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About this class

 A mostly-informal introduction (especially the first half)

 Focus on design principles, conceptual understanding

 Examples from real world, standardized key exchange protocols 
but at a high level  (“cryptographic core”)

 Simplicity as a “core value”

 Learning by counter-example

 “undergraduate level”

 Formalisms and details in coming days

 Note on terminology: “Key exchange” = “Authenticated Key 
Exchange” (also, key agreement)
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Two Major Sins

1. Mostly based on my own works

 Recycling talks

2. Worse: I think it is ok

 Not intended as a comprehensive survey (need a full+ 

semester for that) but as a conceptual introduction  
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Part I
 Introduction 

 What is a Key Exchange Protocol

 Formalization and Design Challenges

 Main examples: Authenticated Diffie-Hellman 

 Common pitfalls and sound design principles

 Learning by examples and counter-examples

 Formalizing and proving key exchange protocols

 Modular design and analysis: Authenticators

 Protocols

 ISO and SKEME 

 STS and Photuris

 SIGMA Protocol and identity privacy 

 IPsec’s Internet Key Exchange (IKE)
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Part II

 Implicit authenticated key exchange 

 In the complex search for extreme simplicity

 HMQV, Okamoto-Tanaka, One-Pass KE

 Key derivation & the HKDF extract-and-expand scheme
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What is a Key Exchange Protocol

 Many answers: From naïve intuition to rigorous formal theory

 The fundamental role of KE  

 Bootstrap a secure channel between two communicating parties   

via the negotiation of shared keys and cryptographic services

 Enabler and heart of secure communications

 The link between long-term keys and fresh session keys

 Link between public-key and symmetric cryptography

 The most common form of cryptographic protocol in wide use

 Can teach us a lot about design and analysis of more complex protocols

 Deceptively simple  (overlooked as a “given” in multi-party protocols)
6



Key Exchange Protocols           
(very informal)

 A protocol between two parties to establish a shared key 

(“session key”) such that:

1. Authenticity: they both know who the other party is

2. Secrecy: only they know the resultant shared key

Also crucial (yet easy to overlook):

3. Consistency: if two honest parties establish a common session key 

then both have a consistent view of who the peers to the session 

are 
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A: (B,K) and B: (id,K)  id=A



Key Exchange Protocols

 More generally:

 Multiple parties; any two may exchange a key

 Sessions:  multiple simultaneous executions

 Adversary:

 Monitors/controls/modifies traffic (man-in-the-middle)

 May corrupt parties: learns long-term secrets

 May learn session-specific information: state/keys

 Security goal: preserve authenticity, secrecy and 
consistency of uncorrupted sessions

 Confine damage from exposure to a minimum
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Formalizing Key Exchange

 An intuitive notion but hard to formalize

 Wish list for formal definitions/model:

 Intuitive (beware!)

 Reject “bad” protocols (capture full capabilities of realistic

attackers)

 Accept “good”, natural protocols (avoid overkill requirements)

 Ensure security of KE applications: “secure channels” as the 

quintessential application (protocol composition)

 Usability: easy to analyze (stand alone  composable)                     

+ a design tool
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Designing and Analyzing KE Protocols…

 …is non-trivial

 Yet the end protocol need not be complex

 And: to be practical the protocol MUST BE SIMPLE

 Best advice: learn from past experience (good and bad)

 Formal analysis as an indispensable tool 

 But remember: there is no ULTIMATE security model or 

absolute proofs of security  

 only relative to the model (and cryptographic assumptions)
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Diffie-Hellman
and 

Key Exchange Protocols
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Diffie-Hellman Exchange [DH’76]
g = generator of a cyclic group G (e.g. Zp

*, EC group)

A B
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• Both parties compute the secret key K=gxy=(gx)y=(gy)x

1. CDH Assumption: K hard to compute given only gx and gy

2. DDH Assumption: K indistinguishable from random element in G 

• Decisional DH assumption: (gx,gy,gxy) c (gx,gy,grandom)

• From gxy to a k-bit key: KDF: gxy
 {0,1}k (pseudorandom)

gy

gxrandom x

random y



Diffie-Hellman KE and PFS

 Perfect Forward Secrecy (PFS)

 Once the session keys are destroyed there is no way to 

recover them, not even by the owners

 Distinguishes D-H from other protocols 

 compare SSL: What if your bank’s private encryption key ever 
compromised? ALL past traffic exposed!

