
Extreme minimality:

Implicitly Authenticated KE Protocols

1

2

A natural Authenticated DH
Solution (ISO 9796)

A, gx

B, gy, SIGB(gx,gy,A)

SIGA(gy,gx,B)

BA

Simple, but 3 messages plus signatures [and certificates]

3

The quest for Authenticated DH

 What is the inherent cost of authentication in

Diffie-Hellman? In terms of

 Communication: number of messages, group elements,

authentication information, actual message size

 Computation: algebraic operations and actual speed

 Security: What can we prove?

 How close can we get to the fundamental limits?

And still prove security…

Implicitly Authenticated DH

 Authentication via session key computation

 No transmitted signatures, MAC values, etc

 Session key must involve long-term and ephemeral keys:

K=F(PKA,PKB,SKA,SKB ,gx,gy,x,y)

 Ability to compute key  authentication

 The simpler the trickier: many insecure proposals
4

A B

B, gy

A, gx

(Abuse of) Notation

5

B=gb, Y=gy

A=ga, X=gxA B

Public key of A (resp. B) denoted A=ga (resp. B=gb)

Some Ideas

 Can we really have a non-replayable 2-msg protocol?

 Remember AB: gx, SIGA(gx,B), AB: gy, SIGB(gy,A) insecurity

 Combining A, B, X, Y:

 K=H(gab, gxy): Open to known key and interleaving attacks

 K=H(gab, gxy, gx, gy) works but open to “KCI attacks”

(a general weakness of protocols with gab)

 We want that no attack except if learning pair (x,a) or (y,b)

 Idea: K = g(a+x)(b+y) (computed by A as (BY)a+x, by B as (AX)b+y)

 Doesn’t work: Attacker sends X*=gx*/A, B sends Y, K=(BY)x*

(no need to know A)
6

MQV

 Idea: set K = g(a+dx)(b+ey) and define d, e so that

attacker cannot control e and Y, or d and X

 MQV: d=half bits of X, e=half bits of Y

 Does not quite work

 But a simple variation does

7

The HMQV Protocol



8

The HMQV Protocol

 Basic DH + special key computation

 Notation: G=<g> of prime order q; g in supergroup G’ (eg. EC, Z*
p)

 Alice’s PK is A=ga and Bob’s is B=gb (private keys are a, b, resp.)

 Exchanged ephemeral DH values are X=gx, Y=gy

 Each computes σ=g(x+da)(y+eb) as σ = (YBe)x+da = (XAd)y+eb

 d=H(X,”Bob”) e=H(Y,”Alice”) (H outputs |q|/2 bits)

 Session key K=H’(σ) (H’ outputs |K| bits, say 128)

 Almost free authentication: 1
6

exponentiation, = communic’n

9

multi-exponentiation

 Input: g0, g1, e0=(a0, a1,…, at-1) Output: g0
e0 ∙ g1

e1

e1 =(b0, b1,.., bt-1)

 Pre-computation: G0=1, G1=g0, G2=g1, G3=g0∙g1, s(i)=ai+2bi

 Compute: A:=1; For i=0 to t-1: {A:=A∙A; A:=A∙Gs(i) }

 Ops: t-1 squarings; ¾ t multiplies (¾ because Gs(0)=1)

 Compared to full exponentiation t-1 squares, ½ t mult’s

 g0
e0 ∙ g1

e1 costs 1
1

6
exponentiations rather than 2

 Works for any number k of bases (extra 2k-2 mults)

10

The HMQV Protocol (w/short d,e)

 Both compute σ=g(x+da)(y+eb) as σ = (YBe)x+da = (XAd)y+eb

 d=H(X,”Bob”) e=H(Y,”Alice”) (here H outputs |q|/2 bits)

 Session key K=H(σ) (here H outputs |K| bits, say 128)

 Authentication for “½ exponentiation” (no multiexp optimiz’n)

 Original formulation and proof (full length d, e simplifies

some aspects of proof)

11

HMQV Explained

 HMQV: basic DH (X=gx, Y=gy), PKs: A=ga, B=gb

 σ=g(x+da)(y+eb) as σ = (YBe)x+da = (XAd)y+eb ; K=H(σ)

 d=H(X,”Bob”) e=H(Y,”Alice”)

 No signatures exchanged, authentication achieved via

computation of σ (must ensure: only Alice and Bob can compute it)

 Idea: (YBe)x+da is a sig of Alice on the pair (X, “Bob”) and,

at the same time, (XAd)y+eb is a sig of Bob on (Y, “Alice”)

 Two signatures by two different parties (different priv/publ

keys) on different msgs but with the same signature value!

