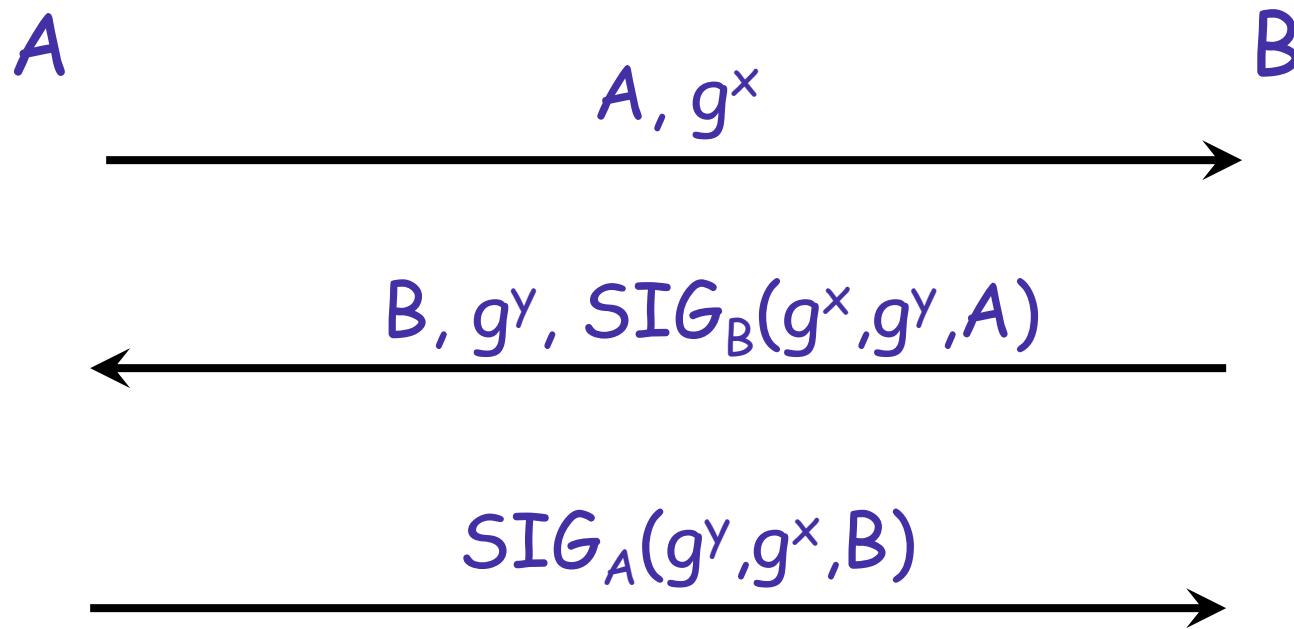


Extreme minimality: Implicitly Authenticated KE Protocols

A natural Authenticated DH Solution (ISO 9796)

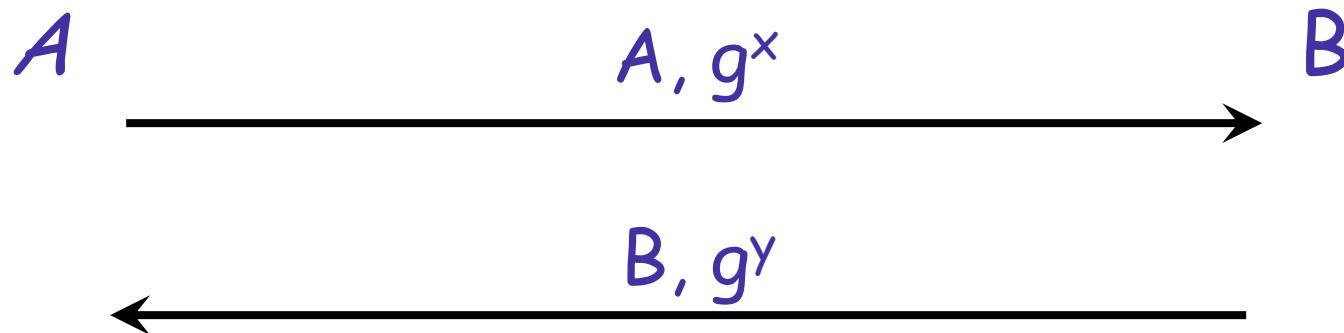


Simple, but 3 messages plus signatures [and certificates]

The quest for Authenticated DH

- What is the inherent cost of authentication in Diffie-Hellman? In terms of
 - Communication: number of messages, group elements, authentication information, actual message size
 - Computation: algebraic operations and actual speed
 - Security: *What can we prove?*
- How close can we get to the fundamental limits?
And still prove security...

