Extreme minimality:
Implicitly Authenticated KE Protocols

" A
A natural Authenticated DH
Solution (Iso 9796)

A, g~

B, 9", SIGg(g*.9".A)

SIG,(9".9%B)

Simple, but 3 messages plus signatures [and certificates]

"
The quest for Authenticated DH

m What is the inherent cost of authentication in
Diffie-Hellman? In terms of

1 Communication: humber of messages, group elements,
authentication information, actual message size

1 Computation: algebraic operations and actual speed

01 Security: What can we prove?

m How close can we get to the fundamental limits?
And still prove security...

"
Implicitly Authenticated DH
A A, g~ B

>

< B, 9"

m Authentication via session key computation

No transmitted signatures, MAC values, etc

Session key must involve long-term and ephemeral keys:
K:F(PKA,PKB,SKA,SKB ,gx,gy,X,Y)
Ability to compute key = authentication

m The simpler the trickier: many insecure proposals

" A
(Abuse of) Notation

Public key of A (resp. B) denoted A=g° (resp. B=g®)

A A=g?, X=g* B
>

B:gb, y:gy

'._ L et
Some Ideas g X

m Can we really have a non-replayable 2-msg protocol?

1 Remember A->B: g%, SIG,(g%,B), A>B: g7, SIGy(gY,A) insecurity
m Combining A, B, X, Y:

1 K=H(gab, gxy): Open to known key and interleaving attacks

[K=H(gab, gxy, gx, gy) works but open to "KCI attacks"
(a general weakness of protocols with gab)

m We want that no attack except if learning pair (x,a) or (y,b)
m Idea: K = gl@x)(®*) (computed by A as (BY)*X, by B as (AX)b*)

(1 Doesn't work: Attacker sends X*=g<"/A, B sends Y, K=(BY)**
(no need to know A)

"
MQV

m Idea: set K = glavdx)b+ey) and define d, e so that
attacker cannot control e and Y, or d and X

m MQV: d=half bits of X, e=half bits of Y
m Does not quite work

m But a simple variation does

"
The HMQV Protdcol A" Xo°

B:gb' y:gy

B Basic DH + special key computation <

m Notation: 6=«<g> of prime order q; g in supergroup G’ (eg. EC, Z")
1 Alice’s PK is A=g® and Bob’s is B=g® (private keys are a, b, resp.)
1 Exchanged ephemeral DH values are X=g*, Y=g¥

m Both compute g=gx+da)y+eb) qs g = (YBe)x+da = (XAd)y+eb
0 d=H(X,"Bob") e=H(Y,"Alice") (here H outputs |q| bits)
1 Session key K=H(a) (here H outputs |K| bits, say 128)

m Authentication almost for free((® exponentiation)no commun'n)

8

" A
The HMQV Protocol

m Basic DH + special key computation B, g

-
<

g B

A 4

m Notation: 6=<g> of prime order q: g in supergroup &’ (eg. EC, Z")
Alice’s PK is A=g® and Bob’s is B=g® (private keys are q, b, resp.)

Exchanged ephemeral DH values are X=g*, ¥Y=g*

m Each computes|o=gx+da)y+eb) qs g = (YBe)x+da= (XAd)y+eb

d=H(X,"Bob") e=H(Y,"Alice") (H outputs |q|/2 bits)

m Session key K=H'(g) (H' outputs |K| bits, say 128)

m Almost free authentication: - exponentiation, = communic'n

9

"

>

multi-exponentiation

Input: g, 91, €0=(qg, ay,..., a;1) Output: gy - g4
el :(bOI bll"l bT-l)

Pre-computation: 65=1, 6,=9¢, 6,=9;, G5=9¢°9;, s(i)=a;+2b,

Compute: A:=1; For i=0 to t-1: {A:=A-A; AizA-G;)

Ops: -1 squarings; % t multiplies (3 because G,=1)