12

Underlying Primitive:

Challenge-Response Signatures

 Bob is the signer (PK is B=gb), Alice is the verifier (no PK)

 Alice sends a “challenge” (X=gx) and a msg m to Bob, who responds with a

“challenge-specific” signature on m (sig depends on b, X, m)

 Alice uses her “challenge trapdoor” (x) to verify the signature

 AliceBob: m, X=gx

BobAlice: Y=gy, σ=Xy+eb where e=H(Y,m)

Alice accepts the signature as valid iff (YBe)x= σ

 Note: Alice could generate the signature by herself! (signature

convinces only the challenger – non-transferable -- bug or feature?)

 We call this scheme XCR (Xponential Challenge Response)

13

Security of XCR Signatures

 Theorem: XCR signatures are unforgeable

 Unforgeability under usual adaptive chosen message attack

 Only signer and challenger can compute it

 Assumptions: Computational DH; also H modeled as random oracle

 Idea of proof: “exponential” Schnorr via Fiat-Shamir

 More later…

14

Dual XCR (DCR) Signatures

 Alice and Bob act as signers and verifiers simultaneously

 Alice has PK A=ga, Bob has PK B=gb

 Alice and Bob exchange values X=gx, Y=gy and msgs mA,mB

 Bob generates an XCR sig on mA under challenge XAd

Alice generates an XCR sig on mB under challenge YBe

 The signature is the same! σ = (YBe)x+da = (XAd)y+eb

 This is exactly HMQV if one puts mA=“Alice”, mB=“Bob”
(since sig is the same value it needs not be transmitted!)

15

Proof of HMQV

 Reduction from breaking HMQV as KE (in the CK model)

to forging DCR

 Not a trivial step

 Great at showing the necessity of all elements in the protocol:

drop any element and the proof shows you an attack (e.g. MQV)

 Reduction from forging DCR to forging XCR

 Quite straightforward

 Reduction from forging XCR to solving CDH in RO model

 I expand on this next

16

XCR Proof via “Exponential Schnorr”

 Schnorr’s protocol (given B=gb, Bob proves knowledge of b)

 BobAlice: Y=gy

 AliceBob: e R Zq

 BobAlice: s=eb+y (Alice checks YBe=gs)

 Exponential Schnorr: Bob proves ability to compute ()b

 BobAlice: Y=gy

 AliceBob: e R Zq, X=gx

 BobAlice: σ=Xeb+y (Alice checks (YBe)x=σ)

Theorem: XCR is strongly CMA-unforgeable (CDH + RO)

17

{0,1}|q|/2

X

Proof: A CDH solver C from XCR forger F

 Input: U, V in G=<g> (a CDH instance; goal: compute guv)

 Set B = V X0 = U (B is signer’s PK, X0 is challenge to forger)

 Run F; for each msg m and challenge X queried by F (*a CMA attack*)

simulate signature pair (Y,Xs) (random s, e; Y=gs/Be; H(Y,m)  e)

 When F outputs forgery (Y0, m0, s): (* (Y0,m0) fresh and H(Y0,m0) queried *)

Re-run F with new independent oracle responses to H(Y0,m0)

 If 2nd run results in forgery (Y0, m0, s’) (* same (Y0,m0) as before! *)

then C outputs W=(s/s’)1/c where c=(e-e’) mod q .
(e, e’ are the responses to H(Y0,m0) in 1st and 2nd run, respectively)

Lemma: with non-negligible probability W=DH(U,V)

Proof: [PS] + W= (s/s’)1/c = ((Y0Be)x0 / (Y0Be’)x0)1/c = ((Bc) x0)1/c = Bx0

18

Implications for HMQV (* X  XAd *)

 We used W = (s/s’)1/c = ((Y0Be)x0 / (Y0Be’)x0)1/c

But can we divide by Y0Be’? Yes if B and Y0 in G (have inverses)

 B in G always true (chosen by honest signer) but what about Y0

which is chosen by forger?

 Do we need to check that Y0 in G? (An extra exponentiation?)

 No. If G  R, then enough to check Y0 has inverse in R

 E.g: G = Gq = <g>  Zp*; R = Zp; simply check Y in Zp and Y≠0

 HMQV needs no prime order verification! (later: only if exponent leak)

 Forger can query arbitrary msgs with arbitrary challenges X (even
challenges not in group G)  No need for PoP or PK test in HMQV!

(X becomes XAd and we do not need to check X nor A!)

 Robust security of HMQV without extra complexity
(no extra exponentiations, PoP’s, PK validation, etc.)