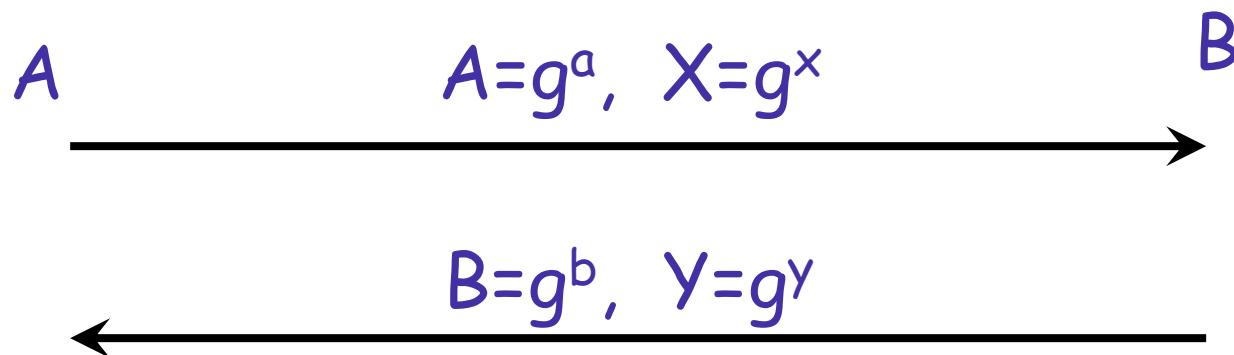
Implicitly Authenticated DH



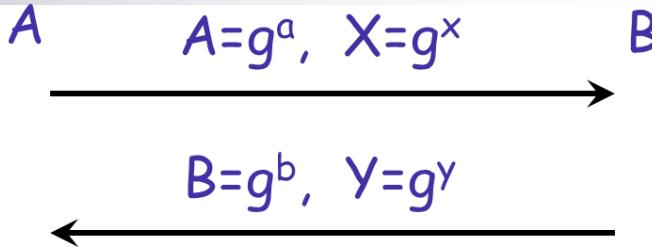
- Authentication via session key computation
 - No transmitted signatures, MAC values, etc
 - Session key must involve long-term and ephemeral keys:
$$K = F(PK_A, PK_B, SK_A, SK_B, g^x, g^y, x, y)$$
 - Ability to compute key \rightarrow authentication
- The simpler the trickier: many insecure proposals

(Abuse of) Notation

Public key of A (resp. B) denoted $A=g^a$ (resp. $B=g^b$)



Some Ideas



- Can we really have a *non-replayable* 2-msg protocol?
 - Remember $A \rightarrow B: g^x, \text{SIG}_A(g^x, B)$, $A \rightarrow B: g^y, \text{SIG}_B(g^y, A)$ insecurity
- Combining A, B, X, Y:
 - $K = H(gab, gxy)$: Open to known key and interleaving attacks
 - $K = H(gab, gxy, gx, gy)$ works but open to "KCI attacks"
(a general weakness of protocols with gab)
- We want that no attack except if learning pair (x,a) or (y,b)
- Idea: $K = g^{(a+x)(b+y)}$ (computed by A as $(BY)^{a+x}$, by B as $(AX)^{b+y}$)
 - Doesn't work: Attacker sends $X^* = g^{x^*}/A$, B sends Y, $K = (BY)^{x^*}$
(no need to know A)

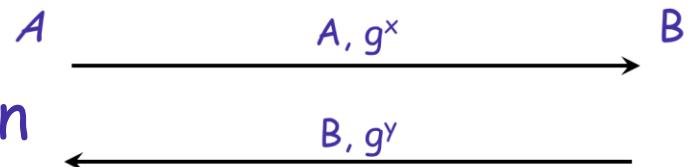
MQV

- Idea: set $K = g^{(a+dx)(b+ey)}$ and define d, e so that attacker cannot control e and Y , or d and X
- MQV: $d=\text{half bits of } X, e=\text{half bits of } Y$
- Does not quite work
- But a simple variation does

The HMQV Protocol

- Basic DH + special key computation
- Notation: $G=\langle g \rangle$ of prime order q ; g in supergroup G' (eg. EC, \mathbb{Z}_p^*)
 - Alice's PK is $A=g^a$ and Bob's is $B=g^b$ (private keys are a, b , resp.)
 - Exchanged ephemeral DH values are $X=g^x, Y=g^y$
- Both compute $\sigma=g^{(x+da)(y+eb)}$ as $\sigma = (YB^e)^{x+da} = (XA^d)^{y+eb}$
 - $d=H(X, "Bob")$ $e=H(Y, "Alice")$ (here H outputs $|q|$ bits)
 - Session key $K=H(\sigma)$ (here H outputs $|K|$ bits, say 128)
- Authentication almost for free $\left(\frac{1}{6}$ exponentiation, no commun'n)