 With PFS long-term keys used only  for authentication
13

(not even at gunpoint)

A B

B, gy

A, gx



Diffie-Hellman Exchange [DH’76]

A B
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• beautiful, strong, but…

• secure only against eavesdroppers 

• open to active attacker (man-in-the-middle)

B, gy

A, gx



(Wo)Man-in-the-Middle

15

B, gy’

A BE

B, gy

A, gx A, gx’

KAB=gxy’ KBA=gx’y

Eve knows both keys!



The Long Journey Towards
Authenticated DH Protocols

 UN-authenticated DH has survived to this date without 

change (40+ years!)

 In the same period, hundreds of papers published on 

authenticated DH protocols, many (most?) of them 

broken!

 Why is it so hard to get it right?
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The Long Journey Towards
Authenticated DH Protocols

 Why is it so hard?

 What is authentication? Difficult notion, non-trivial to formalize.     

Changes with trust and setup scenarios.

 How do we know when a protocol is secure?                                           

When are we done debugging it?  Poor track record…

 Took long time to be able to develop sound, general 

security models

 And even more to prove protocols in these models

 And guess what… unproven protocols tend to be broken
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Guided Tour to

Authenticated DH Protocols

18



Conventions (and disclaimers)

 A, B denote participants as well as their identities.

 Certificates: We assume parties have long-term public keys which 
other parties can learn and verify 

 Either by out-of-band verification or via certificates sent in the protocol 
(in the latter case A, B stand for identities plus certificates)

 We omit many essential operations such as explicit verification operations 
(of signatures and certificates) 

 DH group: We use “universal parameters” (e.g. p, g) – these can be 
wired into the protocol, negotiated during execution, etc.

 Note: No protocol can be secure without careful treatment of 
these “details” (remember: in crypto, the devil is in the details) 

 Here the focus is on basic structure and general principles 

19



First Attempt at Authenticated DH

A B
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B, gy, SIGB(gy)

• what if attacker ever finds a triple (x,gx,SIGA(gx))? 

•E.g., file of precomputed (x,gx) pairs

• Violates basic principle: Ephemeral leakage should not 
allow for long-term impersonation (beyond the leaked session)

A, gx, SIGA(gx)



Basic Authenticated DH (“BADH”)

Each party signs its own DH value to prevent m-i-t-m attack              

and the peer’s DH value as a freshness guarantee against replay

A: “Shared K=gxy with B” (KB)     B: “Shared K=gxy with A” (KA)
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B, gy

SIGA(gy,gx)

A, gxA B

, SIGB(gx,gy)

Looks fine, but…



Identity-Misbinding Attack [DVW’92]
(a.k.a. Unknown Key-Share attack = UKS)

 Any damage? Wrong identity binding!

A: “Shared K=gxy with B” (KB)    B: “Shared K=gxy with E” (KE)

E doesn’t know K=gxy but B considers anything sent 

by A as coming from E
22

B, gy, SIGB(gx,gy)

A, gx E, gx

B, gy, SIGB(gx,gy)

SIGA(gy,gx) SIGE(gy,gx)

A BE

Ξ



A: “Shared K=gxy with B”  (KB)  

B: “Shared K=gxy with E”  (KE)

 B = Bank  A,E = customers

 A          B: {“deposit $1000 in my account”}K

 B deposits the money in “K” ’s account, i.e. E’s!

 Should the bank protocol include explicit identities? Maybe,    

but KE should not make assumptions on higher-layer mechanisms 

 What is the expectation of higher layer protocols? That a key is 

uniquely bound to its owners  (“speaks for its owners”)

 SSL renegotiation’s bug: wrong binding of sessions (attack 

succeeded without the attacker ever learning the key)
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post this page on my website

websiteposts the page 
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www.slideshare.net/ThierryZoller/practicaltls1

Some exploits:

• Command injection https

• https to http downgrade

• Stealing credentials (twitter)



Yet another example
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Drone Example:

A: “Shared K=gxy with B”  (KB)                                     

B: “Shared K=gxy with E”  (KE)

 A= F-16  B= Central Command   E= drone (in enemy hands)

 B          E: {“destroy yourself”}K

 E passes command {“destroy yourself”}K to A.                    