Compared to full exponentiation -1 squares, 3 t mult's

9o%° - 91% costs 1 % exponentiations rather than 2

1 Works for any number k of bases (extra 2,-2 mults)

10

" A
The HMQV Protocol (w/short d,e)

m Both compute g=gx+da)ly+eb) gqg g = (YBe)x+da= ()X Ad)y+eb
d=H(X,"Bob") e=H(Y,"Alice”) (here H outputs |q|/2 bits)

m Session key K=H(o) (here H outputs |K| bits, say 128)

m Authentication for "3 exponentiation” (no multiexp optimiz'n)

m Original formulation and proof (full length d, e simplifies
some aspects of proof)

11

"
HMQV Explained

m HMQV: basic DH (X=g*, Y=¢g¥), PKs: A=g?, B=g®
o-:g(x+da)(y+eb) as g = (yBe)x+da - (X Ad)y+eb : K= H(O)
m d=H(X,"Bob") e=H(Y "Alice")

m No sighatures exchanged, authentication achieved via
computation of o (must ensure: only Alice and Bob can compute it)

m Idea: (YBe)**dais a sig of Alice on the pair (X, "Bob") and,
at the same time, (XAd)r*¢ is a sig of Bob on (Y, "Alice")

Two signatures by two different parties (different priv/publ
keys) on different msgs but with the same signature valuel!

12

"
Underlying Primitive:
Challenge-Response Signatures

m Bob is the signer (PK is B=gP), Alice is the verifier (no PK)

[Alice sends a “challenge” (X=g*) and a msg m to Bob, who responds with a
“challenge-specific” signature on m (sig depends on b, X, m)

01 Alice uses her “challenge trapdoor” (x) to verify the signature
m Alice>Bob: m, X=g*
Bob—>Alice: Y=g, 0=Xr*¢®* where e=H(Y m)
Alice accepts the signature as valid iff (YBe)*= o

m Note: Alice could generate the signature by herself! (signature
convinces only the challenger — non-transferable -- bug or feature?)

m We call this scheme XCR (Xponential Challenge Response)

13

" I
Security of XCR Signatures

m Theorem: XCR signatures are unforgeable

1 Unforgeability under usual adaptive chosen message attack
1 Only signer and challenger can compute it

1 Assumptions: Computational DH; also H modeled as random oracle

m Tdea of proof: “exponential” Schnorr via Fiat-Shamir

1 More later...

14

" S
Dual XCR (DCR) Signatures

m Alice and Bob act as signers and verifiers simultaneously

m Alice has PK A=g°, Bob has PK B=gP

m Alice and Bob exchange values X=g*, Y=g¥ and msgs m,,m;

m Bob generates an XCR sig on m, under challenge XA
Alice generates an XCR sig on mg under challenge YB®

m The signature is the same! g = (YBe)x*da= (XAd)y+eb

m This is exactly HMQV if one puts m,="Alice”, my="Bob"
(since sig is the same value /1 needs not be transmitted)

15

" S
Proof of HMQV

m Reduction from breaking HMQV as KE (in the CK model)
to forging DCR

1 Not a trivial step

[Great at showing the necessity of all elements in the protocol:
drop any element and the proof shows you an attack (e.g. MQV)

m Reduction from forging DCR to forging XCR
[Quite straightforward

m Reduction from forging XCR to solving CDH in RO model

01 T expand on this next

16

" SN
XCR Proof via “"Exponential Schnorr”

m Schnorr’s protocol (given B=g°, Bob proves knowledge of b)

1 Bob>Alice: Y=g [Fs]: zk £op honest vepif
0 Alice>Bob: e ex Z, (y's=eb+y) W/ e=H(m V) i 'er (Alice)
’ S a R

O .
1 Bob->Alice: s=eb+y (Alice checks YBe=gs) S1g on m

m Exponential Schnorr: Bob proves ability to compute ()°
ZK for‘ hones-,- verifi
rifiep

1 Bob—>Alice: Y=qg. lq1/2
Q{Oll}q (y, o=

(& any X) >

Xeb+
Y) w/ e=H(m,Y) is a RO

XCR s'
1 Bob->Alice: g=Xb*Y (Alice checks (YBe)<=g) 2 O M

1 Alice>Bob: e €y X? X=g*

Theorem: XCR is strongly CMA-unforgeable (CDH + RO)