The HMQV Protocol



- Basic DH + special key computation
- Notation: $G=\langle g \rangle$ of prime order q ; g in supergroup G' (eg. EC, \mathbb{Z}_p^*)
 - Alice's PK is $A=g^a$ and Bob's is $B=g^b$ (private keys are a, b , resp.)
 - Exchanged ephemeral DH values are $X=g^x, Y=g^y$
- Each computes $\sigma=g^{(x+da)(y+eb)}$ as $\sigma = (YB^e)^{x+da} = (XA^d)^{y+eb}$
 - $d=H(X, "Bob")$ $e=H(Y, "Alice")$ (H outputs $|q|/2$ bits)
- Session key $K=H'(\sigma)$ (H' outputs $|K|$ bits, say 128)
- Almost free authentication: $\frac{1}{6}$ exponentiation, = communic'n

multi-exponentiation

- Input: $g_0, g_1, e_0 = (a_0, a_1, \dots, a_{t-1})$ Output: $g_0^{e_0} \cdot g_1^{e_1}$
 $e_1 = (b_0, b_1, \dots, b_{t-1})$
- Pre-computation: $G_0 = 1, G_1 = g_0, G_2 = g_1, G_3 = g_0 \cdot g_1, s(i) = a_i + 2b_i$
- Compute: $A := 1$; For $i = 0$ to $t-1$: $\{A := A \cdot A; A := A \cdot G_{s(i)}\}$
- Ops: $t-1$ squarings; $\frac{3}{4}t$ multiplies ($\frac{3}{4}t$ because $G_{s(0)} = 1$)
- Compared to full exponentiation $t-1$ squares, $\frac{1}{2}t$ mult's

→ $g_0^{e_0} \cdot g_1^{e_1}$ costs $1\frac{1}{6}$ exponentiations rather than 2

- Works for any number k of bases (extra $2_k - 2$ mults)

The HMQV Protocol (w/short d,e)

- Both compute $\sigma = g^{(x+da)(y+eb)}$ as $\sigma = (YB^e)^{x+da} = (XA^d)^{y+eb}$
 - $d = H(X, "Bob")$ $e = H(Y, "Alice")$ (**here H outputs $|q|/2$ bits**)
- Session key $K = H(\sigma)$ (here H outputs $|K|$ bits, say 128)
- Authentication for " $\frac{1}{2}$ exponentiation" (no multiexp optimiz'n)
- Original formulation and proof (full length d, e simplifies some aspects of proof)

HMQV Explained

- **HMQV**: basic DH ($X=g^x$, $Y=g^y$), PKs: $A=g^a$, $B=g^b$
 - $\sigma=g^{(x+da)(y+eb)}$ as $\sigma = (YB^e)^{x+da} = (XA^d)^{y+eb}$; $K=H(\sigma)$
 - $d=H(X, "Bob")$ $e=H(Y, "Alice")$
- No signatures exchanged, authentication achieved via computation of σ (must ensure: only Alice and Bob can compute it)
- Idea: $(YB^e)^{x+da}$ is a sig of Alice on the pair $(X, "Bob")$ and, at the same time, $(XA^d)^{y+eb}$ is a sig of Bob on $(Y, "Alice")$
 - Two signatures by two different parties (different priv/publ keys) on different msgs but with the same signature value!

Underlying Primitive: Challenge-Response Signatures

- Bob is the signer (PK is $B=g^b$), Alice is the verifier (no PK)
 - Alice sends a “challenge” ($X=g^x$) and a msg m to Bob, who responds with a “challenge-specific” signature on m (sig depends on b , X , m)
 - Alice uses her “challenge trapdoor” (x) to verify the signature
- Alice \rightarrow Bob: $m, X=g^x$
- Bob \rightarrow Alice: $Y=g^y, \sigma=X^{y+eb}$ where $e=H(Y, m)$
- Alice accepts the signature as valid iff $(YB^e)^x = \sigma$
- Note: Alice could generate the signature by herself! (signature convinces only the challenger – non-transferable -- bug or feature?)
- We call this scheme XCR (Xponential Challenge Response)

Security of XCR Signatures

- Theorem: XCR signatures are unforgeable
 - Unforgeability under usual adaptive chosen message attack
 - Only signer and challenger can compute it
 - Assumptions: Computational DH; also H modeled as random oracle
- Idea of proof: “exponential” Schnorr via Fiat-Shamir
 - More later...