 Result: F-16 destroys itself!
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Notes

 Attack discovered by Diffie-van Oorschot-Wiener 

[DVW’92]

 the “differential cryptanalysis” of KE protocols 

 highlights the crucial consistency property

 Note: The terminology Identity Misbinding Attack is mine 

The attack is more commonly referred to as the                            

Unknown Key-Share (UKS) attack.
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A: (B,K) and B: (id,K)  id=A



A Possible Solution (ISO-9796)
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A, gx

B, gy, SIGB(gx,gy,A)

SIGA(gy,gx,B)

B

Thwarts the identity-misbinding attack by including        
the identity of the peer under the signature

A



The ISO defense

A: aha! B is talking to E not to me!

Note that E cannot produce SIGB(gx,gy,A)

 The ISO protocol thus avoids the previous mentioned 

attacks; but is it secure??
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B, gy, SIGB(gx,gy,E)

A, gx E , gxA BE

B, gy, SIGB(gx,gy,E)



The ISO Protocol is Secure

 We’ll sketch the proof in the SK-security model of key 

exchange (known as the Canetti-Krawczyk model [CK’01] )

 Note: the actual ISO-9796 protocol is more complicated: 

adds a MAC on the peers id -- which adds nothing to the 

security of the protocol

 An important consequence of well-analyzed protocols: 

avoiding “safety margins”

 PROOF-DRIVEN DESIGN®

Let’s then talk about KE models and proofs...

30



On KE Analysis Work

 Two main methodologies

 Complexity based: security against computationally bounded 

attackers, proofs of security, reduction to underlying 

cryptography, probabilistic in nature

 Logic-based analysis: abstracts crypto as ideal functions, 

protocols as state machines, good protocol debuggers

 Recent bridging work towards “the best of two worlds”

 The power of automated analysis shown in recent TLS 1.3 design

 Here we focus on the first approach
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Remember a “definition desiderata”

 Intuitive (session notion, attacker capabilities, secrecy)

 Reject “bad” protocols (capture full capabilities of 
realistic attackers)

 Accept “good”, natural protocols (avoid overkill reqt’s)

 Ensure security of KE applications: “secure channels” as 
the quintessential application + composition

 Usability: easy to analyze (stand alone  composable)                     
+ a design tool

 One more confidence source: Equivalence of different 
definitions
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From Turing on Definitions of 
Computability

 A. Turing. On Computable Numbers, With an Application to the 
Entscheidungsproblem. Proccedings of the London Mathematical Society, 
2(42):230–254, 1937.

 No attempt has yet been made to show that the “computable” numbers 
include all numbers which would naturally be regarded as computable. All 
arguments which can be given are bound to be, fundamentally, appeals to 
intuition, and for this reason rather unsatisfactory mathematically. The 
real question at issue is “What are the possible processes which can be 
carried out in computing a number?”

 The arguments which I shall use are of three kinds.

a) A direct appeal to intuition.

b) A proof of the equivalence of two definitions (in case the new definition 
has a greater intuitive appeal).

c) Giving examples of large classes of numbers which are computable.
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CK Model Predecessors

 Bellare-Rogaway’93

 First complexity-theoretic treatment of KE   

 Indistinguishability approach [GM84]: attacker can’t distinguish the 
real key from a random one

 Extended in [BJM97] to the PK-authentication setting

 Bellare-Canetti-Krawczyk’98

 Simulation-based definition of KE security

 Ideally-authenticated (AM) vs. real-life (UM) 

 Modular authentication methodology

 Authenticators: AM-to-UM compilers

 Both works required tunings (learning is a never-ending process)
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Canetti-Krawczyk Model

 A combination of BCK’98 setting (simulation)    and 

BR’93 indistinguishability approach (“SK-security”)

 Goal: ensure good composition and modularity properties but 

keep the simplicity of indisting’y-based analysis (“usability”)

 Later years: BR – CK convergence 

 Secure channels as the “test application”

 Requires a formalization of secure channels (e.g., a transport 

protocol such as IPSec, SSL, SSH) – simplifies, see KP talk

 Universally Composable security
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SK Security [CK’01]

