx, Y=gy

 Each computes σ=g(x+da)(y+eb) as σ = (YBe)x+da = (XAd)y+eb

 d=H(X,”Bob”)   e=H(Y,”Alice”) (H outputs |q|/2 bits)

 Session key K=H’(σ)     (H’ outputs |K| bits, say 128)

 Almost free authentication: 1
6

exponentiation, = communic’n
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multi-exponentiation

 Input: g0, g1, e0=(a0, a1,…, at-1)     Output: g0
e0 ∙ g1

e1

e1 =(b0, b1,.., bt-1)

 Pre-computation: G0=1, G1=g0, G2=g1, G3=g0∙g1, s(i)=ai+2bi

 Compute: A:=1; For i=0 to t-1: {A:=A∙A;  A:=A∙Gs(i) }

 Ops: t-1 squarings; ¾ t multiplies  ( ¾ because Gs(0)=1)

 Compared to full exponentiation t-1 squares, ½ t mult’s

 g0
e0 ∙ g1

e1 costs 1
1

6
exponentiations rather than 2 

 Works for any number k of bases (extra 2k-2 mults)
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The HMQV Protocol (w/short d,e)

 Both compute σ=g(x+da)(y+eb) as σ = (YBe)x+da = (XAd)y+eb

 d=H(X,”Bob”)   e=H(Y,”Alice”)  (here H outputs |q|/2 bits)

 Session key K=H(σ) (here H outputs |K| bits, say 128)

 Authentication for “½ exponentiation” (no multiexp optimiz’n)

 Original formulation and proof (full length d, e simplifies 

some aspects of proof)
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HMQV Explained

 HMQV: basic DH (X=gx, Y=gy), PKs: A=ga, B=gb

 σ=g(x+da)(y+eb) as σ = (YBe)x+da = (XAd)y+eb ;  K=H(σ)

 d=H(X,”Bob”)   e=H(Y,”Alice”)

 No signatures exchanged, authentication achieved via 

computation of σ (must ensure: only Alice and Bob can compute it)

 Idea: (YBe)x+da is a sig of Alice on the pair (X, “Bob”) and, 

at the same time, (XAd)y+eb is a sig of Bob on (Y, “Alice”)

 Two signatures by two different parties (different priv/publ 

keys) on different msgs but with the same signature value!
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Underlying Primitive:

Challenge-Response Signatures

 Bob is the signer (PK is B=gb), Alice is the verifier (no PK)

 Alice sends a “challenge” (X=gx) and a msg m to Bob, who responds with a 

“challenge-specific” signature on m (sig depends on b, X, m)

 Alice uses her “challenge trapdoor” (x) to verify the signature 

 AliceBob: m, X=gx

BobAlice: Y=gy, σ=Xy+eb where e=H(Y,m)

Alice accepts the signature as valid iff  (YBe)x= σ

 Note: Alice could generate the signature by herself! (signature 

convinces only the challenger – non-transferable -- bug or feature?)

 We call this scheme XCR (Xponential Challenge Response)
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Security of XCR Signatures

 Theorem: XCR signatures are unforgeable 

 Unforgeability under usual  adaptive chosen message attack 

 Only signer and challenger can compute it  

 Assumptions: Computational DH; also H modeled as random oracle

 Idea of proof: “exponential” Schnorr via Fiat-Shamir

 More later…
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Dual XCR (DCR) Signatures

 Alice and Bob act as signers and verifiers simultaneously 

 Alice has PK A=ga, Bob has PK B=gb

 Alice and Bob exchange values X=gx, Y=gy and msgs mA,mB 

 Bob generates an XCR sig on mA under challenge XAd

Alice generates an XCR sig on mB under challenge YBe

 The signature is the same! σ = (YBe)x+da = (XAd)y+eb

 This is exactly HMQV if one puts mA=“Alice”, mB=“Bob” 
(since sig is the same value it needs not be transmitted!)
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Proof of HMQV

 Reduction from breaking HMQV as KE (in the CK model) 

to forging DCR 

 Not a trivial step 

 Great at showing the necessity of all elements in the protocol: 

drop any element and the proof shows you an attack (e.g. MQV)