Dual XCR (DCR) Signatures

- Alice and Bob act as signers and verifiers simultaneously
- Alice has PK $A=g^a$, Bob has PK $B=g^b$
- Alice and Bob exchange values $X=g^x$, $Y=g^y$ and msgs m_A, m_B
- Bob generates an XCR sig on m_A under challenge XA^d
Alice generates an XCR sig on m_B under challenge YB^e
- The signature is the same! $\sigma = (YB^e)^{x+da} = (XA^d)^{y+eb}$
- This is exactly HMQV if one puts m_A ="Alice", m_B ="Bob"
(since sig is the same value *it needs not be transmitted!*)

Proof of HMQV

- Reduction from breaking HMQV as KE (in the CK model) to forging DCR
 - Not a trivial step
 - Great at showing the necessity of all elements in the protocol: drop any element and the proof shows you an attack (e.g. MQV)
- Reduction from forging DCR to forging XCR
 - Quite straightforward
- Reduction from forging XCR to solving CDH in RO model
 - I expand on this next

XCR Proof via "Exponential Schnorr"

- Schnorr's protocol (given $B=g^b$, Bob proves knowledge of b)
 - Bob \rightarrow Alice: $Y=g^y$ [FS]: ZK for honest verifier (Alice) \rightarrow $(Y, s=eb+y)$ w/ $e=H(m, Y)$ is a RO sig on m
 - Alice \rightarrow Bob: $e \in_R \mathbb{Z}_q$
 - Bob \rightarrow Alice: $s=eb+y$ (Alice checks $YB^e=g^s$)
- Exponential Schnorr: Bob proves ability to compute $(\cdot)^b$
 - Bob \rightarrow Alice: $Y=g^y \{0,1\}^{|q|/2}$ ZK for honest verifier (& any X) \rightarrow $(Y, \sigma=X^{eb+y})$ w/ $e=H(m, Y)$ is a RO XCR sig on m
 - Alice \rightarrow Bob: $e \in_R \mathbb{Z}_q, X=g^x$
 - Bob \rightarrow Alice: $\sigma=X^{eb+y}$ (Alice checks $(YB^e)^x=\sigma$)

Theorem: XCR is strongly CMA-unforgeable (CDH + RO)

Proof: A CDH solver C from XCR forger F

- Input: U, V in $G = \langle g \rangle$ (a CDH instance; goal: compute g^{uv})
- Set $B = V X_0 = U$ (B is signer's PK, X_0 is challenge to forger)
- Run F ; for each msg m and challenge X queried by F (*a CMA attack*) simulate signature pair (Y, X^s) (random s, e ; $Y = g^s / B^e$; $H(Y, m) \leftarrow e$)
- When F outputs forgery (Y_0, m_0, σ) : (* (Y_0, m_0) fresh and $H(Y_0, m_0)$ queried *)
Re-run F with new independent oracle responses to $H(Y_0, m_0)$
- If 2nd run results in forgery (Y_0, m_0, σ') (* same (Y_0, m_0) as before! *) then C outputs $W = (\sigma / \sigma')^{1/c}$ where $c = (e - e') \bmod q$.
(e, e' are the responses to $H(Y_0, m_0)$ in 1st and 2nd run, respectively)

Lemma: with non-negligible probability $W = DH(U, V)$

$$\text{Proof: } [PS] + W = (\sigma / \sigma')^{1/c} = ((Y_0 B^e)^{\times 0} / (Y_0 B^{e'})^{\times 0})^{1/c} = ((B^c)^{\times 0})^{1/c} = B^{\times 0}$$

Implications for HMQV (* $X \rightarrow XA^d$ *)

- We used $W = (\sigma/\sigma')^{1/c} = ((Y_0B^e)^{x_0} / (Y_0B^{e'})^{x_0})^{1/c}$
But can we divide by Y_0B^e ? Yes if B and Y_0 in G (have inverses)
- B in G always true (chosen by honest signer) but what about Y_0 which is chosen by forger?
 - Do we need to check that Y_0 in G ? (An extra exponentiation?)
 - No. If $G \subset R$, then enough to check Y_0 has inverse in R
 - E.g: $G = G_q = \langle g \rangle \subset \mathbb{Z}_p^*$; $R = \mathbb{Z}_p$; simply check Y in \mathbb{Z}_p and $Y \neq 0$
- HMQV needs no prime order verification! (later: only if exponent leak)
- Forger can query arbitrary msgs with arbitrary challenges X (even challenges not in group G) → No need for PoP or PK test in HMQV!
(X becomes XA^d and we do not need to check X nor A !)
- Robust security of HMQV without extra complexity
(no extra exponentiations, PoP's, PK validation, etc.)

More on Security of HMQV

- Note that each party can start the protocol (no initiator/responder roles) even simultaneously
- Protocol is not secure against leakage of both $\{a,x\}$ or $\{b,y\}$ but secure against any other pair in $\{a,x,b,y\}$
 - Secure against disclosure of $\{a,b\}$ is equivalent to PFS
 - But does HMQV really achieve PFS?