 Geared towards allowing protocol composition [BCK’98] 

especially with generic “secure channels protocol”

 Follows indistinguishability approach [BR’93] 

 Defines a set of possible adversarial interventions/corruptions

 Requires that such an attacker cannot distinguish the shared 
session key from random (as long as the parties to the session 
and the session itself are not corrupted)

 Secure channels as the must “test application”

 Requires a formalization of secure channels (e.g., a transport 
protocol such as IPSec, SSL, SSH) – more later
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SK-Security: KE protocol

 A two-party protocol in a multi-party setting 

 Multiple protocol executions may run concurrently at the 
same or different parties

 Each run of the protocol at a party is called a session
(a local object)

 Sessions have a unique local name: e.g. (A,sA) and an incoming 

name (B,sB) where B is the intended peer.                         

The session id is the concatenation: (A,sA,B,sB) 

 Sessions with corresponding names, i.e., (A,sA,B,sB)     and 
(B,sB,A,sA) are called matching.

 Upon completion a session erases its state and outputs  a 
triple: (session-id, peer-id, session-key)
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SK-Security: Attacker

 Adversary model (Unauthenticated links Model - UM)

 Full control of communication links: monitors/controls/modifies
traffic (m-i-t-m)

 Schedules KE sessions at will (interleaving)

 May corrupt parties (total control): learns long-term secrets*    
(e.g. signature key), all its state and session keys

 May issue a “learning query” for short-term information: 

 session state query (e.g., the exponent x of a gx value)

 session key query (of a complete, present or past, session)

 Exposed session: if session owner is corrupted, or attacker issued  a 
query against the session, or the matching session is exposed

 Clearly cannot protect a session if the matching is exposed
38



A KE Protocol is called SK secure if

1. Completed matching sessions output same session key 

(functional, non-triviality clause)

2. Attacker learns nothing about unexposed sessions

 Captured via “test session”; chosen by attacker  among 

completed unexposed sessions 

 Attacker is given either the session key or an independent 

random key; it needs to guess which one is the case

 Require that the probability that the attacker guesses  right   

is not significantly better than a random guess (i.e. ½ + small ε) 
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A compact but strong definition 

 Captures many attacks that were enumerated in the past as separate 
requirements (or wish lists). For example: 

 Impersonation: if E can impersonate Bob without corrupting him then E 
knows a key of an unexposed session, contradicting the definition

 Secrecy: If E learns anything about the session key then it can distinguish 
it from random. (Note: Why indistinguishability? The OTP example.)

 Known-key attacks: An important class of attacks studied separately in 
the past: Can E break one session given the key of another session? 
Captured via session key query

 Identity misbinding: if E forces two sessions w/outputs (A, B, K) and      
(B, E, K), then E can choose one as test and expose the other to learn K  
(it is allowed to do so since sessions are not matching)

 The definition can be further extended to cover other threats and 
security properties: e.g. PFS (via key expiration)
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Informal Summary

 Summary of security guarantees for honest A,B:

1. If A outputs session key (A, B, K) and B is honest then no one 
except B may know anything about K (not even a single bit) 

 Does the protocol guarantee that B outputs the key?? 

 “key confirmation” possible but “common knowledge” is not

2. Session keys are “computationally independent” of each other

 Note: session keys cannot be used during the key exchange itself
(cf. TLS)

 Note: Sharing a key with a corrupted party: 

 No guarantee for a key shared with a corrupted party. 

 But there is a guarantee that interacting with the attacker  
does not compromise any session between honest parties 
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Informal Summary

 Summary of security guarantees for honest A,B:

1. If A outputs session key (A, B, K) and B is honest then no one 
except B may know anything about K (not even a single bit) 

 Does the protocol guarantee that B outputs the key?? 

 “key confirmation” possible but “common knowledge” is not

2. Session keys are “computationally independent” of each other

 Note: session keys cannot be used during the key exchange itself
(cf. TLS)

 Note: Sharing a key with a corrupted party: 

 No guarantee for a key shared with a corrupted party. 

 But there is a guarantee that interacting with the attacker  
does not compromise any session between honest parties 
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About public keys

 Parties have long-term secrets 

 private signature/decryption keys, or shared keys w/other parties

 In the PK case: public keys of honest parties are assumed to 

be communicated to other parties correctly.

