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About this class

m A mostly-informal intfroduction (especially the first half)

m Focus on design principles, conceptual understanding

Examples from real world, standardized key exchange protocols
but at a high level (“cryptographic core")

Simplicity as a “core value”
Learning by counter-example

“undergraduate level”
m Formalisms and details in coming days

m Note on terminology: "Key exchange” = "Authenticated Key
Exchange” (also, key agreement)



"
Two Major Sins

1. Mostly based on my own works

01 Recycling talks

2. Worse: I think it is ok

1 Not intended as a comprehensive survey (need a full+
semester for that) but as a conceptual introduction
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Part I

m  TIntroduction
[ What is a Key Exchange Protocol
1 Formalization and Design Challenges
m  Main examples: Authenticated Diffie-Hellman
m  Common pitfalls and sound design principles
[ Learning by examples and counter-examples
m  Formalizing and proving key exchange protocols
1 Modular design and analysis: Authenticators
m Protocols

01 ISO and SKEME
1 STS and Photuris
1 SIGMA Protocol and identity privacy

m IPsec's Internet Key Exchange (IKE)
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Part II

m Implicit authenticated key exchange

01 In the complex search for extreme simplicity

1 HMQV, Okamoto-Tanaka, One-Pass KE

Part III

m Key derivation & the HKDF extract-and-expand scheme



"
What is a Key Exchange Protocol

m Many answers: From naive intuition to rigorous formal theory

m The fundamental role of KE

(1 Bootstrap a secure channel between two communicating parties
via the negotiation of shared keys and cryptographic services

1 Enabler and heart of secure communications
1 The link between long-term keys and fresh session keys

= Link between public-key and symmeftric cryptography

m The most common form of cryptographic protocol in wide use

1 Can teach us a lot about design and analysis of more complex protocols

[ Deceptively simple (overlooked as a "given” in multi-party protocols)
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Key Exchange Protocols
(very informal)

m A protocol between two parties to establish a shared key
(“session key”) such that:

Authenticity: they both know who the other party is
Secrecy: only they know the resultant shared key
Also crucial (yet easy to overlook):

Consistency: if two honest parties establish a common session key
then both have a consistent view of who the peers to the session
are

A: (B,K) and B: (id,K) = id=A
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Key Exchange Protocols

m More generally:
O Multiple parties; any two may exchange a key
[ Sessions: multiple simultaneous executions
m Adversary:

1 Monitors/controls/modifies traffic (man-in-the-middle)
1 May corrupt parties: learns long-term secrets

[ May learn session-specific information: state/keys

m Security goal: preserve authenticity, secrecy and
consistency of uncorrupted sessions

01 Confine damage from exposure to a minimum
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Formalizing Key Exchange

m An intuitive notion but hard to formalize

m Wish list for formal definitions/model:

0 Intuitive (bewarel)

[ Reject “bad” protocols (capture full capabilities of realistic
attackers)

[ Accept “good”, natural protocols (avoid overkill requirements)

01 Ensure security of KE applications: “secure channels” as the
quintessential application (protocol composition)

[ Usability: easy to analyze (stand alone - composable)
+ a design tool
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Designing and Analyzing KE Protocols...

m ...is hon-trivial
m Yet the end protocol need not be complex
1 And: to be practical the protocol MUST BE SIMPLE

m Best advice: learn from past experience (good and bad)

m Formal analysis as an indispensable tool

0 But remember: there is no ULTIMATE security model or
absolute proofs of security

= only relative to the model (and cryptographic assumptions)

10



Diffie-Hellman
and
Key Exchange Protocols

11
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Diffie-Hellman Exchange [DH'76]
g = generator of a cyclic group 6 (e.g. Z,", EC group)

A B

random X X
9 >

random y

<€ gy

* Both parties compute the secret key K=g*v=(g*)7=(g¥)*
1. CDH Assumption: K hard to compute given only g% and g¥

2. DDH Assumption: K indistinguishable from random element in G
Decisional DH assumption: (g*,g¥,g%) ~, (g*,g¥,grendem)

* From g*¥ to a k-bit keXY - {0,1}¥ (pseudorandom)
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Diffie-Hellman KE and PFS

A A, g B

< 5. 9"

m Perfect Forward Secrecy (PFS)

Once the session keys are destroyed there is no way to
recover them, not even by the owners (not even at gunpoint)

Distinguishes D-H from other protocols !