PFS in HMQV

- PFS achieved only against passive attackers
- *Impossibility fact.* If the messages sent in the protocol are computed without knowledge of the long-term keys of the sender then PFS fails to active attackers
 - The attacker chooses the message in the name of A (e.g. it chooses x and sends g^x) ; later it learns the long-term key of A, hence can compute the session key.
 - Thus, authentication specific information must be transmitted to achieve PFS (e.g., via a third “key confirmation” message)

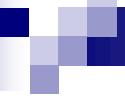
A fundamental question:

- Can one obtain a **FULLY** authenticated DH protocol with
 - A single message per party (2 message total)
 - A single group element per message
 - NO certificates
 - Minimal computational overhead for authentication
 - **AND PFS AGAINST FULLY ACTIVE ATTACKERS**

?????????????

A surprising answer: YES!

- By working over cyclic groups modulo a composite (we will refer to the bit size of elements later)
- Resorting to classical Okamoto-Tanaka protocol (1987)
- With simple modifications required for security
- With full proof of security,
including proof of PFS against active attackers!!

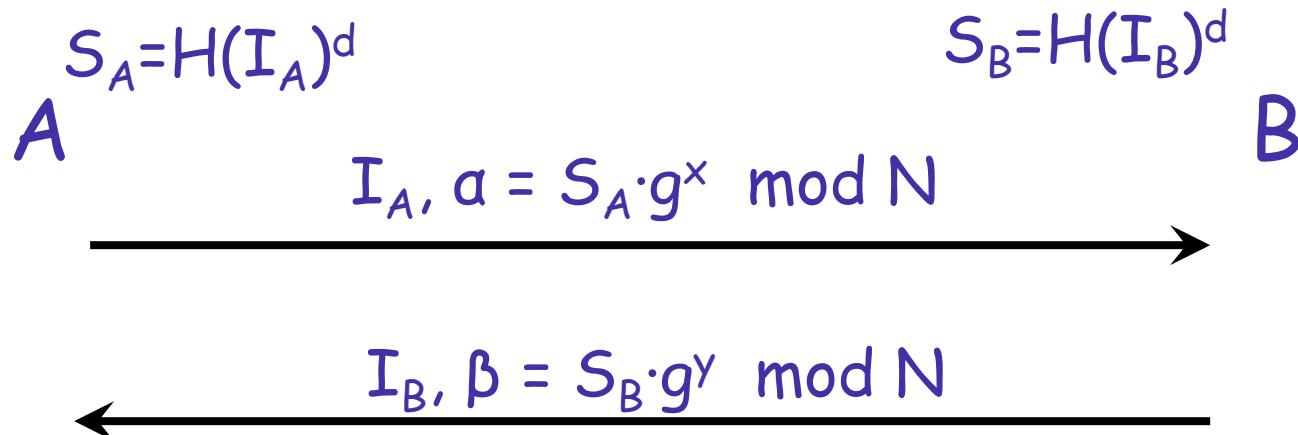


Modified Okamoto-Tanaka (mOT)

Modified Okamoto-Tanaka Protocol

- Identity-based setting: Key Generation Center (KGC)
 - Chooses safe primes p, q ($p=2p'-1, q=2q'-1$) and RSA exponents e, d for $N=pq$
 - Chooses generator g of QR_N (set of quadratic residues), a cyclic group of order $p'q'$
 - Publishes N, g, e (e.g. $e=3$)
- Secret key for party I is $S_I = H(I)^d \bmod N$ (computed by KGC)
- Ephemeral session values: $g^x \bmod N$ for x of length twice the security parameter (e.g., between 160-256 bits)

Modified Okamoto-Tanaka (mOT)

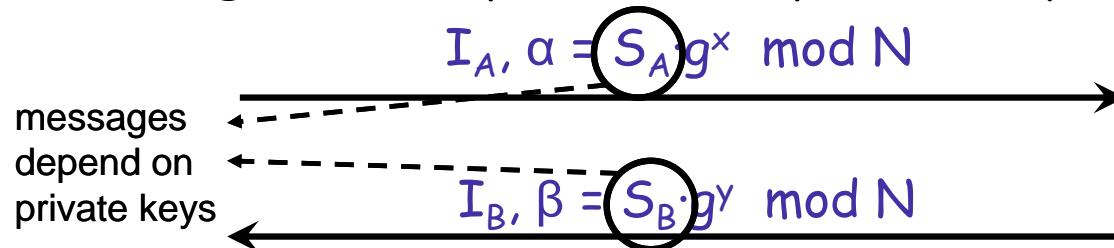


$$K = H(\beta^e / H(I_B))^{2x} = g^{2xye} = K = H(\alpha^e / H(I_A))^{2y}$$

- Two msgs, single group element, no certificate
- Computation: 1 off-line + 1 on-line expon'n (= basic DH) + **e-exponentiation** (= 2 multiplications) and 1 squaring
- Just 3 mult's more than a basic DH over composite N !!!

mOT: Minimal Overhead, But is it secure?