 Public keys of corrupted parties are chosen by the attacker 

arbitrarily (e.g., may be equal to a public key of another 

honest party).

 Think of a CA that checks identity but no other properties of the 

keys being registered (does not assume/require proof of 

possession, checking structure of a key, etc.)
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SK-security results (secure channels)

 SK-security  Secure Channels

 Any key exchanged with an SK-secure KE protocol and used to 
“encrypt-then-authenticate” data realizes a secure channel [CK01]

 Secure channel realization:

 K = output of KE  (may require a KDF step, e.g. if K=gxy ; 
can be combined with prf step below)

 Keys (Kenc, Kmac) = prfK(context) where context may include 
session/protocol/algorithm identifiers, parties identities, etc.

 Note: having directional keys (AB and BA) is a good idea  

 Apply to data:  c=EncKenc(data), t=MacKmac(c); transmit (c,t)

 Other combinations, e.g. EncKenc(data || MacKmac(data))      
may not be secure (TLS examples)
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encryption



SK-security results (protocols)

 A variety of protocols have been proven SK-secure 

(both DH and key-transport) 

 e.g., ISO, IKE (SKEME, SIGMA), HMQV, Pre-Shared and more   

 Two SK-secure flavors: with and w/o PFS                

 PFS modeled through session-expiration (models erasure); 
expired sessions are NOT exposed even if attacker corrupts 
the session’s owner.
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SK-Security and Composition

 CK02: SK-Security is “universally composable” (UC [Can’02])

 Remains secure under composition with any application, not just 

secure channels

 Well, almost: true for protocols with the ACK property

 True always if UC security weakened via “non-information oracles”

(see CK02 eprint/2002/059)

 SK-Security preserved under authenticators

 Authenticator: A “compiler” from (ideal) AM-secure protocols to 

(realistic) UM-secure protocols (a design and analysis tool!)

 More in following slides (incl. the proof of the ISO protocol)

47



UM and AM Models

 Adversary model: UnAuthenticated links Model (UM)

 Full control of communication links: monitors/controls/modifies
traffic (m-i-t-m)

 Schedules KE sessions at will (interleaving)

 May corrupt parties (total control): learns long-term secrets (e.g. 
signature key), all its state and session keys

 May issue a “learning query” for short-term information: 

 session state query (e.g., the exponent x of a gx value)

 session key query (of a complete, present or past, session)

 Exposed session: if session owner is corrupted, or attacker issued  a 
query against the session, or the matching session is exposed

 Clearly cannot protect a session if the matching is exposed
48
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Authenticators [BCK98]
 Models: 

 UM (Unauthenticated-links Model): a realistic attack model as 
described before

 AM (ideally Authenticated-links Model): like UM but attacker 
is passive; cannot change or inject msgs on links (but it may 
prevent delivery)

 Authenticator : a “compiler” from AM-secure protocols 
to UM-secure 

 Reduces the problem of designing (and analyzing) protocols 
from the complex UM to the simple AM 

 For example: Proving plain DH in the AM is immediate 
(under DDH assumption)
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Authenticators (sketch of idea)

 Message sending protocol (can be interactive)

 Parties send and receive messages and register their actions 

(“sent msg m to B”, “received msg m from A”)

 An authenticator is a message sending protocol s. t.

 Whenever A registers “received m from B”, it also holds that B 

registered “sent m to B”

 Note: To prevent replay attacks messages need to be made 

unique (e.g., concatenated with msg id or nonce)
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Authenticators Theorem

 Theorem: Let A be an authenticator

 If P is a protocol secure in the AM model 

 and P’ is the result of applying A to each message in P

Then, P’ is secure in the UM model.
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A signature-based authenticator 
(applied to message msg)

52

A, msg

B, nonce

A, SIGA(nonce,msg,B)

Compiler from AM to UM: apply the above authenticator                  
. to each protocol’s message

A B



Proving ISO Using an Authenticator
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A, gx

B, gy, SIGB(gx,gy,A)

SIGA(gy,gx,B)

B

Recall the ISO-9796 protocol                                            
(solved the Identity-Misbinding Attack of BADH):

A



Proving ISO Using an Authenticator

 First prove basic DH is SK-secure in AM        

 Equivalent to Decisional DH assumption: (gx,gy,gxy) c (gx,gy,grandom) 

i.e., gxy indistinguishable from random element in G

A B
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B, gy

A, gx

▪ Next apply the sig-based authenticator to 
this protocol a proof of the ISO protocol!!