 Reduction from forging DCR to forging XCR

 Quite straightforward

 Reduction from forging XCR to solving CDH in RO model

 I expand on this next
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XCR Proof via “Exponential Schnorr”

 Schnorr’s protocol (given B=gb, Bob proves knowledge of b)

 BobAlice: Y=gy

 AliceBob: e R Zq

 BobAlice: s=eb+y (Alice checks YBe=gs)

 Exponential Schnorr: Bob proves ability to compute ()b

 BobAlice: Y=gy

 AliceBob: e R Zq, X=gx

 BobAlice: σ=Xeb+y (Alice checks (YBe)x=σ)

Theorem: XCR is strongly CMA-unforgeable   (CDH + RO)
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Proof: A CDH solver C from XCR forger F

 Input: U, V in G=<g> (a CDH instance; goal: compute guv)

 Set B = V X0 = U (B is signer’s PK, X0 is challenge to forger)

 Run F; for each msg m and challenge X queried by F (*a CMA attack*)

simulate signature pair (Y,Xs)   (random s, e;   Y=gs/Be;  H(Y,m)  e)

 When F outputs forgery (Y0, m0, s): (* (Y0,m0) fresh and H(Y0,m0) queried *) 

Re-run F with new independent oracle responses to H(Y0,m0)

 If 2nd run results in forgery (Y0, m0, s’) (* same (Y0,m0) as before! *)

then C outputs W=(s/s’)1/c where c=(e-e’) mod q .                             
(e, e’ are the responses to H(Y0,m0) in 1st and 2nd run, respectively) 

Lemma: with non-negligible probability W=DH(U,V)

Proof: [PS] +  W= (s/s’)1/c = ( (Y0Be)x0 / (Y0Be’)x0 )1/c = ((Bc) x0)1/c = Bx0
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Implications for HMQV (* X  XAd *)

 We used W = (s/s’)1/c = ( (Y0Be)x0 / (Y0Be’)x0 )1/c 

But can we divide by Y0Be’? Yes if B and Y0 in G (have inverses)

 B in G always true (chosen by honest signer) but what about Y0

which is chosen by forger? 

 Do we need to check that Y0 in G? (An extra exponentiation?)

 No. If G  R, then enough to check Y0 has inverse in R 

 E.g: G = Gq = <g>  Zp*;  R = Zp; simply check Y in Zp and Y≠0

 HMQV needs no prime order verification! (later: only if exponent leak)

 Forger can query arbitrary msgs with arbitrary challenges X (even 
challenges not in group G)  No need for PoP or PK test in HMQV!

(X becomes XAd and we do not  need to check X nor A!)

 Robust security of HMQV without extra complexity              
(no extra exponentiations, PoP’s,  PK validation, etc.)
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More on Security of HMQV

 Note that each party can start the protocol (no 

initiator/responder roles) even simultaneously

 Protocol is not secure against  leakage of both {a,x} or 

{b,y} but secure against any other pair in {a,x,b,y}

 Secure against disclosure of {a,b} is equivalent to PFS

 But does HMQV really achieve PFS?
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PFS in HMQV

 PFS achieved only against passive attackers

 Impossibility fact: If the messages sent in the proto-

col are computed without knowledge of the long-term 

keys of the sender then PFS fails to active attackers

 The attacker chooses the message in the name of A (e.g. it 

chooses x and sends gx) ; later it learns the long-term key of 

A, hence can compute the session key.

 Thus, authentication specific information must be transmitted 

to achieve PFS (e.g., via a third “key confirmation” message)
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A fundamental question:

 Can one obtain a FULLY authenticated DH protocol with

 A single message per party (2 message total)

 A single group element per message

 NO certificates

 Minimal computational overhead for authentication

 AND PFS AGAINST FULLY ACTIVE ATTACKERS

????????????
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A surprising answer: YES!

 By working over cyclic groups modulo a composite      

(we will refer to the bit size of elements later)

 Resorting to classical Okamoto-Tanaka protocol (1987)

 With simple modifications required for security

 With full proof of security,                                             

including proof of PFS against active attackers!!