19

More on Security of HMQV

 Note that each party can start the protocol (no

initiator/responder roles) even simultaneously

 Protocol is not secure against leakage of both {a,x} or

{b,y} but secure against any other pair in {a,x,b,y}

 Secure against disclosure of {a,b} is equivalent to PFS

 But does HMQV really achieve PFS?

20

PFS in HMQV

 PFS achieved only against passive attackers

 Impossibility fact: If the messages sent in the proto-

col are computed without knowledge of the long-term

keys of the sender then PFS fails to active attackers

 The attacker chooses the message in the name of A (e.g. it

chooses x and sends gx) ; later it learns the long-term key of

A, hence can compute the session key.

 Thus, authentication specific information must be transmitted

to achieve PFS (e.g., via a third “key confirmation” message)

21

22

A fundamental question:

 Can one obtain a FULLY authenticated DH protocol with

 A single message per party (2 message total)

 A single group element per message

 NO certificates

 Minimal computational overhead for authentication

 AND PFS AGAINST FULLY ACTIVE ATTACKERS

????????????

23

A surprising answer: YES!

 By working over cyclic groups modulo a composite

(we will refer to the bit size of elements later)

 Resorting to classical Okamoto-Tanaka protocol (1987)

 With simple modifications required for security

 With full proof of security,

including proof of PFS against active attackers!!

Modified Okamoto-Tanaka (mOT)

24

25

Modified Okamoto-Tanaka Protocol

 Identity-based setting: Key Generation Center (KGC)

 Chooses safe primes p, q (p=2p’-1, q=2q’-1)

and RSA exponents e, d for N=pq

 Chooses generator g of QRN (set of quadratic residues), a cyclic

group of order p’q’

 Publishes N, g, e (e.g. e=3)

 Secret key for party I is SI=H(I)d mod N (computed by KGC)

 Ephemeral session values: gx mod N for x of length

twice the security parameter (e.g., between 160-256 bits)

26

Modified Okamoto-Tanaka (mOT)

 Two msgs, single group element, no certificate

 Computation: 1 off-line + 1 on-line expon’n (= basic DH)
+ e-exponentiation (= 2 multiplications) and 1 squaring

 Just 3 mult’s more than a basic DH over composite N !!!

IA, α = SA·gx mod N
BA

IB, β = SB·gy mod N

SA=H(IA)d SB=H(IB)d

K=H(βe/H(IB))2x K=H(αe/H(IA))2y= g2xye =

27

mOT: Minimal Overhead,

But is it secure?

 YES!

 With proof of security in the Canetti-Krawczyk model

 RSA assumption + Random Oracle Model (passive PFS only)

 And proof of PFS security against active attackers

 With additional “knowledge-of-exponent” type assumptions

 Note: mOT avoids the “implicit-authenticated PFS impossibility”

since messages α, β depend on the private key of the sender

IA, α = SA·gx mod N

IB, β = SB·gy mod N

messages

depend on

private keys

messages

depend on

private keys

28

On the Proof

 The basic case: CK model, weak PFS, under plain RSA

in ROM follows more or less standard arguments

 The challenge is in proving full PFS (against active attacks

and without additional messages/communication)

 Good news: we can do it!

 In particular, security of past communication if KGC compromise

 Less good news: non-standard assumptions

 But a STRONG indication of security!

29

KEA-type Assumptions

 KEA-DH (a.k.a KEA1): “Computing gxy from g,gx,gy can only

be done if one knows x or y”

 KEA-DL:

 Given y=gx want to compute x with the help of a Dlog oracle D

that accepts any input but y

 Obvious strategy: query D with y·g

More generally: Can query D with z=yigj for any known i,j

(and recover x from the oracle’s response ix+j)

 KEA-DL states that this is the most general strategy, i.e., if

you find x by querying D(z) then you know i, j such that z=ix+j

30

Real-World Performance

☺ Complexity is essentially the same as the basic

unauthenticated DH…

… but it runs over ZN for composite N

☺… with short exponents (assumes dlog hard w/ such exponent)

☺… no certificate transmission and processing

In all, comparable performance to HMQV/ECC for
security levels under 2048 bits (for RSA)

The really important point, however, is theoretical:
Testing the limits of what is possible

32

Conclusions and Open Problems

 Conclusions

 It is amazing how little one may need to pay over the basic DH

for a fully authenticated exchange with full PFS:

Over QR groups the ONLY overhead is JUST 3 multiplications!