Applying the Sig-Authenticator to AM-DH
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A, SIGA(gy,gx,B)

A, gx

Authenticator applied to gy is a slightly different variant:                     
first A sends nonce (gx), then B sends message (gy) with signature

Conclusion: the ISO protocol is SK-secure                   
(QED: with a simple  and intuitive proof) 

B, gy, SIGB(gx,gy,A)B, gy

msg=gx

nonce=gy
msg=gy

nonce=gx

signature 
authenticator 
on msg gx

We have: ISO = AM-DH plus Signature-based authenticator



Other Authenticators

(and the SKEME Protocol)
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PK-Encryption-based authenticator

Single message authenticator: A        B:
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A, msg

B, EncA(k)

A, msg, MACk(msg,B)

Compiler from AM to UM: apply the above authenticator                  
. to each protocol’s message

A B

msg



Applying the Enc-Authenticator to 
AM-DH
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A, gx, MACk2(gx,B)

A, EncB(k1)

 the SKEME protocol [K’96,IKEv1]

Variants: •Key transport (no pfs)                                                  

. • Pre-shared key (with a MAC-based authenticator)

B, gy, MACk1(gy,A), EncA(k2)

msg=gx

msg=gy



Authenticators are not always…

 Possible

 Either the design is not decomposable into a basic  AM-secure 
protocol and an authenticator applied to it

 Or desirable

 The decomposition is artificial and adds more technicalities than 
understanding

 Yet when they “work” it usually results in a more intuitive, 
modular and easier-to-analyze protocol

 And designing KE with authenticators in mind reduces the 
chances of hidden flaws 
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More on the Design of 
Key Exchange Protocols

 Privacy Issues: Identity Protection, deniability

 The design of the IKE Protocols: SKEME, SIGMA  

 “IPsec’s Key Exchange” (IKEv1, IKEv2)
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On Identity-Protecting KE Protocols

 Identity protection

 Hiding identities from passive and/or active  attackers

 Logical identities (e.g. cert’s) vs. physical addresses

 A privacy concern in many scenarios

 Probing attacks in the Internet: who are you?

 Location anonymity of roaming users

 The “intelligent passport” application

 IPSec/IKE: design highly influenced by such privacy 
concerns ( SKEME, SIGMA)
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Identity Protection

 Passive vs. active attacker                                   

 Both id’s protected against passive attacks but only one against 

active attacks

 Which identity should get active defense?

 Initiator: roaming user (e.g. hide location)

 Responder: avoid probing attacks: who are you? (e.g. passport)

 Presents some design challenges: conflict between 

anonymity and authentication
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Identity Protection in SKEME
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A, gx, MACKb(gx,B)

A, EncB( Ka)

Issue: Id protection requires A to know B’s pk (before run)

Next: SIGMA (signature based, solves this issue, IKEv2) 

B, gy, MACKa(gy,A), EncA(    Kb) X                                          B, 

X             A,



Why not ISO?

 B needs to know A’s identity                                                 

before he can authenticate to A;                                                   

same for A

 Protection against active attackers is not possible

 Another privacy concern: leaving a signed proof of 

communication (signing the peer’s identity)

 Letting each party sign its own identity rather than the peer’s 

solves the privacy issues but makes the protocol insecure     

(the identity-misbinding attack again)
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A, gx

B, gy, SIGB(gx,gy,A)

SIGA(gy,gx,B)

BA
A, gx

B, gy, SIGB(gx,gy,A)

SIGA(gy,gx,B)

BA

Unsuited for identity protection



Alternative Solution: STS [DVW’92]

 Idea: to prevent the Id-M attack against BADH,         

A and B “prove knowledge” of K=gxy to each other

 Reminder Id-M attack (note that E doesn’t know gxy)
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Alternative Solution: STS [DVW’92]

 Idea: each peer proves knowledge of K=gxy

(prevents the Id-M attack since in BADH E doesn’t know gxy)