17

" S
Proof: A CDH solver C from XCR forger F

m Input: U, Vin G=<g> (a CDH instance; goal: compute g*)

m Set B=V X,=U (Bis signer's PK, X, is challenge to forger)

m Run F; for each msg m and challenge X queried by F (*a CMA attack*)
simulate signature pair (Y, X5) (randoms,e; Y=gs/Be; H(Y,m) < e)

m When F outputs forgery (Yo, mg,) (* (Yo.mo) fresh and H(Yo,mo) queried *)
Re-run F with new independent oracle responses to H(Y,,mg)

m If 2" run results in forgery (Yo, mg, ') (* same (Yo,my) as before! *)
then C outputs W=(c/c)!/¢ where c=(e-e’) mod q.

(e, e’ are the responses to H(Y,,mp) in 15t and 2" run, respectively)
P P Y

Lemma: with non-negligible probability W=DH(U,V)
Proof: [PS]+ W= (G/G')l/c = ((YoBe)¥0 / (Y,Be)X0)l/c = ((B¢) x0)V/c = Bx0

18

" JEE—
Implications for HMQV ¢ x > xa<")
n We used W = (6/5)V/€ = (Y Bey© / (Y Be)0)¢
But can we divide by Y,B¢? Yes if B and Y, in G (have inverses)

m B in G always true (chosen by honest signer) but what about Y,
which is chosen by forger?

1 Do we need to check that Y, in G? (An extra exponentiation?)
0 No. If 6 =R, then enough to check Y, has inverse in R
» £9:6=6,=<g>cZ* R=Z, simply check¥ inZ, and Y20
= HMQV needs no prime order verification! (later: only if exponent leak)

m Forger can query arbitrary msgs with arbitrary challenges X (even
challenges not in group 6) > No need for PoP or PK test in HMQV!

(X becomes XAd and we do not need to check X nor Al)

= Robust security of HMQV without extra complexity
(no extra exponentiations, PoP’s, PK validation, etc.)

19

" I
More on Security of HMQV

m Note that each party can start the protocol (ho
initiator/responder roles) even simultaneously

m Protocol is not secure against leakage of both {a,x} or
{b,y} but secure against any other pair in {a,x,b,y}

(1 Secure against disclosure of {a,b} is equivalent to PFS

1 But does HMQV really achieve PFS?

20

" S
PFS in HMQV

m PFS achieved only against passive attackers

m Impossibility fact. If the messages sent in the proto-
col are computed without knowledge of the long-term
keys of the sender then PFS fails to active attackers

01 The attacker chooses the message in the name of A (e.g. it
chooses x and sends g¥) ; later it learns the long-term key of
A, hence can compute the session key.

01 Thus, authentication specific information must be transmitted
to achieve PFS (e.g., via a third “key confirmation” message)

21

"
A fundamental question:

m Can one obtain a FULLY authenticated DH protocol with

[A single message per party (2 message total)

1 A single group element per message

01 NO certificates

1 Minimal computational overhead for authentication

1 AND PFS AGAINST FULLY ACTIVE ATTACKERS

P7?7?7777777?

22

" S
A surprising answer: YES!

m By working over cyclic groups modulo a composite
(we will refer to the bit size of elements later)
m Resorting to classical Okamoto-Tanaka protocol (1987)

m With simple modifications required for security

m With full proof of security,
including proof of PFS against active attackers//

23

Modified Okamoto-Tanaka (mOT)

" A
Modified Okamoto-Tanaka Protocol

m Identity-based setting: Key Generation Center (KGC)

Chooses safe primes p, q (p=2p-1, q=2q'-1)
and RSA exponents e, d for N=pq

Chooses generator g of QR (set of quadratic residues), a cyclic
group of order p'q