= compare SSL: What if your bank’s private encryption key ever
compromised? ALL past traffic exposed!

L

= With PFS long-term keys used only for authentication
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Diffie-Hellman Exchange [DH'76]

A B

<€

- beautiful, strong, but...
» secure only against eavesdroppers

- open to active attacker (man-in-the-middle)
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(Wo)Man-in-the-Middle

A A, g¥ E A, g¥
> >
B, g¥ B, g¥
< <
Kap=9 Kea=g*"

Eve knows both keys!

15
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The Long Journey Towards
Authenticated DH Protocols

m UN-authenticated DH has survived to this date without
change (40+ years!)

m In the same period, hundreds of papers published on
authenticated DH protocols, many (most?) of them
broken/

m Why is it so hard to get it right?

16
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The Long Journey Towards
Authenticated DH Protocols

m Why is it so hard?

What is authentication? Difficult notion, non-trivial to formalize.
Changes with trust and setup scenarios.

How do we know when a protocol is secure?
When are we done debugging it? Poor track record...

m Took long time to be able to develop sound, general
security models

m And even more to prove protocols in these models

m And guess what... unproven protocols tend to be broken

17



Guided Tour to

Authenticated DH Protocols

18
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Conventions (and disclaimers)

m A, Bdenote participants as well as their identities.
m Certificates: We assume parties have long-term public keys which
other parties can learn and verify

[ Either by out-of-band verification or via certificates sent in the protocol
(in the latter case A, B stand for identities plus certificates)

1 We omit many essential operations such as explicit verification operations
(of signhatures and certificates)

m DH group: We use "universal parameters” (e.g. p, g) - these can be
wired into the protocol, negotiated during execution, etc.

m Note: No protocol can be secure without careful treatment of
these "details” (remember: in crypto, the devil is in the details)

m Here the focus is on basic structure and general principles
19
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First Attempt at Authenticated DH

A 23
A, g%, SIG,(g%)

< B, gV, SIGg(gY)

* what if attacker ever finds a triple (x,g%,SIG(g%))?
‘E.q., file of precomputed (x,g*) pairs

* Violates basic principle: Ephemeral leakage should not
allow for long-term impersonation (beyond the leaked session)

20
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Basic Authenticated DH ("BADH")
A A, g" B

>

B, g%, SIGg(g*.9)

SIG.(9'.9%)

Each party signs its own DH value to prevent m-i-t-m attack
and the peer’'s DH value as a freshness guarantee against replay
A: “Shared K=g¥ with B” (K&B) B: “Shared K=g*¥ with A” (K<~ A)
Looks fine, but...

21
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Identity-Misbinding Attack [Dvw'92]
(a.k.a. Unknown Key-Share attack = UKS)

A A, g* S E @x S B

B, 9", SIGy(g*,9") = B, g”, SIGy(g*,9")
< <€

SI6A9.9) ,  _ SI¢H9'.9)

Any damage? Wrong identity binding!

>

A: “Shared K=g*¥ with B” (K<B) B: “Shared K=g*¥ with E” (K<E)

E doesn’t know K=g*¥ but B considers anything sent
by A as coming from E

22
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A: "Shared K=g¥ with B" (K&B)
B: "Shared K=g*¥ with E” (K®E)

m B=-Bank A,E = customers
post this page on my website
s A —> B: (Keposit 41000 in my-account: oty
osts the page website
O Bd@pe%%—tbnefmgeney-in “K” ’s accotint, i.e. E’s!

Should the bank protocol include explicit identities? Maybe,
but KE should not make assumptions on higher-layer mechanisms

What is the expectation of higher layer protocols? That a key is
uniquely bound to its owners (“speaks for its owners”)

m SSL renegotiation’s bug: wrong binding of sessions (attack
succeeded without the attacker ever learning the key)
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TLS & SSLv3 renegotiation vulnerability | 2011

4. Generic TLS renegotiation prefix injection vulnerability

& & !