(no communication penalty, not even certificates)

 Open questions

 Achieve the same performance properties with full PFS

over other Dlog groups (e.g. Elliptic Curves)

 Get rid of special assumptions for PFS proof

 Reduce reliance on secrecy of the ephemeral gx and gy

One-Pass HMQV and
Asymmetric Key-Wrapping

33

34

Motivation

 Key wrapping as a basic functionality (e.g. storage

systems)

 A good example of:

Optimizing cryptography via “Proof-driven design”

 Proof tells us precisely what elements in the design are

essential and which can be avoided

 Avoid unnecessary safety margins

 Better performance and functionality

 A great protocol debugging tool

35

Key Wrapping

 Key-wrapping or key encapsulation: Server wraps a

symmetric key for transporting it to a client

 Think of wrapping as a key encryption mechanism

 Encrypting key may be symmetric or asymmetric (AES, RSA)

 Wrapped key may be a fresh key, or a previously generated

one, sometimes bound together with associated data

 Wrapping typically done off-line and non-interactively.

K

36

Example: Encrypted Backup Tapes

 Tape encryption:

 Tape sent to KMM (key management module)

 KMM encrypts tape with tape-specific key K

wraps K (under another key) and stores wrapped key with tape

 Tape decryption

 wrapped key sent to KMM* who unwraps (decrypts) K

 K is sent back to tape holder for tape decryption

 Notes: Decryption may happen many years after encryption

KMM and KMM* may not be the same (KMM* holds de-wrapping key)

37

Key Wrapping and Standards

 Major key management tool:

 storage, hardware security modules, secure co-processors,

ATM machines, clouds, etc.

 Complex: long-lived keys & systems, backwards compatibility,…

 Standards are important: server and client typically

run different systems (and by different vendors)

 Industry standards: storage systems, financial, HSMs, etc.

 Currently deployed: mainly DES/AES and RSA

 Searching for ECC-based key wrapping techniques

38

Main Candidate: DHIES Encryption

 Elgamal encryption + RO-based key derivation + Enc/Mac

 G=<g>: prime-order q H: hash function (RO)

Enc: symmetric encryption Mac: message auth code

 Receiver’s PK: A=ga , message to be encrypted: M

 Sender chooses yZq, sends: (Y, C, T) where

1. Y = gy σ = Ay K = H(σ) (2 exp)

2. K  K1, K2 C = EncK1(M) T = MacK2(C)

 Decryption: σ = Ya, K = H(σ), etc. (1 exp)

 [ABR01]: Scheme is CCA-secure in the ROM

39

DHIES as Key Wrapping

 DHIES instantiates the KEM/DEM paradigm: (Y,C,T)

 Key Encapsulation: Y=gy encapsulates key K=H(Ay) under PK A

 Data Encapsulation: (C,T) CCA-encrypts data under K

 Simple, efficient, functional

 KEM: Can be used to transmit a random fresh key K

 DEM: Can be used to transport a previously defined key

(and possible associated data)

 The message M (under C) is the transported key and assoc’d data

 Missing: Sender’s authentication

40

Authenticated Key Wrapping

 DHIES implicitly authenticates the receiver

 Only intended receiver can read the key/data

 This is the case for most key wrapping techniques

 But how about sender’s authentication?

 Who encrypted the tape? Who can it be decrypted for?

 Authenticated key wrapping: Key wrapping with sender’s

authentication ( mutual authentication)

41

Authenticating Key Wrapping

 Solution: Add sender’s signature on wrapper SignS(Y,C,T)

 But, is it necessary (performance)?

 Is it sufficient?

 No. Needs to bind signer to key, not just to the wrapper

 For example, Bob encrypts tape, sends wrapper with signature

 Charlie strips Bob’s signature and generates its own

 Alice believes the key is owned by Charlie

 Thus, she may later decrypt the tape for Charlie

Similar to UKS (or identity-misbinding) attacks on KE protocols

42

Authenticated Wrapping: Equivalent Notions

 Requirements are essentially of a key exchange protocol (w/replay)

 Alice will never associate with Charlie a key created by Bob (assuming

Bob and Alice are honest)

 Considering just KEM part of key wrapping (fresh key) with sender

authentication, the following are equivalent:

 Authenticated Key Wrapping, Authenticated KEM, One-Pass AKE

 With the DEM part (a “message” encrypted with the KEM key) one

obtains a notion of “authenticated encryption” or its equivalent

 UC-secure message transmission (w/replay) [Gjosteen, Krakmo]

 Secure signcryption [Gorantla et al, Dent]

43

Authenticated Wrapping & One-Pass KE

 We can use any one-pass AKE to instantiate

authenticated KEM  authenticated key wrapping

 Want something as simple and as close as possible to DHIES

 More secure and more efficient than adding sender’s signature

 HOMQV (a One-Pass HMQV KE protocol)

Group G=<g>, hash function H, sym encryption Enc, msg auth Mac

DHIES*

 Receiver’s PK: A=ga

 Sender chooses y,
sends (Y,C,T) where

1. Y = gy σ = Ay

K = H(σ)

(2 expon’s)

2. K  K1, K2

C= EncK1(M) T= MacK2(C)

 Decryption: σ=Ya, etc
(1 expon.)