Publishes N, g, e (e.g.e=3)
m Secret key for party I is S;=H(I)4 mod N (computed by K&C)

m Ephemeral session values: g mod N for x of length
twice the security parameter (e.g., between 160-256 bits)

25

Modified Okamoto-Tanaka (mOT)

SA=H(I,)e Sg=H(Ig)

A IA' a= SA'gx mOd N B
>

IB, [.,) - SB'gy mOd N

<
K=H(pe/H(Ip))> = g>¥e= K=H(a®/H(L,))*

m Two msgs, single group element, no certificate

m Computation: 1 off-line + 1 on-line expon’'n (= basic DH)
+ e-exponentiation (= 2 multiplications) and 1 squaring

m Just 3 mult’s more than a basic DH over composite N Il

26

" JdE
mOT: Minimal Overhead,

But is it secure?
m YESI

m With proof of security in the Canetti-Krawczyk model

RSA assumption + Random Oracle Model (passive PFS only)

m And proof of PFS security against active attackers

With additional “knowledge-of-exponent” type assumptions

m Note: mOT avoids the “implicit-authenticated PFS impossibility”
since messages a, p depend on the private key of the sender

L a {5 modN
messages «--- - = >

dependon <+ = === ___
private keys(Ip,B= @ Y mod N

27

'_
On the Proof

m The basic case: CK model, weak PFS, under plain RSA
in ROM follows more or less standard arguments

m The challenge is in proving full PFS (against active attacks
and without additional messages/communication)

m Good news: we can do it!

01 In particular, security of past communication if K6GC compromise

m Less good news: non-standard assumptions

1 But a STRONG indication of security!

28

" SN
KEA-type Assumptions

m KEA-DH (ak.a KEAL): “Computing g*¥ from g,g*,g¥ can only
be done if one knows x or y”

m KEA-DL:

[Given y=g* want to compute x with the help of a Dlog oracle D
that accepts any input but y

1 Obvious strategy: query D with y-g
More generally: Can query D with z=y'g} for any known i,j
(and recover x from the oracle's response ix+j)

(1 KEA-DL states that this is the most general strategy, i.e., if
you find x by querying D(z) then you know i, j such that z=ix+j

29

"SI
Real-World Performance

© Complexity is essentially the same as the basic
unauthenticated DH...

@ ... but it runs over Z,, for composite N

© ... with short exponents (assumes dlog hard w/ such exponent)
© ... no certificate transmission and processing

In all, comparable performance to HMQV/ECC for
security levels under 2048 bits (for RSA)

The really important point, however, is theoretical:
Testing the limits of what is possibl/e

30

"
Conclusions and Open Problems

m Conclusions

It is amazing how little one may need to pay over the basic DH
for a fully authenticated exchange with full PFS.

Over QR groups the ONLY overhead is JUST 3 multiplications!
(no communication penalty, not even certificates)

m Open questions

Achieve the same performance properties with full PFS
over other Dlog groups (e.g. Elliptic Curves)

Get rid of special assumptions for PFS proof

Reduce reliance on secrecy of the ephemeral g* and g¥

32

One-Pass HMQV and
Asymmetric Key-Wrapping

33

'_
Motivation

m Key wrapping as a basic functionality (e.g. storage
systems)

m A good example of:
Optimizing cryptography via “Proof-driven design”

m Proof tells us precisely what elements in the design are
essential and which can be avoided

1 Avoid unnecessary safety margins
(1 Better performance and functionality

1 A great protocol debugging tool

34

" S
Key Wrapping

m Key-wrapping or key encapsulation. Server wraps a
symmetric key for transporting it to a client

[Think of wrapping as a key encryption mechanism
[Encrypting key may be symmetric or asymmetric (AES, RSA)

1 Wrapped key may be a fresh key, or a previously generated
one, sometimes bound together with associated data

0 Wrapping typically done off-line and non-interactively.

P

K]

35

" J
Example: Encrypted Backup Tapes

m Tape encryption:
Tape sent to KMM (key management module)
KMM encrypts tape with tape-specific key K

wraps K (under another key) and stores wrapped key with tape

m Tape decryption

wrapped key sent o KMM* who unwraps (decrypts) K
K is sent back to tape holder for tape decryption

m Notes: Decryption may happen many years after encryption

KMM and KMM* may not be the same (KMM™ holds de-wrapping key)

36

" S
Key Wrapping and Standards

m Major key management tool.:

[storage, hardware security modules, secure co-processors,
ATM machines, clouds, etc.