 As a “Proof of Knowledge” the STS protocol uses 
encryption under K=gxy
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B, gy, {SIGB(gx,gy)}K

{SIGA(gy,gx )}K

A, gxA B

B, gy, {SIGB(gx,gy)}K

{SIGA(gy,gx )}K

A B

(encryption denoted by {…}K)



STS Pro’s and Con’s

☺ Pro: STS can protect identities 

 Peer’s id not needed for your own authentication

 Can extend encryption to cover identities (or cert’s)
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gxA B

gy, {B, SIGB(gx,gy)}K

A B

{A, SIGA(gy,gx )}K



STS Pro’s and Con’s

 Con: Protocol is insecure! (encryption is not the right 

function to prove knowledge of a key)

 E.g.: if Eve can register A’s public-key under her name she can 

mount the I-M attack (without knowing gxy)
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gxA B

gy, B, {SIGB(gx,gy)}K

A B

A, {SIGA(gy,gx )}K

E

E
/



Identity-Misbinding on STS

 Eve registers A’s PK as her own PK

 Applicable when CA checks for identity of registrant but not   

for “possession” (PoP) of private key

 The attack is trivial if cert’s not encrypted and trivial 

too if encrypted with a stream cipher

 Beyond the practicality of the attack, it is enough to 

show that “proof of knowledge of gxy” via encryption is 

not enough. 
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MOREOVER…



STS with MAC (instead of encryption) [DVW]

 MACK better suited to provide Proof of Knowledge of K

 Yet: same attack as w/ encryption is possible! 

 Can be mounted even if CA requires priv-key PoP! [BM99]

 Even if signer’s id put under sig (“on-line registration attack”)
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gxA B

gy, B, SIGB(gx,gy), MACK(SIGB)

A B

A, SIGA(gy,gx ), MACK(SIGA)
E
/

E/



What is going on?

 The point is that “proof of knowledge” of K=gxy is not 
the issue

 What is required is: 

binding the key K with the peer identities

 Which brings us to the SIGMA design

 SIGn and MAc-your-own-identity!!

 And what about Photuris?

 Yet another STS variant: Sign K=gxy as “proof of knowledge”; 
also insecure (see the SIGMA paper)

 But first another don’t-do-it lesson: Photuris
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But first another don’t-do-it lesson: Photuris
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Photuris Protocol (basic version)

73

A, gx

B, gy, SIGB(gxy)

SIGA(gxy)

B

Sign gxy as direct authentication of gxy and proof of knowledge of gxy

A

- Id-Misb attack: Eve replaces SIGA(gxy) with SIGE(g
xy) , possible with RSA 

(no need for E to register A’s PK as her own)

- SIG leaks information about gxy e.g. H(gxy) with RSA. Breaks secure channel
.      if keys derived as HMAC(key=gxy, data) which is computable given H(gxy)

- Small subgroup attack: next



Photuris Protocol (basic version)
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A, gx

B, gy, SIGB(gxy)

SIGA(gxy)

BA

SMALL SUBGROUP ATTACK:

• Assume g in Zp and p-1 has a small divisor s (i.e. p=st+1, e.g. s=3) 

• Attacker replaces gx with (gx)t and gy with (gy)t

• A and B compute same key K=gxyt

• But K now has order s, hence it only has s possible values!  (gt, g2t,…, gst)

Adding gx, gy under sig solves the small group attack but not the other attacks



The SIGMA Protocols
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SIGMA: Basic Version
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A, SIGA(gy,gx)

BA

gy, B, SIGB (gx,gy)

gx

*Km (and session key) derived from gxy via a kdf

SIG and MAC: complementary roles (mitm and binding, resp)

Does not require knowing the peer’s id for own          .     
authentication  Great for id protection (& deniable)

, MACKm(B)

, MACKm(A)



SIGMA-I:active protection of Initiator’s id
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gx

gy, {B, SIGB (gx,gy), MACKm(B) }Ke

{A, SIGA(gy,gx), MACKm (A) }Ke

BA

*Ke and Km derived from gxy via pseudorandom function

Responder (B) identifies first 

 Initiator’s (A) id protected



SIGMA-R:active protection of Responder’s id
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BA