- YES!
- With proof of security in the Canetti-Krawczyk model
 - RSA assumption + Random Oracle Model (passive PFS only)
- And *proof of PFS security against active attackers*
 - With additional “knowledge-of-exponent” type assumptions
- Note: mOT avoids the “implicit-authenticated PFS impossibility” since messages α, β depend on the private key of the sender



On the Proof

- The basic case: CK model, weak PFS, under plain RSA in ROM follows more or less standard arguments
- The challenge is in proving full PFS (against active attacks and without additional messages/communication)
- Good news: we can do it!
 - In particular, security of past communication if KGC compromise
- Less good news: non-standard assumptions
 - But a **STRONG** indication of security!

KEA-type Assumptions

- KEA-DH (a.k.a KEA1): “Computing g^{xy} from g, g^x, g^y can only be done if one *knows* x or y ”
- KEA-DL:
 - Given $y=g^x$ want to compute x with the help of a Dlog oracle D that accepts *any input but y*
 - Obvious strategy: query D with $y \cdot g$
More generally: Can query D with $z=y^i g^j$ for any known i, j
(and recover x from the oracle's response $ix+j$)
 - KEA-DL states that this is the most general strategy, i.e., if you find x by querying $D(z)$ then you know i, j such that $z=ix+j$

Real-World Performance

- 😊 Complexity is essentially the same as the basic unauthenticated DH...
- 😢 ... but it runs over Z_N for composite N
- 😊 ... with short exponents (assumes dlog hard w/ such exponent)
- 😊 ... no certificate transmission and processing

In all, comparable performance to HMQV/ECC for security levels under 2048 bits (for RSA)

The really important point, however, is theoretical:
Testing the limits of what is *possible*

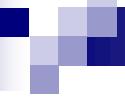
Conclusions and Open Problems

■ Conclusions

- It is amazing how little one may need to pay over the basic DH for a fully authenticated exchange *with full PFS*:
Over QR groups the ONLY overhead is JUST 3 multiplications!
(no communication penalty, not even certificates)

■ Open questions

- Achieve the same performance properties with full PFS over other Dlog groups (e.g. Elliptic Curves)
- Get rid of special assumptions for PFS proof
- Reduce reliance on secrecy of the ephemeral g^x and g^y



One-Pass HMQV and Asymmetric Key-Wrapping

Motivation

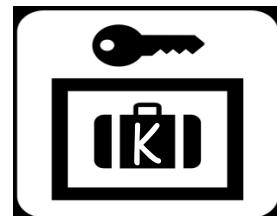
- Key wrapping as a basic functionality (e.g. storage systems)
- A good example of:

Optimizing cryptography via “*Proof-driven design*”

- Proof tells us precisely what elements in the design are essential and which can be avoided
 - Avoid unnecessary safety margins
 - Better performance and functionality
 - A great protocol debugging tool

Key Wrapping

- *Key-wrapping or key encapsulation:* Server wraps a symmetric key for transporting it to a client
 - Think of wrapping as a *key encryption mechanism*
 - Encrypting key may be symmetric or asymmetric (AES, RSA)
 - Wrapped key may be a fresh key, or a previously generated one, sometimes bound together with associated data
 - Wrapping typically done off-line and non-interactively.



Example: Encrypted Backup Tapes

- Tape encryption:
 - Tape sent to KMM (key management module)
 - KMM encrypts tape with tape-specific key K
 - wraps K (under another key) and stores wrapped key with tape
- Tape decryption
 - wrapped key sent to KMM* who unwraps (decrypts) K
 - K is sent back to tape holder for tape decryption
- Notes: Decryption may happen many years after encryption
 - KMM and KMM* may not be the same (KMM* holds de-wrapping key)

Key Wrapping and Standards

- *Major key management tool:*
 - storage, hardware security modules, secure co-processors, ATM machines, clouds, etc.
 - Complex: long-lived keys & systems, backwards compatibility,...
- *Standards are important:* server and client typically run different systems (and by different vendors)
 - Industry standards: storage systems, financial, HSMs, etc.
- *Currently deployed:* mainly DES/AES and RSA
- **Searching for ECC-based key wrapping techniques**

Main Candidate: DHIES Encryption

- Elgamal encryption + RO-based key derivation + Enc/Mac
- $G = \langle g \rangle$: prime-order q H : hash function (RO)
Enc: symmetric encryption Mac: message auth code
 - Receiver's PK: $A = g^a$, message to be encrypted: M
 - Sender chooses $y \in \mathbb{Z}_q$, sends: (Y, C, T) where
 1. $Y = g^y$ $\sigma = A^y$ $K = H(\sigma)$ (2 exp)
 2. $K \rightarrow K_1, K_2$ $C = \text{Enc}_{K_1}(M)$ $T = \text{Mac}_{K_2}(C)$
 - Decryption: $\sigma = Y^a$, $K = H(\sigma)$, etc. (1 exp)
- [ABR01]: Scheme is CCA-secure in the ROM