(1 Complex: long-lived keys & systems, backwards compatibility,...

m Standards are important: server and client typically
run different systems (and by different vendors)

01 Industry standards: storage systems, financial, HSMs, etc.

m Currently deployed: mainly DES/AES and RSA

m Searching for ECC-based key wrapping techniques

37

"
Main Candidate: DHIES Encryption

m Elgamal encryption + RO-based key derivation + Enc/Mac
m G=<g>: prime-order q H: hash function (RO)
Enc: symmetric encryption Mac: message auth code
Receiver’s PK: A=g® , message to be encrypted: M
Sender chooses yeZ,, sends: (Y, C, T) where
1.Y =g o= A K=H(o) (2 exp)
2. K> K1,K2 C=Ency(M) T=Macy,(C)
Decryption: o = Y¢, K= H(o), etc. (1 exp)
m [ABRO1]: Scheme is CCA-secure in the ROM

38

"
DHIES as Key Wrapping

m DHIES instantiates the KEM/DEM paradigm: (Y,C,T)

Key Encapsulation: Y=g encapsulates key K=H(AY) under PK A
Data Encapsulation: (C,T) CCA-encrypts data under K

m Simple, efficient, functional

KEM: Can be used to transmit a random fresh key K

DEM: Can be used to transport a previously defined key
(and possible associated data)

= The message M (under C) is the transported key and assoc’d data

m Missing: Sender’s authentication

39

" S
Authenticated Key Wrapping

m DHIES implicitly authenticates the receiver

01 Only intended receiver can read the key/data

01 This is the case for most key wrapping techniques
m But how about sender’s authentication?
1 Who encrypted the tape? Who can it be decrypted for?

m Authenticated key wrapping: Key wrapping with sender’s
authentication (= mutual authentication)

40

" S
Authenticating Key Wrapping

m Solution: Add sender’s signature on wrapper Signg(Y,C,T)
m But, is it necessary (performance)?
m Isitsufficient?

m No. Needs to bind signer to key, not just to the wrapper

1 For example, Bob encrypts tape, sends wrapper with signature
[Charlie strips Bob’s signature and generates its own
1 Alice believes the key is owned by Charlie

01 Thus, she may later decrypt the tape for Charlie
Similar to UKS (or identity-misbinding) attacks on KE protocols

41

"
Authenticated Wrapping: Equivalent Notions

m Requirements are essentially of a key exchange protocol (w/replay)

1 Alice will never associate with Charlie a key created by Bob (assuming
Bob and Alice are honest)

m Considering just KEM part of key wrapping (fresh key) with sender
authentication, the following are equivalent:

01 Authenticated Key Wrapping, Authenticated KEM, One-Pass AKE

m With the DEM part (a “message” encrypted with the KEM key) one
obtains a notion of “authenticated encryption” or its equivalent

1 UC-secure message transmission (w/replay) [Gjosteen, Krakmo]

[Secure signcryption [Gorantla et al, Dent]

42

"
Authenticated Wrapping & One-Pass KE

m We can use any one-pass AKE to instantiate
authenticated KEM = authenticated key wrapping

1 Want something as simple and as close as possible to DHIES

1 More secure and more efficient than adding sender’s signature

2 HOMQYV (a One-Pass HMQV KE protocol)

43

Group G=<g>, hash function H, sym encryption Enc, msg auth Mac

DHIES” Authenticated DHIES®
m Receiver’s PK: A=g° m R’s PK: A=g®; Sender’s PK B=g°
m Sender choosesy, m Sender chooses'y,
sends (Y,C,T) where sends (Y,C,T) where
Y=g o= AY B (L Y=g oz ArPe 6= H(Y.idy)
K = H(o) o | K=H(o,ids, idg,)
(2 expon’s) Y (2 expon’s)
K> K1, K2 K> K1, K2
C= Encyy(M) T= Macy,(C) C= Encyy(M) T= Mac,(C)

m _Decryption: o=Y¢, etc m Decryption: o= (YBe)s, etfc
xpon.) XPOV\-) I

" Group membership tests or cofactor exponentiation omitted (more later...)