Client Attacker Server (HTTPS)
|
>
1 TLS Hardshake session #1 |
(chient <> server) Attacker holds
, the packets

Some exploits: | preT———

(attacker <> server)

« Command injection https | _ = | _
eeeee Cued he Ercryyied commmsstatun ( :: >‘ ...................... B
« https to http downgrade | & =227 B
« Stealing credentials (twitter) @ Renegotiation is rigoered
- < 3 } ........................ [
TLS Handshake sesson #1 continued (client-server)

| within the encrypted session #2 (attacker-server)

Client data is encrypted within session f#1 (Green) (The attacker cannot read/
manipulate this data), previous data (1.2) prefixed io newly sent dient-data
|

www.slideshare.net/ThierryZoller/practicaltlsl



Yet another example
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WASHINGTON — Iran claimed on Sunday to have extracted secret
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Drone Example:

A: "Shared K=g* with B” (K&B)
B: "Shared K=g*¥ with E” (K®E)

m A= F-16 B= Central Command E= drone (in enemy hands)
m B —— E: {“destroy yourself},
m E passes command {“destroy yourself’}, o A.

m Result: F-16 destroys itself!

26
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Notes

m Attack discovered by Diffie-van Oorschot-Wiener
[DVW’92]

the “differential cryptanalysis” of KE protocols
highlights the crucial consistency property

A: (B,K) and B: (id,K) = id=A

m Note: The terminology Identity Misbinding Attack is mine

The attack is more commonly referred to as the
Unknown Key-Share (UKS) attack.

27



" A
A Possible Solution (ISO-9796)

A A B
>

« B, 9", SIG4(g".9"(A)
SIGA(QYIQ

Thwarts the identity-misbinding attack by including
the identity of the peer under the signature

28
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The ISO defense

B, 97, SI6e(g%9"E) B, 9, SIG4(g*9"(E)
< <

A: ahal B is talking to E not to mel
Note that E cannot produce SIGg(g*,gY,A)

m The ISO protocol thus avoids the previous mentioned
attacks; but is it secure??

29
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The ISO Protocol is Secure

m We'll sketch the proof in the SK-security model of key
exchange (known as the Canetti-Krawczyk model [CK'01] )

m Note: the actual ISO-9796 protocol is more complicated:
adds a MAC on the peers id -- which adds nothing to the
security of the protocol

m An important consequence of well-analyzed protocols:
avoiding “safety margins”

(1 PROOF-DRIVEN DESIGN®

Let’s then talk about KE models and proofs...

30
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On KE Analysis Work

m Two main methodologies

1 Complexity based: security against computationally bounded
attackers, proofs of security, reduction to underlying
cryptography, probabilistic in nature

1 Logic-based analysis: abstracts crypto as ideal functions,
protocols as state machines, good protocol debuggers

m Recent bridging work towards “the best of two worlds”

0 The power of automated analysis shown in recent TLS 1.3 design

m Here we focus on the first approach

31
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Remember a “"definition desiderata”

m Intuitive (session notion, attacker capabilities, secrecy)

m Reject “bad” protocols (capture full capabilities of
realistic attackers)

m Accept “good”, natural protocols (avoid overkill reqt's)

m Ensure security of KE applications: “secure channels” as
the quintessential application + composition

m Usability: easy to analyze (stand alone > composable)
+ a design tool

m One more confidence source: Equivalence of different
definitions

32
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From Turing on Definitions of
Computability

m A Turing. On Computable Numbers, With an Application to the

Entscheidungsproblem. Proccedings of the London Mathematical Society,
2(42):230-254, 1937.

m  No attempt has yet been made to show that the "‘computable” numbers
include all numbers which would naturally be regarded as computable. All
arquments which can be given are bound to be, fundamentally, appeals to
intuition, and for this reason rather unsatistactory mathematically. The
real question at issue is "What are the possible processes which can be
carried out in computing a number?”

m The arquments which I shall use are of three kinds.
a) A direct appeal to intuition.

b) A proof of the equivalence of two definitions (in case the new definition
has a greater intuitive appeal).

c)  Glving examples of large classes of numbers which are computable.

33
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CK Model Predecessors

m Bellare-Rogaway’93

0 First complexity-theoretic treatment of KE

O Indistinguishability approach [6GM84]: attacker can’t distinguish the
real key from a random one

[ Extended in [BIM97] to the PK-authentication setting
m Bellare-Canetti-Krawczyk’98

[ Simulation-based definition of KE security
01 Ideally-authenticated (AM) vs. real-life (UM)
1 Modular authentication methodology

m Authenticators: AM-to-UM compilers

m Both works required tunings (learning is a never-ending process)

34



" S
Canetti-Krawczyk Model

m A combination of BCK'98 setting (simulation) and
BR’93 indistinguishability approach (“SK-security”)

[ Goal: ensure good composition and modularity properties but
keep the simplicity of indisting'y-based analysis (“usability”)