Modified Okamoto-Tanaka (mOT)
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Modified Okamoto-Tanaka Protocol

 Identity-based setting: Key Generation Center (KGC)

 Chooses safe primes p, q  (p=2p’-1, q=2q’-1)                                

and  RSA exponents  e, d  for N=pq

 Chooses generator g of QRN (set of quadratic residues), a cyclic 

group of order p’q’

 Publishes N, g, e  (e.g. e=3)

 Secret key for party I is SI=H(I)d mod N (computed by KGC)

 Ephemeral session values: gx mod N for x of length   

twice the security parameter (e.g., between 160-256 bits)
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Modified Okamoto-Tanaka (mOT)

 Two msgs, single group element, no certificate

 Computation: 1 off-line + 1 on-line expon’n (= basic DH) 
+ e-exponentiation (= 2 multiplications) and 1 squaring

 Just 3 mult’s more than a basic DH over composite N !!!

IA, α = SA·gx mod N
BA

IB, β = SB·gy mod N

SA=H(IA)d SB=H(IB)d

K=H(βe/H(IB))2x                             K=H(αe/H(IA))2y= g2xye =
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mOT: Minimal Overhead,                      

But is it secure?

 YES! 

 With proof of security in the Canetti-Krawczyk model

 RSA assumption + Random Oracle Model  (passive PFS only)

 And  proof of PFS security against active attackers 

 With additional “knowledge-of-exponent” type assumptions

 Note: mOT avoids the “implicit-authenticated PFS impossibility”

since messages α, β depend on the private key of the sender

IA, α = SA·gx mod N

IB, β = SB·gy mod N

messages 

depend on

private keys

messages 

depend on

private keys
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On the Proof

 The basic case: CK model, weak PFS, under plain RSA    

in ROM follows more or less standard arguments

 The challenge is in proving full PFS (against active attacks 

and without additional messages/communication)

 Good news: we can do it!

 In particular, security of past communication if KGC compromise

 Less good news: non-standard assumptions

 But a STRONG indication of security!
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KEA-type Assumptions

 KEA-DH (a.k.a KEA1): “Computing gxy from g,gx,gy can only 

be done if one knows x or y”

 KEA-DL: 

 Given y=gx want to compute x with the help of a Dlog oracle D 

that accepts any input but y

 Obvious strategy:  query D with y·g

More generally: Can query D with z=yigj for any known i,j

(and recover x from the oracle’s response ix+j)

 KEA-DL states that this is the most general strategy, i.e., if 

you find x by querying D(z) then you know i, j such that z=ix+j
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Real-World Performance

☺ Complexity is essentially the same as the basic 

unauthenticated DH…

… but it runs over ZN for composite N

☺… with short exponents (assumes dlog hard w/ such exponent)

☺… no certificate transmission and processing

In all, comparable performance to HMQV/ECC for 
security levels under 2048 bits (for RSA)

The really important point, however, is theoretical:    
Testing the limits of what is possible
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Conclusions and Open Problems

 Conclusions

 It is amazing how little one may need to pay over the basic DH 

for a fully authenticated exchange with full PFS:                

Over QR groups the ONLY overhead is JUST 3 multiplications! 

(no communication penalty, not even certificates)

 Open questions

 Achieve the same performance properties with full PFS      

over other Dlog groups (e.g. Elliptic Curves)

 Get rid of special assumptions for PFS proof

 Reduce reliance on secrecy of the ephemeral gx and gy



One-Pass HMQV and          
Asymmetric Key-Wrapping
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Motivation

 Key wrapping as a basic functionality (e.g. storage 

systems)

 A good example of:

Optimizing cryptography via “Proof-driven design”

 Proof tells us precisely what elements in the design are 

essential and which can be avoided

 Avoid unnecessary safety margins

 Better performance and functionality

 A great protocol debugging tool
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Key Wrapping

 Key-wrapping or key encapsulation:  Server wraps a 

symmetric key for transporting it to a client

 Think of wrapping as a key encryption mechanism  

 Encrypting key may be symmetric or asymmetric (AES, RSA)

 Wrapped key may be a fresh key, or a previously generated 

one,  sometimes bound together with associated data

 Wrapping typically done off-line and non-interactively.