44

"
HOMQV (Hashed One-pass MQV)

m Functionally optimal

[Minimal performance overhead: Just extra 'z exp for receiver.
Free for sender. No extra communication

1 Backwards compatibility with DHIES: Set B=1 b=0

m How about security?

m We prove security of HOMQV as one-pass key-exchange
(= authenticated key wrapping)

45

" N
HOMQV
m Sender idg has public key B=g°
m Receiver idy has public key A=g®
m SOR Y=g \

m Scomputes o= Avbe ¢ e=H,(Y,idp)

m R computes o = (YBe)e
m Both set K= H(o, idg, idy, Y)

46

" S
Theorem

m Under Gap-DH in the ROM, HOMQ)YV is a secure
one-pass key-exchange protocol

[Security of one-pass protocol: Canetti-Krawczyk relaxed to
allow for key-replays

[Guarantees mutual authentication in a strong adversarial model

1 Proof: Reduction to XCR signatures (defined in [HMQV])

m Some important leakage-resilience properties

(1 Sender’s Forward Security

(1 Resistance to leakage of ephemeral Diffie-Hellman exponents
(y-security)

47

" S
Leakage-resilience Properties

m Sender forward security (disclosure of sender’s secret
key b does not compromise past keys and messages)

1 Weak FS: For sessions where attacker was passive

0 For full FS: Add a “key confirmation” Macy«(1) to sender’s
message (in particular, satisfied by the DEM part of DHIES)

m y-security: The disclosure of ephemeral secret y does
not compromise any keys or messages

1 Not even the key/msg transported using Y=g¥

1 Moreover: the disclosure of bothy and b reveals the msg sent
using y but no other msgs sent by b’s owner

48

'_
On the Proof

m Too technical... for a short presentation

m but amazingly precise: The proof tells exactly what the
role of each element in the protocol is

m and what the consequences of leakage are for each
such element (a, b, y, 0 and their combinations)

> Better security, better efficiency: Proof-driven design
[Get rid of safety margins
1 Compare DHIES+signature vs HOMQV
1 Would you buy it without a proof?

49

'_
Additional checks

m Proof tells us exactly what properties of incoming
values (Y, B, A, etfc.) each party needs to check

m Need to assure YB¢ is of order g (no need for separate ¥,B test)

m Can implement more efficiently over elliptic curve by
cofactor exponentiation

1 s = ATY instead of AY or Af(r*be) instead of Alv*be) where
f=|G’|/ord(g) and G' a supergroup containing g (e.g. G' = ell. curve)

m Note: Same nheeded for DHIES (Y test), hence % expon
advantage remains

50

" M

For Fun

"
HMQV application to PAKEs

m What's a PAKE (Password Authenticated Key Exchange)

1 Peers share a password as the only means of authentication

(same as pre-shared key but a low-entropy key)
1 As long as attacker does not guess password, security in full

[Only attack option: online guessing (one passwd per connection)

m Asymmetric PAKE: user has pwd, server stores H(pwd)

[Above security requirements PLUS: If server is broken into,

finding pwd requires a full off/ine dictionary attack

52

OPAQUE: Application of HMQV to aPAKE
(the beauty of minimality)

U (pwd) a=H(pwd)", X=g* S S ke, ps)

b=ak , C:AUThEnCrWd(Pu, PKU, PKS): y:gy
<

* rwd=H(pwd)x < H(br)
* pu. PKy, PKs € AuthDec,,4(c)

« SK = HMQV(x,py.Y PKs) SK = HMQV(y ps.X,PK,)

53