[ Later years: BR - CK convergence
m Secure channels as the “test application”

1 Requires a formalization of secure channels (e.g., a transport
protocol such as IPSec, SSL, SSH) - simplifies, see KP talk

m Universally Composable security

35
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duplicate SK Security [CK'01]

m Geared towards allowing protocol composition [BCK'98]
especially with generic "secure channels protocol”

m Follows indistinguishability approach [BR'93]
[ Defines a set of possible adversarial interventions/corruptions

1 Requires that such an attacker cannot distinguish the shared
session key from random (as long as the parties to the session
and the session itself are not corrupted)

m Secure channels as the must “test application”

1 Requires a formalization of secure channels (e.g., a transport
protocol such as IPSec, SSL, SSH) - more later

36
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SK-Security: KE protocol

A two-party protocol in a multi-party setting

Multiple protocol executions may run concurrently at the
same or different parties

Each run of the protocol at a party is called a session
(a Jocal object)

Sessions have a unique local name: e.g. (A,s,) and an incoming
name (B,sg) where B is the intended peer.
The session idis the concatenation: (A,s,,B,sp)

Sessions with corresponding names, i.e., (A,s4,B,s3) and
(B,sp,A,s,) are called matching.

Upon completion a session erases its state and outputs a
triple: (session-id, peer-id, session-key)

37
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SK-Security: Attacker

m Adversary model (Unauthenticated links Model - UM)

1 Full control of communication links: monitors/controls/modifies
traffic (m-i-t-m)

1 Schedules KE sessions at will (interleaving)

1 May corrupt parties (fotal control): learns long-term secrets™
(e.g. signature key), all its state and session keys

[ May issue a “learning query” for short-term information:
m session state query (e.g., the exponent x of a g* value)
= session key query (of a complete, present or past, session)

m Exposed session: if session owner is corrupted, or attacker issued a
query against the session, or the matching session is exposed

1 Clearly cannot protect a session if the matching is exposed

38
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A KE Protocol is called SK secure if

1. Completed matching sessions output same session key
(functional, non-triviality clause)

2. Attacker learns nothing about unexposed sessions

(1 Captured via “test session”; chosen by attacker among
completed unexposed sessions

1 Attacker is given either the session key or an independent
random key: it needs to guess which one is the case

1 Require that the probability that the attacker guesses right
is not significantly better than a random guess (i.e. % + small €)

39
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A compact but strong definition

m Captures many attacks that were enumerated in the past as separate
requirements (or wish lists). For example:

1 Impersonation: if E can impersonate Bob without corrupting him then E
knows a key of an unexposed session, contradicting the definition

1 Secrecy: If E learns anything about the session key then it can distinguish
it from random. (Note: Why indistinguishability? The OTP example.)

1 Known-key attacks: An important class of attacks studied separately in
the past: Can E break one session given the key of another session?
Captured via session key query

01 Identity misbinding: if E forces two sessions w/outputs (A, B, K) and
(B, E, K), then E can choose one as test and expose the other to learn K
(it is allowed to do so since sessions are not matching)

m The definition can be further extended to cover other threats and
security properties: e.g. PFS (via key expiration)

41
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Informal Summary

m Summary of security guarantees for honest A,B:

1. If A outputs session key (A, B, K) and B is honest then no one
except B may know anything about K (not even a single bit)

= Does the protocol guarantee that B outputs the key??
0 “key confirmation” possible but “common knowledge” is not
2. Session keys are "computationally independent” of each other

» Note: session keys cannot be used during the key exchange itself
(cf. TLS)

m Note: Sharing a key with a corrupted party:

1 No guarantee for a key shared with a corrupted party.

[ But there is a guarantee that interacting with the attacker
does not compromise any session between honest parties

42



"SI
Informal Summary

m Summary of security guarantees for honest A,B:

1. If A outputs session key (A, B, K) and B is honest then no one
except B may know anything about K (not even a single bit)

= Does the protocol guarantee that B outputs the key??
0 “key confirmation” possible but “common knowledge” is not
2. Session keys are "computationally independent” of each other

» Note: session keys cannot be used during the key exchange itself
(cf. TLS)

m Note: Sharing a key with a corrupted party:
1 No guarantee for a key shared with a cor_F ii(par’ry

O ngm@@la’ﬁm l&@"‘%dﬁ\b&ﬂ(:ehn wu‘rh The attacker

compromise any session beTween honest parties
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About public keys

m Parties have long-term secrets
[ private signature/decryption keys, or shared keys w/other parties

m In the PK case: public keys of honest parties are assumed to
be communicated to other parties correctly.

m Public keys of corrupted parties are chosen by the attacker
arbitrarily (e.g., may be equal to a public key of another
honest party).