K
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Example: Encrypted Backup Tapes

 Tape encryption:  

 Tape sent to KMM (key management module)

 KMM encrypts tape with tape-specific key K         

wraps K  (under another key) and stores wrapped key with tape

 Tape decryption

 wrapped key sent to KMM* who unwraps (decrypts) K 

 K is sent back to tape holder for tape decryption

 Notes: Decryption may happen many years after encryption

KMM and KMM* may not be the same (KMM* holds de-wrapping key)
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Key Wrapping and Standards

 Major key management tool:

 storage, hardware security modules,  secure co-processors, 

ATM machines, clouds, etc.

 Complex: long-lived keys & systems, backwards compatibility,…

 Standards are important: server and client typically 

run different systems (and by different vendors)

 Industry standards: storage systems, financial, HSMs, etc. 

 Currently deployed: mainly DES/AES and RSA

 Searching for ECC-based key wrapping techniques



38

Main Candidate: DHIES Encryption

 Elgamal encryption + RO-based key derivation + Enc/Mac

 G=<g>: prime-order q            H: hash function (RO)              

Enc: symmetric encryption   Mac: message auth code

 Receiver’s PK:  A=ga , message to be encrypted: M

 Sender chooses yZq, sends: (Y, C, T) where

1. Y = gy σ = Ay K = H(σ)                                           (2 exp)

2. K  K1, K2 C = EncK1(M)   T = MacK2(C)

 Decryption: σ = Ya,  K = H(σ),   etc.                                 (1 exp)

 [ABR01]: Scheme is CCA-secure in the ROM
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DHIES as Key Wrapping

 DHIES instantiates the KEM/DEM paradigm:  (Y,C,T)

 Key Encapsulation: Y=gy encapsulates key K=H(Ay) under PK A

 Data Encapsulation: (C,T) CCA-encrypts data under K

 Simple, efficient, functional

 KEM: Can be used to transmit a random fresh key K

 DEM: Can be used to transport a previously defined key        

(and possible associated data)

 The message M (under C) is the transported key and assoc’d data

 Missing: Sender’s authentication
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Authenticated Key Wrapping

 DHIES implicitly authenticates the receiver 

 Only intended receiver can read the key/data

 This is the case for most key wrapping techniques

 But how about sender’s authentication? 

 Who encrypted the tape? Who can it be decrypted for?

 Authenticated key wrapping:  Key wrapping with sender’s 

authentication ( mutual authentication)
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Authenticating Key Wrapping

 Solution: Add sender’s signature on wrapper SignS(Y,C,T)

 But, is it necessary (performance)? 

 Is it sufficient?

 No. Needs to bind signer to key, not just to the wrapper

 For example, Bob encrypts tape, sends wrapper with signature 

 Charlie strips Bob’s signature and generates its own

 Alice believes the key is owned by Charlie                       

 Thus, she may later decrypt the tape for Charlie

Similar to UKS (or identity-misbinding) attacks on KE protocols
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Authenticated Wrapping: Equivalent Notions

 Requirements are essentially of a key exchange protocol (w/replay)

 Alice will never associate with Charlie a key created by Bob (assuming 

Bob and Alice are honest)

 Considering just KEM part of key wrapping (fresh key) with sender 

authentication, the following are equivalent:

 Authenticated Key Wrapping, Authenticated KEM, One-Pass AKE  

 With the DEM part (a “message” encrypted with the KEM key) one 

obtains a notion of “authenticated encryption” or its equivalent

 UC-secure message transmission (w/replay)  [Gjosteen, Krakmo]

 Secure signcryption [Gorantla et al, Dent]
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Authenticated Wrapping & One-Pass KE

 We can use any one-pass AKE to instantiate 

authenticated KEM  authenticated key wrapping

 Want something as simple and as close as possible to DHIES

 More secure and more efficient than adding sender’s signature

 HOMQV (a One-Pass HMQV KE protocol)



Group G=<g>, hash function H, sym encryption Enc, msg auth Mac 

DHIES*

 Receiver’s PK:  A=ga

 Sender chooses y,                 
sends (Y,C,T) where

1. Y = gy σ = Ay

K = H(σ)                            

(2 expon’s)

2. K  K1, K2

C= EncK1(M)   T= MacK2(C)

 Decryption: σ=Ya, etc              
(1 expon.)