{ B, SIGB (gx,gy), MACKm’(B) }Ke’

gx

gy

{ A, SIGA (gy,gx), MACKm (A) }Ke

Note: Km, Km’ and Ke, Ke’ (against reflection attack)



IKEv1 Variant: MAC under SIG

Equivalent security (just save MAC space):
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gy, B, SIGB (MACKm (B, gx,gy))

A, SIGA (MACKm (A, gy,gx))

gxA B

 this is IKE’s “aggressive mode” (no id protect’n)

Note: MAC(SIG(id,…)) is not secure!! (STS-MAC)



IKE Main Mode
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BA gx

gy

{ A, SIGA (MACKm (A, gy,gx)) }Ke

{ B, SIGB (MACKm’ (B, gx,gy)) }Ke’

IKE v2: a slight variant – only MAC(id) under SIG



 .

 Essential additional information (context, negotiation, etc.)

 Have separate elements for session identifiers, nonces, DH values

 Basic principle: Don’t use same element for multiple purposes

 Authenticate every element sent on the wire (identities too?)

 Downgrade attacks 

“Full fledge” SIGMA               
(elements missing from skeleton figures)
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SIGMA-I  TLS 1.3
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gx

gy, {S, SIGS (gx,gy), MACKm(S) }Ke

{C, SIGC(gy,gx), MACKm’ (C) }Ke’

SC

*Ke , Ke’ Km , Km’ and session key derived from gxy via KDF 

(handshake traffic / finished / application traffic keys) 

Server 
Key_share

Client 
Key_share

Server 
certificate Server FinishedCertificateVerify



SIGMA-I  TLS 1.3
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gx

gy, {S, SIGS (gx,gy), MACKm(S) }Ke

{C, SIGC(gy,gx), MACKm’ (C) }Ke’

SC

PLUS:  hello msg: nonce + negotiation;

transcript-hash under signature and MAC

LESS:  C, SIGC  for server-only authentication

Server 
Key_share

Client 
Key_share

Server 
certificate Server FinishedCertificateVerify



SIGMA Summary

 SIGMA suitable for most applications requiring a 

Diffie-Hellman key exchange:

 Simple and efficient (minimizes msgs and comput’n) 

 No over-design (nor under-design)

 With or without ID Protection

 Standardized: core key-exchange protocol for both IKEv1 and 

IKEv2, now also TLS 1.3

 The “off-the-record communication” [Goldberg-Borisov]             

(use of deniability – proven in [DGK]) 

84



But is SIGMA Secure?

 Proof in Canetti-K Crypto’02

 Formal proof: each element is essential

 e.g., SIG(MAC(id,…)) vs. (SIG(id,…), MAC(SIG(id,…)))

 Implies secure channels

 Secure composition (universal composability, UC)

 From theory to practice

 Specification, implementation, details, DoS, certificates, …
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86

Care with Variants



KEM as Diffie-Hellman Generalization

 KEM: Key excapsulation mechanism (“key transport”)

 KEM(pk)  (c, K)    De-KEM(sk, c)  K

 Generic DH:  

 Alice chooses pair (sk,pk) sends pk to Bob, keeps sk

 Bob applies KEM(pk), sends c to Alice, outputs K

 Alice compures K as De-KEM(sk, c), outputs K

 SKEME protocol: Long-term KEM + ephemeral KEM

 Recent examples: OPTLS (TLS 1.3 proposal), Kyber (a lattice 

based “post-quantum” KE proposal),  dispenses with signatures
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Exercise

 Is this secure (as one-sided authentication)

 BA: Nonce r

 AB:  c=KEM(PKB),  SigA(c,r)

 Session key K=De-KEM(skB, c)
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Many more considerations…

 Negotiation: algorithm independ., downgrade protection

 Denial of Service protection

 Key derivation 

 Secure channels, authenticated encryption

 Deniability

 …

 Automated analysis
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PROOF-DRIVEN DESIGN®

 Proof-driven design: Formal analysis as main design tool

 No simulation or empirical evidence; universal quantifier “for all”

 Proof guides choice of mechanisms, compose them right, 

discern between the essential, desirable and dispensable

 Result is efficiency, simplicity, rationale, even 

implementation guidance!

 Simplicity as a security feature: Keep it simple! (but not simpler)
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