01 Think of a CA that checks identity but no other properties of the
keys being registered (does not assume/require proof of
possession, checking structure of a key, etc.)

44
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SK-security results (secure channels)

authenticated

m SK-security = Secure Channels encryption
1 Any key exchanged with an SK-secure KE protocol and used to
“encrypt-then-authenticate” data realizes a secure channel [cko01]

m Secure channel realization:

0 K = output of KE (may require a KDF step, e.g. if K=g* ;
can be combined with prf step below)

0 Keys (K., Kinae) = prf(context) where context may include
session/protocol/algorithm identifiers, parties identities, etc.

= Note: having directional keys (A>B and B> A) is a good idea
01 Apply to data: c=Ency,,(data), t=Macy,..(c); transmit (c,1)

m Other combinations, e.g. Ency,,.(data || Macy,..(data))

may hot be secure (TLS examples)
45
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SK-security results (protocols)

m A variety of protocols have been proven SK-secure
(both DH and key-transport)

e.g., ISO, IKE (SKEME, SIGMA), HMQV, Pre-Shared and more

Two SK-secure flavors: with and w/o PFS

s PFS modeled through session-expiration (models erasure);
expired sessions are NOT exposed even if attacker corrupts
the session’s owner.
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SK-Security and Composition

m CKO2: SK-Security is “universally composable” (UC [Can'02])

1 Remains secure under composition with any application, not just
secure channels

1 Well, almost: true for protocols with the ACK property

[ True always if UC security weakened via “non-information oracles”
(see CKO2 eprint/2002/059)

m SK-Security preserved under authenticators

1 Authenticator: A "compiler” from (ideal) AM-secure protocols to
(realistic) UM-secure protocols (a design and analysis tooll)

1 More in following slides (incl. the proof of the ISO protocol)
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UM and AM Models
AM

m Adversary model: YiAuthenticated links Model (M)

0 Full control of communication links: monitors/controls/mqXifies
traffic (m-iXm) passive attacker

1 Schedules KE sessions at will (interleaving)

1 May corrupt parties (tfotal control): learns long-term secrets (e.g.
signature key), all its state and session keys

[ May issue a “learning query” for short-term information:
m session state query (e.g., the exponent x of a g* value)
= session key query (of a complete, present or past, session)

m Exposed session: if session owner is corrupted, or attacker issued a
query against the session, or the matching session is exposed

1 Clearly cannot protect a session if the matching is exposed
48
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Authenticators [Bckos]
m Models:

7 UM (Unauthenticated-links Model): a realistic attack model as
described before

1 AM (ideally Authenticated-links Model): like UM but attacker
is passive; cannot change or inject msgs on links (but it may
prevent delivery)

m Authenticator : a “compiler” from AM-secure protocols
to UM-secure

1 Reduces the problem of designing (and analyzing) protocols
from the complex UM to the simple AM

m For example: Proving plain DH in the AM is immediate
(under DDH assumption)

49



Authenticators (sketch of idea)

m Message sending protocol (can be interactive)

Parties send and receive messages and register their actions
(“sent msg m to B”, “received msg m from A”)

m An authenticator is a message sending protocol s. t.

Whenever A registers “received m from B”, it also holds that B
registered “sent m to B”

Note: To prevent replay attacks messages need to be made
unique (e.g., concatenated with msg id or nonce)

50
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Authenticators Theorem

m Theorem: Let A be an authenticator

0 If Pis a protocol secure in the AM model

0 and P' is the result of applying A to each message in P

Then, P' is secure in the UM model.
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A signature-based authenticator
(applied to message msg)

A B
A, msg

B, nonce

A, SIGA(nonce,ms R

Compiler from AM to UM: apply the above authenticator
to each protocol's message

52
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Proving ISO Using an Authenticator

Recall the ISO-9796 protocol
(solved the Identity-Misbinding Attack of BADH):

A A g B
>

) B, g, SIGB(gX,gY
SIGA(QY:Q

53
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Proving ISO Using an Authenticator

m First prove basic DH is SK-secure in AM

Equivalent to Decisional DH assumption: (g%,g7.g?) ~. (g*.g”.gm"®m)
i.e., g indistinguishable from random element in G