DHIES as Key Wrapping

- DHIES instantiates the KEM/DEM paradigm: (Y, C, T)
 - Key Encapsulation: $Y = g^Y$ encapsulates key $K = H(A^Y)$ under PK A
 - Data Encapsulation: (C, T) CCA-encrypts data under K
- Simple, efficient, functional
 - KEM: Can be used to transmit a random fresh key K
 - DEM: Can be used to transport a previously defined key (and possible associated data)
 - The message M (under C) is the transported key and assoc'd data
- Missing: Sender's authentication

Authenticated Key Wrapping

- DHIES implicitly authenticates the receiver
 - Only intended receiver can read the key/data
 - This is the case for most key wrapping techniques
- But how about sender's authentication?
 - Who encrypted the tape? Who can it be decrypted for?
- *Authenticated key wrapping*: Key wrapping with sender's authentication (→ mutual authentication)

Authenticating Key Wrapping

- Solution: Add sender's signature on wrapper $\text{Sign}_S(Y, C, T)$
- But, is it necessary (performance)?
- Is it sufficient?
- No. Needs to bind signer to key, not just to the wrapper
 - For example, Bob encrypts tape, sends wrapper with signature
 - Charlie strips Bob's signature and generates its own
 - Alice believes the key is owned by Charlie
 - Thus, she may later decrypt the tape for Charlie

Similar to UKS (or identity-misbinding) attacks on KE protocols

Authenticated Wrapping: Equivalent Notions

- Requirements are essentially of a key exchange protocol (w/replay)
 - Alice will never associate with Charlie a key created by Bob (assuming Bob and Alice are honest)
- Considering just KEM part of key wrapping (fresh key) with sender authentication, the following are equivalent:
 - Authenticated Key Wrapping, Authenticated KEM, One-Pass AKE
- With the DEM part (a “message” encrypted with the KEM key) one obtains a notion of “authenticated encryption” or its equivalent
 - UC-secure message transmission (w/replay) [Gjosteen, Krakmo]
 - Secure signcryption [Gorantla et al, Dent]

Authenticated Wrapping & One-Pass KE

- We can use any one-pass AKE to instantiate authenticated KEM → authenticated key wrapping
 - Want something as simple and as close as possible to DHIES
 - More secure and more efficient than adding sender's signature
- HOMQV (a One-Pass HMQV KE protocol)

Group $G=\langle g \rangle$, hash function H , sym encryption Enc , msg auth Mac

DHIES*

- Receiver's PK: $A=g^a$
- Sender chooses y , sends (Y, C, T) where
 1. $Y = g^y \quad \sigma = A^y$
 $K = H(\sigma)$
 (2 expon's)
 2. $K \rightarrow K_1, K_2$
 $C = \text{Enc}_{K_1}(M) \quad T = \text{Mac}_{K_2}(C)$
- Decryption: $\sigma = Y^a$, etc
 (1 expon.)

Authenticated DHIES*

- R's PK: $A=g^a$; Sender's PK $B=g^b$
- Sender chooses y , sends (Y, C, T) where
 1. $Y = g^y \quad \sigma = A^y B^e \quad e = H_{1/2}(Y, \text{id}_R)$
 $K = H(\sigma, \text{id}_S, \text{id}_R, Y)$
 (2 expon's)
 2. $K \rightarrow K_1, K_2$
 $C = \text{Enc}_{K_1}(M) \quad T = \text{Mac}_{K_2}(C)$
- Decryption: $\sigma = (Y B^e)^a$, etc
 (1.5 expon.)

* Group membership tests or cofactor exponentiation omitted (more later...)

HOMQV (Hashed One-pass MQV)

- Functionally optimal
 - Minimal performance overhead: Just extra $\frac{1}{2}$ exp for receiver. Free for sender. No extra communication
 - Backwards compatibility with DHIES: Set B=1 b=0
- How about security?
- We prove security of HOMQV as one-pass key-exchange
(→ authenticated key wrapping)

HOMQV

- Sender id_S has public key $B=g^b$
- Receiver id_R has public key $A=g^a$
- $S \rightarrow R: Y = g^y$
- S computes $\sigma = A^{y+be}$
- R computes $\sigma = (YB^e)^a$
- Both set $K = H(\sigma, \text{id}_S, \text{id}_R, Y)$

$\left. \begin{array}{l} \sigma = A^{y+be} \\ \sigma = (YB^e)^a \end{array} \right\} e = H_{1/2}(Y, \text{id}_R)$