Authenticated DHIES*

 R’s PK: A=ga ; Sender’s PK B=gb

 Sender chooses y,
sends (Y,C,T) where

1. Y = gy σ = Ay+be e = H½(Y,idR)

K = H(σ, idS, idR, Y)

(2 expon’s)

2. K  K1, K2

C= EncK1(M) T= MacK2(C)

 Decryption: σ= (YBe)a, etc

44

* Group membership tests or cofactor exponentiation omitted (more later…)

(1.5 expon.)

H
O
M
Q
V

45

HOMQV (Hashed One-pass MQV)

 Functionally optimal

 Minimal performance overhead: Just extra ½ exp for receiver.

Free for sender. No extra communication

 Backwards compatibility with DHIES: Set B=1 b=0

 How about security?

 We prove security of HOMQV as one-pass key-exchange
( authenticated key wrapping)

46

HOMQV

 Sender idS has public key B=gb

 Receiver idR has public key A=ga

 S  R: Y = gy

 S computes σ = Ay+be

 R computes σ = (YBe)a

 Both set K = H(σ, idS, idR, Y)

e = H½(Y,idR)

47

Theorem

 Under Gap-DH in the ROM, HOMQV is a secure
one-pass key-exchange protocol

 Security of one-pass protocol: Canetti-Krawczyk relaxed to
allow for key-replays

 Guarantees mutual authentication in a strong adversarial model

 Proof: Reduction to XCR signatures (defined in [HMQV])

 Some important leakage-resilience properties

 Sender’s Forward Security

 Resistance to leakage of ephemeral Diffie-Hellman exponents
(y-security)

48

Leakage-resilience Properties

 Sender forward security (disclosure of sender’s secret
key b does not compromise past keys and messages)

 Weak FS: For sessions where attacker was passive

 For full FS: Add a “key confirmation” MacK*(1) to sender’s
message (in particular, satisfied by the DEM part of DHIES)

 y-security : The disclosure of ephemeral secret y does
not compromise any keys or messages

 Not even the key/msg transported using Y=gy

 Moreover: the disclosure of both y and b reveals the msg sent
using y but no other msgs sent by b’s owner

49

On the Proof

 Too technical… for a short presentation

 but amazingly precise: The proof tells exactly what the

role of each element in the protocol is

 and what the consequences of leakage are for each

such element (a, b, y, σ and their combinations)

 Better security, better efficiency: Proof-driven design

 Get rid of safety margins

 Compare DHIES+signature vs HOMQV

 Would you buy it without a proof?

50

Additional checks

 Proof tells us exactly what properties of incoming

values (Y, B, A, etc.) each party needs to check

 Need to assure YBe is of order q (no need for separate Y,B test)

 Can implement more efficiently over elliptic curve by

cofactor exponentiation

 s = Afy instead of Ay or Af·(y+be) instead of A(y+be) where

f=|G’|/ord(g) and G’ a supergroup containing g (e.g. G’ = ell. curve)

 Note: Same needed for DHIES (Y test), hence ½ expon

advantage remains

For Fun

48

HMQV application to PAKEs

 What’s a PAKE (Password Authenticated Key Exchange)

 Peers share a password as the only means of authentication

(same as pre-shared key but a low-entropy key)

 As long as attacker does not guess password, security in full

 Only attack option: online guessing (one passwd per connection)

 Asymmetric PAKE: user has pwd, server stores H(pwd)

 Above security requirements PLUS: If server is broken into,

finding pwd requires a full offline dictionary attack

52

OPAQUE: Application of HMQV to aPAKE
(the beauty of minimality)

53

U (pwd) S (k, c, pS)a=H(pwd)r, X=gx

b=ak , c=AuthEncrwd(pU, PKU, PKS), Y=gy

• rwd=H(pwd)k
 H(b1/r)

• pU, PKU, PKS  AuthDecrwd(c)

• SK = HMQV(x,pU,Y,PKS) SK = HMQV(y,pS,X,PKU)