A A, g B

>

B, g¥
<

" Next apply the sig-based authenticator to
this protocol =& a proof of the ISO protocolll

54
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Applying the Sig-Authenticator to AM- DH

A, msg

B

B, nonce

A, SIGA(nonce,msg _

ms9=g" A, g >
nonce=gY « B, g, §IQ (9 9", A) msg=g"
nonce=g*
sighature
authenticator A, SIGA(QY,QX,B)
on msg g*

Wheitaeat Tatr opmigsHrplg lsug rdighviybdiffeeentaarieator
first A sends nonce (gx) then B sends message (g¥) with signature
Conclusion: the ISO protocol is SK-secure
(QED: with a simple and intuitive proof)
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Other Authenticators

(and the SKEME Protocol)

56
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PK-Encryption-based authenticator
Single message authenticator: A9, B

B
A A, msg

B, Enc (k)

A, msg, MAC,(msg,B)

Compiler from AM to UM: apply the above authenticator
to each protocol's message

57
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Applying the Enc-Authenticator to
AM-DH

A, Ency(kl)

< B, gy, MACkl(gy,A), EnCA(kZ) msg=gY

msg=g* A, g%, MAC,,(g%,B)

= the SKEME protocol [K'9

Variants: +Key ftransport (no pfs)
. * Pre-shared key (with a MAC-based authenticator)
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Authenticators are not always...

m Possible

01 Either the design is not decomposable into a basic AM-secure
protocol and an authenticator applied to it

m Or desirable

1 The decomposition is artificial and adds more technicalities than
understanding

m Yet when they “work” it usually results in a more intuitive,
modaular and easier-to-analyze protocol

1 And designing KE with authenticators in mind reduces the
chances of hidden flaws
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More on the Design of
Key Exchange Protocols

m Privacy Issues: Identity Protection, deniability

m The design of the IKE Protocols: SKEME, SIGMA
“IPsec’s Key Exchange” (IKEv1, IKEv2)

60



On Identity-Protecting KE Protocols

m Identity protection
Hiding identities from passive and/or active attackers
Logical identities (e.g. cert’s) vs. physical addresses

m A privacy concern in many scenarios

Probing attacks in the Internet: who are you?
Location anonymity of roaming users

The “intelligent passport” application

m IPSec/IKE: design highly influenced by such privacy
concerns (- SKEME, SIGMA)
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Identity Protection

m Passive vs. active attacker

1 Both id’s protected against passive attacks but only one against
active attacks

1 Which identity should get active defense?
= Initiator: roaming user (e.g. hide location)

= Responder: avoid probing attacks: who are you? (e.g. passport)

m Presents some design challenges: conflict between
anonymity and authentication
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Identity Protection in SKEME

A, Encp(A, K)

>

B B, 97, MACy.(g7.A), Enc,( B Ky)

A, g%, MAC,,(g* B)

Issue: Id protection requires A to know B's pk (before run)

Next: SIGMA (signature based, solves this issue, IKEv2)
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Why not ISO?
A

A, g~
Unsuited for identity protection g
B B, g7, SIGp(9*.9".A)
1 B needs to know A’s identity
before he can authenticate to A; SI6,(97.9%,B) N

same for A

=> Protection against active attackers is not possible

1 Another privacy concern: leaving a signed proof of
communication (signing the peer’s identity)

(1 Letting each party sign its own identity rather than the peer’s
solves the privacy issues but makes the protocol insecure
(the identity-misbinding attack again)
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Alternative Solution: STS [Dvw'92]

m Tdea: to prevent the Id-M attack against BADH,
A and B "prove knowledge" of K=g* to each other

m Reminder Id-M attack (note that E doesn't know g*Y)

A A'_gx S E E'gx S B

B, g, SIGy(g*.9") = B, g¥, SIGy(g*.9")
< <

SIGA(9".9%) g SIGe(9'.9%)




" A
Alternative Solution: STS [Dvw'92]

m Idea: each peer proves knowledge of K=g*¥
(prevents the Id-M attack since in BADH E doesn’t know g*v)

m As a "Proof of Knowledge" the STS protocol uses
encryption under K=g*¥ (encryption denoted by {..};)

A A, g~ B

>

B, g¥, {SIGp(g9%.9"))

{SI6G(9".9% )
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" I
STS Pro's and Con's