Theorem

- Under Gap-DH in the ROM, HMQV is a secure one-pass key-exchange protocol
 - Security of one-pass protocol: Canetti-Krawczyk relaxed to allow for key-replays
 - Guarantees mutual authentication in a strong adversarial model
 - Proof: Reduction to XCR signatures (defined in [HMQV])
- Some important leakage-resilience properties
 - Sender's Forward Security
 - Resistance to leakage of ephemeral Diffie-Hellman exponents (y-security)

Leakage-resilience Properties

- Sender forward security (disclosure of sender's secret key b does not compromise past keys and messages)
 - Weak FS: For sessions where attacker was passive
 - For full FS: Add a “key confirmation” $\text{Mac}_{K^*}(1)$ to sender's message (in particular, satisfied by the DEM part of DHIES)
- y -security: The disclosure of ephemeral secret y does not compromise any keys or messages
 - Not even the key/msg transported using $Y=g^y$
 - Moreover: the disclosure of both y and b reveals the msg sent using y but no other msgs sent by b 's owner

On the Proof

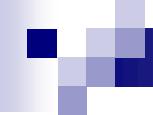
- Too technical... for a short presentation
- but amazingly precise: The proof tells exactly what the role of each element in the protocol is
- and what the consequences of leakage are for each such element (a, b, y, σ and their combinations)

→ Better security, better efficiency: **Proof-driven design**

- Get rid of safety margins
- Compare DHIES+signature vs HMQV
- Would you buy it without a proof?

Additional checks

- Proof tells us exactly what properties of incoming values (Y, B, A , etc.) each party needs to check
- Need to assure YB^e is of order q (no need for separate Y, B test)
- Can implement more efficiently over elliptic curve by *cofactor exponentiation*
 - $s = A^{fy}$ instead of A^y or $A^{f \cdot (y+be)}$ instead of $A^{(y+be)}$ where $f = |G'|/\text{ord}(g)$ and G' a supergroup containing g (e.g. $G' = \text{ell. curve}$)
- Note: Same needed for DHIES (Y test), hence $\frac{1}{2}$ exponent advantage remains

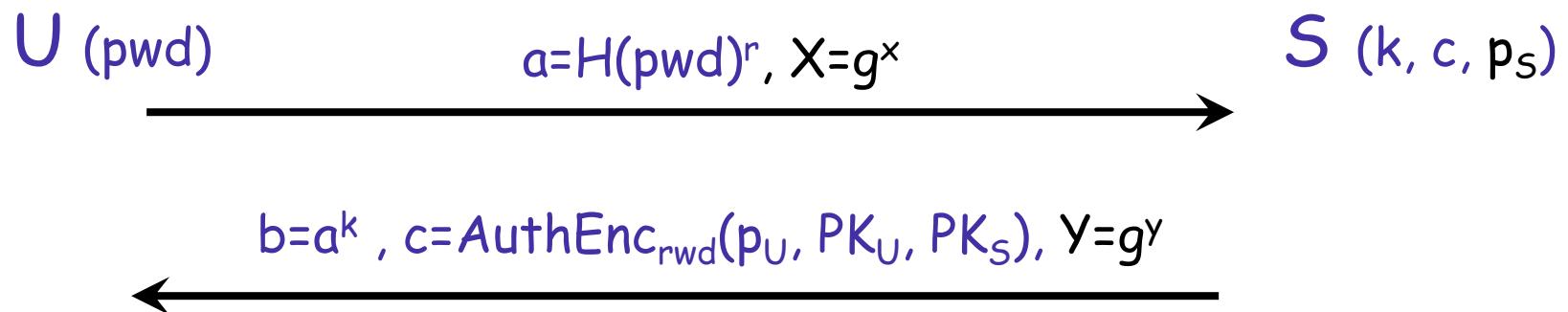


For Fun

HMQV application to PAKEs

- What's a PAKE (Password Authenticated Key Exchange)
 - Peers share a password as the only means of authentication (same as pre-shared key but a low-entropy key)
 - As long as attacker does not guess password, security in full
 - Only attack option: online guessing (one passwd per connection)
- Asymmetric PAKE: user has pwd, server stores $H(\text{pwd})$
 - Above security requirements PLUS: If server is broken into, finding pwd requires a full *offline dictionary attack*

OPAQUE: Application of HMQV to aPAKE (the beauty of minimality)



- $\text{rwd} = H(\text{pwd})^k \leftarrow H(b^{1/r})$
- $p_U, \text{PK}_U, \text{PK}_S \leftarrow \text{AuthDec}_{\text{rwd}}(c)$
- $SK = \text{HMQV}(x, p_U, Y, \text{PK}_S)$ $SK = \text{HMQV}(y, p_S, X, \text{PK}_U)$