Authenticated DHIES*

 R’s PK: A=ga ; Sender’s PK B=gb

 Sender chooses y,                 
sends (Y,C,T) where

1. Y = gy σ = Ay+be e = H½(Y,idR)

K = H(σ, idS, idR, Y)               

(2 expon’s)

2. K  K1, K2

C= EncK1(M)   T= MacK2(C)

 Decryption: σ= (YBe)a, etc             

44

* Group membership tests or cofactor exponentiation omitted (more later…)

(1.5 expon.)

H
O
M
Q
V
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HOMQV (Hashed One-pass MQV)

 Functionally optimal

 Minimal performance overhead:  Just extra ½ exp for receiver. 

Free for sender. No extra communication

 Backwards compatibility with DHIES: Set B=1 b=0

 How about security?

 We prove security of HOMQV as one-pass key-exchange 
( authenticated key wrapping)
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HOMQV

 Sender idS has public key B=gb

 Receiver idR has public key A=ga

 S  R:  Y = gy

 S computes σ = Ay+be

 R computes σ = (YBe)a

 Both set K = H(σ, idS, idR, Y)

e = H½(Y,idR)
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Theorem

 Under Gap-DH in the ROM, HOMQV is a secure       
one-pass key-exchange protocol

 Security of one-pass protocol: Canetti-Krawczyk relaxed to 
allow for key-replays

 Guarantees mutual authentication in a strong adversarial model

 Proof: Reduction to XCR signatures (defined in [HMQV])

 Some important leakage-resilience properties

 Sender’s Forward Security

 Resistance to leakage of ephemeral Diffie-Hellman exponents 
(y-security)
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Leakage-resilience Properties

 Sender forward security (disclosure of sender’s secret 
key b does not compromise past keys and messages)

 Weak FS: For sessions where attacker was passive

 For full FS: Add a “key confirmation” MacK*(1) to sender’s 
message  (in particular, satisfied by the DEM part of DHIES)

 y-security : The disclosure of ephemeral secret y does 
not compromise any keys or messages

 Not even the key/msg transported using Y=gy

 Moreover: the disclosure of both y and b reveals the msg sent 
using y but no other msgs sent by b’s owner
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On the Proof

 Too technical… for a short presentation

 but amazingly precise: The proof tells exactly what the 

role of each element in the protocol is

 and what the consequences of leakage are for each 

such element (a, b, y, σ and their combinations)

 Better security, better efficiency: Proof-driven design

 Get rid of safety margins

 Compare DHIES+signature vs HOMQV

 Would you buy it without a proof?



50

Additional checks

 Proof tells us exactly what properties of incoming    

values (Y, B, A, etc.) each party needs to check

 Need to assure YBe is of order q (no need for separate Y,B test)

 Can implement more efficiently over elliptic curve by 

cofactor exponentiation

 s = Afy instead of Ay or Af·(y+be) instead of A(y+be)  where 

f=|G’|/ord(g) and G’ a supergroup containing g (e.g. G’ = ell. curve)

 Note: Same  needed for DHIES (Y test), hence ½ expon 

advantage remains



For Fun
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HMQV application to PAKEs

 What’s a PAKE (Password Authenticated Key Exchange)

 Peers share a password as the only means of authentication 

(same as pre-shared key but a low-entropy key)

 As long as attacker does not guess password, security in full

 Only attack option: online guessing (one passwd per connection)

 Asymmetric PAKE: user has pwd, server stores H(pwd)

 Above security requirements PLUS: If server is broken into, 

finding pwd requires a full offline dictionary attack  
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OPAQUE: Application of HMQV to aPAKE                   
(the beauty of minimality)

53

U (pwd) S (k, c, pS)a=H(pwd)r, X=gx

b=ak , c=AuthEncrwd(pU, PKU, PKS), Y=gy

• rwd=H(pwd)k
 H(b1/r)

• pU, PKU, PKS  AuthDecrwd(c)

• SK = HMQV(x,pU,Y,PKS) SK = HMQV(y,pS,X,PKU)