© Pro: STS can protect identities

Peer’s id not needed for your own authentication
Can extend encryption to cover identities (or cert’s)

A g’ B

>

9", {B, SIGa(9".9")k

{A, SIG(9".9% )}
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" I
STS Pro's and Con's

@® @ Con: Protocol is insecure! (encryption is not the right
function to prove knowledge of a key)

E.g.: if Eve can register A’s public-key under her name she can
mount the I-M attack (without knowing g*v)

A E g’ B

>

9", B, {SIGa(9".9")k

E
A, {SIGA(9”.9% )}«
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Identity-Misbinding on STS

m Eve registers A’s PK as her own PK

01 Applicable when CA checks for identity of registrant but not
for “possession” (PoP) of private key

m The attack is trivial if cert’s not encrypted and trivial
too if encrypted with a stream cipher

m Beyond the practicality of the attack, it is enough to
show that “proof of knowledge of g*¥” via encryption is
not enough.

MOREOVER...
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STS with MAC (instead of encryption) [pvw)
AE 9" B

>

gy, B, SIGB(QX,QY), MACK(SIGB)

E
A, SIG,(9Y,9%), MAC(SIG,) .

<€

m MAC, better suited to provide Proof of Knowledge of K
m Yet: same attack as w/ encryption is possiblel

m Can be mounted even if CA requires priv-key PoP! [BM99]

Even if signer's id put under sig (“on-line registration attack”)

70



"
What is going on?
m The point is that “proof of knowledge” of K=g*¥ is not
the issue
m What is required is:
binding the key K with the peer identities

m Which brings us to the SIGMA design
1 SIGn and MAc-your-own-identityll
m And what about Photuris?

01 Yet another STS variant: Sign K=g*¥ as “proof of knowledge”;
also insecure (see the SIGMA paper)

m But first another don't-do-it lesson: Photuris
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But first another don't-do-it lesson: Photuris
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" B
Photuris Protocol (basic version)

Sign g¥¥ as direct authentication of g and proof of knowledge of g*¥

A A, g~ B

>

B, gV, SIGg(g)

SIGA(9)

>

- Id-Misb attack: Eve replaces SIG,(g~) with SIGg(g*) , possible with RSA
(no need for E to register A's PK as her own)

- SIG leaks information about g% e.g. H(g*Y) with RSA. Breaks secure channel/
if keys derived as HMAC(key=g*, data) which is computable given H(gxY)

- Small subgroup attack: next
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" B
Photuris Protocol (basic version)

A A, g¥ S B

B, g¥, SIGg(g™)

5I16,(9%)

SMALL SUBGROUP ATTACK:

» Assume g in Z, and p-1 has a small divisor s (i.e. p=s-t+1, e.g. s=3)

« Afttacker replaces g* with (g¥)" and g¥ with (g¥)"

* A and B compute same key K=g*v*

« But K now has order s, hence it only has s possible values! (g*, g°t,..., g5")

Adding g%, g¥ under sig solves the small group attack but not the other attacks
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The SIGMA Protocols



SIGMA: Basic Version
A - 2

>

5 g’, B, SIG,(g%,97), MAC,,.(B)

A, SIG,(97.9%), MAC,, (A) R

*K,, (and session key) derived from g~ via a kdf
SIG and MAC: complementary roles (mitm and binding, resp)

Does not require knowing the peer’s id for own
authentication = Great for id protection (& demable)



SIGMA-TI:active protection of (Thitiator's id

A - B

>

) g, {B, SIG; (9%.9"), MAC,,.(B) }«.

{A, SIG,(9.9%), MAC,,, (A) }Ke)

*K, and K,, derived from g*¥ via pseudorandom function
Responder (B) identifies first
= Initiator's (A) id protected



"
SIGMA-R:active protection of @sponder"s id

A gX B

>

y
< J

{ A, SIG,(g9".9%), MAC,,, (A) }Ke)

({ B, SIG;(g%,97), MAC,,.(B) }¢.

Note: Km, Km' and Ke, Ke' (against reflection attack)
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" S
IKEvl Variant: MAC under SIG

Equivalent security (just save MAC space):

A g~ B

9. B, SIG; (MACy, (B, 9%.9Y))

A, SIG, (MAC (A 999

= this is IKE's "aggressive mode" (no id protect'n)
Note: MAC(SIG(id,...)) is not securell (STS-MAC)
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" A
IKE Main Mode

A gx B

<€ gy

{ A, SIG, (MAC, (A, g¥.g) }K;

< { B, SIGz (MAC,,, (B, g%.9)) }ke

IKE v2: a slight variant - only MAC(id) under SIG
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" J
“Full fledge” SIGMA

(elements missing from skeleton figures)

A stda, gt mna, f.r.'-nfﬂll_l B

-

sidy , sidg, g¥, ng, infoy

sida, sidp, { info’, A, S1G s(np, sid 4, g°, info'y, info}), MACK, (A) }x,

sidy, sidg, { if?t-fﬂf;, B,s1Gg(na, sidg, g7, '.r.'-nfﬂg. i-nfaf,-}, MACk: (B) } i
— s

Essential additional information (context, negotiation, etc.)

Have separate elements for session identifiers, nonces, DH values
s Basic principle: Don't use same element for multiple purposes

Authenticate every element sent on the wire (identities t00?)

= Downgrade attacks
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SIGMA-I = TLS 1.3

Client
Key_share
Server
cer"rlflca’re Cer“rlfuca’reVemfy Server leshed

w9, S, SI65 (g"9"), MACk(S) e

(C. ST6:(g".9), MACw () Jg.

*K, , K. K., K. and session key derived from g via KDF
(handshake traffic / finished / application traffic keys)
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"
SIGMA-I = TLS 1.3

Client

Key_share
Server )
cer"rlflca’re Cer“rlfuca’reVemfy Server leshed

g, 15,565 (3, 9"), MAC(r(S) Jee

(C. ST6:(g".9), MACw () Jg.

PLUS: hello msg: nonce + negotiation;
transcript-hash under signature and MAC
LESS: C, SIG, for server-only authentication
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" S
SIGMA Summary

m SIGMA suitable for most applications requiring a
Diffie-Hellman key exchange:

01 Simple and efficient (minimizes msgs and comput’n)
= No over-design (nor under-design)
[ With or without ID Protection

[ Standardized: core key-exchange protocol for both IKEv1 and
TKEvZ2, now also TLS 1.3

01 The "off-the-record communication” [Goldberg-Borisov]
(use of deniability - proven in [DGK])
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" S
But is SIGMA Secure?

m Proof in Canetti-K Crypto’02
Care with
Variants|)

s e.g., SIG(MAC(id,...)) vs. (SIG(id,...), MAC(SIG(id,...)))

1 Formal proof: each element is essential

01 Implies secure channels

1 Secure composition (universal composability, UC)

m From theory to practice
[ Specification, implementation, details, DoS, certificates, ...
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Care with Variants

4 A. g _ A, g _ B
B, ¢¥, sice(g”.g". A) B, g¥, swae(g”. g%, B)
=i =iff
sicalg”, g*, B) N sicalg’ . g, A N
A "'l: .qi - "q': .I;I - B
0 T £
=i
Tl
T 1" + P ] - s -
$1G(g%, 97 ), MACK(4) - S 4lg¥, 7", A), MACE (a)
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"
KEM as Diffie-Hellman Generalization
m KEM: Key excapsulation mechanism (“key transport”)
0 KEM(pk) = (c, K) De-KEM(sk, c) > K
m Generic DH:

01 Alice chooses pair (sk,pk) sends pk to Bob, keeps sk
1 Bob applies KEM(pk), sends ¢ to Alice, outputs K
01 Alice compures K as De-KEM(sk, c), outputs K

m SKEME protocol: Long-term KEM + ephemeral KEM

01 Recent examples: OPTLS (TLS 1.3 proposal), Kyber (a lattice
based "post-quantum” KE proposal), dispenses with signatures
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Exercise

m Is this secure (as one-sided authentication)
m B>A: Noncer
m A>B: c=KEM(PKy), Sigu(c,r)

(1 Session key K=De-KEM(skg, ¢)
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" S
Many more considerations...

m Negotiation: algorithm independ., downgrade protection
m Denial of Service protection

m Key derivation

m Secure channels, authenticated encryption

m Deniability

m Automated analysis
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" S
PROOF-DRIVEN DESIGN®

m Proof-driven design: Formal analysis as main design tool

01 No simulation or empirical evidence; universal quantifier "for all”

m Proof guides choice of mechanisms, compose them right,
discern between the essential, desirable and dispensable

m Result is efficiency, simplicity, rationale, even
implementation guidancel!

01 Simplicity as a security feature: Keep it simple! (but not simpler)
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